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Research Overview

Past: What is the impact of model uncertainty and 
nonlinearities on feedback system?
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Research Overview

Past: What is the impact of model uncertainty and 
nonlinearities on feedback system?

Key contributions

1. Theoretical connections between frequency domain and time-
domain (dissipation inequality) analysis methods

2. Tools for uncertain time-varying and gain-scheduled systems

3. Applications to wind energy, UAVs, flex aircraft, hard disk drives

4. Numerically reliable algorithms with transition to Matlab’s
Robust Control Toolbox
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Research Overview

Past: What is the impact of model uncertainty and 
nonlinearities on feedback system?

Key contributions

1. Theoretical connections between frequency domain and time-
domain (dissipation inequality) analysis methods

2. Tools for uncertain time-varying and gain-scheduled systems

3. Applications to wind energy, UAVs, flex aircraft, hard disk drives

4. Numerically reliable algorithms with transition to Matlab’s
Robust Control Toolbox

Future: What is the impact of model uncertainty on 
control systems designed via data-driven methods?
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AEROSPACE ENGINEERING AND MECHANICS

Outline

• Flutter Suppression on Flexible Aircraft

• Robustness of Time-Varying Systems

• Robustness in Reinforcement Learning
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Fuel Consumption of Commercial Airliners
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Fuel Efficient Aircraft Design

• Breguet Range Equation

Range = � ���
�

�
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• Improve fuel efficiency by
• Reducing structural mass

• Reducing drag with longer, more slender wings (high aspect ratio)

• Improving engine efficiency
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Fuel Efficient Aircraft Design

• Breguet Range Equation

Range = � ���
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• Improve fuel efficiency by
• Reducing structural mass

• Reducing drag with longer, more slender wings (high aspect ratio)

• Improving engine efficiency

• Adverse effects
• increased coupling of structural dynamics and rigid body motion

• increased coupling of aerodynamic loads and structural deformation

• reduced flutter margins 
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Flutter
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Source: NASA Dryden Flight Research
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Classical Approach
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Flexible Aircraft Challenges
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Flexible Aircraft Challenges
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Recent Flight Demonstrators
• Lockheed Martin/AFRL: Body Freedom Flutter (BFF)

• Ref: Burnett, et al, AIAA MST Conference, 2010-7780

• Ref: Holm-Hansen, et al, AUVSI, 2010
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Recent Flight Demonstrators
• Lockheed Martin/AFRL: Body Freedom Flutter (BFF)

• NASA/Lockheed Martin: X-56A Multi-Utility Tech. Testbed (MUTT)
• Ref: Schaefer, ACGSC, 2018
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Recent Flight Demonstrators
• Lockheed Martin/AFRL: Body Freedom Flutter (BFF)

• NASA/Lockheed Martin: X-56A Multi-Utility Tech. Testbed (MUTT)

• Flutter Free FLight Envelope eXpansion for ecOnomical
Performance improvement (FlexOp)
• EU 2020 Horizon Project with B. Vanek as PI (MTA-Sztaki in Hungary)

• Project Site: https://flexop.eu/
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Performance Adaptive Aeroelastic Wing (PAAW) 

• Goal: Suppress flutter, control wing shape and alter 
shape to optimize performance
• Funding: NASA NRA with Dr. Jeffrey Ouellette as Tech. Monitor

• Team: UMN, VT, STI, CMSoft, Aurora, Schmidt & Assoc.

• Project Site: paaw.net

18

mAEWing1: BFF Replica mAEWing2: Half-scale X-56A
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mAEWing1 Sensor/Actuator Configuration

Ref: Regan & Taylor, AIAA 2016-1747

19



AEROSPACE ENGINEERING AND MECHANICS

Modeling for Aeroservoelastic Systems
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mAEWing1 Models: NASTRAN (VT), CFD/CSD (CMSoft), IO Reduced 
Order Model (STI/CMSoft), Flight Dynamics (Schmidt)
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Control-Oriented Modeling

1. VT: Construct MSC NASTRAN model

• Ref: Schmidt, Zhao, Kapania, AIAA 2016-1748

• Finite-element model with rod / beam elements & unsteady 
aerodynamic model with double lattice.

• Initial model from CAD and simple static test data from  UMN
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Control-Oriented Modeling
1. VT: Construct MSC NASTRAN model

2. VT/UMN: Update NASTRAN FEM with ground test data

• Ref: Gupta, Seiler, Danowsky, AIAA 2016-1753

• Matlab Demo: “Modal Analysis of a Flexible Flying Wing Aircraft”, 
Demonstrates frequency domain fitting in System ID Toolbox
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Control-Oriented Modeling
1. VT: Construct MSC NASTRAN model

2. VT/UMN: Update NASTRAN FEM with ground test data

3. VT: Obtain mode shapes & frequencies from NASTRAN

• Ref: Schmidt, Zhao, Kapania, AIAA 2016-1748
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Symmetric 1st

Bending ~6Hz
Symmetric 1st

Torsion ~12Hz
Symmetric 2nd

Bending ~19.5Hz
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Control-Oriented Modeling
1. VT: Construct MSC NASTRAN model

2. VT/UMN: Update NASTRAN FEM with ground test data

3. VT: Obtain mode shapes & frequencies from NASTRAN

4. Schmidt: Construct low-order flight dynamics model

• Ref: Schmidt, Zhao, Kapania, AIAA 2016-1748

• Ref: Schmidt, Journal of Aircraft, 2016.

• Parameter-varying model constructed using mean-axes

• Model has longitudinal rigid body dyn. & three elastic modes
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Control-Oriented Modeling
1. VT: Construct MSC NASTRAN model

2. VT/UMN: Update NASTRAN FEM with ground test data

3. VT: Obtain mode shapes & frequencies from NASTRAN

4. Schmidt: Construct low-order flight dynamics model

5. STI/UMN/Schmidt: Grey-box ID from flight tests

• Ref: Danowsky, Schmidt, Pfifer, AIAA 2017-1394 
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Bode mag (dB) from symmetric L3/R3 and L4/R4 to center body accel
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Control-Oriented Modeling
1. VT: Construct MSC NASTRAN model

2. VT/UMN: Update NASTRAN FEM with ground test data

3. VT: Obtain mode shapes & frequencies from NASTRAN

4. Schmidt: Construct low-order flight dynamics model

5. STI/UMN/Schmidt: Grey-box ID from flight tests

6. UMN: Component Modeling

• Ref: Theis, Pfifer, Seiler, AIAA 2016-1751 
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Open-Loop Flutter at ~30m/s

Model Predictions:

• Flight Dynamics (Schmidt): 29.1 m/s

• NASTRAN (VT): 29.5 m/s 

• CFD/CSD (CMSoft): 30.8 m/s

• Input/Output Reduced Order Model (STI/CMSoft): 31.7m/s
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Open-Loop Flutter at ~30m/s

Mode Shape: Coupling of rigid body short period and 1st

symmetric wing bending

28

Mode shape from IOROM 
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Active Flutter Suppression

• Mixed sensitivity H∞ Loopshaping

• Ref: Theis, Pfifer, Seiler, AIAA 2016-1751

• Ref: Theis, Ph.D., 2018
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Active Flutter Suppression

• Modal velocity as performance output

• Bandpass penalty on control effort

30
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Closed-Loop Evaluation
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Closed-Loop Evaluation
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Closed-Loop Flight Tests

• Three controllers designed to increase damping to BFF 
mode at 23m/s 
• Hinf Controller (Retuned): Kotikalpudi, et al, AIAA 2018-3426)

• MIDAAS: Danowsky (STI), 2017-4353 

• Classical Controller: Schmidt, Journal of GCD, 2016.
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Closed-Loop Flight Tests

• Three controllers designed to increase damping to BFF 
mode at 23m/s 
• Hinf Controller (Retuned): Kotikalpudi, et al, AIAA 2018-3426)

• MIDAAS: Danowsky (STI), 2017-4353 

• Classical Controller: Schmidt, Journal of GCD, 2016.

• Flight Tests 
• Ref: Danowsky, Kotikalpudi, Schmidt, Regan, Seiler, AIAA 2018-3427

• Controllers tested at and above the designed airspeed. 

• All controllers added damping at the designed speed. 

• MIDAAS & classical designs flown above open-loop flutter speed.  

• Hinf controller did not increase flutter speed but this was an artifact 
of our design objective and flight test plan.
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Pole Map for Retuned H∞ Controller
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Marker descriptions 
(X): theoretical (from models)  
(◊): system I.D. (from flight tests) 
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Flight Test Summary

36
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Next Steps

• Robust Flutter Speed (RFS): Airspeeds where active flutter 
control has 6dB/45deg margins on all inputs & outputs
• Metric for safe flight envelope with active flutter suppression

• Current: Restrict envelope to 20% below (open-loop) flutter speed
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Next Steps

• Robust Flutter Speed (RFS): Airspeeds where active flutter 
control has 6dB/45deg margins on all inputs & outputs
• Metric for safe flight envelope with active flutter suppression

• Current: Restrict envelope to 20% below (open-loop) flutter speed

• Redesign all 3 controllers to maximize robust flutter speed

• Design complicated by second bending mode at higher speeds

• Preliminary Results: 

• H∞ control achieves robust/absolute flutter speeds of 43/41 m/s

• Similar but slightly lower speeds for MIDAAS & classical designs

• Tested in linear parameter varying sim with actuator limits.

• Flight tests planned for spring 2019
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Outline

• Flutter Suppression on Flexible Aircraft

• Robustness of Time-Varying Systems

• Joint work with M. Arcak, A. Packard, M. Moore, and C. 
Meissen at UC, Berkeley.

• Funded by ONR BRC with B. Holm-Hansen at Tech. Monitor

• Robustness in Reinforcement Learning
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Time-Varying Systems

40

Wind Turbine
Periodic /

Parameter-Varying

Flexible Aircraft
Parameter-Varying

Vega Launcher
Time-Varying

(Source: ESA)

Robotics
Time-Varying

(Source: ReWalk)

Issue: Few numerically reliable methods to assess 
the robustness of time-varying systems.
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Finite Horizon Analysis

Goal: Assess the robustness of linear time-varying (LTV) 
systems on finite horizons.

Issue: Classical Gain/Phase Margins focus on (infinite 
horizon) stability and frequency domain concepts. 

41

Instead focus on:

• Finite horizon metrics, e.g. 
induced gains and reachable sets.

• Effect of disturbances and model 
uncertainty (D-scales, IQCs, etc).

• Time-domain analysis conditions.
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(Nominal) Finite Horizon Analysis

42

Nominal System

Analysis Objective
Derive bound on �(�) � that holds for all disturbances 

� �, �,� ≤ 1 on the horizon [0,T].
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Nominal Analysis with Dissipation Inequalities

43

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.
[3] Green & Limebeer, Linear Robust Control, 1995.

Theorem [1]
If there exists � � = �(�)� such that � � = � � ��(�)
and � �, � ≔ ��� � � satisfies

�

��
� �,� ���� � ��(�)�� ∀� ∈ 0, �

then �(�) � ≤ �

Proof
Integrate from � = 0 to � = �: 

�(�, �)

� � ��(�)

− �(�, 0)
��

≤ �� � �(�)�� � ��
�

�
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Nominal Analysis with Dissipation Inequalities

44

Theorem [1]
If there exists � � = �(�)� such that � � = � � ��(�)
and � �, � ≔ ��� � � satisfies

�

��
� �,� ���� � ��(�)�� ∀� ∈ 0, �

then �(�) � ≤ �

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.
[3] Green & Limebeer, Linear Robust Control, 1995.
[4] Wu. Control of Linear Parameter Varying Systems. PhD thesis, Berkeley, 1995.
[5] Bittanti & Colaneri, Periodic Systems. Springer, 2009.

Comments

• Time-varying matrix inequality can be “solved” via convex 
optimization using basis functions for P(t), gridding on time.

• Extensions to parameter varying [4] and periodic [5] systems.
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(Robust) Finite-Horizon Analysis

45

Uncertain Time-Varying Model

Analysis Objective
Derive bound on �(�) � that holds for all disturbances 

� �, �,� ≤ 1 and uncertainties ∆∈ � on the horizon [0,T].
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Example: Passive Uncertainty

Pointwise Quadratic Constraint

46
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Robust Finite Horizon Analysis

47

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
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More General Results

• Approach

• Combine dissipation inequalities (Willems) and more general integral 
quadratic constraint framework (Megretski & Rantzer)

• Requires technical factorization result to connect incorporate 
frequency domain IQCs into this time-domain analysis [1,2].

• Developed numerical algorithms  that combine differential linear 
matrix inequalities and Riccati differential equations [3].

• Extensions

• Similar methods can be used to assess robustness of linear 
parameter varying (LPV) [4,5] and periodic systems [6].

48
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Two-Link Robot Arm

49

Nonlinear dynamics [MZS]:
�̇ = �(�, �, �)

where

� = �1, �̇1, �2, �̇2
�

� = �1,  �2 �

� = �1,  �2 �

t and d are control torques and 
disturbances at the link joints.

[MZS] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.

Two-Link Diagram [MZS]
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Nominal Trajectory (Cartesian Coords.)
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Analysis

51

Nonlinear dynamics:
�̇ = �(�, �, �)

Linearize along a (finite –horizon) trajectory �̅, �̅, � = 0
�̇ = � � � + � � � + � � �

Design finite-horizon state-feedback LQR gain.

Goal: Compute bound on 
the final position accounting 
for disturbances and LTI 
uncertainty with Δ ≤ 0.8
injected at 2nd joint.
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Effect of Disturbance / Uncertainty

• Bound on final position computed in 102sec.

• Numerically robust algorithm to construct the worst-case disturbance 

• Ref: Iannelli, Seiler & Marcos, submitted to AIAA JGCD.
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Outline

• Flutter Suppression on Flexible Aircraft

• Robustness of Finite Horizon Systems

• Robustness in Reinforcement Learning
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Benchmark: Robotic Walking on MuJoCo

54

• Training can exploit 
flaws in the simulator.
• B. Recht, arXiv, 2018

• There are many 
model-based methods 
to ensure robustness.

• Goal: Develop model-
free methods to 
ensure robustness.

• Venkataraman & Seiler, 
Recovering Robustness in 
Model-Free 
Reinforcement Learning, 
submitted to 2019 ACC.
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Linear Quadratic Gaussian (LQG)

Minimize

Subject To:

The optimal controller has an observer/state-feedback form

Gains (K,L) computed by solving two Riccati equations.

This solution is model-based, i.e. it uses data A,B,C, etc

55
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Reinforcement Learning

• Partially Observable Markov Decision Processes (POMDPs)

• Set of states, S

• Set of actions, A

• Reward function, r: S x A → ℝ

• State transition probability, T

• Set of observations and observation probability, O

• Many methods to synthesize a control policy from 
input/output data to maximize the cumulative reward 

• The LQG problem is a special case of this RL formulation
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Doyle’s Example (‘78 TAC)

• LQR state-feedback regulators have provably good margins.

• Doyle’s example shows that LQG regulators can have 
arbitrarily small input margins.

57
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Doyle’s Example (‘78 TAC)

• LQR state-feedback regulators have provably good margins.

• Doyle’s example shows that LQG regulators can have 
arbitrarily small input margins.

• Doyle’s example can also be solved within RL framework 
using direct policy search:

• RL will converge to the optimal LQG control with infinite 
data collection. Thus RL can also have poor margins.

Implications?
58
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Recovering Robustness

• Increase process noise during training?

• This causes margins to decrease on Doyle’s example

• Process noise is not model uncertainty

59
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Recovering Robustness

• Increase process noise during training?

• Modify reward to increase state penalty or decrease 
control penalty?

• Again, this causes margins to decrease on Doyle’s example

• Trading performance vs. robustness via the reward function 
can be difficult or counter-intuitive
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Recovering Robustness

• Increase process noise during training?

• Modify reward to increase state penalty or decrease 
control penalty?

• Inject synthetic gain/phase variations at the plant input 
(and output?) during the training phase.

D=1+d where

d is U[-b,b]
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Results On Doyle’s Example
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Results on Simplified Flex System

• Model has 4-states (Rigid body and lightly damped modes)

• RL applied to 3-state controller parameterization

• LQG controller is not in the control policy parameterization 

• Still converges to policy with small margins

• Robustness recovered with synthetic pertubations during training

63
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Next Steps

• How should synthetic perturbations be introduced 
during training?

• Can we make any rigorous claims about the proposed 
method?

• Attempt experimental tests on a simple system
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Research Overview

Past: What is the impact of model uncertainty and 
nonlinearities on feedback system?

Key contributions

1. Theoretical connections between frequency domain and time-
domain (dissipation inequality) analysis methods

2. Tools for uncertain time-varying and gain-scheduled systems

3. Applications to wind energy, UAVs, flex aircraft, hard disk drives

4. Numerically reliable algorithms with transition to Matlab’s
Robust Control Toolbox

Future: What is the impact of model uncertainty on 
control systems designed via data-driven methods?

https://www.aem.umn.edu/~SeilerControl/

65



AEROSPACE ENGINEERING AND MECHANICS66

Acknowledgements
• US National Science Foundation 

• Grant No. NSF-CMMI-1254129: “CAREER: Probabilistic Tools for High 
Reliability Monitoring and Control of Wind Farms.” Prog. Manager: J. Berg.

• Grant No. NSF/CNS-1329390: “CPS: Breakthrough: Collaborative Research: 
Managing Uncertainty in the Design of Safety-Critical Aviation Systems”. 
Prog. Manager: D. Corman.

• ONR
• ONR BRC: “Finite-Horizon Robustness: Moving Beyond Traditional Stability 

Analysis.” Tech Monitor: B. Holm-Hansen.

• NASA
• NRA NNX14AL36A: "Lightweight Adaptive Aeroelastic Wing for Enhanced 

Performance Across the Flight Envelope," Tech. Monitor: J. Ouelette.

• NRA NNX12AM55A: “Analytical Validation Tools for Safety Critical Systems 
Under Loss-of-Control Conditions.” Tech. Monitor: C. Belcastro.

• Eolos Consortium and Saint Anthony Falls Laboratory
• http://www.eolos.umn.edu/ &  http://www.safl.umn.edu/

66


