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Pillars of Robust Control

1. Multivariable Optimal Control
H,, H., DK-synthesis

2. Fundamental Limitations of Control

Bode sensitivity integral, complementary sensitivity
integrals, constraints due to right-half plane poles and zeros.

3. Uncertainty Modeling and Robustness Analysis

Linear Fractional Transformations (LFTs), Structured Singular
Value (u), Integral Quadratic Constraints (1QCs)
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Basic Feedback Loop

Sensitivity

Complementary

Sensitivity
_ _PC
I'= 11pe

Many design objectives: Stability, disturbance rejection,
reference tracking, noise rejection, moderate actuator

commands, adequate robustness margins.

Basic Limitation: S+T=1
Typically require |S| « 1 at low frequencies for reference
tracking and disturbance rejection.
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Plant Uncertainty

A simplified model P is used for control design.

Actual dynamics are complex and have part-to-part variation.
We lose model fidelity as we go to higher frequencies.

Bode Diagram
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Stability Margins: Safety Factors for Control

Consider simple plant uncertainty types:
Gain: aP where a varies from its nominal «, =1
Phase: e/ where 0 varies from its nominal 6,,.=0
Classical Margins: Largest gain/phase variations that can
be tolerated before closed-loop instability occurs.
Nyquist stability criterion is ideal for studying these margins
Easily computed in SISO case, e.g. from frequency responses.

Disk Margin: If [S(jw)/ is large then a small (combined)
gain/phase variation can cause instability.

S(jw)|>1 & |1+ P(jw)C(jw)| =0
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Typical Sensitivity Objectives

* Performance: “Small” |S| up to 0 dB bandwidth Q.
* Robustness: |S|< 2 (=6dB) at all frequencies (No Peaks)
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Conservation of Sensitivity

Suppose P is stable so that C =0 is a stabilizing controller.

1
) = T P0G

1 AND / In|S(jw)|dw =0
0

107" 10° 10"
Frequency (rad/sec)
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Conservation of Sensitivity

Suppose P is stable so that C =0 is a stabilizing controller.

1
) = T P0G

1 AND / In|S(jw)|dw =0
0

1
Improving sensitivity at 0
some frequencies leads to
degradations at others.

Blue: Sensitivity with C=0
Red: Sensitivity for another |
stabilizing controller

This follows from the Bode
Sensitivity Integral.
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Bode Integral Theorem [1,2]

Assume PC has relative degree 2
and S(s) is stable. Then:

Ny,

/ 1n|S(jw)|dw—7rZRe (pr) >0
0

where p, are the unstable (RHP) poles of PC.
(Note: |S| (dB) ~ 8.71n|S|)

[1] Bode, Network Analysis and Feedback Amplifier Design, 1945.

[2] Freudenberg and Looze, Frequency Domain Properties of Scalar and Multivariable Feedback
Systems, Springer-Verlag, 1988.
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Bode Integral Theorem [1,2]

Assume PC has relative degree 2
and S(s) is stable. Then:

Ny,

/ 1n|S(jw)|dw—7rZRe (pr) >0
0

where p, are the unstable (RHP) poles of PC.
(Note: |S| (dB) ~ 8.71n|S|)

This a key conserved quantity in feedback design.
Improving performance (e.g. increased bandwidth) comes
at the expense of reduced robustness (peak in |S]|) [3].

[1] Bode, Network Analysis and Feedback Amplifier Design, 1945.

[2] Freudenberg and Looze, Frequency Domain Properties of Scalar and Multivariable Feedback
Systems, Springer-Verlag, 1988.

[3] Stein, Respect the Unstable, Bode Lecture, 1989 (and IEEE CSM, 2003)
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Advanced Robustness Analysis

Move beyond classical SISO stability (gain/phase) margins
1. Multi-loop (MIMO) systems with multiple uncertainties
2. More detailed uncertainty descriptions including

Structured_l: Parametric, Integral

Singular ) : . Quadratic

Value (1) Non-parametric (dynamic) Constraints
Nonlinearities, e.g. saturation (IQCs)

3. Consider both robust stability and robust performance

Developments go back to the Lur’e problem (40’s) with key
contributions in the 80’s and 90’s:

* u: Safonoy, Stein, Doyle, Packard, ...
* |QCs: Yakubovich, Megretski, Rantzer, ...
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Non-parametric (Dynamic) Uncertainty

Model nominal behavior with LTI system G,.

Uncertainty modeled by LTI systems G close to G, in
frequency response, e.g. small additive error.

50

Magnitude (dB)
o

-50

— 180

90 | |

Phase (deg
o

-90

-180

Bode Diagram

Frequency (Normalized)

AR UNIVERSITY OF MINNESOTA




Uncertainty Modeling

Consider SISO feedback system:

€

Jd
q U Y
Q) > P >

T—C e | A

Unstable plant with uncertain
pole and input gain:

First-order actuator with
additive dynamic uncertainty

Proportional-Integral control

P(s) = Sia where

a €[0.8,1.1] and b € [1.7,2.6]

A(s) = Ap(s) + E(s) where

Ao(s) = 395 & |E(w)| < 0.1, E stable

C(S) — 3s544.5

S
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Uncertainty Modeling

Separate known from the uncertain

Jd
c u
Te‘ C q = A q 20 = P Y >

Uncertainty is
typically very
structured
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Uncertainty Modeling

Re-center and re-scale to normalize the uncertainties

Jd
C U
e N e D I S

"N\S

N Uncertainty set Is structured:
—| O A = {diag(d,, 0y, AE) : 04,0, € R
A and A g LTI, stable}

E
where:
M | 1. A=0 gives nominal behavior
¢ - 2. Range of modeled uncertainty is

|A oo = supa(A) < 1
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Robustness Metrics

Stability Margin: ~., ::AngfA [A/PS

s.t. A causes instability
- M
Worst-case Gain: sup || Ty—e(M,A) || ) d
AEA,
A0 <1

Comments:

System is robustly stable if and only if k&, >1.
Both metrics can be converted to a (freq. domain) pu test.

Algorithms compute bounds that provide guarantees on
performance and bad instances of uncertainties.

|QCs extend the framework to include nonlinearities.
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Numerical Algorithms and Software
Reliable software to create uncertainty models & perform analyses.

* Matlab’s Robust Control Toolbox (Safonov & Chiang), (Balas, Doyle, Glover,
Packard, & Smith), (Gahinet, Nemirovski, Laub, & Chilali)

 ONERA’s Systems Modeling, Analysis and Control Toolbox (Biannic,
Burlion, Demourant, Ferreres, Hardier, Loquen, & Roos)

v

o

Example Matlab code to
assess robustness of
simple feedback loop.
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Unstable plant with parametric uncertainty
= ureal('a',1, 'Range’', [0.8 1.1]);,
ureal('b',2, 'Range’', [1.7 2.6]);

tf(b, [1 -a]);

L VI o R S

% Actuator with non-parametric (dynamic) unc.
nomAct = tf£(10, [1 10]);,

DeltaE = ultidyn('DeltakE’,[1 1]);,

A = nomAct + 0.1*DeltakE;,

% Uncertain closed-loop (d->e) with PI control
C =¢tf([3 4.5],[1 0]);,
R = feedback (-P, A*C),

% Robust stability and worst-case gain
[StabMargin, DestabilizingUncert] = robstab (R);,
[wcGain, OffendingUncertainty] = wcgain(R);,
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Numerical Algorithms and Software

Reliable software to create uncertainty models & perform analyses.

* Matlab’s Robust Control Toolbox (Safonov & Chiang), (Balas, Doyle, Glover,
Packard, & Smith), (Gahinet, Nemirovski, Laub, & Chilali)

 ONERA’s Systems Modeling, Analysis and Control Toolbox (Biannic,
Burlion, Demourant, Ferreres, Hardier, Loquen, & Roos)

Numerical algorithms continue to be developed, e.g. in Matlab:
e Structured H,(R2010b) and systune (R2014a): Based on work by
(Gahinet, Apkarian, Noll)

* uwithout frequency gridding (R2016b): Based on work by (Gahinet, Balas,
Packard, Seiler) and (Biannic, Ferreres, Roos)

* Automatic regularization for H, (R2017b) and H,, synthesis (R2018b):
Based on work by (Gahinet, Packard, Seiler)
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(My Recent) Applications of Robust Control

e Wind farm modeling and control (Annoni ‘16, Singh, Hoyt)
* |Individual turbine control (Wang ‘16, Ossmann, Theis)

UAV control with a single aerodynamic surface
(Venkataraman '18)

* Flexible aircraft (Kotikalpudi ’17, Theis '18, Gupta, Pfifer)

e Dual stage hard disk drives with Seagate (Honda ‘16)
(Years refer to Ph.D. theses.)

Magnetic

Voice Coil
Motor

Actuator
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Outline

Brief Overview of Robust Control

Robustness of Time-Varying Systems

Joint work with M. Arcak, A. Packard, M. Moore, and C.
Meissen at UC, Berkeley.

Funded by ONR BRC with B. Holm-Hansen at Tech. Monitor

Future Directions

e Conclusions
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Time-Varying Systems

wind Turbine Flexible Aircraft Vega Launcher Robotics
Periodic / Parameter-Varying Time-Varying Time-Varying
Parameter-Varying (Source: ESA) (Source: ReWalk)

Issue: Few numerically reliable methods to assess
the robustness of time-varying systems.
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Finite Horizon Analysis

Goal: Assess the robustness of linear time-varying (LTV)

systems on finite horizons.

Issue: Classical Gain/Phase Margins focus on (infinite
horizon) stability and frequency domain concepts.

Closed-Loop with ||d|| <= 5

Instead focus on:

* Finite horizon metrics, e.g.
induced gains and reachable sets.

* Effect of disturbances and
(parametric, non-parametric and
nonlinear) uncertainties.

e Time-domain analysis conditions.
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(Nominal) Finite Horizon Analysis

Nominal LTV System
- e "
z(0) =

Analysis Objective

Derive bound on ||e(T")||2 that holds for all disturbances
|d||2,j0,77 < 1 on the horizon [0, T].
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Nominal Analysis with Dissipation Inequalities

Theorem [1,2]

If there exists P(-) = P(-)! such that
(i) P(T) =C(Th'C(T), and
(i1) V (z,t) := 21 P(t)x satisfies
d
aV(a:,t) —~y2d(t)td(t) <0 vt € [0,T]
then [le(T)|l2 < vlldll2,10,7)
Proof

Integrate dissipation inequality from ¢t =0to ¢t ="1T"

V(). T) - V(0.0 [ " d(e)Td(t)dt < 0

~~ N——
=e(T)Te(T) =0

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.
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Nominal Analysis with Dissipation Inequalities

Theorem [1,2]

If there exists P(-) = P(-)! such that
(i) P(T) =C(Th'C(T), and
(i1) V (z,t) := 21 P(t)x satisfies
%V(:ﬁ,t) —~A%d()d(t) <0 Vvt €[0,T)]

then ||e(T')||2 < 7||d||2,0,7]

Dissipation inequality can be recast as a differential LMI:

P+ ATP+PA PB
<
BT p 27 =0 Vte|0,T]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.
[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.
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Nominal Analysis with Dissipation Inequalities

Theorem [1,2]

If there exists P(-) = P(-)! such that
(i) P(T) =C(Th'C(T), and

(i1) V(x,t) := xl P(t)x satisfies

then [[e(T)[[2 < ~lld]

Comments

* The dissipation inequality is equivalent to Riccati conditions [3] but
enables extensions to robustness analysis.

* Numerically reliable algorithm to construct worst-case disturbance [4].

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Willems, Dissipative Dynamical Systems: Parts i and ii, 1972.

[3] Green & Limebeer, Linear Robust Control, 1995.

[4] lannelli, Seiler, Marcos, “Construction of worst-case disturbances for LTV systems...”, 2019.
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(Robust) Finite-Horizon Analysis

Uncertain LTV System

2] [A(®) Bt By@®] [z)] [ ] 2

o(t)| = |Ci(t) Di(t) Da(t)| |w(t)| ° w
et)|  [C2(t) O 0 | |d®)] .
£(0) = 0 ¢ ~—] —d

Uncertainty set A can be block-structured with
parametric / non-parametric uncertainties and nonlinearities.

Analysis Objective

Derive bound on ||e(T)||2 that holds for all disturbances
|d||2,j0,71 < 1 and uncertainties A € A on the horizon |0, 7.
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Integral Quadratic Constraints (1QCs) [1,2]

The robustness analysis uses constraints on the I/0
behavior of A expressed as (time-domain) 1QCs.

- zZ

v
—»
v w
—L 3 A >

Definition
A satisfies the IQC on [0,7T] defined by a stable
filter ¥ and matrix M if:

Jy 2T Mz(t)dt >0 Vo € L[0,T] and w = A(v)

Notationally we consider only a single block. If A has block
structure then we can specify different IQCs for each block.

[1] Yakubovich, S-procedure in nonlinear control theory, 1971.
[2] Megretski and Rantzer, System Analysis via Integral Quadratic Constraints, TAC, 1997.

AR UNIVERSITY OF MINNESOTA



Example: Sector-bounded Nonlinearity

" » A is a sector-bounded nonlinearity, f.

(w(t) —av(t)) - (Bo(t) —w(t)) 20 Vi

!

Lo 5 o
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Example: Sector-bounded Nonlinearity

" » A is a sector-bounded nonlinearity, f.

(w(t) = av(t)) - (Bu(t) —w(t)) =20 Vi

!

ol [ s o

. o N\ >y
vV Ve

=M :=2(t)

!

> le Z
. ' [ 21T Mz(t)dt > 0
IR N rd A satisfies the IQC on [0, T]

defined by ¥ := I, and M.
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Example: Non-parametric (Dynamic) Uncertainty

v w A is stable, LTI with
|Alloo == sup,, |A(w)| <1

Bode Diagram Nyquist Diagram

0.5¢

-10 1

——

Magnitude (dB)
o

. Imaginary Axis
o

o
&)
T

-2 0 2 - -
10 10 10 : )
Frequency (rad/s) Real Axis
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Example: Non-parametric (Dynamic) Uncertainty

v A w A is stable, LTI with
—_— —
Ao := sup,, [Aw)] < 1

B(w)] < [6(w)| Vo i oo X (W) [[0(w)]? = [d(w)[?] dw >0

for any X(w) >0

Frequency- ¢ /_O; [g(w)r [X(“) 5 ] lg(w)] dw > 0

Domain IQC (w) 0 —X(w)| |d(w)
for any X (w) > 0

Spectral * [H(w)]” ) 8(w)

Factorization ™= /_ N [w(w)] V(w)" MY (w) Lb(w)] dw >0

X(w) = D(w)*D(w) where
U .= diag(D, D) and M := diag(1,—1)
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Example: Non-parametric (Dynamic) Uncertainty

v A w A is stable, LTI with
—_— —
Ao := sup,, [Aw)] < 1

B(w)] < [6(w)| Vo i oo X (W) [[0(w)]? = [d(w)[?] dw >0

for any X(w) >0

ovaniac 4 L] (57 sl )=
orany X (w) > 0

1 (Invoke Causality)

B e fOT ()T Mz(t)dt >0
vl oA w A satisfies the IQC on [0, 7] defined by
U := diag(D, D) and M := diag(1, —1)

[1] Balakrishnan, Lyapunov Functionals in Complex u Analysis, TAC, 2002.
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Additional 1QC Details

* Most IQCs are related to previous robust stability results
|IQC for sector nonlinearities related to the circle criterion
|QC for LTI uncertainties related to D-scales in u analysis

* A dictionary of additional IQC for various uncertainties /
nonlinearities is given in [1].
|IQCs for passive operators, static memoryless nonlinearities
(Popov, Zames-Falb), time-delays, real parameters, etc.

Many |QCs are specified in the frequency domain

* A technical J-spectral factorization result can be used to
convert freq. domain IQCs into time-domain 1QCs [2,3].

[1] Megretski & Rantzer, System analysis via IQCs, TAC, 1997. [IQCs derived based on much prior literature]
[2] Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, TAC, 2015.
[3] Hu, Lacerda, Seiler, Robustness Analysis of Uncertain Discrete-Time System with ... IQCs, IJRNC, 2016.
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Robustness Analysis

-
A e
—> Z
with
-
Jo 2T M (t)2(t) dt > 0
v w
.<_
M
e ~—— «—

The robustness analysis is performed on the extended
(LTV) system of (M, W) using the constraint on z.

z.(t)]  [A®F) Bi(t) Bat)]| [ze(t)]
z(t) | = |Ci(t) Di(t) Dat)| |w(t)
)| |e®) o 0| |dwe)
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Robust Finite Horizon Analysis

Theorem [1,2]

Assume A satisfies the IQC defined by (¥, M).
If there exists P(-) = P(-)! such that

(i) P(T") = Co(T)" Co(T'), and
(i1) V(x,t) := a1 P(t)x satisfies

%V(a:,t) —2d(t) d(t)Fz(t)" Mz(t) <0 Vt € [0,T]
then |le(T')[[2 < v[|d

2,[0,T]
Proof
Integrate dissipation inequality from ¢t =0to ¢t ="1T"

T T
V(z(T),T) - V(2(0),0) =~ /O d(t)d(t)dt + fo 2(t) T Mz(t)dt <0

-
Y Y

=e(T)Te(T) =0 \ v

Vo

>0

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using
IQCs, arXiv 2018 and Automatica 2019.
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Robust Finite Horizon Analysis

Theorem [1,2]

Assume A satisfies the IQC defined by (¥, M).
If there exists P(-) = P(-)! such that

(i) P(T) = Co(T)" Co(T'), and
(i1) V(x,t) := a1 P(t)x satisfies

%V(a:,t) —2d(t) d(t)Fz(t)" Mz(t) <0 Vt € [0,T]
then |le(T)]s <

Dissipation inequality can be recast as a differential LMI:

P+ATP+PA PB B
BT p 0 0 |+O)fM[C D1 Ds] <0
I BZ.T P 0 —*I
vVt € [0,T]

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using
IQCs, arXiv 2018 and Automatica 2019.
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Numerical Algorithms and Software

* Robustness Algorithms

Differential LMI can be “solved” via convex optimization using
basis functions for P(-) and gridding on time [1].

A more efficient algorithm mixes the differential LMI and a
related Riccati Differential Equation condition [2].

Similar methods developed for LPV [4,5] and periodic systems [6].

e LTVTools Software [3]

Time-varying state space system objects, e.g. obtained from
Simulink snapshot linearizations.

Includes functions for nominal and robustness analyses.

[1] Moore, Finite Horizon Robustness Analysis using IQCs, MS Thesis, Berkeley, 2015.

[2] Seiler, Moore, Meissen, Arcak, Packard, Finite Horizon Robustness Analysis of LTV Systems Using IQCs,
arXiv 2018 and Automatica 2019.

[3] https://z.umn.edu/LTVTools

[4] Pfifer & Seiler, Less Conservative Robustness Analysis of LPV Systems Using IQCs, IJRNC, 2016.

[5] Hjartarson, Packard, Seiler, LPVTools: A Toolbox for Modeling, Analysis, & Synthesis of LPV Systems, 2015.
[6] Fry, Farhood, Seiler, IQC-based robustness analysis of discrete-time LTV systems, [IJRNC 2017.
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https://z.umn.edul/LTVTools

Two-Link Robot Arm

Nonlinear dynamics [MZS]:

n=fmnrtad)
where
n= [91» 0,0, HZ]T
T=|1, T, |'
d=1I[dy, d,|"
rand d are control torques and
disturbances at the link joints.

Two-Link Diagram [1]

[1] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robot Manipulation, 1994.
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Nominal Trajectory in Cartesian Coordinates
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Analysis

Nonlinear dynamics:
n=fmra)
Linearize along the finite —horizon trajectory (77, 7,d = 0)
x =At)x + B(t)u + B(t)d

Design finite-horizon state-feedback LQR gain.

Y

Goal: Compute boundon ., % Te [
1 4 . _Hi? > T

the final position accounting - DN ?_'

for disturbances and LTI

uncertainty A at 2nd joint. K |
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Monte-Carlo Simulations

Closed-Loop with ||d|| <=5

92 (rads)
o

2.5

61 (rads)

LTV simulations with randomly sampled disturbances and
uncertainties (overlaid on nominal trajectory).
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Robustness Bound

Closed-Loop with ||d|| <=5

92 (rads)
o

2.5

35 L L L L I

91 (rads)

Cyan disk is bound computed in 102 sec using IQC/DI method
Bound accounts for disturbances ||d||<5 and [|A||<0.8
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Worst-Case Uncertainty / Disturbance

Closed-Loop with ||d|| <=5

0.5

92 (rads)
o

35 L L L L I
0 1 2 3 4 S

0, (rads)
1
Randomly sample A to find “bad” perturbation and compute corresponding worst-case
disturbance using method in [1]

[1] lannelli, Seiler, Marcos, Construction of worst-case disturbances for LTV systems..., 2019.
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Closed-Loop Robust L2-to-Euclidean Gain

Worst-Case Robust Gain Plot

0.4
——7=0.1
0.35 —h— 7=0.05
Two Controllers: ——r=002
* Finite-Horizon LQR :; o3
with state feedback ¢ 02
* Output Feedback 3 0.2
using high pass filter % 0.15 -
rs/(zs+1) to estimate 2 .
angular rates | L
0.05F o a
|
0 1 I 1 |
0.4 0.6 0.8 1

Uncertainity || Al
Finite horizon robustness is degraded by

output feedback with rate estimates.
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Closed-Loop Robust L2-to-Euclidean Gain

Worst-Case Robust Gain Plot

0.4 I
: —— 7 =0.1
0.35 = 7= 0.05
Two Controllers: i ——r-002
* Finite-Horizon LQR :g o3 i
with state feedback ¢ 925+ |
|
e Qutput Feedback 3 021 |
using high pass filter % 015
rs/(7s+1) to estimate 2 N
angular rates ey
0.05 1= |
I | | |
0 | 1 | ! | ! !
0 0.1 0.2 0.4 0.6 0.8 1

Uncertainity ||A|]
Finite horizon robustness is degraded by

output feedback with rate estimates.

AR UNIVERSITY OF MINNESOTA 48 AEROSPACE ENGINEERING AND MECHANICS




Closed-Loop Robust L2-to-Euclidean Gain

Worst-Case Robust Gain Plot

0.4 i .
0.35 ——7=0.1 :
. 99 [ | —le— 7= 0.05 I
Two Controllers: . 00 |
* Finite-Horizon LQR 3 >3 = i
with state feedback g 025 |
O
« OQutput Feedback 2 0.2 i
using high pass filter % 0.15 |
zs/(7s+1) to estimate £ i B
angular rates A —h— —A— ——
0.057 ! g i
|
|
0 L L] L
0 0.05 0.1 0.15 0.2

Uncertainity || Al

Finite horizon robustness is degraded by
output feedback with rate estimates.
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Impact of Using High Pass Rate Estimator

Worst-Case Robust Gain Plot

——7=0.1 I
0351 |—A—7=005 |
—t—7=0.02 I
. 03rF LQR
E |
Z 025 .
' Closed-Loop with [|d|| <= 5
g 02 I 0.5 T T
g
® 0.15
2

!
|
1
1

0 0.65 0.1 0.15 0.2 _05 -

Uncertainity ||A]|

351
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Outline

Brief Overview of Robust Control

Robustness of Time-Varying Systems

Future Directions
Robustness in Reinforcement Learning
Design for Optimization Algorithms

e Conclusions
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“Model-Free” Reinforcement Learning

Goal: Train a control policy from data

to maximize a cumulative reward h ¢
* Training data obtained from a \_»
simulator or the real system System
e Often assume state feedback o
* Many algorithms (Q-learning, value Y

iteration, policy iteration, policy
search) [1,2,3]

* Algorithms have close connections
to dynamic programming and
optimal control.

Control [«

[1] D.P. Bertsekas, “Reinforcement Learning and Optimal Control,” 2019.
[2] R.S. Sutton and A.G. Barto, “Reinforcement Learning: An Introduction,” 2018.

[3] C. Szepesvari, “Algorithms for Reinforcement Learning,” 2010.
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Is Robustness an Issue in RL?

Training via simulation

Training on real system
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Is Robustness an Issue in RL?

. . .. . Robotic Walking in MulJoCo
Training via simulation

* Training can exploit flaws in the
simulator [1].

* Loss of performance transitioning
from simulator to real system.

Training on real system

[1] B. Recht, “A Tour of Reinforcement Learning,” arXiv, 2018.
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Is Robustness an Issue in RL?

.. .. . Robotic Walking in MulJoCo
Training via simulation

* Training can exploit flaws in the
simulator [1].

* Loss of performance transitioning
from simulator to real system.
Training on real system

* Part to part variation (train on one
system and implement on many)

* Changes in system dynamics over
time (temperature dependence,
environmental effects, etc....)

[1] B. Recht, “A Tour of Reinforcement Learning,” arXiv, 2018.
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Summary: Recovering Robustness in RL

e Robustness issues can arise in output-feedback
controllers trained by RL [2]
Linear Quadratic Gaussian (LQG) Control can be solved via RL

A well-known counterexample by Doyle [1] demonstrates that
LQG controllers can have arbitrarily small margins.

[1] ). Doyle. Guaranteed margins for LQG regulators, IEEE TAC, 1978.

[2] Venkataraman & Seiler, Recovering Robustness in Model-Free Reinforcement
Learning, "18 arXiv and ‘19 ACC submission.
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Summary: Recovering Robustness in RL

e Robustness issues can arise in output-feedback
controllers trained by RL [2]

Linear Quadratic Gaussian (LQG) Control can be solved via RL

A well-known counterexample by Doyle [1] demonstrates that

LQG controllers can have arbitrarily small margins.

w

()

e Robustness can be recovered L.
by introducing (synthetic) input

System

Y
>

.
|

U

e

perturbations during the RL

training [2].

Control

A

[1] ). Doyle. Guaranteed margins for LQG regulators, IEEE TAC, 1978.

[2] Venkataraman & Seiler, Recovering Robustness in Model-Free Reinforcement
Learning, "18 arXiv and ‘19 ACC submission.
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Linear Quadratic Gaussian (LQG)

Minimize Jroc(u) == A}lmoo NE

N
Z th + utTRut
t=0

Subject To:  %t+1 = Axy + Buy + Bywy
yy = Cay + vy

The optimal controller has an observer/state-feedback form

£t+1 = A.f’li't + But + L (yi; — C.ffli't)
U = —K.’:l\ft

Gains (K,L) computed by solving two Riccati equations.
This solution is model-based, i.e. it uses data A,B,C, etc

AR UNIVERSITY OF MINNESOTA



Reinforcement Learning

* Partially Observable Markov Decision Processes (POMDPs)
Set of states, S
Set of actions, A
Reward function, r: SxA—- R
State transition probability, T
Set of observations and observation probability, O

 Many methods to synthesize a control policy from
input/output data to maximize the cumulative reward

N
JRL(G) =F

A at)]

t=0

 The LQG problem is a special case of this RL formulation
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Doyle’s Example (‘78 TAC)

* LQR state-feedback regulators have provably good margins.

* Doyle’s example shows that LQG regulators can have
arbitrarily small input margins.

Honey\\/e" Interoffice Correspondence

Dwte:  August 23, 1977 L. Q. Gaussian
J. A. Hauge
To: C. A. Harvey A. P. Kizilos
A. F. Konar
From: J, C. Doyle E. Yore

E.
N. R. Zagalsky
S

Location: SERC, Research §stéms and Control Technology

Suvject:  "Guaranteed Margins for LQG Regulators"

ABSTRACT

There aren't any.

A11 engineers who have been using LQG methodology may pick up their
Nichols charts from the supply room.
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Doyle’s Example (‘78 TAC)

* LQR state-feedback regulators have provably good margins.

* Doyle’s example shows that LQG regulators can have
arbitrarily small input margins.

* Doyle’s example can also be solved within RL framework
using direct policy search:
zey1 = Ag(0)z: + B (0)ys
Ut = CK(G)Zt
where

Ay (6) = {[1) gj By (0) := H  Cre(9) = [gﬂ

* RL will converge to the optimal LQG control with infinite
data collection. Thus RL can also have poor margins.
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Recovering Robustness

* |ncrease process noise during training?
This causes margins to decrease on Doyle’s example
Process noise is not model uncertainty
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Recovering Robustness

* |ncrease process noise during training?

* Modify reward to increase state penalty or decrease
control penalty?
Again, this causes margins to decrease on Doyle’s example

Trading performance vs. robustness via the reward function
can be difficult or counter-intuitive
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Recovering Robustness

* |ncrease process noise during training?

* Modify reward to increase state penalty or decrease
control penalty?

* |nject synthetic gain/phase variations at the plant input
(and output?) during the training phase.

w (%

A=1+8 where A ] e "J’
O is U[-b,b] Y

Control |
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Results On Doyle’s Example

6
1.6 T T T T 35 x10 ‘ . Y
== =Qptimal LQG ; == =QOptimal LQG
15L * Rand. Search 5 3+ * Rand. Search *
’ Rand. Search Mean+/-Std Rand. Search Mean+/-Std
14} i ad _
£ -
o - 0 o
S 1 o 2r T
=13} ©
[ S 15!
o 3 =
121
i ' ' 1 ﬁ
1.1} ./ g
s i 05" o
* ] ¥
3 ] b
1= . -~ - ' e === =
0 10 20 30 40 20 0 10 20 30 40 50

Pert Percent Pert Percent
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Results on Simplified Flexible System

* Model has 4-states (Rigid body and lightly damped modes)

 RL applied to 3-state controller parameterization
LQG controller is not in the control policy parameterization

Still converges to policy with small margins
Robustness recovered with synthetic perturbations during training

' ' ' 0.013 '
2.5 |== =Optimal LQG = =QOptimal LQG
# Rand. Search || % Rand. Search
Rand. Search Mean+/-Std 0.012 Rand. Search Mean+/-Std
c ol . 0.011 |
S 2
= o 001F
= c
a - g
15+ :
| ]

1 | 1
0 10 20 30 40 50 0 10 20 30 40 50

Pert Percent Pert Percent
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Next Steps

* How should synthetic perturbations be introduced
during training?

* Can we make any rigorous claims about the
proposed method? Performance certification?

* |Impact of fundamental performance limits on RL
policies?
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Outline

Brief Overview of Robust Control

Robustness of Time-Varying Systems

Future Directions
Robustness in Reinforcement Learning
Design for Optimization Algorithms

e Conclusions
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First-order optimization algorithms as robust control

Assumptions on f (uncertain plant)
e Strongly convex (m)
min f(ac)  Lipschitz gradients (L)
zeR™ Algorithm (controller)
* Finite-dim, strictly proper, linear system
* input: gradient at iterate

* output: next iterate

Automated Analysis with IQC/SDP

* characterize Vf with 1QCs
 certify convergence-rate of interconnection

a

Yk vf()

Uk

R éﬁf; + B Extensions
6 * Gradient noise
e Constrained optimization
* Algorithm design
* Stochastic Gradient Descent

\ 4

Lessard, Hu, Recht,
Seiler, Rantzer, Packard
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Outline

Brief Overview of Robust Control

Robustness of Time-Varying Systems

Future Directions

e Conclusions
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Conclusions

* Robust control has a long history with many successes
Multivariable Optimal Control
Fundamental Limitations of Control
Uncertainty Modeling and Robustness Analysis

* Robust control techniques can solve emerging problems
Robustness in controls designed via data-driven (RL) methods

Design and analysis of optimization algorithms

* Acknowledgements:

Funding: NSF, AFOSR, ONR, NASA, Seagate, MSI, Xcel RDF, MnDrive

Past PhDs & Visitors: Annoni, Hu, Honda, Kotikalpudi, Lacerda,
Ossmann, Peni, Pfifer, Takarics, Theis, Venkataraman, Wang

https://www.aem.umn.edu/~SeilerControl/
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Backup Slides
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Typical S+T=1 Tradeoff

40 '
1
P = s+0.1
_ s+1.5
2 C ===
m
)
) _ 1
S 0 S = 1+PC
5
© _ PC
= 1I'= 1+PC
-20
-40 — —
10” 10° 10"
_ Frequency (rad/sec)
Large loop gain |PC]|: Small loop gain |PC]:
Good reference tracking Poor reference tracking
Poor noise rejection Good noise rejection
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Typical S+T=1 Tradeoff

0 Crossover Region:
Poor reference tracking P = S+10.1
AND Poor noise rejection
20 — (O = stL5
— S
m
)
) 1
S o0 S = 1+PC
S PC
= 1" = 1+PC
-20
-40
10” 10"
Frequency (rad/sec)
Large loop gain |PC]|: Small loop gain |PC]:
Good reference tracking Poor reference tracking
Poor noise rejection Good noise rejection
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Bode Integral Theorem and “Peaking”

A procedure to avoid peaking could be:
Obtain significant Sensitivity reduction over [0, €X].
This incurs a large negative integral which must be balanced.
Maintain |S(jw)| slightly larger than 1 over a wide interval.
This incurs a positive integral balancing the negative integral.

Make [PC/[ approach 0 quickly at higher frequencies so that
|S| quickly approaches 1.

In |S(Jw)’ Accumulate a large area by having |S] just
exceed 1 over a large frequency range.

0
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Available Bandwidth

The Bode Integral theorem may appear to be a minor
constraint, e.g. spreading area over a large frequency band.

Stein (‘89 Bode Lecture, ‘03 CSM):

a key fact about physical systems is that they do not exhibit good
frequency response fidelity beyond a certain bandwidth. ... Let us call
that bandwidth the “available bandwidth,” €2,

aln [S(jw)|

Accumulate a large area by having |S| just
exceed 1 over a large frequency range.

O_
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Available Bandwidth

The Bode Integral theorem may appear to be a minor
constraint, e.g. spreading area over a large frequency band.

Stein (‘89 Bode Lecture, ‘03 CSM):

a key fact about physical systems is that they do not exhibit good
frequency response fidelity beyond a certain bandwidth. ... Let us call
that bandwidth the “available bandwidth,” €2,

The available bandwidth due to physical (hardware) constraints
requires positive area be accumulated over a finite frequency band.

Consequence: Improving performance (e.g. increased bandwidth)
comes at the expense of reduced robustness (peak in [S/).
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Consequence of Available Bandwidth

| PC| must roll-off quickly above Q2

00 roughly B
/ In|S(jw)| dw =7p == Qg < & lnj\l\;_[f P
0

Performance is constrained by the Bode integral
and robustness requirements.
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Partial Dictionary of 1QCs [1]

Uncertainty 1IQC Multiplier
1. Passive 0 1
I 0
2. Norm-bounded LTI lX(j“) O_ ] where X (jw) > 0
0 —X(jw)

X(w)  Y(jw)

_ | where X (jw) >0
Y(jw)© —X(jw)

and Y (jw) = —Y (Jw)*.

3. Constant Real Parameter

: X Y
4. Varying Real Parameter T _X] where X > 0andY = Y7,
0 1+ H(jw)

5. Unit Saturation ] where ||A]j; < 1.

1+ H(jw)* —2(1+ ReH(jw))

[1] Megretski & Rantzer, System analysis via IQCs, TAC, 1997. [IQCs derived based on much prior literature]
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LTV Toolchain

% Matlab snapshot linearizations

% along nominal trajectory

10(1) = linio("TwoLinkRobotOL/Input Torque',1,'input’);

10(2) = linio('TwoLinkRobotOL/Two Link Robot Arm',1,'output’);
sys = linearize('TwoLinkRobotOL',io, Tgrid);

% Construction of LTV Model
G =tvss(sys, Tgrid);

@

S =

° = =
=N = =
] =

Simulink Model of

Matrix N
Multiply .
@_> Inv l
From M1 1 1
thetad A S s
» etadotdot (rad/sect2) | thetadot (radisec) theta (rad)
lllllllllllll
tau
1
eta

T
— 19
as
E =z

S5

AR UNIVERSITY OF MINNESOTA AEROSPACE ENGINEERING AND MECHANICS



