
4/44 29/99 2015 LPVTVV ools Overviewee

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/LPVTVV oolsIntroPage.html 1/2

LPVTools
A Toolbox for Modeling, Analysis, and Synthesis of Parameter Varying Control

Systems.

Authors:

Gary J. Balas

Andrew Packard

Peter J. Seiler

Arnar Hjartarson.

MUSYN Inc.

27 Summit Court

St Paul MN 55102

UNITED STATES

Tel: 651-239-7144

musyn@musyn.com

www.musyn.com

MUSYN Inc. 2015

4/44 29/99 2015 LPVTVV oolsGetttt ingStarted

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/LPVTVV oolsGetttt ingStarted.html 1/2

Getting Started with LPVTools

LPVTools is a toolbox aimed at helping users design parameter dependent control systems using the Linear Parameter-

Varying framework (LPV). LPVTools contains data structures to represent LPV systems in MATLAB® and Simulink®, and

a collection of functions and tools for model reduction, analysis, synthesis and simulation in the LPV framework.

Product Description

What is LPVTools?

LPV Systems

LPVTools Data Structures

Modeling Parameter Dependence

System Requirements

About the Authors

Tutorials

Modeling Gridded LPV Systems

Analysis and Simulation of Gridded LPV Systems

Synthesis for Gridded LPV Systems

Modeling LFT LPV Systems

Analysis and Simulation of LFT LPV Systems

Synthesis for LFT LPV Systems

Conversion Between LFT and Gridded LPV

4/44 29/99 2015 Product Description

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/W// hatIsLPVTVV ools.html 1/2

Product Description

What is LPVTools?

The Linear Parameter-Varying Toolbox (LPVTools) is a toolbox for modeling, analysis and synthesis in the Linear

Parameter-Varying framework (LPV). LPV framework provides a mathematically rigorous approach to the design of gain-

scheduled controllers, with powerful guarantees on their performance and robustness in the presence of time-varying

dynamics and uncertainty.

LPVTools provides LPV data structures and a set of tools for modeling, simulation, analysis and synthesis in the LPV

framework. Its capabilities include tools for synthesis of parameter-varying output feedback controllers, state-feedback

controllers, and estimators, which yield optimized performance for a given set of allowable parameter trajectories. Tools

are provided for analysis of the stability and input-to-output gain of LPV systems (with and without uncertainty). Tools are

provided for performing model reduction on LPV models. And finally, tools are provided for simulating the time-domain

response of LPV systems along user-supplied parameter trajectories.

Key Features

Modeling of parameter dependent systems and gain-scheduled control laws.

LPV analysis and control synthesis.

Simulation of LPV systems.

Model reduction for parameter-dependent systems.

System Requirments

LPVTools requires MATLAB®, Simulink®, the Control System Toolbox®, and the Robust Control Toolbox®. LPVTools

makes use of the Control System and Robust Control Toolbox’s data structures, control synthesis and analysis

algorithms.

About the Authors

LPVTools is developed by Drs. Gary J. Balas, Andrew Packard, Peter J. Seiler, and Arnar Hjartarson of MUSYN Inc.

4/44 29/99 2015 Linear Parameter-Varying Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/LPVSystems/html/LPVSystems.html 1/3

Linear Parameter-Varying Systems

Contents

Linear Parameter-Varying Systems

Grid-Based LPV Models

LFT-Based LPV Models

Linear Parameter-Varying Systems

LPV systems are time-varying, state-space models of the form:

where is a vector of measurable parameters, is a vector of outputs, is the state vector,

 is a vector of inputs, and , , and are parameter dependent

matrices.

The LPV system in Equation 1 depends on a set of time-varying parameters . The trajectories of the parameters are

assumed to take on values in a known compact set , and to have known bounds on their derivatives with

respect to time: , where and . A trajectory is said to be "rate unbounded" if and .

For control design in the LPV framework, it is further assumed that time variations of are not known in advance, and

that the parameter values are measured and available in real-time with sensors. The controller produced is itself a LPV

system which is optimized for the parameter trajectories in subject to , and dependent on real-time

measurements of the parameter.

LPVTools implements data structures for two types of LPV modeling approaches: i) Linearizations on a gridded domain,

and ii) Linear Fractional Transformations (LFT).

Grid-Based LPV Models

Linearizations on a gridded domain are referred to as grid-based LPV models, because they require the user to divide

the parameter domain into a grid of parameter values, and then specify the linear dynamics at each grid point.

Linearizations on the gridded domain are obtained through Jacobian linearization at each grid point (e.g. batch

linearization of Simulink models). All the linearized systems on the grid have identical inputs , outputs and state

vectors . Each linearization approximates the system's dynamics in the vicinity of a particular grid point, and the grid of

linearizations captures the system's parameter dependence implicitly.

Figure 1 illustrates the concept. A nonlinear model is linearized along a grid of Mach and altitude values, resulting in an

array of linear systems. Together the linearizations form a LPV system approximation of the original system. Linearization

based LPV models do not require any special dependence on the parameter vector. This approach is motivated by the

traditional gain-scheduling framework in aircraft flight control, for which models are typically constructed as linearizations

around various flight operating points.

4/44 29/99 2015 Linear Parameter-Varying Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/LPVSystems/html/LPVSystems.html 2/22 3

Figure 1: LPV model defined on a rectangular grid.

Further Reading

1. Marcos, A. and Balas G., "Development of Linear-Parameter-Varying Models for Aircraft," Journal of Guidance,

Control, and Dynamics, Vol. 27, no. 2, 2004, pp 218-228, doi: 10.2514/1.9165.

2. B. Takarics and P. Seiler, "Gain Scheduling for Nonlinear Systems via Integral Quadratic Constraints," accepted to

the American Control Conference, 2015.

LFT-Based LPV Models

An LPV model in Linear Fractional Transformation (LFT) form is an interconnection of a block that represents the plant's

nominal dynamics (linear, time invariant), and a block that contains the time-varying parameters which the system

depends on.

In the LFT-based approach the LPV system in Equation 1 is expressed as the interconnection of the blocks and ,

as seen in Figure 2.

Figure 2: An LPV system in LFT form.

where is a constant matrix such that

and is a diagonal matrix

4/44 29/99 2015 Linear Parameter-Varying Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/LPVSystems/html/LPVSystems.html 3/33 3

such that . Where indicates a identity matrix, for positive integers , and

represent the elements of the parameter vector . Note that the parameter dependence of a LFT model is modeled

explicitly, and the LFT form can only be used to model LPV systems whose state matrices are rational functions of the

parameters.

Further Reading

1. Cockburn, J. C. and Morton, B. G. "Linear Fractional Representations of Uncertain Systems," Automatica, Vol. 33, no.

7, 1997, pp 1263-1271, doi: 10.1016/S0005-1098(97)00049-6.

2. J. Doyle, A. Packard, and K. Zhou, "Review of LFTs, LMIs, and ," Proceedings of the 30th IEEE Conference on

Decision and Control, 1991, doi: 10.1109/CDC.1991.261572.

3. J.F. Magni, S. Bennani, J. P. Dijkgraaf, "An Overview of System Modelling in LFT Form," in Advanced Techniques for

Clearance of Flight Control Laws, Springer-Verlag, Germany, pp. 169-195, 2002, doi: 10.1007/3-540-45864-6_11.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVTVV ools Data Structures

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/LPVTVV oolsObjb ects/html/LPVTVV oolsObjb ects.html 1/2

LPVTools Data Structures

LPVTools is implemented using object-oriented programming. The toolbox introduces several class-based data

structures for modeling LPV systems. These data structures extend the functionality associated with standard MATLAB

data structures from the Control Systems Toolbox and the Robust Control Toolbox into the LPV framework. This is

pictorially represented in Table 1.

Table 1: Relation between LPVTools and MATLAB objects.

Table 1 shows the relation between the core LPVTools data objects and existing MATLAB objects. The first row of the

table (``Nominal'') shows the basic MATLAB objects: Matrices are double objects, state-space systems are ss objects,

and frequency responses are frd objects. The third row of the table (``Nominal Gridded LPV'') shows the corresponding

core grid-based LPV objects. The core data structure for grid-based LPV models is the pss (denoting parameter-varying

state space model), which stores the LPV system as a state space array (ss) defined on a finite, gridded domain. The

notions of parameter-varying matrices and parameter-varying frequency responses arise naturally to complement the

pss objects. LPV systems are time-varying and hence frequency responses can not be used to represent the system

behavior as parameters vary. However frequency responses are useful to gain intuition about the system performance at

fixed locations in the operating domain. LPVTools represents parameter varying matrices and frequency responses by

pmat and pfrd data objects, respectively. These two data objects are both stored as a data array defined on a gridded

domain. A pmat stores a double array, while a pfrd stores an array of frequency responses (frd object in the

Control System Toolbox). The (pmat, pss, pfrd) objects should be viewed as parameter-varying extensions of the

standard MATLAB and Control Systems Toolbox objects (double, ss, frd).

4/44 29/99 2015 LPVTVV ools Data Structures

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/LPVTVV oolsObjb ects/html/LPVTVV oolsObjb ects.html 2/22 2

The second row of the table (``Uncertain'') shows the equivalent objects used to represent uncertainty: Uncertain

matrices, state space systems, and frequency responses are represented by umat, uss, and ufrd objects, respectively

(from the Robust Control Toolbox). The fourth row of Table 1 (``Uncertain Gridded LPV'') shows the corresponding

parameter-varying objects with uncertainty: Uncertain parameter-varying matrices, state space systems, and frequency

responses are represented by upmat, upss, and upfrd objects, respectively. These objects enable the integration of

uncertainty into LPV models. The (upmat, upss, upfrd) objects should be viewed as parameter-varying extensions of

the uncertain Robust Control Toolbox objects (umat, uss, ufrd).

LPVTools represents LFT-based parameter varying matrices and state-space systems by plftmat and plftss data

objects, respectively. Uncertainty can be integrated into the plftmat, and plftss objects, allowing these data objects

to model systems with, and without uncertainty. The plftmat and plftss objects should be viewed as LFT-based

parameter-varying extensions of the standard MATLAB, Control System Toolbox, and Robust Control Toolbox objects

double, ss, umat, and uss, as seen in rows five ("Nominal LFT LPV") and six ("Uncertain LFT LPV") in Table 1.

Published with MATLAB® R2014b

4/44 29/99 2015 Tutorials

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials.html 1/2

Tutorials

The following tutorials demonstrate some of the key features of LPVTools.

Tutorials

Modeling Gridded LPV Systems

Analysis and Simulation of Gridded LPV Systems

Synthesis for Gridded LPV Systems

Modeling and Control of LFT LPV Systems

Conversion Between LFT and Gridded LPV

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 1/8

Modeling Gridded LPV Systems

Contents

Introduction

Construction from Data

Construction from analytical model

A study of the pointwise LTI dynamics

Properties of a gridded LPV model

Introduction

Let represent a state-space system, which depends on Mach () and altitude () values, that has the standard

form:

where .

A grid-based LPV model of this system is a collection of linearizations on a gridded domain of parameter values, as seen

in Figure 1. Each linearization approximates the system's dynamics in the vicinity of a particular grid point, and the grid of

linearizations captures the system's parameter dependence implicitly.

Figure 1: Approximate as a grid-based LPV model on a grid.

In LPVTools there are two ways to construct gridded LPV systems. When an analytical model of the LPV system is

available it can be constructed using pgrid objects. More commonly, it is constructed directly from numerical data

representing the linearized model at various grid points (e.g. data from batch linearization of Simulink models).

Construction from Data

Jacobian Linearization is the predominant method of constructing grid-based LPV models. Lets assume has been

linearized at a grid of Mach and altitude values: yielding a 4x3 ss
array of linearizations. The process of creating a gridded LPV model from this data is as follows:

Load Gss, a 4x3 ss array of linearizations of . Every model in the ss array shares the same state vector, input

vector, and output vector. This is required for the the construction of pss systems.

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 2/22 8

load GData

size(Gss)

4x3 array of state-space models.

Each model has 1 outputs, 1 inputs, and 1 states.

Define an rgrid object to represent the grid of Mach and altitude values:

Mach = [0.5 0.6 0.7 0.8];

altitude = [5000,6000,7000];

Domain = rgrid({'M','h'},{Mach,altitude})

RGRID with the following parameters:

 M: Gridded real, 4 points in [0.5,0.8], rate bounds [-Inf,Inf].

 h: Gridded real, 3 points in [5e+03,7e+03], rate bounds [-Inf,Inf].

Combine the state-space array in Gss with the rgrid object to form a pss:

Glpv = pss(Gss,Domain)

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 M: Gridded real, 4 points in [0.5,0.8], rate bounds [-Inf,Inf].

 h: Gridded real, 3 points in [5e+03,7e+03], rate bounds [-Inf,Inf].

Note that an explicit model of the parameter dependence in is not required to construct Glpv. Instead the array of

linearizations captures the parameter dependence of implicitly. This is an advantage when dealing with complex

nonlinear models, for which an analytical linearization may not be available.

Construction from analytical model

Lets assume an analytical model of is available:

In this case the pss can be constructed using a pgrid object. The pgrid represents a time-varying real parameter and

its values.

Define the Mach number as a time-varying parameter with 4 points in the range [0.5 0.8]

M = pgrid('M',0.5:0.1:0.8)

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 3/33 8

Gridded real parameter "M" with 4 points in [0.5,0.8] and rate bounds [-Inf,Inf].

Define thealtitude as a time-varying parameter with 3 points in the range [5000 7000]

h = pgrid('h',[5000 6000 7000])

Gridded real parameter "h" with 3 points in [5e+03,7e+03] and rate bounds [-Inf,Inf].

Define the pss representation of :

Glpv2 = ss(-M,M*h,1,0)

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 M: Gridded real, 4 points in [0.5,0.8], rate bounds [-Inf,Inf].

 h: Gridded real, 3 points in [5e+03,7e+03], rate bounds [-Inf,Inf].

A study of the pointwise LTI dynamics

A Bode plot of Glpv demonstrates how the dynamics of of change as a function of Mach and altitude. Each

frequency response in the Bode plot corresponds to the LTI dynamics at a single grid point, when the Mach and altitude

is held fixed at that grid point.

bode(Glpv)

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 4/44 8

The dynamics at a particular grid point at easily retrieved from the pss using the .value method:

Grab the LTI system associated with and :

Gpoint = Glpv.value('M',0.8,'h',5000);

Compare the dynamics associated with and against the dynamics at the other points:

bode(Glpv)

hold on

bode(Gpoint,'r.')

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 5/55 8

Its also possible to retrieve the data associated with several grid points. To illustrate this we will look at the Bode plot of

the dynamics associated with and .

Start by grabbing the data associated with and

Gmach = lpvsplit(Glpv,'M',0.8)

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 M: Gridded real, 1 points in [0.8,0.8], rate bounds [-Inf,Inf].

 h: Gridded real, 3 points in [5e+03,7e+03], rate bounds [-Inf,Inf].

Compare the dynamics associated with and against the dynamics at the other points:

bode(Glpv)

hold on

bode(Gmach,'k.')

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 6/66 8

The pointwise gain of Glpv is computed using the norm function. The results are returned as a pmat object,

representing a parameter varying matrix:

ng = norm(Glpv,inf)

PMAT with 1 rows and 1 columns.

The PMAT consists of the following blocks:

 M: Gridded real, 4 points in [0.5,0.8], rate bounds [-Inf,Inf].

 h: Gridded real, 3 points in [5e+03,7e+03], rate bounds [-Inf,Inf].

ng is an array of double values arranged on a grid of Mach and altitude values. ng contains the infinity norm of Glpv
computd pointwise at each of the grid points in Domain. Lets plot how the value of the infinity norm changes as a

function of Mach and altitude:

rcplot(ng)

4/44 29/99 2015 Modeling Gridded LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Modeling/html/Grid_Modeling.html 7/77 8

Properties of a gridded LPV model

The time-varying parameters that underlie the gridded LPV objects can be accessed through the "Parameter" field.

Glpv.Parameter

ans =

 M: [1x1 pgrid]

 h: [1x1 pgrid]

It is possible to change the properties of the time-varying parameters by accessing their properties trough the "Parameter"

field. Lets change the rate-bounds of the parameter M to be

Glpv.Parameter.M.RateBounds = [-0.3 0.3]

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 M: Gridded real, 4 points in [0.5,0.8], rate bounds [-0.3,0.3].

 h: Gridded real, 3 points in [5e+03,7e+03], rate bounds [-Inf,Inf].

Published with MATLAB® R2014b

4/44 29/99 2015 LPV Analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Analysis/html/Grid_Analysis.html 1/5

LPV Analysis

Contents

Problem Statement

Modeling

LTI Analysis

LTI Analysis Result

LPV Analysis

LPV Analysis Results

LPV simulation

Summary

Reference

Problem Statement

The following example illustrates how the LPV approach can help to analyze a subtle difference between two parameter

dependent systems.

Consider a first order Linear Time-Invariant (LTI) system G:

and a time-varying parameter , subject to and , in a parallel interconnection as shown in

Figure 1.

Figure 1: A parallel interconnection of two first order systems.

The parallel signal paths in Figure 1 describe two systems: and . The systems differ only in the position of the

parameter. In one system is applied to the input of , while it is applied to the output of in the other. The output of the

interconnection, , is the difference between the outputs of the two systems.

Question: Is there any difference between placing the scalar before or after in the signal path?

Modeling

The following code buils up the system G, the time-varying parameter , and the interconnection shown in Figure 1:

% Define the LTI System G

4/44 29/99 2015 LPV Analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Analysis/html/Grid_Analysis.html 2/22 5

G = ss(-1,1,1,0);

% Define a scalar parameter 'delta' with values at 20 grid points between -1 and 1

Vals = linspace(-1,1,10);

delta = pgrid('delta',Vals);

% Define a parameter dependent system that describes the interconnection in Figure 1

H = delta*G-G*delta;

LTI Analysis

If is constant, then the gain from to can be easily computed. The follwing code computes the induced norm

from to (i.e. the infinity norm of H), and plots how it changes as a function of the parameter .

% Compute the induced L2 norm of H

n = norm(H,inf);

% Plot how this norm varies with the value of the parameter delta

lpvplot(n)

title('Induced L_2 norm of H as a function of a constant \delta')

ylabel('Induced L_2 norm of H')

LTI Analysis Result

When is held constant, the induced norm of H is zero for all values of . Judging from the LTI analysis, the position of

the parameter in the signal path has no effect. The LTI analysis is not capable of discriminating between the two systems:

 and .

4/44 29/99 2015 LPV Analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Analysis/html/Grid_Analysis.html 3/33 5

LPV Analysis

Now compute the induced norm of H while taking into account the time-varying nature of . The following code

computes the induced norm of H for any trajectory of which satisfies: and .

syslpvnorm = lpvnorm(H)

syslpvnorm =

 1.0024

LPV Analysis Results

The LPV analysis yields a non-zero induced norm for H when is allowed to vary with time. This means that there

exists some trejectory of , subject to and . such that the two different signal paths through

the interconnection in Figure 1 do not yield the same result.

The previous analysis assumed that could change arbitrarily fast with time, i.e. . Lets repeat the

previous analysis with different bounds on the rate of variation of .

The following code computes the induced norm of H when the rate of variation of is constrained: , with

.

% Define basis functions for the analysis algorithm.

bf = basis(delta,'delta',1);

Xb = [1;bf;bf^2;bf^3];

% Define a set of rate bounds (beta) to try: 15 values between 0.01 and 4.

rb = logspace(-2,log10(4),15);

for i=1:numel(rb)

 % Set the rate bounds of H to be +/- rb(i)

 H.Parameter.delta.RateBounds = [-rb(i) rb(i)];

 % Compute the induced L2 norm of H, subject to a time-varying delta

 % lying between -1 and 1, with d/dt(delta) between +/- rb(i)

 NormBounds(i) = lpvnorm(H,Xb);

end

plot(rb,NormBounds)

xlabel('Rate bound on \delta: -\beta \leq d/dt(\delta) \leq \beta')

ylabel('Induced L_2 norm of H')

title('Induced L_2 norm of H as a function of the rate bound on \delta')

4/44 29/99 2015 LPV Analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Analysis/html/Grid_Analysis.html 4/44 5

LPV simulation

Lets compare the time-domain response of the two signal paths n , i.e. the systems and . We will use lpvstep
to compare the parameter dependent step response:

Start by defining a time vector

t = 0:0.01:10;

Define a structure whose fields describe the trajectory of the parameter :

ptraj.time = t;

ptraj.delta = sin(t);

Plot the step response of and when . The time domain response highlights the difference between

the two signal paths when is treated as a time-varying parameter.

lpvstep(delta*G,ptraj)

hold on

lpvstep(G*delta,ptraj)

legend('\delta G','G\delta','location','best')

4/44 29/99 2015 LPV Analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Analysis/html/Grid_Analysis.html 5/55 5

Summary

The preceding example demonstrates the power of the LPV approach, and its ability to augment traditional LTI analysis

methods with results that take into account the time-varying nature of system components.

If the time varying nature of is ignored, an analysis in the LTI framework indicates that the two signal paths in Figure 1

are equivalent. However, if the the time-varying nature of is taken into account, an analysis in the LPV framework

demonstrates that the position of in this interconnection can have a drastic effect on the results.

If varies slowly with time the difference between the two signal paths is small, e.g. its on the order of 1% when

. However, when changes faster, the difference becomes significant, e.g. the difference between the two

singal paths is on the order of 20% when , .

Reference

This example was published by Tamas Peni and Peter Seiler in [1]

1. T. Peni, and P. Seiler, "Computation of a lower bound for the induced L2 norm of LPV systems," accepted to the

American Control Conference, 2015.

Published with MATLAB® R2014b

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 1/8

Synthesis for gridded LPV systems

Lets consider a rate-dependent, output-feedback control problem involving stabilization, tracking, disturbance rejection

and input penalty. The problem is taken from a

1. G. Meyer, and L. Cicolani, “Application of nonlinear systems inverses to automatic flight control design-system

concepts and flight evaluations,” AGARDograph: Theory and Applications 01 Optimal Control in Aerospace Systems,

No. 251,1981.

2. F. Wu, X. H. Yang, A. Packard, and G. Becker, “Induced L2-norm control for LPV systems with bounded parameter

variation rates,” Int. J Robust and Nonlinear Control, Vol. 6, Issue 9-10, pp. 983-998, 1996, doi: 10.1002/(SICI)1099-

1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C.

Contents

The System

Problem Formulation

Synthesis

Pointwise analysis in the LTI framework

LPV Simulation

The System

The generalized plant model, G, is created from 3 subsystems as seen in Figure 1, an unstable continuous-time plant, P,

a parameter-dependent rotation matrix, R, and two 1st order actuator models.

Figure 1: The parameter-dependent system G.

G is an LPV system with three inputs (, ,), two outputs (,), and four states. G can be written in the standard form

as a parameter varying state-space system:

The following commands create a grid-based LPV model of the parameter dependent system in Equation (1):

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 2/22 8

% Define the time-varying real parameter.

rho = pgrid('rho',linspace(-pi,pi,7));

rho.RateBounds = [-5 5];

% Define the A, B, C, and D matrices of the LPV system in Equation (1)

pcos = cos(rho);

psin = sin(rho);

A = [0.75 2 pcos psin;0 0.5 -psin pcos;0 0 -10 0; 0 0 0 -10];

B = [0 0 0;3 0 0;0 10 0;0 0 10];

C = [1 0 0 0;0 1 0 0];

D = zeros(2,3);

% Form the grid-based parameter-varying state-space system:

G = pss(A,B,C,D)

PSS with 4 States, 2 Outputs, 3 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho: Gridded real, 7 points in [-3.14,3.14], rate bounds [-5,5].

Problem Formulation

Figure 2: Weighted interconnection for synthesis (from [2])

The control interconnection structure is given in Figure 2, and the weights are defined as follows (from [2])

The weights are generated using the following commands:

% Weights

Wp = eye(2);

Wn = ss(10*tf([1 10],[1 1000]))*eye(2);

Wf = 1;

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 3/33 8

Wu = (1/280)*eye(2);

Wr = ss(tf(20,[1 0.2]))*eye(2);

The control problem interconnection with the weighting function is denoted as H, and is generated using the sysic
command:

% Control Interconnection Structure

systemnames = 'G Wp Wn Wf Wu Wr';

input_to_G = '[Wf; u]';

input_to_Wp = '[G-Wr]';

input_to_Wn = '[dn]';

input_to_Wf = '[df]';

input_to_Wu = '[u]';

input_to_Wr = '[dr]';

inputvar = '[df; dr(2); dn(2); u(2)]';

outputvar = '[Wu; Wp; G-Wr+Wn]';

H = sysic

PSS with 8 States, 6 Outputs, 7 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho: Gridded real, 7 points in [-3.14,3.14], rate bounds [-5,5].

Synthesis

The original system G depends on the time-varying parameter , and the weighted interconnection H inherits this

parameter dependence. Next we will synthesize a LPV controller for H. The LPV controller will be optimized for the

prescribed parameter trajectories, i.e. and . The resulting LPV controller will itself be parameter

dependent and will depend on the parameter and its derivative .

The following code finds a controller Klpv which minimizes the induced norm of lft(H,Klpv) when the rate of variation

of is constrained: :

% Basis function,

b1 = basis(1,0);

bcos = basis(pcos,'rho',-psin);

bsin = basis(psin,'rho',pcos);

Xb = [b1;bcos;bsin];

Yb = Xb;

% LPV Rate-Bounded Control Design

opt = lpvsynOptions('BackOffFactor',1.02);

[Klpv,normlpv] = lpvsyn(H,2,2,Xb,Yb,opt);

The LPV controller is a pss object klpv

Klpv

PSS with 8 States, 2 Outputs, 2 Inputs, Continuous System.

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 4/44 8

The PSS consists of the following blocks:

 rho: Gridded real, 7 points in [-3.14,3.14], rate bounds [-5,5].

 rhoDot: Gridded real, 2 points in [-5,5], rate bounds [-Inf,Inf].

If we close the loop around the weighted interconnection, and form lft(H,Klpv), the controller achieves an induced

 norm which is bounded from above normlpv:

normlpv

normlpv =

 0.9250

Pointwise analysis in the LTI framework

Lets apply Klpv to the original system G, and compare the open-loop vs closed loop response for an input:

Start by forming the closed loop system:

CL = feedback(G,Klpv,[2 3],[1 2],+1)

PSS with 12 States, 2 Outputs, 3 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho: Gridded real, 7 points in [-3.14,3.14], rate bounds [-5,5].

 rhoDot: Gridded real, 2 points in [-5,5], rate bounds [-Inf,Inf].

Set the input and output names for CL

CL.InputName = {'f','u_1','u_2'};

CL.OutputName = {'v_1','v_2'};

Plot the output and input sensitivity functions at each point in the domain

SF = loopsens(G(:,2:3),Klpv);

sigma(SF.So,'b',SF.Si,'r--')

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 5/55 8

Compute the input disk margins of the closed-loop system at each point in the domain:

DMI = loopmargin(G(:,2:3),Klpv,'di');

The smallest input disk margin in the domain has a gain margin of:

lpvmin(DMI.GainMargin(2))

PMAT with 1 rows and 1 columns.

ans =

 23.4339

The smallest input disk margin in the domain has a phase margin of:

lpvmin(DMI.PhaseMargin(2))

PMAT with 1 rows and 1 columns.

ans =

 85.1130

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 6/66 8

Simulate the step response of the closed-loop system to a unit input, at each point in the domain:

step(CL(:,1))

LPV Simulation

Next, we will compute the time-domain response of the parameter dependent closed loop system as the parameter

follows a particular trajectory: . This simulation is different from the previous simulation, generated by the

command step(CL(:,1)), which simlated the step LTI response of the closed-loop system at fixed values. To

perform a parameter dependent simulation of the step response we use the lpvstep command:

% Define a time vector for the simulation

t = 0:0.01:10;

% Define a structure whose fields describe the trajectory of the parameter

ptraj.time = t;

ptraj.rho = sin(t);

ptraj.rhoDot = cos(t);

% Plot the parameter dependent step response for $\rho(t) = sin(t)$.

lpvstep(CL(:,1),ptraj)

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 7/77 8

We can also look at the time-domain response for a custom input: Plot the parameter dependent response for a unit

doublet command when .

u = [zeros(size(0:0.01:3)) ones(size(3.01:0.01:5)),...

 -ones(size(5.01:0.01:7)) zeros(size(7.01:0.01:10))]';

 lpvlsim(CL(:,1),ptraj,u,t);

4/44 29/99 2015 Synthesis foff r gridded LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/Grid_Synthesis/html/Grid_Synthesis.html 8/88 8

Published with MATLAB® R2014b

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 1/7

Modeling LFT LPV Systems

Contents

Introduction

Example of LFT construction

LFT-based LPV Synthesis

LPV Analysis Incorporating Rate-Bounds

Pointwise LTI Analysis of LFT-Based LPV Systems

LPV Simulation

References

Introduction

A key component of the LFT-based LPVTools infrastructure is the core LFT data structure object, referred to as a tvreal
(denoting a time-varying parameter). The tvreal object is used to create a time-varying, real valued scalar object. The

tvreal has a range, denoting the maximum and minimum value that the time-varying scalar can assume, and a rate-

bound denoting the maximum and minimum rate of change of the time-varying scalar. The tvreal is used to model

individual time-varying parameters, and construct parameter dependent LFT matrices and systems. LPVTools represents

LFT-based parameter varying matrices and state-space systems by plftmat and plftss data objects, respectively.

The plftmat, and plftss objects are constructed using tvreal elements, using a syntax that is a direct parallel to

the ureal syntax that is used to define umat and uss objects in the Robust Control Toolbox.

Example of LFT construction

We will design a LFT-based LPV controller for the system :

LFT-based LPV models are restricted to systems with rational parameter dependence, which the system in Equation (1)

satisfies. Hence we can construct as a LFT-based LPV system using a tvreal. The first argument of tvreal is

the name of the parameter, the second argument is the range of the parameter, and the third argment is the range for the

parameter's rate of variation. Lets model for and .

% Define a time-varying real parameter.

rho = tvreal('rho',[1 10],[-1 1]);

% Construct a parameter varying LFT state-space systems:

P = ss(-rho,rho,1,0)

Continuous-time PLFTSS with 1 outputs, 1 inputs, 1 states.

The model consists of the following blocks:

 rho: Time-varying real, range = [1,10], rate bounds = [-1,1], 1 occurrences

LFT-based LPV Synthesis

We will use the command lpvsyn to synthesize a LFT-based LPV controller for this system. lpvsyn requires that the

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 2/22 7

closed-loop performance objectives be characterized in terms of a weighted interconnection (analogous to

performance problems) so we define one using a set of dynamic weights and the command sysic.

The exogenous signal passing through the weight Wd is added to the control signal from the controller. The weight Wu
acts on the disturbed control signal going from the control to the plant input. The weight We acts on the error between the

reference signal and the plant output.

The Wu weight expresses the requirement that the control signal should be less than 10 up to 1 rad/s, roll off and cross

over at 10 rad/s, and be less than 0.1 above 100 rad/s. The We weight expresses the requirement that the tracking error

be less than 0.2 at frequencies below 1 rad/s, it can then increase, and must be less than 1 at 5 rad/s, and less than 5 at

frequencies above 25 rad/s. The Wd expresses the fact that the disturbance on the control signal will have magnitude no

larger than 0.1.

% Define and plot weights for synthesis problem

Wu = tf([10 10],[1 100]);

We = tf([1 25],[5 5]);

Wd = ss(0.1);

bodemag(Wu,'b',We,'r--')

legend('Wu','We')

Define a weighted interconnection for the synthesis problem

systemnames = 'P Wu We Wd';

inputvar = '[r; d; u]';

outputvar = '[We; Wu; r-P]';

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 3/33 7

input_to_We = '[r-P]';

input_to_Wu = '[u+Wd]';

input_to_Wd = '[d]';

input_to_P = '[Wu+u]';

Pg = sysic

Continuous-time PLFTSS with 3 outputs, 3 inputs, 3 states.

The model consists of the following blocks:

 rho: Time-varying real, range = [1,10], rate bounds = [-1,1], 1 occurrences

Next we will synthesize a LFT-based LPV controller that minimizes the induced norm of the weighted interconnection

. The first argument of lpvsyn is the weighted interconnection. The second argument is the number of measurments

available to the controller. The third argument is the number of control inputs available to the controller:

% Perform LPV design with LFT approach

nmeas = 1;

ncon = 1;

[KbLFT,GAMbLFT,INFObLFT] = lpvsyn(Pg,nmeas,ncon);

The LFT-based controller KbLFT is guarenteed to acheive a induced norm of GAMbLFT:

GAMbLFT

GAMbLFT =

 2.1480

There are two important points to note. First, the algorithm implemented in lpvsyn for LFT-based LPV systems (see

[1,2,3,4] for details), does not take into account the bounds on the parameter rate-of-variation. Hence, GAMbLFT is a

bound on the induced norm when there are no limits to how fast the parameter can change with time. Second,

GAMbLFT is only an upper bound on the induced norm achived by KbLFT Hence, for input signals that have induced

 norms bounded by 1, the induced norm is guarenteed to be no larger than GAMbLFT. for any parameter trajectory

such that:

LPV Analysis Incorporating Rate-Bounds

The system does have rate-bounds on the parameter . We will now compute a induced norm achived

by KbLFT when these bounds are taken into account. To do this we use the function lpvnorm, which will detect the

rate-bounds in the system and incorporate them into the analysis:

% Form weighted interconnection with controller in the loop:

IC = lft(Pg,KbLFT);

% Compute the induced L_2 norm achived by KbLFT

Gamma = lpvnorm(IC)

Gamma =

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 4/44 7

 1.7317

Gamma is the upper bound on the induced norm achived by KbLFT. Hence, for input signals that have induced

norms bounded by 1, KbLFT is guarenteed to achieve an induced norm that is no greater than Gamma for all

permissible parameter trajectories (in this case: and). We note that the induced norm

achived by KbLFT is significantly lower when the rate-bounds on the parameter are taken into account.

Pointwise LTI Analysis of LFT-Based LPV Systems

A LFT-based LPV system can be transformed into a Linear Time-Invariant (LTI) system by holding its parameters at a

constant value. Hence, it is possible to apply standard LTI analysis techniques to evaluate the pointwise performance of

the LFT-based LPV controller. We will evaluate its performance on a grid of 5 points: . The syntax to

perform pointwise LTI analysis requires the user to pass in a rgrid object that specifies the grid of parameter values

that the LFT-based LPV system should be evaluated at. Hence, we define the rgrid object Domain to specify the

desired grid points:

% Define the grid of parameter values:

Domain = rgrid('rho',1:5,[-1 1])

RGRID with the following parameters:

 rho: Gridded real, 5 points in [1,5], rate bounds [-1,1].

Multiple LTI analysis and simulation functions are overloaded for plftss objects. Lets use them to study the frequency

response of the closed-loop system. Start by forming the closed-loop system consisting of the controller and plant, without

any of the weights:

% Form closed-loop system without weights:

systemnames = 'P KbLFT';

inputvar = '[r; d; u]';

outputvar = '[r-P; KbLFT;P]';

input_to_KbLFT = '[r-P]';

input_to_P = '[KbLFT+d]';

CL = sysic;

CL.InputName ={'r','d','u'};

CL.OutputName = {'e','u','y'};

Now plot a Bode plot of the performance requirement, expressed by We and compare it against the closed-loop response

from the referene to the error.

bodemag(1/We)

hold on

bodemag(CL('e','r'),Domain)

legend('1/We','Closed-loop: r to e')

hold off

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 5/55 7

The performance requirement is not satisfied at , , and in the frequency band 1-6 rad/s.

Lets look at the LTI step response from reference to output:

step(CL('y','r'),Domain)

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 6/66 7

LPV Simulation

The step response is well behaved and has less than 20% steady state tracking error, which satisfies the design

specification expressed by We.

The LPV system is time-varying, and LTI analysis does not capture the time-varying nature of the model. We can evaluate

the performance of the LFT controller as the parameter varies with time by using time-domain simulation for a particular

parameter trajectory. LPVTools provides a set of functions for LPV simulation: lpvlsim, lpvstep, lpvinitial, and

lpvimpulse.

Lets look at the step response of the closed-loop system as the parameter traverses the trajectory:

% Define the trajectories of the parameters:

t =0:0.01:5;

ptraj.time = t;

ptraj.rho = 4*sin(0.25*t)+5;

% Perform LPV simulation:

lpvstep(CL('y','r'),ptraj);

4/44 29/99 2015 Modeling LFT LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/LFT_Tutorial/html/LFT_Tutorial.html 7/77 7

The tracking response is excellent for this particular parameter trajectory, and settles down to a steady state error of

approximatly 20%.

References

1. A. Packard, "Gain Scheduling via Linear Fractional Transformations," System and Control Letters, 1994.

2. P. Apkarian and P. Gahinet, "A Convex Characterization of Gain-Scheduled H-Infinity Controllers," IEEE Transactions

on Automatic Control, Vol. 40, No. 5 pp. 853-864, 1995.

3. P. Apkarian and P. Gahinet, "Erratum to: A Convex Characterization of Gain-Scheduled H-Infinity Controllers," IEEE

Transactions on Automatic Control, 1995.

4. P. Gahinet, "Explicit Controller Formulas for LMI-based H-Infinity Synthesis," Automatica, Vol. 32, No. 7, pp. 1007-

1014, 1996.

Published with MATLAB® R2014b

4/44 29/99 2015 Converting betwtt een LFT- and Grid-based LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/GridToLFT/html/GridToLFT.html 1/4//

Converting between LFT- and Grid-based LPV Systems

LPVTools provides tools to convert a LFT-based LPV system into a grid-based LPV system, and vice versa. In this

example we will showcase the functionality of these tools. We will utilize them to take a grid-based LPV system and

transform it into LFT-based form to do control design. Finally, the LFT-based controller will be transformed into grid-based

form for evaluation.

Contents

Define a Grid-Based LPV Model

Converting a Grid-based LPV Model into a LFT-based LPV Model

LPV Design problem

LFT-based LPV Synthesis

Convert LFT-Based System to Grid-Based System

Define a Grid-Based LPV Model

We have a LPV model :

which is modeled as a grid-based LPV model using pss and pgrid objects:

% Define a time-varying real parameter.

rho1 = pgrid('rho1',1:10,[-1 1]);

rho2 = pgrid('rho2',1:3,[-10 10]);

% Construct a grid-based LPV system:

P = ss(-rho1,rho2,rho1*rho2,0);

Converting a Grid-based LPV Model into a LFT-based LPV Model

Lets transform P from a grid-based LPV system into a LFT-based system. This is accomplished using the function

grid2lft, which transforms a grid-based LPV model into a LFT-based LPV model by approximating the parameter

dependence of the underlying data and expressing it as a rational function of the parameter, which can then be rewritten

in LFT form.

A grid-based LPV system consists of an array of state-space models, arranged on a grid of parameter values. The current

implementation of grid2lft takes each element of these parameter dependent state-space matrices and finds a

polynomial function of the parameter, which captures how that element changes as a function of the parameter. Once the

array of state-space models has been replaced by a single state-space model whose matrix elements are polynomial

functions of the parameters, it can be rewritten as a LFT.

The user can specify the desired form the the polynomial function used to fit the matrix elements. In this example we will

use a polynomial of the form: (1,x,y,x^2,x*y,y^2) to fit the grid-based data.

We will use grid2lft to transform P into a LFT-based model Plft. The first argument to grid2lft is the grid-based

model that will be approximated as a LFT. The second argument is the desired order of the polynomial used for the fit, in

this case (1,x,y,x^2,x*y,y^2) corresponds to a second order polynomial, so we put in the number 2:

4/44 29/99 2015 Converting betwtt een LFT- and Grid-based LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/GridToLFT/html/GridToLFT.html 2/22 4//

% Transfrom P into a LFT model:

Plft = grid2lft(P,2)

Continuous-time PLFTSS with 1 outputs, 1 inputs, 1 states.

The model consists of the following blocks:

 rho1: Time-varying real, range = [1,10], rate bounds = [-1,1], 1 occurrences

 rho2: Time-varying real, range = [1,3], rate bounds = [-10,10], 2 occurrences

LPV Design problem

We can define the control design problem as follows:

% Define and plot weights for synthesis problem

Wu = tf([10 10],[1 100]);

We = tf([1 25],[5 5]);

Wd = ss(0.1);

bodemag(Wu,'b',We,'r--')

legend('Wu','We')

Define a weighted interconnection for the synthesis problem

systemnames = 'Plft Wu We Wd';

inputvar = '[r; d; u]';

4/44 29/99 2015 Converting betwtt een LFT- and Grid-based LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/GridToLFT/html/GridToLFT.html 3/33 4//

outputvar = '[We; Wu; r-Plft]';

input_to_We = '[r-Plft]';

input_to_Wu = '[u+Wd]';

input_to_Wd = '[d]';

input_to_Plft = '[Wu+u]';

Gweights = sysic

Continuous-time PLFTSS with 3 outputs, 3 inputs, 3 states.

The model consists of the following blocks:

 rho1: Time-varying real, range = [1,10], rate bounds = [-1,1], 1 occurrences

 rho2: Time-varying real, range = [1,3], rate bounds = [-10,10], 2 occurrences

LFT-based LPV Synthesis

We will use lpvsyn to synthesize the LFT controller:

% Perform LPV design with LFT approach

nmeas = 1;

ncont = 1;

[Klft,GammaLFT] = lpvsyn(Gweights,nmeas,ncont);

The LFT-based controller Klft is guarenteed to acheive a induced norm of GammaLFT:

GammaLFT

GammaLFT =

 4.8339

Convert LFT-Based System to Grid-Based System

We can transform the LFT controller into a grid-based LPV controller. This is accomplished using the lft2grid
function. The process of transforming a LFT based system into a grid-based LPV system is simple: First, pick a desired

grid of parameter values for the resulting grid-based system. Second, evaluate the LFT-based system at each grid point

by replacing the time-varying parameter in the LFT, with a parameter values at each grid point. The resulting array of

state-space models and assocaited grid of parameter values constitutes a grid-based LPV model approximation of the

LFT-based model. Lets transform Klft into a grid-based LPV system.

% We will use the parameter grid from the original system P

Domain = P.Domain;

% Transform Klft into a grid-based LPV system:

Kg = lft2grid(Klft,Domain)

PSS with 3 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho1: Gridded real, 10 points in [1,10], rate bounds [-1,1].

4/44 29/99 2015 Converting betwtt een LFT- and Grid-based LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Getttt ingStarted/MiniTutorials/GridToLFT/html/GridToLFT.html 4/44 4//

 rho2: Gridded real, 3 points in [1,3], rate bounds [-10,10].

We transform the weighted interconnection Gweights into grid-based model, and compute the induced norm

achieved by the grid-based version of the controller:

% Transform the weighted interconnection into a grid-based system

GweightsGRID = lft2grid(Gweights,Domain)

PSS with 3 States, 3 Outputs, 3 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho1: Gridded real, 10 points in [1,10], rate bounds [-1,1].

 rho2: Gridded real, 3 points in [1,3], rate bounds [-10,10].

% Closed the loop around the controller and the weighted interconnection:

WeightedCL = lft(GweightsGRID,Kg)

PSS with 6 States, 2 Outputs, 2 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho1: Gridded real, 10 points in [1,10], rate bounds [-1,1].

 rho2: Gridded real, 3 points in [1,3], rate bounds [-10,10].

% Compute the induced L_2 norm:

GammaGrid = lpvnorm(WeightedCL)

GammaGrid =

 2.4102

The induced norm computed for the grid-based version of the controller is substantially lower than the induced

norm computed for the LFT version. There are a few issues that can explain this. First, the computed induced norm is

in both cases only an upper bound, hence the results are not inconsistent. Second, the LFT-based LPV model is a

smooth function of the parameter, and includes every intermediary parameter value between the grid points in Domain
(the grid of parameter values which underlies the grid-based LPV model). The dynamics at these intermediary points was

approximated from the existing grid-based model. Hence, if this approximation is inaccurate, the LFT-based analysis will

be taking into account dynamics that are not really there.

Published with MATLAB® R2014b

4/44 29/99 2015 Modeling LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ModelingGuide/ee html/ModelingGuide.html 1/2

Modeling LPV systems

A primer on modeling LPV systems.

Contents

LPV Modeling Commands

Examples and How To

Concepts

LPV Modeling Commands

PGRID Gridded real parameter.

RGRID Rectangular grid of parameter values.

PMAT Parameter-varying matrix.

PSS Parameter-varying state-space system.

PFRD Parameter-varying frequency response data model.

UPMAT Parameter-varying uncertain matrix.

UPSS Parameter-varying uncertain state-space system.

UPFRD Parameter-varying uncertain frequency response data model.

BASIS Parameter-varying basis function for analysis and synthesis.

PSTRUCT Parameter-varying structure.

DOMUNION Map LPV objects onto a common domain.

LPVSPLIT Extract LPV model data from a subset of its parameter domain.

LPVINTERP Interpolate a grid-based LPV model.

LPVSUBS Substitute values of parameters.

LPVELIMIV Eliminate parameters which only have a single grid point.

LPVSAMPLE Sample a grid-based LPV object.

LPVBALANCE Diagonal scaling for LPV models.

Examples and How To

Tutorial: Constructing grid-based LPV models

Tutorial: Constructing LFT-based LPV models

Tutorial: Conversion between LFT and LPV models

Tutorial: Creating a grid-based LPV model from analytical linearization.

Tutorial: Creating a grid-based LPV model from a nonlinear model.

4/44 29/99 2015 Modeling LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ModelingGuide/ee html/ModelingGuide.html 2/22 2

Concepts

Permissible Parameter Trajectories

Grid-based LPV model.

LFT-based LPV model.

Quasi-LPV Models

State Consistency

Published with MATLAB® R2014b

4/44 29/99 2015 Deriving LPV models from Analytical Jacobian linearization

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromAnalyticalLinearization/html/LPV_fromAnalyticalLinea… 1/4//

Deriving LPV models from Analytical Jacobian linearization

Contents

Introduction

Example

References

Introduction

Consider a nonlinear system:

Where , , , and .

Assume that and are constant . Then the solution of the nonlinear system is any

 and , such that if , then :

When is a function of time, then the equilibrium is, in general, not a solution of the

nonlinear system:

We can linearize around even though it is not, in general, a solution of the nonlinear system.

Lets define perturbed quantities:

Using Taylor series expansion about , the system dynamics can be expressed as (dropping

the notational dependence on time):

where , , and terms represent higher-order

terms of the Taylor series approximations, and

4/44 29/99 2015 Deriving LPV models from Analytical Jacobian linearization

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromAnalyticalLinearization/html/LPV_fromAnalyticalLinea… 2/22 4//

Using this Taylor series approximation to linearize the dynamics of the nonlinear system, yields:

Similarly, the Taylor series approximation of can be used to linearize the output equation:

The final LPV model is thus:

Approximations

Standard LPV approach is to neglect higher order terms and , and the term. However, the term can be

retained and treated as a measurable disturbance. This can be expressed as , where The

higher order terms and are nonlinear functions. They can be handled (locally) as uncertainties using integral

quadratic constraints.

An interested reader, can refer to the work by Takarics and Seiler [1] for additional details on this approach. If an

analytical linearization is not possible, an LPV model can be constructed using numerical linearization directly from a

nonlinear model (e.g. a Simulink model). Refer to section XXX for details.

Example

Consider the nonlinear system (from [2]):

4/44 29/99 2015 Deriving LPV models from Analytical Jacobian linearization

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromAnalyticalLinearization/html/LPV_fromAnalyticalLinea… 3/33 4//

Lets assume that we are given the control objective to make the output track a reference command . We will

frame this as a LPV control problem, and derive a LPV model of this nonlinear model for this problem.

Let the desired operating point be scheduled y . In this formulation neither the dynamics (in Equation (1)), nor the

output equation (in Equation (2)) directly depend on .

The equilibrium point, parameterized by is given by:

Applying the approach described above, the nonlinear system in Equations (18)-(19) is linearized about the

parameterized equilibrium point to obtain a LPV system:

By formulating the control problem in the form of a LPV system which described the behaviour of the nonlinear system

about a desired reference command, we have recast the problem into a regulation problem:

and the control objective is to regulate in the LPV model.

If we neglect the term in the LPV system of Equations (24)-(25), a grid-based LPV model of the system for

 can be constructed using the following commands:

% Define the parameter

p = pgrid('p',[-5 0 10]);

% Define the system matrices

A = [-1 0;1 -2*abs(p)];

B = [1;0];

C = [0 1];

% Define the grid-based LPV model

sys = ss(A,B,C,0)

PSS with 2 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 p: Gridded real, 3 points in [-5,10], rate bounds [-Inf,Inf].

If we treat the term as a exogenous disturbance to the model then the grid-based LPV system can be modeled as:

4/44 29/99 2015 Deriving LPV models from Analytical Jacobian linearization

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromAnalyticalLinearization/html/LPV_fromAnalyticalLinea… 4/44 4//

Bd = [-2*abs(p);-1];

sys_dis = ss(A,[B Bd],C,0)

PSS with 2 States, 1 Outputs, 2 Inputs, Continuous System.

The PSS consists of the following blocks:

 p: Gridded real, 3 points in [-5,10], rate bounds [-Inf,Inf].

The term in is now an input to the model. It is being treated as an exogenous disturbance, that is independent of .

This assumption is, in general, conservative.

References

1. B. Takarics and P. Seiler, "Gain Scheduling for Nonlinear Systems via Integral Quadratic Constraints," accepted to

the American Control Conference, 2015.

2. D. J. Leith and W. E. Leithead, "Counter-Example to a Common LPV Gain-Scheduling Design Approach," UKACC

International Control Conference, 2000.

Published with MATLAB® R2014b

4/44 29/99 2015 Deriving LPV models from Nonlinear Simulation Models

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromNonlinearSim/html/LPV_fromNonlinearSim.html 1/3

Deriving LPV models from Nonlinear Simulation Models

Contents

Introduction

Gridding the Parameter Space

Trimming in MATLAB/Simulink

Linearization in MATLAB/Simulink

Introduction

Numerical linearization can be used to derive grid-based LPV models from nonlinear simulation models. The goal is then

to approximate the nonlinear model as a grid-based LPV system by generating a array of state-space models with

consistent state vectors, inputs and outputs. This section will outline one approach to generating an array of state-space

models from a Simulink model. The process is as follows:

Overview of Modeling Process

1. Desired LPV model depends on parameters, .

2. Create a grid of parameter values .

3. Trim the nonlinear model at each grid point.

4. Linearize the nonlienar model at each trim point.

Gridding the Parameter Space

The choice of scheduling parameter is at the users's discretion. A common choice for aircraft applications is Mach and

altitude, due to the change in aircraft dynamics as a function of these two parameters.

Once the set of scheduling parameters has been chosen the set is gridded to form . The grid should be made dense

enough to capture significant dynamics in the model. The trade-off is that too dense a grid will be cumbersome from a

computational perspective.

Example

Given an aircraft model with Mach and altitude chosen as the scheduling parameters, we are interested in developing a

model for the aircraft at Mach values between 0.5 and 0.8, and at altitudes between 5,000 ft and 15,000 ft.

Lets assume that the dynamic of the aircraft vary smoothly inside this flight envelope. A first attempt at deriving an LPV

model for this system might grid the parameters as follows:

The set of gridded parameter values consists of 12 points arranged in a 4x3 grid defined as follows:

This grid can be defined as an rgrid object in LPVTools using the following commands:

4/44 29/99 2015 Deriving LPV models from Nonlinear Simulation Models

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromNonlinearSim/html/LPV_fromNonlinearSim.html 2/22 3

Mach = [0.5:0.1:0.8];

Altitude = [5000:5000:15000];

P = rgrid({'Mach','Altitude'},{Mach,Altitude})

RGRID with the following parameters:

 Mach: Gridded real, 4 points in [0.5,0.8], rate bounds [-Inf,Inf].

 Altitude: Gridded real, 3 points in [5e+03,1.5e+04], rate bounds [-Inf,Inf].

Trimming in MATLAB/Simulink

Once a desired grid of parameter values, , has been chosen. The nonlinear simulation model will need to be trimmed

and linearized at each grid point.

The process of trimming a Simulink model relies on the following proceedures and MATLAB commands:

Start by manually adding the desired model input/output points to the relevant signal lines in the Simulink model (see

the help for getlinio for details). Then use getlinio to create a object that describes the input/output points of

the desired linearized model.

Use operspec to grab the operating point specification of the Simulink model. The resulting object contains fields

for each input/output point and state in the Simulink model.

Loop through the parameter grid, , and at each point: (1) Configure the operspec object to specify the desired

trim point (i.e. set bounds on inputs, outputs, states, and their derivatives). (2) Use findop to trim the Simulink

model at the desired grid point. The process is shown graphically in Figure 1.

Figure 1: Trimming a Simulink model.

Linearization in MATLAB/Simulink

Once a valid trim point has been created for each point in the parameter grid . The function linearize is used to

derive a linearized model at each point. The process is shown in Figure 2. Care must be taken that the linearized models

that are being generated share a consistent input, output, and state vector. The resulting array of state-space models can

be combined with an rgrid object that described the parameter grid to form a grid-based LPV model. Refer to the

grid-based LPV modeling tutorial for details on how a grid-based LPV model is assembled out of state-space model data.

4/44 29/99 2015 Deriving LPV models from Nonlinear Simulation Models

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo LPV_fromNonlinearSim/html/LPV_fromNonlinearSim.html 3/33 3

Figure 2: Linearizing a Simulink model on a grid of parameter values.

Published with MATLAB® R2014b

4/44 29/99 2015 Permissible Parameter Traja ectories

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/PermissibleTraja ectories/html/PermissibleTraja ectories.html 1/2

Permissible Parameter Trajectories

Contents

Introduction

Example

Formal Definition

Introduction

An LPV system is a time-varying, state-space model of the form:

The LPV model in Equation (1) describes how the LPV system depends on a set of time-varying parameters. Its important

to understand that for practical applications (e.g. analysis in the LPV framework) each time-varying parameter in (1) has

associated with it a set of permissible parameter trajectories, which describe how the parameter can change with time in

the model. The permissible parameter trajectories contstrain the parameter values to those for which the model is valid.

The set of allowable trajectories for a particular parameter satisfies two properties: First, the parameter's value remains

inside some interval of allowable values (an interval on the real line). Second, the parameter's rate of

change lies inside some interval (also an interval on the real line). Hence, for an LPV system that only depends on

a single parameter , a permissible trajectory is any trajectory such that: and

for all . A trajectory is said to be "rate unbounded" if and .

Example

Lets assume the LPV model in Equation (1) represents an aircraft, and that the model is scheduled on altitude . If this

particular model is only valid for a limited range of altitudes : , and for slow variations in

altitude , then the set of permissible parameter trajectories contains any altitude

trajectory such that

and

.

An example of a permissible parameter trajectory for this system is shown in Figure 1.

4/44 29/99 2015 Permissible Parameter Traja ectories

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/PermissibleTraja ectories/html/PermissibleTraja ectories.html 2/22 2

Figure 1: A permissible altitude trajectory.

Formal Definition

Given an LPV system that depend on a set of time-varying parameters . A permissible parameter trajectory is

any trajectory such that lies inside the compact set and lies inside the set . The set is the

dimensional hyper rectangle formed by , and the set is

the dimensional hyper rectangle formed by .

Published with MATLAB® R2014b

4/44 29/99 2015 Quasi-LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/QuasiLPV/VV html/QuasiLPV.html 1/2

Quasi-LPV Systems

A quasi-LPV system refers to case where the parameter trajectory is a function of the system state and inputs, i.e.

 where is the system state, is the system input, and is time. The term "quasi" is used to indicate that the

parameter dependence actually introduces a nonlinearity in the system dynamics.

The current implementation of LPVtools treats quasi-LPV systems just like any other LPV system for the purposes of

analysis and synthesis, i.e. the parameter is assumed to vary independently of the system's state and input. This

assumption will result in conservative results when working with quasi-LPV systems in LPVTools. However, quasi-LPV

systems can be simulated correctly using the lpvlsim, lpvstep, lpvimpulse, and lpvinitial functions in

LPVTools. Specifically, the the parameter trajectory that is used in the simulation can be specified as a function of the

state, input, and time.

Published with MATLAB® R2014b

4/44 29/99 2015 State Consistency

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/StateConsistency/html/StateConsistency.html 1/2

State Consistency

LPV systems are time-varying, state-space models of the form:

where is a vector of measurable parameters, is a vector of outputs, is the state vector,

 is a vector of inputs, and , , and are parameter dependent

matrices.

Note that the state-vector of the system in Equation (1) remains the same for all values of the parameter, i.e. the states in

 are ordered the same way, and their interpretation remains the same, irrespective of the value of . This property is

referred to as state consistency, and it must be kept in mind when working with LPV models.

State Consistency in LPV Model Construction

A common approach to constructing LPV models is to use Jacobian linearization along a grid of parameter values (e.g.

batch linearization of Simulink models) to construct a grid-based LPV system. In this case, the user must ensure that the

models generated by the linearization all share the same state-vector.

Figure 1 illustrates the concept. A nonlinear model is linearized along a grid of Mach and altitude values, resulting in an

array of linearized systems. State consistency requires the state vectors () of all the individual linearizations to be

identical if these models are to be used to contruct a grid-based LPV system.

Figure 1: A grid-based LPV system.

Maintaining State Consistency

There are some operations that are commonly applied to Linear Time-Invariant (LTI) systems, that can result in loss of

state-consistency of a LPV model. A good example is balreal, which performs a Gramian-based balancing of a LTI

state-space realization. If balreal is applied to a grid-based LPV system it will balance each of the LTI models, which

the grid-based LPV system is comprised of, and the resulting systems will no longer have state consistency. An

alternative function that will maintain state consistency is lpvbalreal which computes a balancing realization for the

LPV system as a whole, yielding a balanced LPV system with state consistency.

Published with MATLAB® R2014b

4/44 29/99 2015 Analysis ofoo LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/A// nalysisGuide/ee html/A// nalysisGuide.html 1/2

Analysis of LPV systems

A primer on analysis in the LPV framework.

Contents

LPV Analysis Commands

Examples and How To

Concepts

LPV Analysis Commands

LPVNORM Compute the gain of a LPV system.

LPVWCGAIN Compute the worst-case gain of an uncertain LPV system.

Examples and How To

Tutorial: Creating basis functions

Tutorial: Analysis and simulation of gridded LPV systems

Tutorial: Modeling and Control of LFT LPV Systems

Tutorial: Worst-case LPV analysis using lpvwcgain

Example: Stochastic LPV control of spinning mass

Example: LPV control of spinning mass using LFT framework

Concepts

Permissible Parameter Trajectories

Stability and Induced Gain

Uncertain Models

Integral Quadratic Constraints

Published with MATLAB® R2014b

4/44 29/99 2015 Stabilitytt and Gain ofoo an LPV system

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/Stabilitytt AndInducedGain/html/Stabilitytt AndInducedGain.html 1/4//

Stability and Gain of an LPV system

LPVTools provides a suite of functions to analyze the stability and gain of LPV systems. Meanwhile, LPVTools synthesis

functions generate controllers that are provide closed-loop stability for an LPV system, while optimizing the gain. This

section will discuss what stability and gain mean for an LPV system. Furthermore, this section highlights some of the

computational issues that arise when LPV analysis conditions are implemented.

Contents

Stability and Gain of an LPV system

Computing the nominal norm of a grid-based LPV system:

References

Stability and Gain of an LPV system

LPV systems are time-varying, state-space models of the form:

where is a vector of measurable parameters, is a vector of outputs, is the state vector,

 is a vector of inputs, and , , and are parameter dependent

matrices.

The LPV system in Equation (1) depends on a set of time-varying parameters . The trajectories of the parameters are

assumed to take on values in a known compact set , and to have known bounds on their derivatives with

respect to time: , where and . A trajectory is said to be "rate unbounded" if and .

The LPV system processes the inputs linearly, but can depend nonlinearly on the time-varying parameter . The

analysis problem is is to determine if the system is stable, and to quantify the input-to-output gain of the system. Denote

the LPV system in Equation (1) by . Analysis in the LPV framework determines if is internally exponentially

stable, and whether the input/output map from to has certain properties.

Definitions of Gain

LPVTools implements two methodologies for synthesis and analysis in the LPV framework. The two methodologies differ

in their formulation of the input/output map . The first methodology formulates this input/output map in terms of the

induced norm (gain) of the system:

In calculating this induced norm it is assumed that . The second methodology formulates the input/output map

in terms of the stochastic LPV bound on :

which describes the variance of when the input is a zero mean, white-noise processes with unit intensity.

4/44 29/99 2015 Stabilitytt and Gain ofoo an LPV system

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/Stabilitytt AndInducedGain/html/Stabilitytt AndInducedGain.html 2/22 4//

Computing the nominal norm of a grid-based LPV system:

lpvnorm implements algorithms to compute the gain of LPV systems. This section will review the analysis conditions

that lpvnorm implements to compute the induced norm of a grid-based nominal (not uncertain) LPV system. These

analysis conditions will serve to illuminate many of the key issues in LPV analysis techniques. Refer to the references at

the end of this chapter for conditions used in other analysis scenarios.

The Objective

The theory underpinning the LPV analysis results which are implemented in lpvnorm frames the analysis problem in

terms of a dissipation inequality. For the LPV system in Equation (1), the problem boils down to a set Linear Matrix

Inequalities (LMIs) which need to be solved to prove that:

for all and , with some and initial condition .

Solving the LMIs to show that the dissipation inequality in Equation (4) holds, is sufficient to prove that the system is

internally exponentially stable, and that the gain of the system has a finite upper bound (). The nominal induced

norm analysis conditions used by lpvnorm are based on result by F. Wu. [1,2]

Analysis Conditions

The following theorem, taken from [1,2], gives a condition for an upper bound on the induced norm of the nominal

LPV system in Equation (1). For simplicity we will assume that the rate bounds on the parameter are symmetric:

.

Theorem 1: If there exists a piecewise continuous symmetric function and a , such that

 and

, and , with , then:

The system is parametrically-dependent stable over .

 with such that .

The theorem above assume that the rate bounds of the time-varying parameter are symmetric, but it can be extended to

the unsymmetric case, and the software handles the unsymmetric case. The conditions in Theorem 1 are a

parameterized set of linear matrix inequalities (LMIs) that must be verified for all and all . The conditions

are infinite dimensional, since , , , and are all continuous functions of the parameter .

Implementation in LPVTools

Its possible to obtain an approximate solution to the infinite dimensional feasibility conditions in Theorem 1 by converting

them into a finite-dimensional set of Linear Matrix Inequalities (LMIs). This is accomplished by the following proceedure:

4/44 29/99 2015 Stabilitytt and Gain ofoo an LPV system

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/Stabilitytt AndInducedGain/html/Stabilitytt AndInducedGain.html 3/33 4//

1. Grid the set into a set of parameter values: . Require that the LMIs in Equation (5) hold at each

grid point.

2. Pick a basis for so that , where is the number of basis functions used to construct

, the scalar functions are the chosen basis functions, and

are constant matrices to be determined (see the tutorial on picking basis functions for an example of how

are defined in LPVTools). If the parameter's in the LPV system are rate unbounded (i.e.) then use a constant

(parameter independent) Lyapunov matrix .

3. Exploit the fact that the enter affinely in Equation (4) to reduce the problem to LMIs at each grid point.

Specifically, if the LMIs hold for all combinations of (a total of combinations formed by the -

dimensional polytope:) then they hold for all . This reduces the

problem to LMIs total (grid points, with LMIs at each point.)

4. Solve for and , subject to the LMIs formed at the grid points by the condition in Equation (5).

The function lpvnorm implements this proceedure to approximately solve the conditions in Theorem 1 by enforcing the

LMIs on the set of gridded points in the domain of the grid-based LPV system (for a grid-based LPV system the set of

possible values, , is gridded as a matter of course during the modeling process).

The computational growth of these conditions is an issue. Let denote the total number of grid points used to

approximate . A rate bounded analysis must enforce the LMI conditions at all grid points and for all

combinations of . Thus there are a total of constraints, each of dimension . If there are

 basis functions, then the Lyapunov matrix has symmetric matrix decision variables each of dimension

. This gives a total of individual decision variables in the rate bounded analysis. LMI optimization

solvers have an asymptotic complexity that depends on both the number of decision variables and the

number/dimension of LMI constraints. For example, LMILab has a floating point operation growth of O() where

 is the total row dimension of the LMI conditions and is the total number of decision variables [3]. This complexity

assumes the default Cholesky factorization of the Hessian matrix is used to solve the least squares problem that arises in

each iteration. Thus the complexity of solving the LPV analysis condition is roughly

. This growth limits the analysis to a modest number of parameters, grid points, and

basis functions.

Alternative Approaches

The LPV analysis problem is formulated differently when the system is represented in the LFT-based LPV framework. In

this case, the rate-bounds can still be taken into account in the analysis, but they do not require the user to define basis

functions. The resulting feasability conditions are different from the ones listed in the grid-based LPV analysis above.

However, the implementations of the two approaches have many features in common: Solution involves convex

constraints (LMIs), and the complexity grows with . Further information on the analysis conditions for the LFT-

based LPV approach can be found in P. Apkarian and P.Gahinet [4], A. Packard [5], A. Helmersson [6], and C. Scherer

[7].

The analysis conditions that apply for the stochastic LPV bound can be found in the work by F. Wu [1], and the results for

worst-case LPV analysis can be found in C. Scherer [7,8,9] and H. Pfifer and P. Seiler [10].

References

1. F. Wu, "Control of Linear Parameter Varying Systems," PhD thesis, University of California, Berkeley, 1993.

2. F. Wu, X. Yang, A. Packard, and G. Becker, "Induced L2 norm control for LPV systems with bounded parameter

variation rates," International Journal of Nonlinear and Robust Control, vol. 6, pp. 983-998, 1996.

3. P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, "LMI control toolbox user's guide," tech. rep., The Mathworks,

4/44 29/99 2015 Stabilitytt and Gain ofoo an LPV system

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Concepts/Stabilitytt AndInducedGain/html/Stabilitytt AndInducedGain.html 4/44 4//

1995.

4. P. Apkarian and P.Gahinet, "A convex characterization of gain-scheduled Hinfinity controllers," IEEE Transactions on

Automatic Control, vol. 40, no. 5, pp. 853-864, 1995.

5. A. Packard, "Gain scheduling via linear fractional transformations," Systems and Control Letters, vol. 22, no. 2, pp.

79-92, 1994.

6. A. Helmersson, "An IQC-based stability criterion for systems with slowly varying parameters," Technical Report LiTH-

ISYR-1979, Linkoping University 1997.

7. C. Scherer and S. Wieland, "Linear matrix inequalities in control," Lecture notes for a course of the dutch institute of

systems and control, Delft University of Technology, 2004.

8. C. Scherer and I. Kose, "Robustness with dynamic IQCs: An exact state-space characterization of nominal stability

with applications to robust estimation," Automatica, Vol. 44, No. 7, pp. 1666-1675, 2008.

9. C. Scherer, "LPV control and full-block multipliers," Automatica, Vol. 37, No. 3, pp. 361-375, 2001.

10. H. Pfifer, and P. Seiler. "Robustness analysis of linear parameter varying systems using integral quadratic

constraints," International Journal of Robust and Nonlinear Control, 2014, doi: 10.1002/rnc.3240.

Published with MATLAB® R2014b

Integral Quadratic Constraints

Introduction

Integral Quadratic Constraints (IQCs) are used in some LPV analysis algorithms in LPVTools. Their function is to bound the input-to-

output map of a system component for the purposes of analysis. IQCs were introduced by A. Megretski and A. Rantzer [1] to provide a

general framework for robustness analysis.

An IQC is defined by a symmetric matrix and a stable linear system . is denoted as

A bounded, causal operator satisfies an IQC defined by if the following inequality holds for all

, and :

where is the output of the linear system :

The notation is used if satisfies the IQC defined by . Figure 1 provides a graphic interpretation of the

IQC. The input and output signals of are filtered through . If then the output signal satisfies the (time-domain)

constraint in Equation (2) for any finite-horizon .

Figure 1: Graphic interpretation of the IQC.

Integral Quadratic Constraints in LPVTools

IQCs are used for worst-case analysis (lpvwcgain) of uncertain LPV systems (grid-based [3] and LFT-based [4,5,6]), and for

analysis (lpvnorm) of nominal (not uncertain) rate-bounded LFT-based LPV systems [7]. In each case the IQCs are used to bound

the input-to-output map of some element in the system (the uncertainty block for worst-case analysis, and the parameter block for rate-

bounded analysis of LFT-based LPV systems). The implementation of these algorithms requires the user to specify basis functions for

the stable linear system . The basis functions are currently constrained to be either constant or first order systems. The analysis

functions require the user to supply a 1xN double row vector of positive numbers, which specify the real, stable poles of N first order

basis functions to be used. If no vector is supplied, the software autmatically selects a constant term and three first order systems as

the basis functions for in the analysis.

Additional Information

Reference [1] provides a library of IQC multipliers that are satisfied by many important system components, e.g. saturation, time delay,

and norm bounded uncertainty. The IQCs in [1] are expressed in the frequency domain as an integral constraint defined using a

multiplier . The multiplier can be factorized as and this connects the frequency domain formulation to the time-

domain formulation used here. One technical point is that, in general, the time domain IQC constraint only holds over infinite horizons (

). The work in [1,2] draws a distinction between hard/complete IQCs for which the integral constraint is valid over all finite time

intervals and soft/conditional IQCs for which the integral constraint need not hold over finite time intervals. The formulation of an IQC

here, as a finite-horizon (time-domain) inequality, is thus valid for any frequency-domain IQC that admits a hard/complete factorization

. While this is somewhat restrictive, it has recently been shown that a wide class of IQCs have a hard factorization [2].

References

1. A. Megretski, and A. Rantzer, "System Analysis via Integral Quadratic Constraints," IEEE Transactions on Automatic Control, Vol.

42, No. 6, pp. 819–830, 1997, doi: 10.1109/CDC.1994.411315.

2. A. Megretski, "KYP lemma for non-strict inequalities and the associated minimax theorem,”, Arxiv, 2010, (arXiv:1008.2552).

3. H. Pfifer and P. Seiler, "Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints,"

American Control Conference, pp. 4476-4481, 2014, doi: 10.1109/ACC.2014.6858751.

4. C. Scherer and S. Wieland, "Linear matrix inequalities in control," Lecture notes for a course of the dutch institute of systems and

control, Delft University of Technology, 2004.

5. C. Scherer and I. Kose, "Robustness with dynamic IQCs: An exact state-space characterization of nominal stability with

applications to robust estimation," Automatica, Vol. 44, No. 7, pp. 1666-1675, 2008.

6. C. Scherer, "LPV control and full-block multipliers," Automatica, Vol. 37, No. 3, pp. 361-375, 2001.

7. A. Helmersson, "An IQC-based stability criterion for systems with slowly varying parameters," Technical Report LiTH-ISYR-1979,

Linkoping University 1997.

Published with MATLAB® R2014b

4/44 29/99 2015 Defe ining Basis Functions

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo BASISexee ample/ee html/BASISexee ample.html 1/2

Defining Basis Functions

Contents

Introduction

Constructing Basis Functions

Basic Arithmetic for Basis Functions

Aggregating Basis Functions

Introduction

Basis functions are needed for rate-bounded LPV analysis and synthesis in the grid-based LPV framework. These are

functions of the time-varying parameter present in the system being analyzed. Basis functions are specified using the

basis object. To construct a basis function object the user provides a pmat or pgrid that defines the value of the

basis function at each grid-point in the domain. Furthermore, the user provides the value of the partial derivative of the

basis function with regard to each parameter in the system, at each point in the domain.

Constructing Basis Functions

Lets construct a basis object that describes the basis function .

% Define the time-varying parameter rho

rho = pgrid('rho',1:5)

Gridded real parameter "rho" with 5 points in [1,5] and rate bounds [-Inf,Inf].

Define the basis function as a pmat:

f = rho + rho^2

PMAT with 1 rows and 1 columns.

The PMAT consists of the following blocks:

 rho: Gridded real, 5 points in [1,5], rate bounds [-Inf,Inf].

Define the value of the partial derivative of f with respect to rho:

pf = 1+2*rho

PMAT with 1 rows and 1 columns.

The PMAT consists of the following blocks:

 rho: Gridded real, 5 points in [1,5], rate bounds [-Inf,Inf].

Now we can define the basis object for this basis function. The first argument to basis is the value of the basis

4/44 29/99 2015 Defe ining Basis Functions

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo BASISexee ample/ee html/BASISexee ample.html 2/22 2

function. The second argument is the value of the partial derivative:

bf = basis(f,pf)

BASIS: 1 basis functions and 1 partial derivatives with respect to 1 PGRID

The BASIS object consists of the following blocks:

 rho: Gridded real, 5 points in [1,5]

Basic Arithmetic for Basis Functions

The basis object includes methods for basic arithmetic. Hence, an initial basis object can be used to construct others.

Lets define another basis object that describes the basis function: .

bg = bf^2

BASIS: 1 basis functions and 1 partial derivatives with respect to 1 PGRID

The BASIS object consists of the following blocks:

 rho: Gridded real, 5 points in [1,5]

Note that there is no need to specify the partial derivatives for the new system g. These are automatically computed for g
using the data in f and the chain rule of differentiation.

Aggregating Basis Functions

For analysis and synthesis, a set of basis functions can be groupped together using horzcar or vertcat:

BF = [bf,bg]

BASIS: 2 basis functions and 1 partial derivatives with respect to 1 PGRID

The BASIS object consists of the following blocks:

 rho: Gridded real, 5 points in [1,5]

In this case the basis object BF describes the two basis functions and .

Published with MATLAB® R2014b

4/44 29/99 2015 Worst-Case Gain Analysis ofoo LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo W// CGAIN/html/W// CGAIN.html 1/6

Worst-Case Gain Analysis of LPV System

The following example is originally from [1], and was posed as an LPV analysis problem in [2].

Contents

An uncertain parameter dependent system

Construct LPV system

Worst case analysis without rate-bounds

Worst-case analysis with rate-bounds

References:

An uncertain parameter dependent system

Consider a first order parameter dependent system :

where the elements and are dependent on the parameter as follows:

The following analysis will study the system when the parameter is restricted to the interval . is placed into an

interconnection with a time delay sec, and a multiplicative uncertainty , as shown in Figure 1.

Figure 1: Interconnection for analysis.

The induced norm of the uncertainty is bounded by , and the time delay is modeled by a second order

Padé approximation :

A gain-scheduled Proportional-Integral controller has been designed for this system. It is designed to achieve a a

closed loop damping and a closed loop frequency of at each point in the domain. The controller

 has the followig form:

4/44 29/99 2015 Worst-Case Gain Analysis ofoo LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo W// CGAIN/html/W// CGAIN.html 2/22 6

where the gains and are chosen as:

The analysis problem is to compute the worst-case induced norm from to in the interconnection shown in Figure 1.

Construct LPV system

The first step in the analysis is to construct an LPV model that represents the interconnection of systems in Figure 1.

% Define the parameter as a gridded real with 6 evenly space grid points:

p = pgrid('p',2:7);

% Define the plant

tau = sqrt(133.6-16.8*p);

K = sqrt(4.8*p-8.6);

G = ss(-1/tau,1/tau,K,0);

% Define the time delay:

Td = 0.5;

Tdel = tf([Td^2/12 -Td/2 1],[Td^2/12 Td/2 1]);

% Define the controller:

sigma = 0.7;

wcl = 0.25;

Kp = (2*sigma*wcl*tau-1)/K;

Ki = wcl^2*tau/K;

C = ss(0,Ki,1,Kp);

% Define the uncertainty:

Delta= ureal('Delta',0,'Range',[-.1 .1]);

% Apply a multiplicative uncertainty and time delay to input of plant:

Plant = G*Tdel*(1+Delta);

% Form closed-loop interconnection

systemnames = 'C Plant';

inputvar = '[d]';

outputvar = '[d-Plant]';

input_to_Plant = '[C]';

input_to_C = '[d-Plant]';

CL = sysic

UPSS with 4 States, 1 Outputs, 1 Inputs, Continuous System.

The UPSS consists of the following blocks:

 p: Gridded real, 6 points in [2,7], rate bounds [-Inf,Inf].

4/44 29/99 2015 Worst-Case Gain Analysis ofoo LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo W// CGAIN/html/W// CGAIN.html 3/33 6

 Delta: Uncertain real, nominal = 0, range = [-0.1,0.1], 1 occurrences

Worst case analysis without rate-bounds

% Lets compute the worst-case induced L_2 norm of the closed-loop

% interconnection |CL|. We will use the function |lpvwcgain| to achieve this.

% First, we will compute the norm when we assume that there are no bounds

% on the parameter rate ($\dot{\rho}$):

GAM = lpvwcgain(CL)

GAM =

 63.8659

The worst-case induced norm of the closed-loop interconnection is 63.87. This means that for all norm bounded

uncertainties , and all norm bounded inputs , and all parameter trajectories such that ,

the induced norm of the output is guaranteed to be no larger than 63.87. This is an upper bound.

To arrive at a lower bound, we can compute the largest worst-case norm of the Linear Time-Invariant (LTI) systems at

each frozen parameter value, insert the value of the correspondig worst-case uncertainty into the LPV interconnection in

CL, and compute the induced norm of the resulting nominal (no uncertainty) LPV system using lpvnorm:

% Compute the worst-case induced L_2 norm of the LTI systems

% corresponding to each grid point of p:

[WCG,WCU,INFO] = wcgain(CL);

% Identify and extract the worst-case uncertainty:

[V,I]=lpvmax(WCG.LowerBound,'p');

wc_delta = WCU.index('p',6);

wc_delta = wc_delta.Delta

wc_delta =

 0.1000

Reform the interconnection in Figure 1, using the worst-case multiplicative uncertainty:

% Apply a multiplicative uncertainty and time delay to input of plant:

wc_Plant = G*Tdel*(1+wc_delta);

% Form closed-loop interconnection

systemnames = 'C wc_Plant';

inputvar = '[d]';

outputvar = '[d-wc_Plant]';

input_to_wc_Plant = '[C]';

input_to_C = '[d-wc_Plant]';

wc_CL = sysic;

% Compute the induced L2 norm of the nominal (no uncertainty) LPV system

4/44 29/99 2015 Worst-Case Gain Analysis ofoo LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo W// CGAIN/html/W// CGAIN.html 4/44 6

% wc_CL:

[Gamma,X] = lpvnorm(wc_CL);

Gamma

Gamma =

 20.1476

The results indicate that the worst-case induced norm of CL lies between 20.1476 and 63.8659.

Worst-case analysis with rate-bounds

Lets assume that the parameter can not change arbitrarily fast with time, that it is rate-bounded: . In this

case the previous result is conservative, because it assumes that there is no limit to how fast the parameter can change

with time. A more accurate results can be achived if we take into account the rate-bound on the parameter. To do this we

again use lpvwcgain, but now the rate-bounded analysis requires parameter dependent basis functions to compute

the induced norm (the reason that these basis functions are needed can be found in a description of the LPV analysis

conditions, elsewhere in this manual

basis objects are used to represent basis functions in LPVTools. There are no firm rules about the choice of basis

functions, but a good rule of thumb is to keep them as simple as possible, due to the added computational burden

associated with each independent basis function that is added. For this example we will compare results for a set of four

basis functions , , , and : * Set 1: * Set 2: * Set 3:

 * Set 4:

We will not repeat the previous analysis and compute the worst-case induced norm of the closed-loop interconnection

CL, while taking into accound the parameter's rate bound :

% Change the rate-bounds of p in the closed-loop interconnection:

rb = 0.1;

CLrb = CL;

CLrb.Parameter.p.RateBounds = [-rb rb];

% Define three basis objects: b0 = 1, b1 = p, and b2 = sqrt(p).

% The first argument to |basis| is the value of the basis function at each

% grid point. The second argument is the value of the partial derivative of

% the basis function with respect to the parameter:

b0 = basis(1,0);

b1 = basis(p,1);

b2 = basis(sqrt(p),1/(2*sqrt(p)));

Start by computing the worst-case induced norm of the closed-loop interconnection CL using the set of basis

functions:

% Define set of basis functions:

basis1 = [b0,b1];

% Perform rate-bounded worst-case LPV analysis:

GAM = lpvwcgain(CLrb,basis1)

4/44 29/99 2015 Worst-Case Gain Analysis ofoo LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo W// CGAIN/html/W// CGAIN.html 5/55 6

GAM =

 3.0906

Repeat the analysis with basis functions: , , and

basis2 = [b0,b1,b1^2];

GAM = lpvwcgain(CLrb,basis2)

GAM =

 2.0080

basis3 = [b0,b1,b1^2,1/b1];

GAM = lpvwcgain(CLrb,basis3)

GAM =

 1.9363

basis4 = [b0,b1,b1^2,1/b1,b2];

GAM = lpvwcgain(CLrb,basis4)

GAM =

 1.8925

The rate-bounded analysis results in a far lower worst-case norm. Clearly it is important to take into account the

permissible parameter rate of variation. The upper bound on the worst-case norm appears to converge close to 1.89.

Adding terms to the basis function improves the bound on the worst-case norm. In this example, the effect is drastic when

going from a simple linear basis function to a quadratic basis function, but modest when more complicated terms are

added.

The result computed by lpvwcgain is only an upper bound. We can repeat the process we used before to arrive at a

lower bound:

% Compute the worst-case induced L_2 norm of the LTI systems

% corresponding to each grid point of p:

[WCG,WCU,INFO] = wcgain(CL);

% Identify and extract the worst-case uncertainty:

[V,I]=lpvmax(WCG.LowerBound,'p');

wc_delta = WCU.index('p',6);

wc_delta = wc_delta.Delta

4/44 29/99 2015 Worst-Case Gain Analysis ofoo LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo W// CGAIN/html/W// CGAIN.html 6/66 6

wc_delta =

 0.1000

Reform the interconnection in Figure 1, using the worst-case multiplicative uncertainty:

% Apply a multiplicative uncertainty and time delay to input of plant:

wc_Plant = G*Tdel*(1+wc_delta);

% Form closed-loop interconnection

systemnames = 'C wc_Plant';

inputvar = '[d]';

outputvar = '[d-wc_Plant]';

input_to_wc_Plant = '[C]';

input_to_C = '[d-wc_Plant]';

wc_CLrb = sysic;

% Set rate-bound:

wc_CLrb.Parameter.p.RateBounds = [-rb rb];

% Compute the induced L2 norm of the nominal (no uncertainty) LPV system

% wc_CL:

[Gamma,X] = lpvnorm(wc_CLrb,basis4);

Gamma

Gamma =

 1.2968

The worst-case induced norm lies somewhere between 1.2968 and 1.8925.

References:

1. S. Tan, C. C. Hang, and J. S. Chai, “Gain scheduling from conventional to neuro-fuzzy,” Automatica, Vol. 33, pp. 411–

419, 1997.

2. H. Pfifer and P. Seiler, “Robustness analysis of linear parameter varying systems using integral quadratic

constraints,” in American Control Conference, 2014.

Published with MATLAB® R2014b

4/44 29/99 2015 Synthesis foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/SynthesisGuide/ee html/SynthesisGuide.html 1/3

Synthesis for LPV systems

A primer on synthesis in the LPV framework.

Contents

LPV Synthesis

LPV Synthesis Commands

Examples and How To

Concepts

LTI synthesis capabilities

LPV Synthesis

Problem Statement

Consider a parameter dependent linear plant of the form:

where is a time varying parameter, that takes on values in a known compact set and has known bound on ,

. The time variations of are not known in advance, but the parameter values are measured in real-time

and available for control design.

Figure 1: Closed-loop interconnection for LPV synthesis problem.

The control problem is to synthesize a controller such that the closed-loop system shown in Figure 1, is stable and

the gain from to is minimized. This requires that the controller be designed such that the closed-loop performance is

optimized in the presence of rate-bounded, time-varying parameter trajectories . Denote the closed-loop

system by , and the gain of this closed-loop system by Then the design objective can be

stated as:

The resulting controller is itself parameter dependent - using the available real-time information of the parameter

4/44 29/99 2015 Synthesis foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/SynthesisGuide/ee html/SynthesisGuide.html 2/22 3

variation. In the grid-based LPV framework

LPVTools Implementation

LPVTools implements LPV controller synthesis for both the LFT-based LPV framework and the grid-based LPV

framework. The synthesis functions generate controllers which optimize the performance of the closed-loop system while

taking into account the permissible parameter trajectories: , subject to .

In the grid-based LPV framework lpvsyn, lpvncfyn, lpvmixsyn, lpvloopshape, and lpvstochsyn are used

to synthesize LPV output-feedback controllers. lpvsfsyn is used to synthesize LPV state-feedback controllers, and

lpvestsyn is used to generate LPV estimators. These functions can be used to generate controllers and estimators to

minimize either the induced norm (based on results by Becker [1] and Wu [2,3], with pole-constrained synthesis

based on the derivation by Lee [4]) or the stochastic LPV bound (based on results by Wu [2]). In the LFT-based LPV

framework only lpvsyn is provided to synthesize LPV output-feedback controllers, and it implements an algorithm

which minimizes the induced norm (based on results by Packard [5], and Apkarian and Gahinet [6]).

The LPV controller synthesis conditions lead to a set of Linear Matrix Inequalities (LMIs) which must be solved in order to

generate a controller. These LMIs suffer from similar computational issues to the LPV analysis conditions, and their

complexity also grows with .

References

1. G. Becker, "Quadratic Stability and Performance of Linear Parameter Dependent Systems," Ph.D. Dissertation,

University of California, Berkeley, 1993.

2. F. Wu, "Control of Linear Parameter Varying Systems," PhD thesis, University of California, Berkeley, 1993.

3. F. Wu, X. Yang, A. Packard, and G. Becker, "Induced L2 norm control for LPV systems with bounded parameter

variation rates," International Journal of Nonlinear and Robust Control, vol. 6, pp. 983-998, 1996.

4. L. H. Lee, "Identification and Robust Control of Linear Parameter-Varying Systems," Ph.D. Dissertation, University of

California at Berkeley, 1997, doi:10.1.1.55.2269.

5. A. Packard, "Gain scheduling via linear fractional transformations," Systems and Control Letters, vol. 22, no. 2, pp.

79-92, 1994.

6. P. Apkarian and P.Gahinet, "A convex characterization of gain-scheduled Hinfinity controllers," IEEE Transactions on

Automatic Control, vol. 40, no. 5, pp. 853-864, 1995.

LPV Synthesis Commands

LPVTools provides the following functions to design controllers for multiinput-multioutput (MIMO) LPV models:

LPVSYN Synthesize a LPV controller

LPVNCFSYN Normalized coprime factor LPV controller synthesis

LPVLOOPSHAPE LPV loop-shaping synthesis

LPVMIXSYN LPV mixed-sensitivity synthesis

LPVSFSYN Synthesize a LPV state-feedback controller

LPVESTSYN Synthesize a LPV state estimator

LPVSTOCHSYN Synthesize stochastic LPV controller

LPVSYNOPTIONS Create options object for LPV synthesis and analysis

4/44 29/99 2015 Synthesis foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/SynthesisGuide/ee html/SynthesisGuide.html 3/33 3

Examples and How To

Tutorial: Creating basis functions

Tutorial: Synthesis for gridded LPV systems

Tutorial: Synthesis for LFT LPV systems

Example: Stochastic LPV control of spinning mass

Example: LPV control of spinning mass using LFT framework

Concepts

Permissible Parameter Trajectories

Stability and Induced Gain

Characterizing Closed-loop Performance Objectives

LTI synthesis capabilities

Overloaded LTI synthesis function from the Control Systems Toolbox and the Robust Control Toolbox are provided for

LPV systems. (e.g. lqr, hinfsyn, h2syn, loopsyn, ncfsyn, and mixsyn). These functions perform the controller

synthesis pointwise in the parameter domain of the controller. In each case the resulting controller is not a LPV controller

(i.e. one that satisfies the LPV analysis conditions), but a collection of LTI controllers - one for each point.

Published with MATLAB® R2014b

4/44 29/99 2015 Model Reduction foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ModelReductionGuide/ee html/ModelReductionGuide.html 1/2

Model Reduction for LPV systems

A primer on model reduction in the LPV framework.

Contents

Introduction

LPV Model Reduction Commands

Examples and How To

Concepts

Introduction

LPVTools provides tools for LPV model reduction. LPV model reduction is different from Linear Time-Invariant (LTI)

model reduction techniques which act on a single point, because they perform the model reduction for all values of the

scheduling parameter simultaneously. The resulting reduced order model is still a LPV model with consistent state, input

and output vectors. If LTI model reduction techniques (e.g. balreal) are applied to a LPV model, the resulting model

may lose state consistency and the resulting reduced order model is no longer a LPV system. LPVTools provides two

functions for LPV model reduction. lpvbalancmr performs balanced trunctation, and provides the option of weighting

different frequency bands in the model reduction to emphasize accuracy for some dynamics while de-emphasizing

others.. However it is restricted to stable LPV systems. lpvncfmr performs a contractive coprime factorization of a LPV

system, and can handle unstable LPV systems.

Further Reading

1. G. D. Wood, "Control of parameter-dependent mechanical systems," Ph.D. Dissertation, University of Cambridge,

1995.

2. G. D. Wood, P. J. Goddard, and K. Glover, "Approximation of linear parameter-varying systems," IEEE Conference on

Decision and Control, Vol. 1, pp 406-411, 1996.

3. R. Widowati, R. Bambang, R. Sagari, S. M. and Nababan, “Model reduction for unstable LPV system based on

coprime factorizations and singular perturbation,” 5th Asian Control Conference, Vol. 2, pp. 963-970, Melbourne,

Australia, 2004.

LPV Model Reduction Commands

LPVGRAM Compute Gramians for PSS objects.

LPVBALREAL Perform Gramian-based balancing for PSS objects.

LPVBALANCMR Balanced truncation model reduction.

LPVNCFMR Balanced truncation model reduction through contractive coprime factorization.

Examples and How To

LTI Model Reduction

Model Reduction for a stable LPV system

Model Reduction for an unstable LPV system

Concepts

4/44 29/99 2015 Model Reduction foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ModelReductionGuide/ee html/ModelReductionGuide.html 2/22 2

State Consistency

Published with MATLAB® R2014b

4/44 29/99 2015 LPV Model Reduction foff r a Stable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo StableModelReduction/html/StableModelReduction.html 1/4//

LPV Model Reduction for a Stable LPV System:

Consider a third-order parameter dependent system:

where the parameter lies in the interval , and the coefficients and are defined as:

We note that the system consists of a second order system, with damping coefficient and natural frequency , that

is in series with a first-order actuator at its input. The actuator has a pole at 100 rad/s, which is two orders of magnitude

higher than the natural frequency of the second-order system. Hence, if the dynamics at low frequency are the main

object of interest, it is possible to remove the actuator state from this 3 state model, with minimal effect in the frequency

band where the second-order dynamics take place. Lets do this using LPVTools.

% Define the time-varying rho parameter as a gridded real parameter:

p = pgrid('p',1:5);

% Define the second-order system:

zet = sqrt(6-p)/10;

wn = 5;

G = ss([0 1;-wn^2 -2*zet*wn],[0;1],[1 0],0);

% Define the first order actuator:

act = ss(-100,100,1,0);

% Define the plant model which consists of the the second-order system and

% the actuator in series:

sys = G*act

PSS with 3 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 p: Gridded real, 5 points in [1,5], rate bounds [-Inf,Inf].

Lets compare the frequency response of sys and G at the five grid points:

freq = linspace(1,1e3,5000);

bode(sys,'b',freq)

hold on

bode(G,'r--',freq)

legend('G*act','G')

hold off

4/44 29/99 2015 LPV Model Reduction foff r a Stable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo StableModelReduction/html/StableModelReduction.html 2/22 4//

We note the actuator pole kicking in at 100 rad/s, and that its effect on the second order dynamics is negligable. Hence, it

should be safe to remove 1 state from the model if we are only interested in the system's dynamics at low frequency.

lpvbalancmr will compute a balanced realization of the LPV system sys and then remove those states that contribute

least to its input/output behaviour. sys has 3 states, we will call on lpvbalancmr to remove 1 state and generate a

balanced realization with only 2 states.

% The first input to |lpvbalancmr| is the system to be reduced. The second input

% is the desired state order of the output:

[sys_red,info] = lpvbalancmr(sys,2);

sys_red is the 2 state reduced-order model:

sys_red

PSS with 2 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 p: Gridded real, 5 points in [1,5], rate bounds [-Inf,Inf].

info stores results for the model reduction. Lets look at the relative size of the Hankel singular values associated with

the states in the balanced version of sys:

4/44 29/99 2015 LPV Model Reduction foff r a Stable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo StableModelReduction/html/StableModelReduction.html 3/33 4//

info.StabSV

ans =

 0.1115

 0.0915

 0.0006

We see that one of the states has a Hankel Singular value that is two orders of magnitude smaller than the smallest

Hankel Singular value of the other two. This indicates that it removing this state will have a minimal effect on the accruacy

of the resulting reduced order model.

Lets compare the frequency response of the original three state system sys, and the reduced order second-order system

sys_red.

freq = linspace(1,1e2,5000);

bode(sys,'b',freq)

hold on;

bode(sys_red,'k:',freq)

legend('sys: Original 3-state model',...

'sys_red: 2-state reducted order model','location','northeast')

We note that the frequency response in of the original three state system and the reduced order system is identical up to

approximatly 30 rad/s.

4/44 29/99 2015 LPV Model Reduction foff r a Stable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo StableModelReduction/html/StableModelReduction.html 4/44 4//

References

1. G. D. Wood, "Control of parameter-dependent mechanical systems," Ph.D. Dissertation, University of Cambridge,

1995.

2. G. D. Wood, P. J. Goddard, and K. Glover, "Approximation of linear parameter-varying systems," IEEE Conference on

Decision and Control, Vol. 1, pp 406-411, 1996.

3. R. Widowati, R. Bambang, R. Sagari, S. M. and Nababan, “Model reduction for unstable LPV system based on

coprime factorizations and singular perturbation,” 5th Asian Control Conference, Vol. 2, pp. 963-970, Melbourne,

Australia, 2004.

Published with MATLAB® R2014b

4/44 29/99 2015 LPV Model Reduction foff r a Unstable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo UnstableModelReduction/html/UnstableModelReduction.html 1/4//

LPV Model Reduction for a Unstable LPV System:

Contents

LPV Model Reduction for a Unstable LPV System

References

LPV Model Reduction for a Unstable LPV System

Consider a third-order parameter dependent system:

where the parameter lies in the interval , and the coefficients and are defined as:

We note that the system consists of a second order system, with damping coefficient and natural frequency , that

is in series with a first-order actuator at its input. The second order system is unstable for and marginally stable for

. The actuator has a pole at 100 rad/s, which is two orders of magnitude higher than the natural frequency of the

second-order system. Hence, if the unstable dynamics at low frequency are the main object of interest, it is possible to

remove the actuator state from this 3 state model, with minimal effect in the frequency band where the unstable second-

order dynamics take place. Lets do this using LPVTools.

% Define the time-varying rho parameter as a gridded real parameter:

p = pgrid('p',1:5);

% Define the second-order system:

zet = (2-p)/30;

wn = 5;

G = ss([0 1;-wn^2 -2*zet*wn],[0;1],[1 0],0);

% Define the first order actuator:

act = ss(-100,100,1,0);

% Define the plant model which consists of the the second-order system and

% the actuator in series:

sys = G*act

PSS with 3 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 p: Gridded real, 5 points in [1,5], rate bounds [-Inf,Inf].

4/44 29/99 2015 LPV Model Reduction foff r a Unstable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo UnstableModelReduction/html/UnstableModelReduction.html 2/22 4//

Lets compare the frequency response of sys and G at the five grid points:

freq = linspace(1,1e3,10000);

bode(sys,'b',freq)

hold on

bode(G,'r--',freq)

legend('G*act','G')

hold off

We note the actuator pole kicking in at 100 rad/s, and that its effect on the second order dynamics is negligable. Hence, it

should be safe to remove 1 state from the model if we are only interested in the system's dynamics at low frequency.

lpvncfmr will compute a contractive coprime factorization of the LPV system sys, which removes those states that

contribute least to its input/output behaviour. sys has 3 states, we will call on lpvncfmr to % remove 1 state and

generate a realization with only 2 states. Note that the function lpvbalancmr can not be used in this case, because the

LPV system is unstable and it requires a stable LPV system. lpvncfmr can handle both stable and unstable LPV

systems.

% The first input to |lpvncfmr| is the system to be reduced. The second

% input is the desired state order of the output:

sys_red = lpvncfmr(sys,2);

sys_red is the 2 state reduced-order model:

4/44 29/99 2015 LPV Model Reduction foff r a Unstable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo UnstableModelReduction/html/UnstableModelReduction.html 3/33 4//

sys_red

PSS with 2 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 p: Gridded real, 5 points in [1,5], rate bounds [-Inf,Inf].

Lets compare the frequency response of the original three state system sys, and the reduced order second-order system

sys_red.

freq = linspace(1,1e2,5000);

bode(sys,'b',freq)

hold on;

bode(sys_red,'k:',freq)

legend('sys: 3-state model',...

'sys_red: 2-state model','location','northeast')

We note that the frequency response in of the original three state system and the reduced order system is identical up to

approximatly 30 rad/s.

References

1. G. D. Wood, "Control of parameter-dependent mechanical systems," Ph.D. Dissertation, University of Cambridge,

1995.

2. G. D. Wood, P. J. Goddard, and K. Glover, "Approximation of linear parameter-varying systems," IEEE Conference on

4/44 29/99 2015 LPV Model Reduction foff r a Unstable LPV System:

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo UnstableModelReduction/html/UnstableModelReduction.html 4/44 4//

Decision and Control, Vol. 1, pp 406-411, 1996.

3. R. Widowati, R. Bambang, R. Sagari, S. M. and Nababan, “Model reduction for unstable LPV system based on

coprime factorizations and singular perturbation,” 5th Asian Control Conference, Vol. 2, pp. 963-970, Melbourne,

Australia, 2004.

Published with MATLAB® R2014b

4/44 29/99 2015 Simulation ofoo LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/SimulationGuide/ee html/SimulationGuide.html 1/2

Simulation of LPV systems

A primer on simulation in LPVTools.

Contents

Introduction

LPV Simulation Commands

Examples and How To

Concepts

Introduction

LPVTools provides a set of tools to perform time-domain simulation of LPV systems. The tools can be split into two parts:

First, there are overloaded versions of Linear Time-Invariant (LTI) simulation tools from the Control Systems Toolbox

(lsim, step, impulse, initial). These functions can be used to evaluate the pointwise behaviour of the LPV

system when the scheduling parameter () is held constant. Second, there are LPV simulation tools that enable

simulation of the LPV system when the parameter is allowed to vary with time. These LPV simulation tools are able to

capture the time-varying nature of the LPV system's dynamics, and allow the system's behaviour to be evaluated for

different parameter trajectories.

LPV Simulation Commands

LPVLSIM Simulate parameter dependent time response of a LPV system.

LPVSTEP Simulate parameter dependent step response of a LPV system.

LPVINITIAL Simulate initial conditions response of a LPV system.

LPVIMPULSE Simulate parameter dependent impulse response of a LPV system.

Examples and How To

Tutorial: Simulate a Quasi-LPV System

Tutorial: Analysis of a grid-based LPV system

Tutorial: Control of a grid-based LPV system

Example: Stochastic LPV control of spinning mass

Example: LPV control of spinning mass using LFT framework

Concepts

Permissible Parameter Trajectories

Quasi-LPV Models

Published with MATLAB® R2014b

4/44 29/99 2015 Simulating Quasi-LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo SimulateQuasiLPV/VV html/SimulateQuasiLPV.html 1/2

Simulating Quasi-LPV Systems

Contents

Introduction

Example

Introduction

LPVTools provides command line simulation tools that enable simulation of quasi-LPV systems, i.e. systems in which one

of the states is also the scheduling parameter. An accurate simulation of a quasi-LPV system requires that the parameter

trajectory during simulation is a function of the system state. This is achieved using Function Handles.

The syntax for LPV simulations is:

lpvlsim(G,PTRAJ,UIN,TIN,X0)

where G is the system to be simulated, PTRAJ is a structure that defines the parameter trajectory, UIN is the input to the

system, TIN a vector of simulation time values, and X0 is the initial value of the system.

The LPV simulation command requires the user to specify the parameter trajectory in the structure PTRAJ. To use

function handles to specify the parameter trajectory, PTRAJ must be specified as a structure with the field

\|PTRAJ.Functions| that specifies function handles for evaluating the parameters . A second field

PTRAJ.Names provides a cell array list of the parameter names corresponding to each function handle. The following

code provides an example demonstrating the simulation of a simple nonlinear system using the quasi-LPV command line

simulation approach:

Example

Create system: ; ;

rho = pgrid('rho',linspace(0,50,100));

sys = ss(-1-rho,1,1,0)

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho: Gridded real, 100 points in [0,50], rate bounds [-Inf,Inf].

Make such that the nonlinear system is

pFHN.Functions = @(x,u,t) x^2;

pFHN.Names = {'rho'}

pFHN =

 Functions: @(x,u,t)x^2

 Names: {'rho'}

4/44 29/99 2015 Simulating Quasi-LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Howoo To/oo SimulateQuasiLPV/VV html/SimulateQuasiLPV.html 2/22 2

Simulate from initial condition x0=6; u=0 Response starts very fast (), becomes slow ()

Nt=100;

tVec = linspace(0,10,Nt);

uVec = zeros(Nt,1);

x0 = 6;

lpvlsim(sys,pFHN,uVec,tVec,x0);

The plot shows the response generated for this quasi-LPV example. It is important to emphasize that this simulation

captures the nonlinear dependence . Hence this function-handle approach enables simulation of nonlinear

systems represented in the quasi-LPV form. The functions lpvstep, lpvimpulse, and lpvinitial were also

extended to allow for quasi-LPV simulations.

It should be noted that the Simulink blocks in LPVTools naturally allow for quasi-LPV simulations because the

parameter trajectory at the ``Parameter'' input port can be generated via Simulink blocks operating on any signal in the

model.

Published with MATLAB® R2015a

4/44 29/99 2015 Tutorials

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/Demolist.html 1/2

Tutorials

The following tutorials demonstrate some of the key features of LPVTools.

Examples

Stochastic LPV control of spinning mass

LPV control of spinning mass using LFT framework

Tutorials

Constructing grid-based LPV models

Modeling and Control of LFT LPV Systems

Conversion between LFT and LPV models

Creating a grid-based LPV model from analytical linearization

Creating a grid-based LPV model from a nonlinear model

Creating basis functions

Analysis and simulation of gridded LPV systems

Worst-case LPV analysis using lpvwcgain

Synthesis for gridded LPV systems

Simulate a Quasi-LPV System

Model Reduction for a stable LPV system

Model Reduction for an unstable LPV system

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 1/9

Control Design for Stochastic LPV Systems

The following example from Wu [1] describes a control design for a

mechanical system in the stochastic LPV framework.

Contents

Problem Statement: Coupled Spinning Disks

LPV System Formulation:

LPV Control Design

Computing a Tighter Bound on the Stochastic LPV Bound

Evaluating Pointwise Performance

Evaluating LPV Time-Domain Performance

References

Problem Statement: Coupled Spinning Disks

A pair of rotating disks is shown in Figure 1. The slotted disks rotate at rates rad/s and rad/s. The disks contain

masses and , which can move in the horizontal plane, and slide in the radial direction The two masses are

connected by a wire, which can transmitt force in both compression and tension. The wire acts as a spring with spring

constant . A coupler and pulley system handles the wire routing between the two disks. The effect of friction due to the

sliding motion of each mass is modeled by a damping coefficient .

Figure 1: A pair of spinning disk with masses and [1].

The problem is to control the position of the two masses: for mass and for . The control input is a radial force

 acting on mass , while there is a radial disturbance force acting on each mass: acting on and acting on

. The equations of motion for this problem are:

where:

 kg is the mass of the sliding mass in disk 1.

 kg is the mass of the sliding mass in disk 2.

 kg is the damping coefficient due to fricition (kg/sec).

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 2/22 9

 N/m is the spring constant of the wire connecting the masses.

 is the position of the sliding mass relative to the center of disk 1 (m).

 is the position of the sliding mass relative to the center of disk 2 (m).

 is the rotational rate of disk 1 (rad/s).

 is the rotational rate of disk 2 (rad/s).

 is the control force acting radially on mass (N).

 is the disturbance force acting radially on mass (N).

 is the disturbance force acting radially on mass (N).

The rotational rates of the spinning disk are allowed to vary: rad/s and The rotational rates are not

known in advance but are measured and available for control design.

The objective of the control design is to command the radial position of mass . Note that the control input is applied to

mass , and is transmitted to mass through the wire connecting the two disks.

LPV System Formulation:

The system in Equation (1) is already processing the inputs and outputs linearly, and the only nonlinear elements in

Equation (1) are the rotation rates and . Lets choose the rotation rates as the scheduling parameters and transform

the system into a LPV model. Define and , such that and . Furthermore, let

and

And rewrite the system in Equation (1) as the LPV system:

The following commands will generate the LPV system in Equations (5)-(6)

% Define system parameters

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 3/33 9

m1 = 1;

m2 = 0.5;

k = 200;

b = 1;

% Define timve-varying parameters

rho1 = pgrid('rho1',[0 4.5 9]);

rho2 = pgrid('rho2',[0 12.5 25]);

% Define system matrices:

A = [0 0 1 0 ; ...

 0 0 0 1 ; ...

 rho1-k/m1 -k/m1 -b/m1 0 ; ...

 -k/m2 rho2-k/m2 0 -b/m2];

B = [0 0 0 ; ...

 0 0 0 ; ...

 1/m1 .1/m1 0 ; ...

 0 0 .1/m2];

C = [0 1 0 0];

D = [0 0 0];

% Define the LPV system:

sys = ss(A,B,C,D)

PSS with 4 States, 1 Outputs, 3 Inputs, Continuous System.

The PSS consists of the following blocks:

 rho1: Gridded real, 3 points in [0,9], rate bounds [-Inf,Inf].

 rho2: Gridded real, 3 points in [0,25], rate bounds [-Inf,Inf].

LPV Control Design

We will design an LPV controller that optimizes the stochastic bound

Figure 2: The weighted design interconnection [1].

The weighted interconnection shown in Figure 2 will be used for synthesis. With appropriate weights selected, this

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 4/44 9

interconnection, defines the desired performance of the LPV control law. The controller will be synthesized to yield

optimized performance in terms of this specification (additional details on formulating design problems in this way are

provided in the Robust Control Toolbox's documentation on characterizing closed-loop performance objectives.)

The weights for the interconnection are chosen as:

% Define weights:

We = tf(2,[1 0.04]);

Wu = 1/50;

Wa = 0.00001;

Wn = tf([1,0.4],[0.01 400]);

act = ss(-100,100,1,0);

and we can form the weighted interconnection shown in Figure 2:

% Form synthesis interconnection:

systemnames = 'sys act We Wu Wa Wn';

inputvar = '[ref;d{2};dn;u]';

outputvar = '[Wu;Wa;We;ref;sys+Wn]';

input_to_sys = '[act;d]';

input_to_act = '[u]';

input_to_Wa = '[act]';

input_to_Wu = '[u]';

input_to_Wn = '[dn]';

input_to_We = '[sys-ref]';

G = sysic;

We will use the function lpvstochsyn to synthesize a LPV controller which minimizes the

<..\..\Concepts\StabilityAndInducedGain\html\StabilityAndInducedGain.html stochastic LPV bound > of the weighted

interconnection G in Figure 2. This synthesis will assume that the rate of variation in and are unbounded, i.e. there

is no limit to fast the parameters can change with time.

% Synthesize two-degree of freedom controller.

nmeas = 2; % # of measurements

ncont = 1; % # of controls

[Knr,Gamma,Info] = lpvstochsyn(G,nmeas,ncont);

The control design is successfull, and the controller Knr is guarenteed to achieve a stochastic LPV bound that is less

than or equal to Gamma

Gamma

PMAT with 1 rows and 1 columns.

Gamma =

 1.5998

Computing a Tighter Bound on the Stochastic LPV Bound

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 5/55 9

The value reported in Gamma is an only an upper bound on the stochastic LPV bound. We will now compute a tighter

bound on the stochastic LPV bound achieved by Knr. We will insert Knr into the weighted interconnection and use this

closed-loop weighted interconnection to compute the H2 norm for the Linear Time-Invariant (LTI) system obtained by

holding the parameters constant at each grid point in the domain of the LPV system:

. The stochastic LPV bound will always be greater or equal to the largest H2 norm on the grid of parameter values.

Hence, the largest H2 norm we compute will provide a lower bound on the stochastic LPV bound.

% Insert Knr into the weighted interconnection:

CLICnr = lft(G,Knr);

% Compute the H2 norm for the

LTI_CLnorm = norm(CLICnr,2);

% extract the largest H2 norm on the grid of parameter values:

lpvmax(LTI_CLnorm)

PMAT with 1 rows and 1 columns.

ans =

 1.5506

The results indicate that the stochastic LPV bound achieved by Knr is between 1.5506 and 1.5998.

Evaluating Pointwise Performance

Lets look at the closed-loop response for the original LPV system in the loop with the controller Knr:

% Form closed-loop sytem

systemnames = 'sys act Knr';

inputvar = '[r;d{2}]';

outputvar = '[sys]';

input_to_sys = '[act;d]';

input_to_act = '[Knr]';

input_to_Knr = '[r;sys]';

CL = sysic;

We will start by applying LTI analysis techniques to evaluate the performance of the LPV controller. We will evalaluate the

LTI closed-loop system obtained at each grid point in the domain , when the

parameter is held constant.

We can start by studying the pointwise step response. The Control System Toolbox's command step is overloaded to

work with the pss object. It will compute the step response at each point in the grid, and plot them together on the same

plot:

step(CL)

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 6/66 9

The controller achives good tracking with minimal overshoot, approximatly 2.5 sec settling time and less than 3% steady-

state tracking error. Furthermore, the effect of the disturbances is minimal.

Similarly we can create pointwise frequency responses using the bode command. Lets compare the pointwise frequency

response of the open- and closed-loop system at frequencies between 0.1 to 20 rad/s

bode(sys,{0.1,100},'b')

hold on

bode(CL,{0.1,100},'r--')

legend('Open-loop','Closed-loop','location','best')

grid minor

hold off

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 7/77 9

The closed-loop system has a bandwidth of approximatly 3 rad/s.

Evaluating LPV Time-Domain Performance

We will use the LPV simulation capabilities to inspect the performance of Knr. The parameters and will be made to

vary with time: and , while the system tracks a unit step response

and rejects disturbances and .

% Define the inputs to the system:

t = [0:0.01:15]';

u = ones(size(t));

d1 = cos(3*t)+sin(5*t)+cos(8*t);

d2 = cos(t)+sin(2*t)+cos(4*t);

% Define the trajectories of the parameters:

ptraj.time = t;

ptraj.rho1 = sin(t)+1.5;

ptraj.rho2 = .5*cos(5*t)+3;

% Perform LPV simulation:

lpvlsim(CL,ptraj,[u,d1,d2],t);

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 8/88 9

Lets evaluate the impact that the disturbances had on the response by repeating the simulation without disturbances:

lpvlsim(CL,ptraj,[u,d1,d2],t);

hold on

lpvstep(CL(:,1),ptraj);

legend('LPV simulation with disturbances',...

 'LPV simulation without disturbances',...

 'location','best')

4/44 29/99 2015 Control Design foff r Stochastic LPV Systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_Stochastic/html/SpinningDisk_Stochastic.html 9/99 9

The error due to the distrubances is on the order of 5%, and they are confined to an approximately 1-2 Hz oscillation

about the nominal. This frequency range is incidentally where the system's pointwise frequency response analysis

indicated that disturbances would have the greatest effect on the output signal.

References

1. F. Wu, "Control of Linear Parameter Varying Systems," Ph.D. dissertation, Department of Mechanical Engineering,

University of California at Berkeley, CA, May 1995.

Published with MATLAB® R2014b

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 1/8

Modeling and Control of a LFT-based LPV System

Contents

Problem Statement: Coupled Spinning Disks

LFT-Based LPV System Formulation

LPV Control Design

Evaluating Pointwise Performance

Evaluating LPV Time-Domain Performance

References

Problem Statement: Coupled Spinning Disks

A pair of rotating disks is shown in Figure 1. The slotted disks rotate at rates rad/s and rad/s. The disks contain

masses and , which can move in the horizontal plane, and slide in the radial direction The two masses are

connected by a wire, which can transmitt force in both compression and tension. The wire acts as a spring with spring

constant . A coupler and pulley system handles the wire routing between the two disks. The effect of friction due to the

sliding motion of each mass is modeled by a damping coefficient .

Figure 1: A pair of spinning disk with masses and [1].

The problem is to control the position of the two masses: for mass and for . The control input is a radial force

 acting on mass , while there is a radial disturbance force acting on each mass: acting on and acting on

. The equations of motion for this problem are:

where:

 kg is the mass of the sliding mass in disk 1.

 kg is the mass of the sliding mass in disk 2.

 kg is the damping coefficient due to fricition (kg/sec).

 N/m is the spring constant of the wire connecting the masses.

 is the position of the sliding mass relative to the center of disk 1 (m).

 is the position of the sliding mass relative to the center of disk 2 (m).

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 2/22 8

 is the rotational rate of disk 1 (rad/s).

 is the rotational rate of disk 2 (rad/s).

 is the control force acting radially on mass (N).

 is the disturbance force acting radially on mass (N).

 is the disturbance force acting radially on mass (N).

The rotational rates of the spinning disk are allowed to vary: rad/s and The rotational rates are not

known in advance but are measured and available for control design.

The objective of the control design is to command the radial position of mass . Note that the control input is applied to

mass , and is transmitted to mass through the wire connecting the two disks.

LFT-Based LPV System Formulation

The system in Equation (1) is already processing the inputs and outputs linearly, and the only nonlinear elements in

Equation (1) are the rotation rates and . Lets choose the rotation rates as the scheduling parameters and transform

the system into a LFT-based LPV model. Define and , such that and .

Furthermore, let

and

And rewrite the system in Equation (1) as the LPV system:

The following commands will generate the LPV system in Equations (5)-(6)

% Define system parameters

m1 = 1;

m2 = 0.5;

k = 200;

b = 1;

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 3/33 8

% Define timve-varying parameters

rho1 = tvreal('rho1',[0 9]);

rho2 = tvreal('rho2',[0 25]);

% Define system matrices:

A = [0 0 1 0 ; ...

 0 0 0 1 ; ...

 rho1-k/m1 -k/m1 -b/m1 0 ; ...

 -k/m2 rho2-k/m2 0 -b/m2];

B = [0 0 0 ; ...

 0 0 0 ; ...

 1/m1 .1/m1 0 ; ...

 0 0 .1/m2];

C = [0 1 0 0];

D = [0 0 0];

% Define the parameter-varying LFT system:

sys = ss(A,B,C,D)

Continuous-time PLFTSS with 1 outputs, 3 inputs, 4 states.

The model consists of the following blocks:

 rho1: Time-varying real, range = [0,9], rate bounds = [-Inf,Inf], 1 occurrences

 rho2: Time-varying real, range = [0,25], rate bounds = [-Inf,Inf], 1 occurrences

LPV Control Design

We will design an LPV controller that optimizes the induced norm of the weighted interconnection shown in Figure 2.

Figure 2: The weighted design interconnection [1].

The weights for the interconnection are chosen as [1]:

% Define weights:

We = tf([0.3 1.2],[1 0.04]);

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 4/44 8

Wu = tf([1 0.1],[0.01 125]);

Wa = 0.00001;

Wn = tf([1,0.4],[0.01 400]);

act = tf(1,[0.01 1]);

and we can form the weighted interconnection shown in Figure 2:

% Form synthesis interconnection:

systemnames = 'sys act We Wu Wa Wn';

inputvar = '[ref;d{2};dn;u]';

outputvar = '[Wu;Wa;We;ref;sys+Wn]';

input_to_sys = '[act;d]';

input_to_act = '[u]';

input_to_Wa = '[act]';

input_to_Wu = '[u]';

input_to_Wn = '[dn]';

input_to_We = '[sys-ref]';

G = sysic;

We will use the function lpvsyn to synthesize a LFT-based LPV controller which minimizes the

<..\..\Concepts\StabilityAndInducedGain\html\StabilityAndInducedGain.html stochastic LPV bound > of the weighted

interconnection G in Figure 2. This synthesis will assume that the rate of variation in and are unbounded, i.e. there

is no limit to fast the parameters can change with time.

% Synthesize two-degree of freedom controller.

nmeas = 2; % # of measurements

ncont = 1; % # of controls

[Knr,Gamma,Info] = lpvsyn(G,nmeas,ncont);

The control design is successfull, and the controller Knr is guarenteed to achieve an induced norm that is less than or

equal to Gamma

Gamma

Gamma =

 1.3361

Evaluating Pointwise Performance

Lets look at the closed-loop response for the original LPV system sys in the loop with the controller Knr:

% Form closed-loop sytem

systemnames = 'sys act Knr';

inputvar = '[r;d{2}]';

outputvar = '[sys]';

input_to_sys = '[act;d]';

input_to_act = '[Knr]';

input_to_Knr = '[r;sys]';

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 5/55 8

CL = sysic;

We will start by applying LTI analysis techniques to evaluate the performance of the LFT-based LPV controller. The LFT-

based LPV system can be transformed into a LTI system by holding the parameters at a constant value. We will

evalaluate the closed-loop LPV system on a 3x3 grid of parameter values defined by:

.

The syntax to perform pointwise LTI analysis requires the user to pass in a rgrid object that specifies the grid of

parameter values that the LFT-based LPV system should be evaluated at:

% Define the grid of parameter values:

Domain = rgrid({'rho1','rho2'},{[0 4.5 9],[0 12.5 25]})

RGRID with the following parameters:

 rho1: Gridded real, 3 points in [0,9], rate bounds [-Inf,Inf].

 rho2: Gridded real, 3 points in [0,25], rate bounds [-Inf,Inf].

We can start by studying the pointwise step response. The Control System Toolbox's command step is overloaded to

work with the plftss object. It will compute the step response at each point in the grid, and plot them together on the

same plot:

step(CL,Domain)

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 6/66 8

The controller achives approximatly 2.5 sec settling time and less than 3% steady-state tracking error. However, it suffers

from large overshoot of approximatly 17% at . The effect of the disturbances is minimal.

Similarly we can create pointwise frequency responses using the bode command. Lets compare the pointwise frequency

response of the open- and closed-loop system at frequencies between 0.1 to 20 rad/s

bode(sys,{0.1,100},'b',Domain)

hold on

bode(CL,{0.1,100},'r--',Domain)

legend('Open-loop','Closed-loop','location','best')

grid minor

hold off

The closed-loop system has a bandwidth of approximatly 3 rad/s.

Evaluating LPV Time-Domain Performance

We will use the LPV simulation capabilities to inspect the performance of Knr. The parameters and will be made to

vary with time: and , while the system tracks a unit step response

and rejects disturbances and .

% Define the inputs to the system:

t = [0:0.01:15]';

u = ones(size(t));

d1 = cos(3*t)+sin(5*t)+cos(8*t);

d2 = cos(t)+sin(2*t)+cos(4*t);

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 7/77 8

% Define the trajectories of the parameters:

ptraj.time = t;

ptraj.rho1 = sin(t)+1.5;

ptraj.rho2 = .5*cos(5*t)+3;

% Perform LPV simulation:

lpvlsim(CL,ptraj,[u,d1,d2],t);

Lets evaluate the impact that the disturbances had on the response by repeating the simulation without disturbances:

lpvlsim(CL,ptraj,[u,d1,d2],t);

hold on

lpvstep(CL(:,1),ptraj);

legend('LPV simulation with disturbances',...

 'LPV simulation without disturbances',...

 'location','best')

4/44 29/99 2015 Modeling and Control ofoo a LFT-based LPV System

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/Demos/SpinningDisk_L2_LFT/html/SpinningDisk_L2_LFT.html 8/88 8

The tracking performance is not very good. It is both oscillatory, and the steady-state error is noticable. The error due to

the added distrubances is on the order of 5%, and they are confined to an approximately 1-2 Hz oscillation about the

nominal. This frequency range is incidentally where the system's pointwise frequency response analysis indicated that

disturbances would have the greatest effect on the output signal.

References

1. F. Wu, "Control of Linear Parameter Varying Systems," Ph.D. dissertation, Department of Mechanical Engineering,

University of California at Berkeley, CA, May 1995.

Published with MATLAB® R2014b

4/44 29/99 2015 List ofoo Classes in the LPVTVV ools Toolboxoo

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee classlist.html 1/2

List of Classes in the LPVTools Toolbox

Contents

Grid based parameter dependent matrices and systems

LFT based parameter dependent matrices and systems

Grid based parameter dependent matrices and systems

PGRID - Time-varying real parameter defined on a grid of points.

RGRID - Rectangular grid of parameter values.

PMAT - Parameter-varying dependent matrix.

PSS - Parameter-varying state-space model.

PFRD - Parameter-varying frequency response data model.

UPMAT - Parameter-varying uncertain matrix.

UPSS - Parameter-varying uncertain state-space model.

UPFRD - Parameter-varying uncertain frequency response data model.

BASIS - Parameter-varying basis function (for synthesis).

PSTRUCT - Parameter-varying structure.

LFT based parameter dependent matrices and systems

TVREAL - Time-varying real parameter.

PLFTMAT - Parameter-varying matrix in LFT framework.

PLFTSS - Parameter-varying ss array in LFT framework.

4/44 29/99 2015 RGRID - Rectangular grid objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee RGRID/html/RGRIDdoc.html 1/2

RGRID - Rectangular grid object

Contents

Syntax

Description

Example

Syntax

R = rgrid(IVName,IVData)

R = rgrid(IVName,IVData,IVRateBounds)

Description

R = RGRID(IVName,IVData,IVRateBounds) creates a rectangular grid object with independent variables and

grid data specified by IVName, IVData and IVRateBounds. For an N-dimensional rectangular grid, IVName is an N-

by-1 cell array of characters that specify the names of the independent variables. IVData is a N-by-1 cell array of

column vectors that specify the grid data along each dimension. IVRateBounds is a N-by-1 double array with two

columns, where each row corresponds to a parameter listed in IVNames, and each elements in the first column specifies

a lower rate bound and each element in the second column specifies a upper rate bound. Each IVData{i} should be

a vector of sorted, real data. If the rgrid contains only one independent variable then IVName can be specified as a

single char, IVData can be specified as a single vector of sorted real data, and IVRateBounds can be specified as a

1-by-2 row vector of real numbers. R = RGRID(IVName,IVData) creates a rgrid with no limits on the rate bounds

of the parameter, i.e. .

Example

% Create an RGRID object with independent variable 'a', grid data 4:10.

r1 = rgrid('a',4:10)

RGRID with the following parameters:

 a: Gridded real, 7 points in [4,10], rate bounds [-Inf,Inf].

% Create an RGRID object with independent variable 'a', grid data 4:10

% and parameter rate bounds [-1 1].

r1 = rgrid('a',4:10,[-1,1])

RGRID with the following parameters:

 a: Gridded real, 7 points in [4,10], rate bounds [-1,1].

% Create a 2-dimensional RGRID object

r2 = rgrid({'a', 'b'}, {linspace(-2,2,12), 1:5},[-1 1;-4 8])

RGRID with the following parameters:

 a: Gridded real, 12 points in [-2,2], rate bounds [-1,1].

4/44 29/99 2015 RGRID - Rectangular grid objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee RGRID/html/RGRIDdoc.html 2/22 2

 b: Gridded real, 5 points in [1,5], rate bounds [-4,8].

% Access independent variable name along first dimension

r2.IVName{1}

ans =

a

% Access independent variable rate bounds for parameter 'a'

r2.a.IVRateBounds

ans =

 -1 1

% Replace independent variable rate bounds for parameter 'b'

r2.b.IVRateBounds = [-10 10]

RGRID with the following parameters:

 a: Gridded real, 12 points in [-2,2], rate bounds [-1,1].

 b: Gridded real, 5 points in [1,5], rate bounds [-10,10].

Published with MATLAB® R2014b

4/44 29/99 2015 PGRID - Real parameter defe ined on a grid ofoo points

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PGRID/html/PGRIDdoc.html 1/3

PGRID - Real parameter defined on a grid of points

Contents

Syntax

Description

Example: Defining a pgrid

Properties of pgrid

Example: Accessing and setting pgrid properties

Syntax

A = pgrid(Name,GridData)

A = pgrid(Name,GridData,RateBounds)

Description

A = pgrid(Name,GridData,RateBounds) specifies the name, grid points, and ratebounds for a time-varying

real parameter where:

Name is a character string specifying the name.

GridData is a N-by-1 column vector of sorted values that specify the parameter grid.

RateBounds is a 1-by-2 row vector specifying lower and upper bounds on the derivative of the parameter with

respect to time. Set RateBounds(1)=-inf and/or RateBounds(2)=+inf to denote an unbounded rate of change.

RateBounds are optional, and a two argument call: A = pgrid(Name,GridData) will set them to a default

value of [-inf,+inf].

The pgrid object describes a time-varying real parameter in the grid-based LPV framework. It is defined on a grid of

real values, as seen in Figure 1. The rate bounds of the parameter specify how fast the parameter's value can change

with time.

Figure 1: The pgrid object.

pgrid is used to specify parameter varying matrices and systems using analytical expressions. In this regard it is

analogous to the ureal object in the Robust Control Toolbox, which is used to construct uncertain matrices and

systems.

Example: Defining a pgrid

Define a time-varying real parameter with values between and ratebounds . The following

commands model as a pgrid with 30 grid points: 1,2,3,...,30. The first argment to \texttt{pgrid} is the name of the

parameter, the second is a vector of grid points, and the third is a vector containing the upper and lower limits on the

parameter's rate of variation.

4/44 29/99 2015 PGRID - Real parameter defe ined on a grid ofoo points

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PGRID/html/PGRIDdoc.html 2/22 3

q = pgrid('q',1:30, [-10 20])

Gridded real parameter "q" with 30 points in [1,30] and rate bounds [-10,20].

Properties of pgrid

pgrid objects have the following properties:

Name string specifying the name of the parameter.

GridData N-by-1 column vector of sorted values that specify the parameter grid.

Range 1-by-2 row vector specifying the lower and upper bounds on the parameter values.

RateBounds 1-by-2 row vector specifying lower and upper bounds on the derivative of the parameter with respect to
time.

Example: Accessing and setting pgrid properties

The following commands will create a pgrid object and demonstrate how to access and set its properties:

Define a parameter with default rate bounds ()

p = pgrid('p',1:10)

Gridded real parameter "p" with 10 points in [1,10] and rate bounds [-Inf,Inf].

Change the name of the paramter from p to z

p.Name = 'z'

Gridded real parameter "z" with 10 points in [1,10] and rate bounds [-Inf,Inf].

Set the ratebounds to be +/- 5

p.RateBounds = [-5 5]

Gridded real parameter "z" with 10 points in [1,10] and rate bounds [-5,5].

Retreive the grid points that define the parameter

p.GridData

4/44 29/99 2015 PGRID - Real parameter defe ined on a grid ofoo points

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PGRID/html/PGRIDdoc.html 3/33 3

ans =

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Published with MATLAB® R2014b

4/44 29/99 2015 PMATAA - Parameter-varying matrix

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PMATAA /html/PMATAA doc.html 1/2

PMAT - Parameter-varying matrix

Contents

Syntax

Description

Example

Syntax

M = pmat(Data,Domain)

Description

M = pmat(Data,Domain) creates a parameter-varying matrix defined on an N-dimensional rectangular grid.

Domain is an rgrid object that specifies the N independent variables and the rectangular grid domain. Data is an (N+2)

dimensional double array that specifies the matrix data. Data(:,:,i1,...,iN) is the value of the matrix evaluated

at the point Domain(i1,....,iN).

Example

% Create a 2-by-2 matrix defined on a 1-dimensional grid

IVData = linspace(-2,2,20);

Domain = rgrid('a',IVData);

for i=1:length(IVData)

 Data(1:2,1:2,i) = [1 IVData(i); IVData(i)^2 cos(IVData(i))];

end

M = pmat(Data,Domain)

PMAT with 2 rows and 2 columns.

The PMAT consists of the following blocks:

 a: Gridded real, 20 points in [-2,2], rate bounds [-Inf,Inf].

% Plot entries of M versus the independent variable

lpvplot(M);

4/44 29/99 2015 PMATAA - Parameter-varying matrix

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PMATAA /html/PMATAA doc.html 2/22 2

Published with MATLAB® R2014b

4/44 29/99 2015 PSS - Parameter-varying state-space model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PSS/html/PSSdoc.html 1/2

PSS - Parameter-varying state-space model

Contents

Syntax

Description

Example

Syntax

S = pss(Data,Domain)

Description

S = pss(Data,Domain) creates a parameter-varying state-space model defined on an N-dimensional rectangular

grid. Domain is an rgrid object that specifies the N independent variables and the rectangular grid domain. Data is

an N-dimensional state-space array that specifies the state space data. Data(:,:,i1,...,iN) is the model

evaluated at the point Domain(i1,....,iN).

Example

% Create a 1-by-1 state-space model defined on a 1-dimensional grid

IVData = linspace(2,20,10);

Domain = rgrid('a',IVData);

for i=1:length(IVData)

 Data(1,1,i) = ss(-IVData(i),IVData(i),1,0);

end

S = pss(Data,Domain)

PSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The PSS consists of the following blocks:

 a: Gridded real, 10 points in [2,20], rate bounds [-Inf,Inf].

Overlay Bode plots at each independent variable

bode(S)

4/44 29/99 2015 PSS - Parameter-varying state-space model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PSS/html/PSSdoc.html 2/22 2

Published with MATLAB® R2014b

4/44 29/99 2015 PFRD - Parameter-varying frequency response data model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PFRD/html/PFRDdoc.html 1/2

PFRD - Parameter-varying frequency response data model

Contents

Syntax

Description

Example

Syntax

S = pfrd(Data,Domain)

Description

S = pfrd(Data,Domain) creates a parameter-varying frequency response data model defined on an N-

dimensional rectangular grid. Domain is an rgrid object that specifies the N independent variables and the

rectangular grid domain. Data is an N-dimensional frequency response data (frd) array. Data(:,:,i1,...,iN) is

the frequency response data evaluated at the point Domain(i1,....,iN).

Example

% Create a 1-by-1 frequency response model defined on a 1-dimensional grid

IVData = linspace(2,20,10);

Domain = rgrid('a',IVData);

omeg = logspace(-1,2,30);

for i=1:length(IVData)

 sys = ss(-IVData(i),IVData(i),1,0);

 Data(1,1,i) = frd(sys,omeg);

end

S = pfrd(Data,Domain)

PFRD with 1 Outputs, 1 Inputs, Continuous System, 30 Frequency points.

The PFRD consists of the following blocks:

 a: Gridded real, 10 points in [2,20], rate bounds [-Inf,Inf].

Overlay Bode plots at each independent variable

bode(S);

4/44 29/99 2015 PFRD - Parameter-varying frequency response data model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PFRD/html/PFRDdoc.html 2/22 2

Published with MATLAB® R2014b

4/44 29/99 2015 UPMATAA - Uncertain parameter-varying matrix

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee UPMATAA /html/UPMATAA doc.html 1/2

UPMAT - Uncertain parameter-varying matrix

Contents

Syntax

Description

Example

Syntax

M = upmat(Data,Domain)

Description

M = upmat(Data,Domain) creates an uncertain parameter-varying matrix defined on an N-dimensional rectangular

grid. Domain is an rgrid object that specifies the N independent variables and the rectangular grid domain. Data is

an (N+2) dimensional double array that specifies the matrix data. Data(:,:,i1,...,iN) is the value of the matrix

evaluated at the point Domain(i1,....,iN).

Example

% Create a 2-by-2 matrix defined on a 1-dimensional grid

IVData = linspace(-2,2,20);

Domain = rgrid('a',IVData);

au = ureal('au',-2.3);

for i=1:length(IVData)

 Data(1:2,1:2,i) = [1 au*IVData(i); IVData(i)^2 cos(IVData(i))];

end

M = upmat(Data,Domain)

UPMAT with 2 rows and 2 columns.

The UPMAT consists of the following blocks:

 a: Gridded real, 20 points in [-2,2], rate bounds [-Inf,Inf].

 au: Uncertain real, nominal = -2.3, variability = [-1,1], 1 occurrences

Published with MATLAB® R2014b

4/44 29/99 2015 UPSS - Uncertain parameter-varying state-space model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee UPSS/html/UPSSdoc.html 1/2

UPSS - Uncertain parameter-varying state-space model

Contents

Syntax

Description

Example:

Syntax

S = upss(Data,Domain)

Description

S = upss(Data,Domain) creates an uncertain parameter-varying state-space model defined on an N-dimensional

rectangular grid. Domain is an rgrid object that specifies the N independent variables and the rectangular grid

domain. Data is an N-dimensional uncertain state-space array that specifies the uncertain state-space data. Note that

Data must contain the same uncertainty structure across the array dimensions. Data(:,:,i1,...,iN) is the model

evaluated at the point Domain(i1,....,iN).

Example:

% Create a 1-by-1 uncertain, state-space model defined on a

% 1-dimensional grid

IVData = linspace(2,20,10);

Domain = rgrid('a',IVData);

theta = ureal('theta', 10,'Range',[8 12]);

for i=1:length(IVData)

 Data(1,1,i) = ss(-IVData(i)*theta,IVData(i),1,0);

end

US = upss(Data,Domain)

UPSS with 1 States, 1 Outputs, 1 Inputs, Continuous System.

The UPSS consists of the following blocks:

 a: Gridded real, 10 points in [2,20], rate bounds [-Inf,Inf].

 theta: Uncertain real, nominal = 10, range = [8,12], 1 occurrences

Overlay Bode plots at each independent variable

bode(US);

4/44 29/99 2015 UPSS - Uncertain parameter-varying state-space model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee UPSS/html/UPSSdoc.html 2/22 2

Published with MATLAB® R2014b

4/44 29/99 2015 UPFRD - Uncertain parameter-varying frequency response data model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee UPFRD/html/UPFRDdoc.html 1/2

UPFRD - Uncertain parameter-varying frequency response data model

Contents

Syntax

Description

Example

Syntax

S = upfrd(Data,Domain)

Description

S = upfrd(Data,Domain) creates an uncertain parameter-varying frequency response data model defined on an

N-dimensional rectangular grid. Domain is an rgrid object that specifies the N independent variables and the

rectangular grid domain. Data is an N-dimensional uncertain frequency response data (ufrd) array.

Data(:,:,i1,...,iN) is the uncertain frequency response data evaluated at the point Domain(i1,....,iN).

Example

% Create a 1-by-1 UFRD defined on a 1-dimensional grid

IVData = linspace(2,20,10);

Domain = rgrid('a',IVData);

omeg = logspace(-1,2,30);

unc = ureal('unc',10)

usys = rss(1,1,2,10)*unc;

Data = ufrd(usys,omeg);

S = upfrd(Data,Domain)

unc =

 Uncertain real parameter "unc" with nominal value 10 and variability [-1,1].

UPFRD with 1 Outputs, 2 Inputs, Continuous System, 30 Frequency points.

The UPFRD consists of the following blocks:

 a: Gridded real, 10 points in [2,20], rate bounds [-Inf,Inf].

 unc: Uncertain real, nominal = 10, variability = [-1,1], 1 occurrences

Overlay Bode plots at each independent variable

bode(S);

4/44 29/99 2015 UPFRD - Uncertain parameter-varying frequency response data model

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee UPFRD/html/UPFRDdoc.html 2/22 2

Published with MATLAB® R2014b

4/44 29/99 2015 PSTRUCT - Parameter-varying structure

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PSTRUCT/html/PSTRUCTdoc.html 1/2

PSTRUCT - Parameter-varying structure

Contents

Syntax

Description

Syntax

M = pstruct(Data,Domain)

Description

M = pstruct(Data,Domain) creates a parameter-varying structure defined on an N-dimensional rectangular grid.

Domain is an rgrid object that specifies the N independent variables and the rectangular grid domain. Data is an

(N+2) dimensional structured array that specifies the data. Data(:,:,i1,...,iN) is the value of the struct array

evaluated at the point Domain(i1,....,iN).

Note: Use M.FieldName to access the field named 'FieldName' in M. If possible, the content of the field is returned as an

object (e.g. pmat, pss), otherwise it is returned as a cell array.

Published with MATLAB® R2014b

4/44 29/99 2015 BASIS - Basis function objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee BASIS/html/BASISdoc.html 1/2

BASIS - Basis function object

Contents

Syntax

Description

Example

Syntax

b = basis(F,NAME1,PARTIAL1,NAME2,PARTIAL2,...)

b = basis(F,DERIVATIVE)

Description

basis functions are needed for rate-bounded LPV analysis and synthesis. These are functions of the independent

variables present in the system being analyzed. basis functions are specified as scalar pmat. All partial derivatives

must also be provided by the user.

b = basis(F,NAME1,PARTIAL1,NAME2,PARTIAL2,...) creates a basis function object with the function F,

which is a scalar pmat. If there are N independent variables in F, then 2*N additional arguments are specified, which are

pairs of (1) an independent variable name (as char), and (2) the corresponding partial derivative (as pmat) of F with

respect to that independent variable.

basis(F,DERIVATIVE) is the same as basis(F,NAME1,DERIVATIVE) if F has only one independent variable.

Example

theta = pgrid('theta',0:linspace(0,2*pi,20));

psi = pgrid('psi',linspace(0,2*pi,10));

F = cos(theta)*sin(2*psi);

pTheta = -sin(theta)*sin(2*psi);

pPsi = 2*cos(theta)*cos(2*psi);

B = basis(F,'theta',pTheta,'psi',pPsi)

BASIS: 1 basis functions and 2 partial derivatives with respect to 2 PGRIDs

The BASIS object consists of the following blocks:

 psi: Gridded real, 10 points in [0,6.28], rate bounds [-Inf,Inf].

 theta: Gridded real, 1 points in [0,0], rate bounds [-Inf,Inf].

Published with MATLAB® R2014b

4/44 29/99 2015 TVREAL - Time-varying real parameter

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee T// VREAL/LL html/T// VREALdoc.html 1/2

TVREAL - Time-varying real parameter

Contents

Syntax

Description

Example

Syntax

A = tvreal(Name,Range)

A = tvreal(Name,Range,RateBounds)

Description

A = tvreal(Name,Range,RateBounds) specifies the name, range, and ratebounds for a time-varying real

parameter, where * Name is a character string specifying the name * Range is a 1-by-2 row vector specifying the lower

and upper limits for the tvreal. * RateBounds is a 1-by-2 row vector specifying lower and upper bounds on the

derivative of the parameter with respect to time. Set RateBounds(1)=-inf and/or RateBounds(2)=+inf to

denote an unbounded rate of change. RateBounds are optional, and a two argument call: A =
tvreal(Name,GridData) will set them to a default value of [-inf,+inf].

Example

% Create a tvreal "a" which has range [-2 2] and ratebounds [-1 1].

a = tvreal('a',[-2 2],[-1 1])

Time-varying real parameter "a" with range [-2,2] and rate bounds [-1,1].

% Create a tvreal "b" which has range [2 20] and default

% ratebounds [-inf inf].

b = tvreal('b',[2 20])

Time-varying real parameter "b" with range [2,20] and rate bounds [-Inf,Inf].

% Use tvreal as a building block: Create a 2-by-2 matrix that depends

% on the tvreal "a".

M = [1, a;a^2, -a]

PLFTMAT with 2 rows and 2 columns.

The PLFTMAT consists of the following blocks:

 a: Time-varying real, range = [-2,2], rate bounds = [-1,1], 4 occurrences

% Use tvreal as a building block to build a plftss: Create a 1-by-1

4/44 29/99 2015 TVREAL - Time-varying real parameter

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee T// VREAL/LL html/T// VREALdoc.html 2/22 2

% state-space model that depends on tvreals "a" and "b".

S = ss(-a,b,1,0)

Continuous-time PLFTSS with 1 outputs, 1 inputs, 1 states.

The model consists of the following blocks:

 a: Time-varying real, range = [-2,2], rate bounds = [-1,1], 1 occurrences

 b: Time-varying real, range = [2,20], rate bounds = [-Inf,Inf], 1 occurrences

Published with MATLAB® R2014b

4/44 29/99 2015 PLFTMATAA - Parameter-varying matrix in LFT framewee ork

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PLFTMATAA /html/PLFTMATAA doc.html 1/2

PLFTMAT - Parameter-varying matrix in LFT framework

Contents

Syntax

Description

Example

Syntax

M = plft(Data,RateBounds)

Description

M = plft(Data,RateBounds) creates a parameter-varying matrix. Data is a umat. RateBounds is a N-by-2 cell

array listing the rate bound information for each independent variable in the plftmat. RateBounds{i,1} is the

character string name of the i-th independent variable and RateBounds{i,2} is a sorted real vector of form [Low,

High] specifying its rate bounds. RateBounds must only contain names of ureal objects that exist in Data and this

indicates that those ureal are actually tvreal representing the independent variables.

Example

% Create a 2-by-2 matrix that depends on TVREAL a.

a = tvreal('a',[-2 2],[-1 1]);

M = [1, a;a^2, -a]

PLFTMAT with 2 rows and 2 columns.

The PLFTMAT consists of the following blocks:

 a: Time-varying real, range = [-2,2], rate bounds = [-1,1], 4 occurrences

Published with MATLAB® R2014b

4/44 29/99 2015 PLFTSS - Parameter-varying state-space model in LFT framewee ork

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/ClassRefee eff rence/ee PLFTSS/html/PLFTSSdoc.html 1/2

PLFTSS - Parameter-varying state-space model in LFT framework

Contents

Syntax

Description

Example

Syntax

M = plftss(Data,RateBounds)

Description

M = plftss(Data,RateBounds) creates a parameter-varying state-space model. Data is a uss. RateBounds
is a N-by-2 cell array listing the rate bound information for each independent variable in the plftss.

RateBounds{i,1} is the character string name of the i-th independent variable and RateBounds{i,2} is a sorted

real vector of form [Low, High] specifying its rate bounds. RateBounds must only contain names of ureal objects that

exist in Data and this indicates that these ureal are actually tvreal representing the independent variables.

Example

% Create a 1-by-1 state-space model S that depends on tvreal b.

b = tvreal('b',[2 20]);

S = ss(-b,b,1,0)

Continuous-time PLFTSS with 1 outputs, 1 inputs, 1 states.

The model consists of the following blocks:

 b: Time-varying real, range = [2,20], rate bounds = [-Inf,Inf], 1 occurrences

Published with MATLAB® R2014b

4/44 29/99 2015 List ofoo Function in the LPVTVV ools Toolboxoo

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/f// unclist.html 1/2

List of Function in the LPVTools Toolbox

Contents

Manipulation of parameter dependent models

Model order reduction

Robustness and worst-case analysis

Controller synthesis

Time-domain analysis

Manipulation of parameter dependent models

DOMUNION - Map LPV objects onto a common domain.

GRDI2LFT - Transform a grid-based LPV model into a LFT model.

LFT2GRID - Transform a LFT model into a grid-based LPV model.

LPVSPLIT - Extract grid-based LPV model data based on IV range.

LPVINTERP - Interpolate a grid-based LPV object.

LPVSUBS - Substitutes values for parameters.

LPVELIMIV -Eliminate singleton independent variables.

LPVSAMPLE - Sample a LPV model at randomly chosen points parameter values.

LPVBALANCE - Diagonal scaling for PSS objects.

LPVPLOT - Plot PMAT data as a function of the parameter.

Model order reduction

LPVGRAM - Compute Gramians for PSS objects.

LPVBALREAL - Perform Gramian-based balancing for PSS objects.

LPVBALANCMR - Balanced truncation model reduction.

LPVNCFMR - Balanced normalized coprime factor model reduction.

Robustness and worst-case analysis.

LPVNORM - Bound on induced L2 norm for PSS systems.

LPVWCGAIN - Worst-case gain of an uncertain LPV system.

Controller synthesis.

LPVSYN - Synthesize a LPV controller.

LPVNCFSYN - Normalized coprime factor LPV controller synthesis.

LPVMIXSYN - LPV loop-shaping synthesis.

LPVLOOPSHAPE - LPV mixed-sensitivity synthesis.

LPVSFSYN - Synthesize a LPV state feedback controller.

LPVESTSYN - Synthesize a LPV state estimator.

LPVSTOCHSYN - LPV controller synthesis for stochastic LPV systems.

4/44 29/99 2015 List ofoo Function in the LPVTVV ools Toolboxoo

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/f// unclist.html 2/22 2

LPVSYNOPTIONS - Options object for LPV synthesis and analysis.

Time-domain analysis

LPVLSIM - Simulate parameter dependent time response of a PSS.

LPVSTEP - Simulate parameter dependent step response of a PSS.

LPVINITIAL - Simulate initial conditions response of a PSS.

LPVIMPULSE - Simulate parameter dependent impulse response of a PSS.

4/44 29/99 2015 DOMUNION - Map LPV objb ects on a common domain

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/DOMUNION/html/DOMUNIONdoc.html 1/2

DOMUNION - Map LPV objects on a common domain

Contents

Syntax

Description

Syntax

 [Aext,Bext]=domunion(A,B)

 [A1ext,...,ANext] = domunion(A1,...,AN)

Description

Let A and B be grid-based LPV objects. If A depends on independent variables (X,Y) and B depends on independent

variables (X,Z) then [Aext,Bext]=domunion(A,B) returns grid-based LPV objects Aext and Bext, of the same

class, that have a common domain with independent variables (X,Y,Z). Aext evaluated at point (x,y,z) is given by A
evaluated at (x,y). Bext evaluated at point (x,y,z) is given by B evaluated at (x,z).

Given grid-based LPV objects A1,|A2|,...,|AN|, the syntax [A1ext,...,ANext] = domunion(A1,...,AN)
constructs A1ext, A2ext,..., ANext that are defined on a common domain.

Published with MATLAB® R2014b

4/44 29/99 2015 GRID2LFT - Transfoff rm a grid-based LPV model into LFT

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/GRID2LFT/html/GRID2LFTdoc.html 1/4//

GRID2LFT - Transform a grid-based LPV model into LFT

Contents

Syntax

Description

Example: Transform a PMAT to a PLFTMAT

Example: Transform a UPSS to a PLFTSS

Syntax

 [L,C,E] = grid2lft(G)

 [L,C,E] = grid2lft(G,N)

 [L,C,E] = grid2lft(G,NAMES,DEGREEMAT)

Description

Transform a grid-based LPV model into a LFT model with polynomial parameter dependence. Use linear regression to fit

a polynomial in the parameters to the grid based data.

L = grid2lft(G) fits the elements of the matrix or state-space data in G with a linear parameter dependence. G is a

grid based LPV model (e.g. pmat or upss) and L is an LFT based LPV model (e.g. plftmat, plftss).

L = grid2lft(G,N) fits the elements of the matrix or state-space data in G with polynomial parameter dependence

of degree N.

L = grid2lft(G,NAMES,DEGREEMAT) fits the matrix or state-space data in G with polynomials, using a linear

combination of monomials specified by the data in DEGREEMAT. NAMES is a 1-by-P cell array of chars, consisting of the

P names of every independent variable in G. DEGREEMAT is a D-by-P matrix of nonnegative integers, each 1-by-P row

corresponding to a monomial, defined by the nonnegative exponents associated with each independent variable.

[L,C] = grid2lft(G,...) returns|C|, the matrix of polynominal coefficients used in the transformation from grid-

LPV to LFT. If G is a M-by-N matrix that is being fit with a polynominal with B terms, then C is a M-by-N-by-B double
array, in which elements (i,k,:) correspond to (i,k)-th matrix element in G, and elements (:,:,r) correspond to the r-th basis

function.

[L,C,E] = grid2lft(G,...) returns E, the root mean square error of the linear fit.

Example: Transform a PMAT to a PLFTMAT

% Create PMATs M and M2 with two independent variables x and y.

x = pgrid('x',linspace(-2,2,12),[-1 1]);

y = pgrid('y',1:5,[-4 8]);

M = [x+y-x*y x;3*y -2*x*y];

M2 = sqrt(1+x.^2)*y;

% Transform both M and M2 into LFT based LPV objects. Use a polynomial

% containing the factors (1,x,y,x*y) to perform the fitting for M, and

% a polynomial (1,x,y,x^2,x*y,x^2*y) to perform the fitting for M2.

% Call grid2lft and specify that the fitting of M should use the

% polynomial (1,x,y,x*y)

4/44 29/99 2015 GRID2LFT - Transfoff rm a grid-based LPV model into LFT

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/GRID2LFT/html/GRID2LFTdoc.html 2/22 4//

[Mlft,C,E] = grid2lft(M,{'x','y'},[0 0;1 0;0 1;1 1]);

Mlft

PLFTMAT with 2 rows and 2 columns.

The PLFTMAT consists of the following blocks:

 x: Time-varying real, range = [-2,2], rate bounds = [-1,1], 2 occurrences

 y: Time-varying real, range = [1,5], rate bounds = [-4,8], 2 occurrences

C

C(:,:,1) =

 1.0e-14 *

 -0.0097 0.0074

 0.1022 -0.0665

C(:,:,2) =

 1.0000 1.0000

 -0.0000 0.0000

C(:,:,3) =

 1.0000 -0.0000

 3.0000 0.0000

C(:,:,4) =

 -1.0000 0.0000

 0.0000 -2.0000

E

% Call grid2lft and specify that the fitting of M2 should use the

% polynomial (1,x,y,x^2,x*y,x^2*y)

[M2lft,C2,E2] = grid2lft(M2,{'x','y'},[0 0;1 0;0 1;2 0;1 1;2 1]);

E =

 1.0150e-15

M2lft

PLFTMAT with 1 rows and 1 columns.

The PLFTMAT consists of the following blocks:

 x: Time-varying real, range = [-2,2], rate bounds = [-1,1], 2 occurrences

 y: Time-varying real, range = [1,5], rate bounds = [-4,8], 1 occurrences

C2

4/44 29/99 2015 GRID2LFT - Transfoff rm a grid-based LPV model into LFT

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/GRID2LFT/html/GRID2LFTdoc.html 3/33 4//

C2(:,:,1) =

 4.6282e-16

C2(:,:,2) =

 -3.3723e-16

C2(:,:,3) =

 1.0646

C2(:,:,4) =

 -1.2078e-16

C2(:,:,5) =

 1.0533e-16

C2(:,:,6) =

 0.3058

E2

E2 =

 0.1491

Example: Transform a UPSS to a PLFTSS

% Create UPSS M that depends on two independent variables x and y.

x = pgrid('x',linspace(-2,2,12),[-1 1]);

y = pgrid('y',1:5,[-4 8]);

u = ureal('u',1);

M = ss(x+y-x*y*u, x+3*y,-2*x*y,pmat(0));

% Transform M into a LFT based LPV object. Use a polynomial containing

% the factors (1,x,y,x^2,x*y,x^2*y) to perform the fitting for M.

% Call grid2lft and specify that the fitting of M should use the

% polynomial (1,x,y,x^2,x*y,x^2*y)

[Mlft,C] = grid2lft(M,{'x','y'},[0 0;1 0;0 1;2 0;1 1;2 1]);

Mlft

Continuous-time PLFTSS with 1 outputs, 1 inputs, 1 states.

The model consists of the following blocks:

 u: Uncertain real, nominal = 1, variability = [-1,1], 1 occurrences

 x: Time-varying real, range = [-2,2], rate bounds = [-1,1], 3 occurrences

 y: Time-varying real, range = [1,5], rate bounds = [-4,8], 2 occurrences

C

C(:,:,1) =

 0.0000 -0.0000 0.0000

 1.0000 0 0

4/44 29/99 2015 GRID2LFT - Transfoff rm a grid-based LPV model into LFT

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/GRID2LFT/html/GRID2LFTdoc.html 4/44 4//

 -0.0000 0 0

C(:,:,2) =

 1.0000 0.0000 1.0000

 0.0000 0 0

 0.0000 0 0

C(:,:,3) =

 1.0000 0.0000 3.0000

 -0.0000 0 0

 0.0000 0 0

C(:,:,4) =

 1.0e-14 *

 -0.0204 0.0052 -0.1099

 -0.0064 0 0

 0.0103 0 0

C(:,:,5) =

 -1.0000 -1.0000 -0.0000

 -0.0000 0 0

 -2.0000 0 0

C(:,:,6) =

 1.0e-15 *

 0.0431 -0.0120 -0.2844

 0.0000 0 0

 -0.0240 0 0

Published with MATLAB® R2014b

4/44 29/99 2015 LFT2GRID - Transfrom LFT into grid-based LPV objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LFT2GRID/html/LFT2GRIDdoc.html 1/2

LFT2GRID - Transfrom LFT into grid-based LPV object

Contents

Syntax

Description

Syntax

M = lft2grid(L)

M = lft2grid(L,N)

M = lft2grid(L,DOMAIN)

Description

Transform a tvreal, plftmat or plftss object into a grid based LPV object pmat, pss, upmat, or upss. The

transformation is performed by evaluating the PLFT object at a grid of parameter values.

M = lft2grid(L) evaluates L at 10 values of each independent parameter, sampled uniformly from the range of

each parameter.

M = lft2grid(L,N) evaluates L at N values of each independent parameter, sampled uniformly from the range of

each parameter.

M = lft2grid(L,DOMAIN) evaluates L at each point containted in DOMAIN. DOMAIN is an rgrid object that must

contain the same independent variables as L.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSPLIT - Extract data based on independent variable range

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSPLIT/html/LPVSPLITdoc.html 1/2

LPVSPLIT - Extract data based on independent variable range

Contents

Syntax

Description

Syntax

 B = lpvsplit(A,NAME1,RANGE1,NAME2,RANGE2,....)

 B = lpvsplit(A,NAME1,INDEX1,NAME2,INDEX2,....,'index')

 B = lpvsplit(A,NAME1,VALUES1,NAME2,VALUES2,....,'value')

 B = lpvsplit(A,NAME,RANGE)

 B = lpvsplit(A,NAME,INDEX,'index')

 B = lpvsplit(A,NAME,VALUES,'value')

 B = lpvsplit(A,DOMAIN)

Description

B = lpvsplit(A,NAME1,RANGE1,NAME2,RANGE2,....) extracts data from the grid-based LPV object A on

the domain specified by the NAME / RANGE pairs. Each RANGE is a 1-by-2 row vector [min, max], that specifies the values

of the independent variable to be extracted along the domain direction NAME. The data at all points in

A.Parameter."NAME".GridData which lies inside RANGE is extracted. If RANGE is a scalar then the data is

extracted where the variable NAME is exactly equal to RANGE. If an independent variable of A is not listed in the inputs

then all values along this domain direction are retained in B.

B = lpvsplit(A,NAME1,INDEX1,NAME2,INDEX2,....,'index') extracts data from the pmat A on the

domain specified by the NAME / INDEX pairs. Each INDEX is a vector of integers or a logical array that specifies the

indices of A.Parameter."NAME".GridData to be extracted.

B = lpvsplit(A,NAME1,VALUES1,NAME2,VALUES2,....,'value') extracts data from the pmat A on the

domain specified by the NAME / VALUES pairs. VALUES specifies the A.Parameter."NAME".GridData to be

extracted.

B = lpvsplit(A,NAME,RANGE) is an alternative syntax. NAME is an N-by-1 cell array of characters and RANGE is

an N-by-1 cell array of ranges. B = lpvsplit(A,NAME,INDEX,'index') and B =
lpvsplit(A,NAME,VALUES,'value') also apply for INDEX or VALUES as a cell array.

B = lpvsplit(A,DOMAIN) is an another alternative syntax. DOMAIN is an rgrid object. This extracts data from

the pmat A based on the independent variables and data ranges in DOMAIN.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVINTERP - Interpolate a grid-based LPV objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVINTERP/html/LPVINTERPdoc.html 1/2

LPVINTERP - Interpolate a grid-based LPV object

Contents

Syntax

Description

Syntax

 B = lpvinterp(A,NAME,VALUES)

 B = lpvinterp(A,NAME1,VALUES1,NAME2,VALUES2,...)

 B = lpvinterp(A,NAME1,VALUES1,NAME2,VALUES2,....,METHOD)

Description

B = lpvinterp(A,NAME1,VALUES1,NAME2,VALUES2,...) interpolates a grid-based LPV system A on the

domain specified by the NAME / VALUES pairs. Each VALUE is a vector of values at which to interpolate A along the

domain direction of the corresponding NAME. If an independent variable of A is not listed in the inputs, then all values

along this domain direction are retained in the output B.

B = lpvinterp(A,NAME,VALUES) is an alternative syntax. NAME is an N-by-1 cell array of characters and

VALUES is an N-by-1 cell array of values.

B = lpvinterp(A,NAME1,VALUES1,NAME2,VALUES2,....,METHOD) includes a final input argument called

METHOD, which specifies the interpolation method to be used. METHOD can be: 'nearest', 'linear', 'spline',

or 'cubic'. The default is 'linear'.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSUBS - Evaluate LPV objb ect and demotoo e to LTI

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSUBS/html/LPVSUBSdoc.html 1/2

LPVSUBS - Evaluate LPV object and demote to LTI

Contents

Syntax

Description

Syntax

 B = lpvsubs(A,NAME,VALUES)

 B = lpvsubs(A,NAME,VALUES,METHOD)

Description

lpvsubs evaluates a grid-based LPV object at points in the domain, and demotes the results to a standard LTI object

double, ss, or frd.

B = lpvsubs(A,NAME,VALUES,METHOD) evaluates a grid-based LPV object A at the domain points specified by

the NAME / VALUES pair. NAME is an N-by-1 cell array of characters. NAME must contain all of the independent variable

names in A, namely A.IVName, but may also contain others but they will be ignored. VALUES is an N-by-NPTS double

array of the corresponding values. B is a double array, with row and column dimensions from A. The 3rd dimension of B
is NPTS. METHOD is an optional input that specifies the interpolation method and can be: 'nearest', 'linear',

'spline', or 'cubic'. The default is 'linear'.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVELIMIV - Eliminate parameters which only havaa e a single grid point

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVELIMIV/VV html/LPVELIMIVdVV oc.html 1/2

LPVELIMIV - Eliminate parameters which only have a single grid point

Contents

Syntax

Description

Syntax

 E = lpvelimiv(M)

Description

E = lpvelimiv(M) eliminates all singleton independent variables from the grid-based LPV object M, i.e. the i^th

independent variable of M is removed if M.IVData{i} has length one.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSAMPLE - Sample a LPV objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSAMPLE/html/LPVSAMPLEdoc.html 1/4//

LPVSAMPLE - Sample a LPV object

Contents

Syntax

Description

Example: Sample a 2-dimensional rgrid object

Example: Sample a 2-by-2 pmat object

Example: Sample a 1-by-1 pss object

Syntax

 S=lpvsample(G,N)

 S=lpvsample(G,N,OPT)

Description

If R is an rgrid, then S=LPVSAMPLE(R,N) returns a sample of N points from the rectangular grid R. S is an Niv-by-N

matrix with each column containing one sample of the rectangular grid. The rows of S correspond to the ordering of

independent variables in R.IVName.

Otherwise, if G is a pmat, pss, pfrd, upmat, upss or upfrd, then S=lpvsample(G,N) returns N samples of the

LPV object G. Each sample of G is generated by evaluating G at a randomly chosen point in the domain of G. The output S
is an array of size: [size(G), N].

S=lpvsample(G,N,OPT) allows the user to specify the sampling algorithm to be used. OPT is a char that specifies

the type of sampling: * 'grid': Draws points drawn randomly (possibly with repeats) from the rectangular grid of

G.Domain. * 'uniform' (default): Draws points uniformly from the hypercube specified by the limits of G.Domain. *

'LHC': Does a Latin Hypercube sample of the G.Domain.

For 'uniform' and 'LHC', the samples are not, in general, elements of the rectangular grid.

Example: Sample a 2-dimensional rgrid object

R = rgrid({'a', 'b'}, {linspace(-2,2,12), 1:5});

Su = lpvsample(R,15); % Uniform sample

Sg = lpvsample(R,15,'grid'); % Sample from grid

plot(Su(1,:),Su(2,:),'bx',Sg(1,:),Sg(2,:),'ro');

legend('Uniform','Grid','Location','Best')

4/44 29/99 2015 LPVSAMPLE - Sample a LPV objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSAMPLE/html/LPVSAMPLEdoc.html 2/22 4//

Example: Sample a 2-by-2 pmat object

a = pgrid('a',1:5);

M = 10*a;

Su = lpvsample(M,15); % Uniform sample

Sg = lpvsample(M,15,'grid'); % Sample from grid

plot(1:15,Su(:),'bx',1:15,Sg(:),'ro')

legend('Uniform','Grid','Location','Best')

4/44 29/99 2015 LPVSAMPLE - Sample a LPV objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSAMPLE/html/LPVSAMPLEdoc.html 3/33 4//

Example: Sample a 1-by-1 pss object

a = pgrid('a',1:5);

M = ss(-a,2,4,0);

Su = lpvsample(M,15); % Uniform sample

Sg = lpvsample(M,15,'grid'); % Sample from grid

bode(Su,'b',Sg,'r')

legend('Uniform','Grid','Location','Best')

4/44 29/99 2015 LPVSAMPLE - Sample a LPV objb ect

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSAMPLE/html/LPVSAMPLEdoc.html 4/44 4//

Published with MATLAB® R2014b

4/44 29/99 2015 LPVBALALL NCE - Diagonal scaling ofoo a pmat or pss

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVBALALL NCE/html/LPVBALALL NCEdoc.html 1/2

LPVBALANCE - Diagonal scaling of a pmat or pss

Contents

Syntax

Description

Syntax

 [B,D] = lpvbalance(A)

 [B,DR,DC] = lpvbalance(A,BLK)

Description

lpvbalance computes a diagonal scaling for LPV objects to improve their numerical conditioning. The algorithm used

to accomplish this uses a generalized version of Osborne's iteration.

lpvbalance for pmat

[B,D] = lpvbalance(A) computes a single diagonal similarity transformation to improve the conditioning of the N-

by-N pmat A at all points in the domain. The transformation D is computed using a generalized version of Osborne's

iteration. D is returned as an N-by-N diagonal, double matrix. The scaled pmat B is D*A*inv(D). This applies the

transformation D at each point in the domain of A.

[B,DR,DC] = lpvbalance(A,BLK) computes structured, diagonal transformations for the N-by-M pmat A. The

scaled pmat B is DR*A*DC where DR is an N-by-N matrix and and DC is an M-by-M matrix. BLK is a K-by-2 matrix that

specifies the block partitioning dimensions of DR and DC. If BLK = [c1 r1; ... ; ck rk] then DR and DC are

partitioned as:

 DR = blkdiag(d1*I_r1, ..., dk*I_rk)

 DC = blkdiag((1/d1)*I_c1, ..., (1/dk)*I_ck)

where the notation I_r1= eye(r1), represents the r1-by-r1 identity matrix. The block partitioning must be consistent

with the dimensions of A, i.e. the sum across the rows of BLK should equal [M N].

lpvbalance for pss

[P,D] = lpvbalance(S) computes a single diagonal similarity transformation to improve the conditioning of the

Ny-by-Nu pss S at all points in the domain. The transformation D is computed using a generalized version of Osborne's

iteration. D is returned as an Nx-by-Nx diagonal, double matrix where Nx is the state dimension of S. The scaled pss P is

obtained by applying the similarity transformation D at each point in the domain of S.

[P,DR,DC] = lpvbalance(S,BLK) computes diagonal transformations applied to the states and input/output

channels. The state matrices of the scaled pss P are obtained from DR*[A B; C D]*DC where A, B, C, D are the state

matrices of S. BLK is a K-by-2 matrix that specifies the partitioning dimensions of DR and DC. If BLK = [c1 r1; ...
; ck rk] then DR and DC are partitioned as:

 DR = blkdiag(D, d1*I_r1, ..., dk*I_rk)

 DC = blkdiag(inv(D), (1/d1)*I_c1, ..., (1/dk)*I_ck)

where D is a diagonal, Nx-by-Nx matrix, and the notation I_r1= eye(r1), represents the r1-by-r1 identity matrix. The

block partitioning must be consistent with the input/output dimensions of S, i.e. the sum across the rows of BLK should

4/44 29/99 2015 LPVBALALL NCE - Diagonal scaling ofoo a pmat or pss

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVBALALL NCE/html/LPVBALALL NCEdoc.html 2/22 2

equal [Nu Ny].

Published with MATLAB® R2014b

4/44 29/99 2015 LPVPLOT - Plotoo PMATAA data as a function ofoo the independent variable.

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVPLOT/html/LPVPLOTdoc.html 1/2

LPVPLOT - Plot PMAT data as a function of the independent variable.

Contents

Syntax

Description

Syntax

 lpvplot(PMAT)

 lpvplot(PLOT_TYPE,PMAT1,PMAT2,PMAT3, ...)

 lpvplot(PLOT_TYPE,PMAT1,'linetype1',PMAT2,'linetype2',...)

Description

lpvplot plots the data contained in a pmat against the independent variable it depends on. The syntax is identical to

the uplot command in the Robust Control Toolbox, except the data are pmat.

lpvplot(PLOT_TYPE,PMAT1,PMAT2,PMAT3, ..., PMATN) plots the value of PMAT1, PMAT2, PMAT3, ...,

PMATN against the independent variable. PMAT1, PMAT2, PMAT3, ... can only depend on a single independent variable,

and they must all depend on the same independent variable.

The (optional) PLOT_TYPE argument must be one of:

'iv,d' matin .vs. independent variable (default option)

'iv,m' magnitude .vs. independent variable

'iv,lm' log(magnitude) .vs. independent variable

'iv,p' phase .vs. independent variable

'liv,d' matin .vs. log(independent variable)

'liv,m' magnitude .vs. log(independent variable)

'liv,lm' log(magnitude) .vs. log(independent variable)

'liv,p' phase .vs. log(independent variable)

'nyq' real .vs. imaginary (parametrized by indep variable)

'nic' Nichols chart

'bode' Bode magnitude and phase plots

lpvplot(PLOT_TYPE,PMAT1,'linetype1',PMAT2,'linetype2',...) enables the user to set the linetype

for the data associated with each pmat input.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVGRAM - Compute Gramians foff r PSS objb ects

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVGRAM/html/LPVGRAMdoc.html 1/2

LPVGRAM - Compute Gramians for PSS objects

Contents

Syntax

Description

Syntax

 Wc = LPVGRAM(SYS,'c')

 Wo = LPVGRAM(SYS,'o')

 W = LPVGRAM(SYS,OPTION,WEIGHT)

 W = LPVGRAM(SYS,...,INVERT)

Description

Wc = LPVGRAM(SYS,'c') computes the controllability gramian of the pss sys. The output Wc is a constant

double matrix, which satisfies the LMI: A*Wc+Wc*A' +B*B' < 0 at each point in the domain of SYS, where A is the

state matrix of SYS and B is its input matrix.

Wo = LPVGRAM(SYS,'o') computes the observability gramian of the pss SYS. The output Wo is a constant

double matrix, which satisfies the LMI: A'*Wo+Wo*A +C'*C < 0 at each point in the domain of SYS, where A is the

state matrix of SYS and C is its output matrix.

W = LPVGRAM(SYS,OPTION,WEIGHT) applies a matrix weighting WEIGHT when solving for the gramian. For a

controllabilty gramian the LMI becomes:

 A*WEIGHT*Wc+Wc*WEIGHT*A' +B*B' < 0

For a observability gramian the LMI becomes:

 A'*WEIGHT*Wo+Wo*WEIGHT*A +C'*C < 0

If no WEIGHT is specified a default value of eye(size(A)) is used, and the resulting gramian is diagonal.

W = LPVGRAM(SYS,...,INVERT) provides an alternative implementation of the algorithm which solves for the

gramians. If INVERT is True the LMI conditions are changed to solve for the inverse of the gramians, which can

improve the accuracy of the solution for certain systems. The default implementation assumes INVERT=FALSE.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVBALREAL - Gramian-based balancing foff r PSS objb ects

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVBALREAL/LL html/LPVBALREALdoc.html 1/2

LPVBALREAL - Gramian-based balancing for PSS objects

Contents

Syntax

Description

Syntax

 SYSB = LPVBALREAL(SYS)

 [SYSB,G] = LPVBALREAL(SYS)

 [SYSB,G,T,Ti] = BALREAL(SYS)

 [SYSB,G,T,Ti] = LPVBALREAL(SYS,...,INVERSE)

Description

SYSB = LPVBALREAL(SYS) computes a balanced realization of the parameter varying system SYS. SYSB is dervied

by computing a single balancing transformation for SYS and applying it at every point in its domain.

[SYSB,G] = LPVBALREAL(SYS) returns G, a vector of singular values describing the input-output mapping of SYSB
(comparable to Hankel singular values for LTI systems).

[SYSB,G,T,Ti] = BALREAL(SYS) returnes the balancing transformation T, and its inverse Ti.

[SYSB,G,T,Ti] = LPVBALREAL(SYS,...,INVERSE) provides an option to use a alternative implementation of

the algorithm which computes the balancing transformation. If INVERT is True the alternative formulation is used. It can

improve the accuracy of the solution for certain systems. The default implementation assumes INVERT=FALSE.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVBALALL NCMR - Balanced truncation ofoo quadratically stable pss models

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVBALALL NCMR/html/LPVBALALL NCMRdoc.html 1/2

LPVBALANCMR - Balanced truncation of quadratically stable pss models

Contents

Syntax

Description

Syntax

 [PRED,INFO] = lpvbalancmr(SYS,N)

 [PRED,INFO] = lpvbalancmr(SYS,N,OPTION1,VAL1,OPTION2,VAL2,...)

Description

[PRED,INFO] = lpvbalancmr(SYS,N) performs balanced truncation model reduction on a PSS SYS. A pss
SYS, with Nx states, is balanced by computing a single balancing transformation for SYS and applying it at every point in

its domain. The output PRED has N states and is obtained by truncating from the balanced system the (Nx-N) states

which contribute least to its input-output mapping. INFO contains two fields 'StabSV' and 'ErrorBound'.

INFO.StabSV is a vector of singular values describing the input-output mapping of SYSB (comparable to Hankel

singular values for LTI systems). INFO.ErrorBound contains the norm of the difference between SYS and PRED:

INFO.ErrorBound = induced norm of SYS - PRED.

Note that lpvbalancmr only works for quadratically stable systems. For unstable pss models use lpvncfmr.

[PRED,INFO] = lpvbalancmr(SYS,N,OPTION1,VAL1,OPTION2,VAL2,...) provides additional options

for the balanced truncation model reduction. The current implementation supports the following options:

OPTION VAL Explanation

'weight' {Wout,Win} LTI weights on input (Win) and output (Wout). Used to emphasize accuracy in different I/O and
frequency ranges. Must be invertable if method 'invgram' is used.

'method' 'gram' or
'invgram'

Solve using either gramians or the inverse gramians.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVNCFMR - Contractive coprime faff ctor model reduction ofo a pss

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVNCFMR/html/LPVNCFMRdoc.html 1/2

LPVNCFMR - Contractive coprime factor model reduction of a pss

Contents

Syntax

Description

Syntax

 [Pred,INFO] = lpvncfmr(P)

 [Pred,INFO] = lpvncfmr(P,ORDER)

Description

lpvncfmr performs balanced truncation model reduction through contractive coprime factorization of a pss.

[Pred,INFO] = lpvncfmr(P,ORDER) finds a balanced contractive coprime factorization of the LPV system P
(analogous to a normalized coprime factorization for LTI systems), and performs a balanced truncation to remove those

states that contribute the least to the input-output mapping of the balanced LPV system. If P has M states, then the

reduced order system Pred will have ORDER states, with M - ORDER states removed using the balanced truncation.

INFO.hsv contains a vector of singular values describing the input-output mapping of SYSB (comparable to Hankel

singular values for LTI systems).

[Pred,INFO] = lpvncfmr(P) computes the balanced contractive coprime factorization of the LPV system P, and

outputs it as Pred. This is equivalent to the call [Pred,INFO] = LPVNCFMR(P,Nx) for a system P with Nx states.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVNORM - Compute bound on norm foff r pss systems.

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVNORM/html/LPVNORMdoc.html 1/2

LPVNORM - Compute bound on norm for pss systems.

Contents

Syntax

Description

Syntax

 [Gamma,X] = lpvnorm(P)

 [Gamma,X] = lpvnorm(P,'L2')

 [Gamma,X] = lpvnorm(P,'LQG')

 [Gamma,X] = lpvnorm(P,Xb)

 [Gamma,X] = lpvnorm(P,Xb,'L2')

 [Gamma,X] = lpvnorm(P,Xb,'LQG')

Description

lpvnorm computes a bound on the norm of a pss system over the set of all permissible trajectories of the independend

variables which the pss depends on.

[Gamma,X] = lpvnorm(P,'L2') computes an upper bound Gamma on the induced norm of the pss P. The

upper bound Gamma and a constant (parameter independent) matrix X are computed to satisfy the induced norm linear

matrix inequality (LMI) condition. X is returned as a pmat. The norm bound is valid for arbitrarily fast variations of the

system parameters.

[Gamma,X] = lpvnorm(P,'LQG') computes an upper bound Gamma on the stochastic LPV bound. The stochastic

LPV bound is defined as the expected value of the average instantaneous power of the output of P, assuming its inputs

are zero mean, white-noise processes with unit intensity.

[Gamma,X] = lpvnorm(P,Xb,ALG) computes a tighter (less conservative) bound on the norm by using a

parameter dependent matrix X = and bounds on the parameter rates of variation. The basis functions used to

construct are specified with the basis object Xb. ALG can be either 'L2' or 'LQG'. A call without the ALG
argument is equivalent to [Gamma,X] = lpvnorm(P,Xb,'L2').

Published with MATLAB® R2014b

4/44 29/99 2015 LPVWVV CGAIN - Worst-case bound on induced L2 norm foff r pss and plftff ss

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVWVV CGAIN/html/LPVWVV CGAINdoc.html 1/2

LPVWCGAIN - Worst-case bound on induced L2 norm for pss and plftss

Contents

Syntax: lpvwcgain for pss

Syntax: lpvwcgain for plftss

Description

Syntax: lpvwcgain for pss

 [GAM,X,INFO] = lpvwcgain(P)

 [GAM,X,INFO] = lpvwcgain(P,Xb)

 [GAM,X,INFO] = lpvwcgain(P,...,POLELIST)

Syntax: lpvwcgain for plftss

 [WCG,WCU,INFO] = lpvwcgain(P)

 [WCG,WCU,INFO] = lpvwcgain(P,OMEGA)

 [WCG,WCU,INFO] = lpvwcgain(P,...,POLELIST)

Description

lpvwcgain computes the worst-case bound on the induced norm for pss and plftss systems. The grid based

and LFT objects have minor differences in syntax, explained below.

lpvwcgain for pss

[GAM,X,INFO] = lpvwcgain(P) computes the upper-bound on the worst-case induced norm of the LPV

system P, assuming no rate-bounds on the independent variables of P. "Worst-case" refers to all the modeled uncertainty

and parameter-dependence (including parameter rate-bounds). GAM is the upper bound on the worst-case induced

norm. The upper bound GAM and a constant (parameter independent) matrix X are computed to satisfy the induced

norm linear matrix inequality (LMI) condition.

[GAM,X,INFO] = lpvwcgain(P,Xb) computes the upper-bound on the worst-case induced norm of the PSS

P. The upper bound GAM and a parameter-varying matrix X are computed to satisfy the induced norm linear matrix

inequality (LMI) condition. Xb is a basis object that defines the basis functions which describe the assumed parameter

dependence of X. INFO is a structure containing additional information about the solution to the LMI.

lpvwcgain for plftss

[WCG,WCU,INFO] = lpvwcgain(P) computes the upper-bound on the worst-case induced norm of the

plftss P. "Worst-case" refers to all the modeled uncertainty and parameter-dependence. WCG is the upper bound on

the worst-case induced norm. INFO is a structure containing additional information about the solution, including an

estimate of the lower bound on the worst-case induced norm, based on LTI worst-case gain analysis. WCU is value of

the uncertainty associated with the lower-bound of the induced norm, which is based on LTI worst-case gain analysis.

[WCG,WCU,INFO] = lpvwcgain(P,OMEGA) allows the user to specify a custom frequency vector for the analysis.

OMEGA is the chosen vector of frequency values used in the analysis.

lpvwcgain(P,...,POLELIST) allows the user to define weighting functions for the Integral Quadratic Constraints (IQC) used

to bound the uncertainty when formulating the LMI to be solved. POLELIST is a 1xN double row vector, of negative

values. Each value in POLELIST corresponds to a pole of a stable transfer function that is used as a weight on all

4/44 29/99 2015 LPVWVV CGAIN - Worst-case bound on induced L2 norm foff r pss and plftff ss

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVWVV CGAIN/html/LPVWVV CGAINdoc.html 2/22 2

signals in the IQCs. A default POLELIST, with three pole values, is used when a POLELIST is not supplied by the user.

The three pole values are selected automatically from the frequency range of the system dynamics.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSYN - Parameter-dependent controller synthesis foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSYN/html/LPVSYNdoc.html 1/2

LPVSYN - Parameter-dependent controller synthesis for LPV systems

Contents

Syntax

Description

Syntax

 [K,GAM,INFO] = lpvsyn(P,NMEAS,NCON)

 [K,GAM,INFO] = lpvsyn(P,NMEAS,NCON,Xb,Yb)

 [K,GAM,INFO] = lpvsyn(P,NMEAS,NCON,...,OPT)

Description

[K,GAM,INFO] = lpvsyn(P,NMEAS,NCON) computes a parameter-varying controller K which minimizes the

induced norm of the interconnection defined by lft(P,K). K is a pss or plftss with NMEAS inputs and NCON
outputs, defined on same domain as P. GAM is the induced norm of lft(P,K). This three argument call assumes

that the rate-bounds of the independent variables in P are [-inf,inf]. INFO is a structure containing data from the

Linear Matrix Inequalities that are solved to obtain K.

[K,GAM,INFO] = lpvsyn(P,NMEAS,NCON,Xb,Yb) computes the rate-bounded parameter-varying controller K
for a system P. K is the controller which minimizes the induced norm of lft(P,K) when the rate-bounds of the

independent variables of P are incorporated into the synthesis. Xb and Yb are basis objects, which describe the

assumed parameter dependence of the lyapunov matrices used in solving for K.

[K,GAM,INFO] = lpvsyn(P,NMEAS,NCON,...,OPT) allows the user to pass in a lpvsynoptions object.

The default algorithm for lpvsyn will solve the given synthesis problem twice. The first iteration attempts to find a

solution that minimizes the induced norm of lft(P,K). The second iteration will solve the optimization problem

again, with the caveat that any solution that is % found to lie within 15% of the optimal induced norm of lft(P,K)
from the first iteration, is satisfactory. This formulation has been found to yield controllers that are better numerically

conditioned. The back-off factor of 15% can be reset to a different value in lpvsynoptions.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVNCFSYN - Parameter-dependent Glovoo er-McFarlane loop-shaping foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVNCFSYN/html/LPVNCFSYNdoc.html 1/2

LPVNCFSYN - Parameter-dependent Glover-McFarlane loop-shaping for LPV
systems

Contents

Syntax

Description

Syntax

 [K,CL,GAM,INFO]=lpvncfsyn(G,W1,W2)

 [K,CL,GAM,INFO]=lpvncfsyn(G,W1,W2,'ref')

 [K,CL,GAM,INFO]=lpvncfsyn(G,W1,W2,Xb,Yb,...)

 [K,CL,GAM,INFO]=lpvncfsyn(G,...,OPT)

Description

[K,CL,GAM,INFO]=lpvncfsyn(G,W1,W2) synthesizes a parameter-dependent Glover-McFarlane loop-shaping

controller K for the shaped plant Gs=W2*G*W1.

 ^ z1 ^ z2

 ____ | ____ | ____ ____

 ->| W2 |-> + ---->| Ks |--> + -->| W1 |--| G |---

 + | ---- ^ ---- ^ ---- ---- |

 | | | |

 | w1 | w2 | |

 |__|

G is a pss, while W1 and W2 can be pss, pmat or double. K is a parameter-varying controller which minimizes the

induced norm of the loop-shaping interconnection defined by G, W1 and W2. K is a pss defined on same domain as

P. K has as many inputs as G has outputs, and as many outputs as G has inputs. GAM is the induced norm of the loop-

shaping interconnection. CL is the system taking in [w1; w2] and outputting [z1; z2]. INFO is a structure containing data

from the Linear Matrix Inequalities that are solved to obtain K. A call to lpvncfsyn without a basis function argument

generates a controller assuming no bounds on the parameter rate of variation.

[K,CL,GAM,INFO]=lpvncfsyn(G,W1,W2,'ref') synthesizes a parameter-dependent Glover-McFarlane loop-

shaping controller K for the shaped plant Gs=W2*G*W1, assuming a reference command. CL is the system taking in [w1;

w2; ref] and outputting [z1; z2], and GAM is its induced norm.

 ^ z1 ^ z2

 ____ | ____ | ____ ____

 ----->| W2 |-> + ----->| |--> + -->| W1 |--| G |---

 + | ---- ^ | Ks } ^ ---- ---- |

 | | --->| | | |

 | w1 | ref ---- w2 | |

 | |

 |___|

[K,CL,GAM,INFO]=lpvncfsyn(G,W1,W2,Xb,Yb,...) computes the rate-bounded Glover-McFarlane loop-

shaping controller K where the rate-bounds of the independent variables of the shaped plant Gs are incuded in the

synthesis conditions. Xb and Yb are basis objects, which describe the assumed parameter dependence of the

lyapunov matrices used in solving for K.

4/44 29/99 2015 LPVNCFSYN - Parameter-dependent Glovoo er-McFarlane loop-shaping foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVNCFSYN/html/LPVNCFSYNdoc.html 2/22 2

[K,CL,GAM,INFO]=lpvncfsyn(G,...,OPT) allows the user to pass in a lpvsynoptions object.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVMIXSYN - Parameter-varying mixed-sensitivitytt synthesis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVMIXSYN/html/LPVMIXSYNdoc.html 1/2

LPVMIXSYN - Parameter-varying mixed-sensitivity synthesis

Contents

Syntax

Description

Syntax

 [K,GAM,INFO]=lpvmixsyn(G,W1,W2,W3)

 [K,GAM,INFO]=lpvmixsyn(G,W1,W2,W3,Xb,Yb)

 [K,GAM,INFO]=lpvmixsyn(G,...,OPT)

Description

[K,GAM,INFO]=lpvmixsyn(G,W1,W2,W3) synthesizes the parameter-varying mixed-sensitivity controller K,

which minimizes the induced norm of W1*S, W2*K*S and W3*T, where S = inv(I+G*K), T =
G*K*inv(I+G*K), and W1, W2 and W3 are stable pss, pmat or double weights of appropriate size. GAM is the

induced norm acheived by K. INFO is a structure containing data from the Linear Matrix Inequalities that are solved to

obtain K. A call to lpvmixsyn without a basis function argument generates a controller assuming no bounds on the

parameter rate of variation.

[K,GAM,INFO]=lpvmixsyn(G,W1,W2,W3,Xb,Yb) computes the rate-bounded mixed-sensitivity controller K,

where the rate-bounds of the independent variables of G, W1, W2 and W3 are incuded in the synthesis conditions. Xb and

Yb are basis objects, which describe the assumed parameter dependence of the lyapunov matrices used in solving for

K.

[K,GAM,INFO]=lpvmixsyn(G,...,OPT) allows the user to pass in a lpvsynoptions object.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVLOOPSHAPE - Parameter-varying loop-shaping synthesis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVLOOPSHAPE/html/LPVLOOPSHAPEdoc.html 1/2

LPVLOOPSHAPE - Parameter-varying loop-shaping synthesis

Contents

Syntax

Description

Syntax

 [K,GAM,INFO]=lpvloopshape(G,Wi,Wo)

 [K,GAM,INFO]=lpvloopshape(G,Wi,Wo,Xb,Yb)

 [K,CL,GAM,INFO]=lpvloopshape(G,...,OPT)

Description

[K,GAM,INFO]=lpvloopshape(G,Wi,Wo) synthesizes the parameter-varying controller K, which minimizes the

induced norm for the shaped plant Gs=Wo*G*Wi. GAM is the induced norm of the closed-loop system from [d1,d2]

to |[e1,e2].

 ^ e1 ^ e2

 ____ | ____ ____ ____ |

 +---->| Ks |-- + ---->| Wi |--| G |-->| Wo |------->+ -----

 - | ---- ^ ---- ---- ---- ^ |

 | | | |

 | d1 | d2 | |

 |__|

INFO is a structure containing data from the Linear Matrix Inequalities that are solved to obtain K. A call to

lpvloopshape without a basis function argument generates a controller assuming no bounds on the parameter rate

of variation.

[K,GAM,INFO]=lpvloopshape(G,Wi,Wo,Xb,Yb) computes the rate-bounded controller K, where the rate-

bounds of the independent variables of the shaped pland Gs are incuded in the synthesis conditions. Xb and Yb are

basis objects, which describe the assumed parameter dependence of the lyapunov matrices used in solving for K.

[K,CL,GAM,INFO]=lpvloopshape(G,...,OPT) allows the user to pass in a lpvsynOptions object.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSFSYN - Parameter-dependent state feff edback controller synthesis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSFSYN/html/LPVSFSYNdoc.html 1/2

LPVSFSYN - Parameter-dependent state feedback controller synthesis

Contents

Syntax

Description

Syntax

 [F,GAM,INFO] = lpvsfsyn(P,NCON)

 [F,GAM,INFO] = lpvsfsyn(P,NCON,'L2')

 [F,GAM,INFO] = lpvsfsyn(P,NCON,'LQG')

 [F,GAM,INFO] = lpvsfsyn(P,NCON,Xb,Yb)

 [F,GAM,INFO] = lpvsfsyn(P,NCON,Xb,Yb,'L2')

 [F,GAM,INFO] = lpvsfsyn(P,NCON,Xb,Yb,'LQG')

Description

[F,GAM,INFO] = lpvsfsyn(P,NCON,'L2') computes a parameter-varying state-feedback controller for the

parameter-varying system P. NCON specifies the number of available control inputs in P. F is the state-feedback

controller for the plant P, which minimizes the norm from the input of P to its output. GAM is the minimum norm

achived by F. INFO is a struct with additional data.

[F,GAM,INFO] = lpvsfsyn(P,NCON,'LQG') computes a parameter-varying state-feedback controller F, which

minimizes the stochastic LPV bound. The stochastic LPV bound is defined as the expected value of the average

instantaneous power of the output of P, assuming its inputs are zero mean, white-noise processes with unit intensity.

[F,GAM,INFO] = lpvsfsyn(P,NCON,Xb,Yb,ALG) performs a rate-bounded synthesis. Xb and Yb are basis
objects specifying the basis functions to be used in the synthesis. ALG can be either 'L2' or 'LQG'. A call without the

ALG argument is equivalent to [F,GAM,INFO] = lpvsfsyn(P,NCON,Xb,Yb,'L2').

Published with MATLAB® R2014b

4/44 29/99 2015 LPVESTSYN - Synthesize a parameter-varying estimator foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVESTSYN/html/LPVESTSYNdoc.html 1/2

LPVESTSYN - Synthesize a parameter-varying estimator for LPV systems

Contents

Syntax

Description

Syntax

 [L,GAM,INFO] = lpvestsyn(P)

 [L,GAM,INFO] = lpvestsyn(P,'L2')

 [L,GAM,INFO] = lpvestsyn(P,'LQG')

 [L,GAM,INFO] = lpvestsyn(P,Yb)

 [L,GAM,INFO] = lpvestsyn(P,Yb,'L2')

 [L,GAM,INFO] = lpvestsyn(P,Yb,'LQG')

Description

[L,GAM,INFO] = lpvestsyn(P,'L2') computes a parameter-varying state estimator for the parameter-varying

system P. L takes in all the outputs of P and outputs an estimate of the states of P. L is the constant estimation matrix for

the plant P, which minimizes the induced norm of the error in the state-estimate. GAM is the minimum norm

achived by L. INFO is a struct with additional data.

[L,GAM,INFO] = lpvestsyn(P,'LQG') computes the constant estimation matrix for the plant P, which

minimizes the stochastic LPV bound on the state estimation error. The stochastic LPV bound on the state estimation error

is defined as the expected value of the average instantaneous power of error signal, assuming system inputs are zero

mean, white-noise processes with unit intensity.

[L,GAM,INFO] = lpvestsyn(P,Yb,ALG) performs a rate-bounded synthesis. Yb is a basis object specifying

the basis functions to be used in the synthesis. ALG can be either 'L2' or 'LQG'. A call without the ALG argument is

equivalent to [L,GAM,INFO] = lpvestsyn(P,Yb,'L2')

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSTOCHSYN - LPV controller synthesis foff r stochastic LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSTOCHSYN/html/LPVSTOCHSYNdoc.html 1/2

LPVSTOCHSYN - LPV controller synthesis for stochastic LPV systems

Contents

Syntax

Description

Syntax

 [K,GAMMA,INFO] = lpvstochsyn(P,NMEAS,NCON)

 [K,GAMMA,INFO] = lpvstochsyn(P,NMEAS,NCON,XB,YB)

 [K,GAMMA,INFO] = lpvstochsyn(P,NMEAS,NCON,XB,YB,OPT)

Description

[K,GAMMA,INFO] = lpvstochsyn(P,NMEAS,NCON) computes a parameter-varying controller for the pss P.

NCON specifies the number of available control inputs in P. NMEAS specifies the number of available measurements

being output from P. K is the parameter-dependent controller for the stochastic plant P, which minimizes the stochastic

LPV bound GAMMA. The stochastic LPV bound is defined as the expected value of the average instantaneous power of

the output of P, assuming its inputs are zero mean, white-noise processes with unit intensity. INFO is a struct with

additional data.

[K,GAMMA,INFO] = lpvstochsyn(P,NMEAS,NCON,XB,YB) performs a rate-bounded synthesis. Xb and Yb
are basis objects which describe the assumed parameter dependence of the lyapunov matrices used in solving for K.

[K,GAMMA,INFO] = lpvstochsyn(P,NMEAS,NCON,XB,YB,OPT) allows the user to pass in a

lpvsynoptions object.

The default algorithm for lpvstochsyn will solve the given synthesis problem twice. The first iteration attempts to find a

solution that minimizes the stochastic LPV bound of lft(P,K). The second iteration will solve the optimization problem

again, with the caveat that any solution that is found to lie within 15% of the optimal stochastic LPV bound of lft(P,K)
from the first iteration, is satisfactory. This formulation has been found to yield controllers that are better numerically

conditioned. The back-off factor of 15% can be reset to a different value in lpvsynoptions.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSYNOPTIONS - Create a options objb ect foff r LPV synthesis and analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSYNOPTIONS/html/LPVSYNOPTIONSdoc.html 1/2

LPVSYNOPTIONS - Create a options object for LPV synthesis and analysis

Contents

Syntax

Description

Syntax

 opt = lpvsynoptions

 opt = lpvsynOptions(Name1,Value1,Name2,Value2,...)

Description

opt = lpvsynOptions(Name1,Value1,Name2,Value2,...) creates a options object for parameter-varying

synthesis and analysis. The lpvsynOptions object is used to specify the parameters of the optimization routines used

in the synthesis and analysis functions: lpvsyn, lpvmixsyn, lpvncfsyn, lpvloopshapesyn, lpvestsyn,

lpvsfsyn, lpvnorm, lpvstochsyn, lpnvnorm, lpvwcgain.

opt = lpvsynOptions creates an lpvsynOptions object initialized with default values.

The options are set using NAME, VALUE pairs, i.e. the options property specified by the character string NAME is set to

VALUE. The setable options properties are specified below. The default choice is specified in brackets.

%--

% NAME | VALUE | Description

%--

% 'Solver' | ['lmilab'] | Optimization solver to be used.

% ---

% 'SolverOptions' | [] | Options passed directly to the solver.

% ---

% 'SolverInit' | [] | Initial decision variables for LMI solver.

% ---

% 'Gammalb' | [1e-6] | Lower bound on closed-loop induced L2 norm.

% ---

% 'Gammaub' | [1e6] | Upper bound on closed-loop induced L2 norm.

% ---

% 'Xlb | [1e-6] | X Riccati variable lower bounded by Xlb*I

% ---

% 'Xub | [1e6] | X Riccati variable upper bounded by Xub*I

% ---

% 'Ylb | [1e-6] | Y Riccati variable lower bounded by Ylb*I

% ---

% 'Yub | [1e6] | Y Riccati variable upper bounded by Yub*I

% ---

% 'Method | ['BackOff'] | String specifying the solution method:

% | |--

% | 'MinGamma' | Minimize the closed-loop induced L2 norm.

% | |--

% | 'MaxFeas' | Maximize the feasibility of the X Riccati

% | | subject to contraints Gammalb and Gammaub

% | | on the closed-loop induced L2 norm.

% | |--

4/44 29/99 2015 LPVSYNOPTIONS - Create a options objb ect foff r LPV synthesis and analysis

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSYNOPTIONS/html/LPVSYNOPTIONSdoc.html 2/22 2

% | 'BackOff' | First solve the 'MinGamma' problem for

% | | GammaOpt and then solve a second stage

% | | 'MaxFeas' problem with

% | | Gammaub = BackOffFactor*GammaOpt.

% | | This two-stage solution improves

% | | the numerical conditioning of the

% | | controller reconstruction.

% | |--

% | 'PoleCon' | Constrain the closed-loop poles.

% ---

% 'BackOffFactor' | [1.2] | Multiplicative factor (>= 1) to back off

% | | the minimum gamma when Method = 'BackOff'.

% ---

Published with MATLAB® R2014b

4/44 29/99 2015 LPVLSIM - Simulate the time response ofoo a LPV system

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVLSIM/html/LPVLSIMdoc.html 1/2

LPVLSIM - Simulate the time response of a LPV system

Contents

Syntax

Description

Syntax

 [Y,T,X,U,TRAJ] = lpvlsim(G,PTRAJ,UIN,TIN)

 [Y,T,X,U,TRAJ] = lpvlsim(G,PTRAJ,UIN,TIN,X0)

Description

[Y,T,X,U,TRAJ] = lpvlsim(G,PTRAJ,UIN,TIN) simulates the time-response of the system G, subject to the

input signal defined by UIN and TIN, and the parameter tracjetory defined in PTRAJ. G is a pss with Ny outputs, Nx
states, Nu inputs, and N independent variables IVName1,...,IVNameN. TIN is a sorted column vector of time

values, and UIN is a length(TIN)-by-Nu matrix of corresponding inputs. PTRAJ is a struct which defines the time-

variation of the parameters (independent variables) in G. The field PTRAJ.time contains a sorted row vector of time-

values. PTRAJ must also have a field for each independend variable in G, such that PTRAJ.IVName1, ...
,PTRAJ.IVName each contain a row vector of parameter trajectories corresponding to PTRAJ.time. Y is a

length(T)-by-NY matrix whose columns correspond to the outputs of G, X is a length(T)-by-Nx matrix whose

columns correspond to the state trajectories of G, U is a length(T)-by-Nu matrix whose columns correspond to the

inputs of G, and T is a column vector of time values corresponding to Y, X and U. TRAJ contains the corresponding

parameter trajectories.

[Y,T,X,U,TRAJ] = lpvlsim(G,PTRAJ,UIN,TIN,X0) simulates the time-response of the system G starting

from the initial condition X0.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVSTEP - Parameter dependent step response foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVSTEP/html/LPVSTEPdoc.html 1/2

LPVSTEP - Parameter dependent step response for LPV systems

Contents

Syntax

Description

Syntax

 lpvstep(SYS,PTRAJ)

 [Y,T,X,U,PTRAJOUT] = lpvstep(SYS,PTRAJ)

 [Y,T,X,U,PTRAJOUT] = lpvstep(SYS,ptraj,TFINAL)

 [Y,T,X,U,PTRAJOUT] = lpvstep(SYS,ptraj,T)

Description

[Y,T,X,U,PTRAJOUT] = lpvstep(SYS,PTRAJ) computes the parameter dependent step response of SYS.

SYS is a LPV system with Ny outputs, Nx states, Nu inputs, and N independent variables IVName1,...,IVNameN.

PTRAJ is a struct which defines the time-variation of the parameters (independent variables) in SYS. The field

PTRAJ.time contains a sorted row vector of time-values. PTRAJ must also have a field for each independend variable

in SYS, such that PTRAJ.IVName1, ... ,PTRAJ.IVNameN each contain a row vector of parameter trajectories

corresponding to PTRAJ.time. The output Y is a length(T)-by-NY-by-Nu matrix such that Y(:,i,j)
corresponds to the i-th output of SYS due to a step command in the j-th input channel. Similarly X is a length(T)-by-
Nx-by-Nu matrix describing the state trajectories of SYS, U is a length(T)-by-Nu-by-Nu matrix describing the

trajectory of the inputs to SYS, and T is a column vector of time values corresponding to Y, X and U. PTRAJOUT contains

the corresponding parameter trajectories.

lpvstep(SYS,PTRAJ) generates plots of the parameter dependent step response of SYS.

[Y,T,X,U,PTRAJOUT] = lpvstep(SYS,ptraj,TFINAL) simulates the step response up to the time TFINAL.

[Y,T,X,U,PTRAJOUT] = lpvstep(SYS,ptraj,T) simulates the step response using a user supplied time

vector T.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVINITIAL - Parameter dependent step response foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVINITIAL/LL html/LPVINITIALdoc.html 1/2

LPVINITIAL - Parameter dependent step response for LPV systems

Contents

Syntax

Description

Syntax

 lpvinitial(SYS,PTRAJ,X)

 [Y,T,X,U,PTRAJOUT] = LPVINITIAL(SYS,PTRAJ,XO)

 [Y,T,X,U,PTRAJOUT] = LPVINITIAL(SYS,ptraj,TFINAL)

 [Y,T,X,U,PTRAJOUT] = LPVINITIAL(SYS,ptraj,T)

Description

[Y,T,X,U,PTRAJOUT] = LPVINITIAL(SYS,PTRAJ,XO) computes the parameter dependent response of SYS
to an initial value X0. SYS is a LPV system with Ny outputs, Nx states, Nu inputs, and N independent variables

IVName1,...,IVNameN. PTRAJ is a struct which defines the time-variation of the parameters (independent

variables) in SYS. The field PTRAJ.time contains a sorted row vector of time-values. PTRAJ must also have a field for

each independend variable in SYS, such that PTRAJ.IVName1, ... ,PTRAJ.IVNameN each contain a row vector

of parameter trajectories corresponding to PTRAJ.time. The output Y is a length(T)-by-NY-by-Nu matrix such

that Y(:,i,j) corresponds to the i-th output of SYS due to a step command in the j-th input channel. Similarly X is a

length(T)-by-Nx-by-Nu matrix describing the state trajectories of SYS, U is a length(T)-by-Nu-by-Nu
matrix describing the trajectory of the inputs to SYS, and T is a column vector of time values corresponding to Y, X and U.

PTRAJOUT contains the corresponding parameter trajectories.

lpvinitial(SYS,PTRAJ,X) generates plots of the parameter dependent response of SYS to an initial value X0.

[Y,T,X,U,PTRAJOUT] = LPVINITIAL(SYS,ptraj,TFINAL) simulates the response of SYS to an initial value

X0 up to the time TFINAL.

[Y,T,X,U,PTRAJOUT] = LPVINITIAL(SYS,ptraj,T) simulates the response of SYS to an initial value X0
using a user supplied time vector T.

Published with MATLAB® R2014b

4/44 29/99 2015 LPVIMPULSE - Parameter dependent impulse response foff r LPV systems

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/FunctionRefee eff rences/LPVIMPULSE/html/LPVIMPULSEdoc.html 1/2

LPVIMPULSE - Parameter dependent impulse response for LPV systems

Contents

Syntax

Description

Syntax

 lpvimpulse(SYS,PTRAJ)

 [Y,T,X,U,PTRAJOUT] = LPVIMPULSE(SYS,PTRAJ)

 [Y,T,X,U,PTRAJOUT] = lpvimpulse(SYS,ptraj,TFINAL)

 [Y,T,X,U,PTRAJOUT] = lpvimpulse(SYS,ptraj,T)

Description

[Y,T,X,U,PTRAJOUT] = lpvimpulse(SYS,PTRAJ) computes the parameter dependent impulse response of

SYS. SYS is a LPV system with Ny outputs, Nx states, Nu inputs, and N independent variables

IVName1,...,IVNameN. PTRAJ is a struct which defines the time-variation of the parameters (independent

variables) in SYS. The field PTRAJ.time contains a sorted row vector of time-values. PTRAJ must also have a field for

each independend variable in SYS, such that PTRAJ.IVName1, ... ,PTRAJ.IVNameN each contain a row vector

of parameter trajectories corresponding to PTRAJ.time. The output Y is a length(T)-by-NY-by-Nu matrix such

that Y(:,i,j) corresponds to the i-th output of SYS due to a step command in the j-th input channel. Similarly X is a

length(T)-by-Nx-by-Nu matrix describing the state trajectories of SYS, U is a length(T)-by-Nu-by-Nu
matrix describing the trajectory of the inputs to SYS, and T is a column vector of time values corresponding to Y, X and U.

PTRAJOUT contains the corresponding parameter trajectories.

lpvimpulse(SYS,PTRAJ) generates plots of the parameter dependent impulse response of SYS.

[Y,T,X,U,PTRAJOUT] = lpvimpulse(SYS,ptraj,TFINAL) simulates the impulse response up to the time

TFINAL.

[Y,T,X,U,PTRAJOUT] = lpvimpulse(SYS,ptraj,T) simulates the impulse response using a user supplied

time vector T.

Published with MATLAB® R2014b

4/44 29/99 2015 Simulink Blocks in LPVTVV ools

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/SimulinkRefe eff rence/ee html/SimulinkRefe eff rence.html 1/2

Simulink Blocks in LPVTools

LPVTools provides Simulink blocks to interface to the state-space LPV objects: pss, upss and plftss. The Simulink

blocks enable users to include LPV systems in Simulink simulation models. One Simlink block is for systems that depend

on a time-varying parameter and its derivative, as seen in Equation 1, while the other is for systems that do not depend

explicitly on the derivative, as seen in Equation 2.

The Simulink block for the system shown in Equation 2 is shown in Figure 1.

Figure 1: Simulink LPV block and block mask.

The block in Figure 1 has inputs for the system input and the parameter vector , and an output for . The

block mask contains entries for the user to specify the system variable name, the order of the input parameter vectors ,

and the state initial condition . The block is implemented as a Simulink S-function under the block mask. The block

currently performs a multidimensional linear interpolation to evaluate the state-space matrices at the specified parameter

vector. An efficient implementation of this linear interpolation has been coded to reduce computation and speed up the

simulation time.

LPVTools also includes a block for systems that depend explicitly on both the time-varying parameter and its derivative,

as seen in Equation 1. This block is shown in Figure 2.

4/44 29/99 2015 Simulink Blocks in LPVTVV ools

file://// /// C:/Users/A// rnar/Desktop/pp MUSYN/A// rnar_WorkingCopy/LPVTVV ools/Documentation/SimulinkRefe eff rence/ee html/SimulinkRefe eff rence.html 2/22 2

Figure 2: Rate-dependent Simulink LPV block and block mask.

Published with MATLAB® R2014b

