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Abstract

Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reli-

ability analysis with fault-tolerant control in novel ways. This dissertation introduces the Uni-

versity of Minnesota unmanned aerial vehicle 󰅮light research platform, a comprehensive sim-

ulation and 󰅮light test facility for reliability and fault-tolerance research. An industry-standard

reliability assessment technique, the failure modes and effects analysis, is performed for an un-

manned aircraft. Particular attention is afforded to the control surface and servo-actuation

subsystem. Maintaining effector health is essential for safe 󰅮light; failures may lead to loss of

control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several ef-

fector failuremodes. Design changes are recommended to improve aircraft reliability based on

this analysis. Most notably, the control surfaces are split, providing independent actuation and

dual-redundancy. The simulation models for control surface aerodynamic effects are updated

to re󰅮lect the split surfaces using a 󰅮irst-principles geometric analysis.

The failuremodes and effects analysis is extendedbyusing a high-󰅮idelity nonlinear aircraft

simulation. A trim state discovery is performed to identify the achievable steady, wings-level

󰅮light envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures

is studied using familiar tools from linear systems analysis. This analysis reveals signi󰅮icant

inherent performance limitations for candidate adaptive/recon󰅮igurable control algorithms

used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design

feedback loop to make safety-critical unmanned systems more reliable.

Control surface impairments that do occur must be quickly and accurately detected. This

dissertation also considers fault detection and identi󰅮ication for an unmanned aerial vehicle

using model-based and model-free approaches and applies those algorithms to experimental

faulted and unfaulted 󰅮light test data. Flight tests are conducted with actuator faults that affect

the plant input and sensor faults that affect the vehicle state measurements. A model-based

detection strategy is designed and uses robust linear 󰅮ilteringmethods to reject exogenous dis-

turbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm

is developed to operate exclusively on raw 󰅮light test data without physical model knowledge.

The fault detection and identi󰅮icationperformanceof these complementarybut differentmeth-

ods is compared. Together, enhanced reliability assessment andmulti-pronged fault detection

and identi󰅮ication techniques can help to bring about the next generation of reliable low-cost

unmanned aircraft.
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Chapter 1

Introduction

Stringent safety requirements have driven aircraft system design for decades. Aircraft manu-

facturers typically achieve high levels of safety via hardware redundancy throughout the 󰅮light

control system. For example, the Boeing 777 employs triple redundancy for all hardware,

including the 󰅮light computer system, electrical system, hydraulic actuation, and communi-

cation channels [1, 2] (Fig. 1.1). Pervasive hardware redundancy strategies can prevent or

substantially mitigate loss of control (LOC) incidents. LOC incidents are the leading cause of

aviation accidents, and system faults are the leading cause of in-󰅮light LOC incidents [3, 4].

The aerospace industry additionally pioneered the use of now-standard reliability assessment

tools, including failure modes and effects analysis (FMEA) and fault tree analysis (FTA). These

tools are used in conjunctionwith hardware redundancy to achieve safety. The vehicle systems

are designed to ensure that potential failure mode paths are mitigated prior to catastrophic

failure by relying on backup (redundant) hardware whenever necessary.

Low-cost unmanned air systems (UAS) cannot typically accommodate pervasive hardware

redundancy due to size, weight, power, and budget constraints. Much of the applications en-

visioned for low-cost UAS rely on several key characteristics such as manageable size, long

endurance, and minimal maintenance. Hence, certi󰅮iable techniques to address UAS LOC inci-

dents must, whenever feasible, rely on analytical over hardware redundancy to maintain the

operational advantages of UAS. Advances are particularly important to the future of unmanned

aviation, as the US Federal Aviation Administration has been required to safely integrate UAVs

into the national airspace by 2015 [5]. To do sowill require reliability certi󰅮ication procedures

akin to those used formanned aviation. UAS certi󰅮ication tool development will require blend-

ing conventional reliability analysis, robust or adaptive control tools, and fault detection and

isolation techniques. Existing reliability analysis tools are effective for hardware-redundant
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Figure 1.1: Boeing 777 󰅮light control surfaces. The underlying computation, electrical, and

hyraulic subsystems are triple redundant.

systems, yet are rarely applied to low-cost systems. One reason is that these traditional tools

do not necessarily scale well to low-cost UAS without hardware redundancy.

This dissertationdetails an industry-standard failuremodes andeffects analysis for a small,

low-cost unmanned aerial vehicle and The FMEA preliminarily assesses system vulnerabilities

in a structured manner. The FMEA is extended by analyzing the effects of a single elevator ac-

tuator failure mode. A trim state discovery is performed to determine the achievable steady,

wings-level 󰅮light envelope for the faulted and unfaulted vehicle. Linear analysis of the system

dynamics reveals how the fault-tolerance and control authority of vehicle effectors changes

throughout the 󰅮light envelope. Much existing literature regarding LOC trim state discovery

focuses on non-UAS applications or places a greater emphasis on path-planning than on the

overall system reliability [6, 7]. Other aircraft fault-tolerance works emphasize online (i.e., in-

󰅮light) parameter estimation for recon󰅮iguration purposes [8, 9]. While both approaches have

their utility, particularly for the design and validation of recon󰅮iguration algorithms, they are

not as useful for obtaining a high-level assessment of a vehicle’s fault tolerance throughout a

󰅮light envelope. This research seeks to bridge the work of the guidance/navigation/control

and health management communities by incorporating dynamics and controls analysis into

the system reliability analysis. This detailed examination yields rich insight regarding UAV

fault tolerance and raises signi󰅮icant questions about the feasibility of adaptive or recon󰅮ig-

urable control algorithms for low-cost UAS. Control surface impairments that do occur must

be quickly and accurately detected. This dissertation also considers fault detection and iden-

ti󰅮ication for an unmanned aerial vehicle using model-based and model-free approaches and
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applies those algorithms to experimental faulted and unfaulted 󰅮light test data. Together, en-

hanced reliability assessment andmulti-pronged fault detection and identi󰅮ication techniques

can help to bring about the next generation of reliable low-cost unmanned aircraft. The dis-

sertation is largely based on three major publications in these areas [10, 11, 12].

The dissertation is organized as follows. Chapter 2 introduces the University of Minnesota

unmanned aerial vehicle 󰅮light research platform, a comprehensive, open-source 󰅮light test

and simulation resource for reliability and guidance, navigation, and control research. The

research described in this dissertation is based on aircraft and high-󰅮idelity aircraft simula-

tions within the 󰅮light research platform. Chapter 3 introduces industry-standard reliability

tools such as fault tree analysis and failure modes and effects analysis. A thorough failure

modes and effects analysis is conducted for a 󰅮light research platform aircraft, with particu-

lar attention paid to the failures affecting the control surfaces and actuators. Chapter 4 details

reliability-focused design changes to the unmanned aircraft based upon the results of the fail-

ure modes and effects analysis. The changes to the design required updates to the simulation

model, and the modeling changes and validation are presented in this chapter. Chapter 5 de-

scribes the trim state discovery procedure and shows the 󰅮light envelopes for 󰅮light research

platform vehicles with different control surface architectures. A linear model set is obtained

for each operating point, enabling linear analysis of how the dynamics vary throughout the

󰅮light envelope Chapter 6 details the model-based and data-driven fault detection and isola-

tion module designs and results. Concluding remarks are provided in Chapter 7.

This dissertation contributes to the UAS reliability literature in three main ways. First, the

full application of conventional FMEA to the aircraft provides important information for fur-

therdevelopment of a reliability-focusedUASplatformwithin theUMN 󰅮light researchplatform

architecture. These FMEA results inform design changes to both the airframe and the simula-

tion used for model-based design and analysis. Additionally, the limitations of the traditional

tools are better understood, opening the door to more rigorous analysis of failure modes and

effects. Second, the trim state discovery tools and corresponding linear systems analysis ex-

tend the FMEA based on ideas from the dynamics and controls 󰅮ield. This demonstrates how

the guidance, navigation, and control community and reliability engineering community can

more closely integrate their efforts as applied to the emerging 󰅮ield of small UAS and obtain

further insight regarding the vehicle 󰅮light dynamics in healthy and faulted conditions. This

extension of the FMEA provides additional design feedback which can be used to improve ve-

hicle safety and aid in the certi󰅮ication process. Finally, model-based and data-driven fault

detection and isolation modules are developed using the 󰅮light research platform simulation

and real vehicle 󰅮light test data to estimate control surface impairments

3



Chapter 2

UMN Flight Research Platform

The Department of Aerospace Engineering and Mechanics at the University of Minnesota has

developedandmaintaineda comprehensive 󰅮light researchplatform(FRP)over thepast decade.

This chapter describes the FRP, which is used to support research activities including guid-

ance, navigation, and control (GNC) algorithms, embedded fault detection methods, and sys-

tem identi󰅮ication tools. The department originally sought to develop a high-󰅮idelity, reliable

platform to support algorithm design, proof of concept, and experimental demonstration in

real operating environments. Such a platform is essential to successfully apply concepts from

the theoretical domain to functional aerospace applications. Broadly, the FRP has two mod-

ules: the experimental 󰅮light test hardware and a software and simulation package. Each of

these modules are now described in detail. [13, 14, 15]

2.1 Experimental Flight Test Hardware

This section describes the FRP airframes and R/C components, avionics package, sensor load-

out, and the ground control station used for 󰅮light testing.

2.1.1 Airframes and R/C Components

The 󰅮light test hardware consists of several aircraft of different sizes carrying different avion-

ics and and sensor payloads. The selected airframes are all commercial, off-the-shelf radio

controlled aircraft purchased by the department. This was done to build a 󰅮leet of consistent

airframes while minimizing overhead costs and extraneous design tasks. The FRP has three

variants of the Ultra Stick 󰅮ixed-wing electric aircraft. All of the FRP aircraft use conventional

control surface con󰅮igurations comprising a single vertical rudder with elevator, aileron, and

4



Figure 2.1: Ultra Stick 120 ‘Ibis’ UAV at 󰅮light testing location. The landing gear wheels can be

swapped with a pair of skis for 󰅮light testing during the winter months.

󰅮lap surfaces. Each surface is independently actuated by a single electric, hobby-grade servo

with de󰅮lection limits of±25deg.

The Ultra Stick 120 is the largest of the FRP vehicles. It has a symmetrical airfoil wing,

spanning 1.92m, and mass of 7.4 kg. Before being given to UMN, this aircraft was originally

used at NASA Langley Research Center where it was called FASER (Free-flying Aircraft for Sub-

scale Experimental Research) [16]. Capable of carrying over 2.5 kg of payload (the largest of

the three FRP airframes), the Ultra Stick 120 can employ a wide array of sensors for experi-

mental data collection during 󰅮light tests. For Ultra Stick 120, all control surfaces are actuated

by Hitec HS5625MG servos. The plane has a 1900W Actro 40-4 brushless electric motor with

a Graupner 14 x 9.5 folding propeller. The motors is powered by two 5000mAh 5-cell lithium

polymer batteries connected in serie, and the servos are powered by a separate 1350 mAh

3-cell lithium polymer battery. The primary Ultra Stick 120 used for 󰅮light testing is named

Ibis, and it is shown in Figures 2.1-2.2. Much of the research presented in this dissertation is

based on Ibis.
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Figure 2.2: Ultra Stick 120UAVwithUltra Stick 25emodels. The departmentmaintains several

of the smaller Ultra Stick 25e test UAVs.

The Ultra Stick 25e is an approximately 66% scale model of the Ultra Stick 120. It is con-

veniently sized, with a 1.27m wingspan and 1.9 kg mass, and can accommodate the avionics

payloads essential for most control algorithm 󰅮light testing. All control surfaces are actuated

by Hitec HS-225BB servos. The plane has a 600W E-Flite Power 25 brushless electric motor

with an APC 12 x 6 propeller. A 4200mAh 3-cell lithium polymer battery powers the motor

and servos. Figure 2.2 shows the UAVs and their relative size.

The Mini Ultra Stick is an approximately 50% scale model of the Ultra Stick 120, with the

same basic configuration. This aircraft is primarily used as as a wind tunnel model as it is

the only one of the three airframes that 󰅮its inside the UMN Low-SpeedWind Tunnel. Because

Mini Ultra Stick is an approximately scaled variant of the larger airframes, aerodynamic data

collected from wind tunnel experiments can provide insight into the expected behavior of the

other FRP vehicles. The aircraft is not equipped with the avionics necessary for autonomous

operation and can only 󰅮ly in a remotely piloted mode. The Mini Ultra Stick is shown in Fig-

ure 2.3.

2.1.2 Avionics

Each of theUltra Stick 120/25eUAVsmaintained by the department carry on board an avionics

package that enables remote piloting and automatic piloting 󰅮light modes. This core avionics

6



Figure 2.3: Mini Ultra Stick mounted on sting during experiments in UMN Low-Speed Wind

Tunnel.

package is called the Goldy Flight Control System, and its design is standardized such that it is

transferrable between all airframes within the the UMN UAV 󰅮leet.

TheGoldy 󰅮light computer is a 32-bit PowerPC phyCoreMPC-5200B tiny systemon amodule

(SoM). The clock rate is 400MHz, and the computer has 760MIPS of processing power with

󰅮loating point computation. The 󰅮light computer runs the eCos real-time operating system, and

the 󰅮light software is written and implemented in the C language. Flight softwaremodules (e.g.

different control laws, navigation algorithms, and fault detection 󰅮ilters) can be easily enabled

or disabled to quickly perform 󰅮light test experiments and collect data using differentmodules.

The 󰅮light software runs at a frame rate of 50Hz and utilizes less than 2% of the CPU capacity.

The computer supports several input-output standards, including TTL, RS232 serial, SPI,

I2C, Ethernet, and PWM. The computer acquires sensor data at 50Hz and performs attitude

and position estimation, executes 󰅮light control algorithms, logs relevant data, sends PWM

servo commands to the actuators, and sends telemetry to a ground control station via a mo-

dem. A failsafe switching board is used to switch control of the aircraft betweenmanual remote

piloting (human R/C pilot) and the embedded automatic control. A high-level schematic of the

avionics is shown in Figure 2.4. The hardware interface to the flight computer is handled via a

custom-designed interface board (shown in Figure 2.5).
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Figure 2.4: Core UAV avionics architecture.

2.1.3 Sensors

As stated previously, Ibis carries the largest payload, and therefore, the entire sensor suite that

is available for UMN FRP vehicles. The sensor suite on Ibis consists of the following compo-

nents:

• Inertial Measurement Unit (IMU): Analog Devices iSensor ADIS16405

• GPS: Hemisphere GPS Crescent OEM board with Titan III antenna

• Air data probe: Goodrich 0858 mini 5-hole probe

• Pressure transducers: AMSYS AMS 5812: -0150-B, -003D, -003D-B (two)

• 2 angle of attack/angle of sideslip (AOA/AOS) vanes (one per wingtip) via NASA Langley

Research Center

• 8 CTS 250 series 100 kΩ rotary potentiometer de󰅮lection sensors (one per control sur-

face, one per AOA vane)

• 2 SX8724C analog-to-digital converter (ADC) chips for potentiometers

8



Figure 2.5: Goldy Flight Control System avionics pallet.
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• Camera

• Camera battery

• Voltage regulator for camera

The Ultra Stick 25emodels do not carry the wingtip AOA/AOS vanes, camera hardware or sur-

face de󰅮lection potentiometer hardware.

2.1.4 Ground Station

The Ground Control Station (GCS) is used during flight testing to provide vital real-time flight

information to assess the flight performance andmaintain situational awareness. It consists of

a laptop computer running theGCS software connected via serial to a datamodem that receives

UAV telemetry. The GCS software includes a Heads-Up Display, a moving map showing the

location of the aircraft, commanded actuator positions, and indicators to display flight control

mode information. The software is a Java-based program inspired by the Open Source Glass

Cockpit Project.

2.2 Software and Simulation Package

TheFreyja software and simulation infrastructure complements the 󰅮light test hardwarewithin

the UMN FRP. Freyja includes a nonlinear, modular simulation that allows researches to accu-

rately model the physics of the UAVs. Additionally, Freyja incorporates Software-in-the-Loop

(SIL) and Hardware-in-the-Loop (HIL) capabilities. These tools allow researchers to perform

veri󰅮ication and validation testing natively within the nonlinear simulation while connected

to the Goldy Flight Control System. The code for the 󰅮light software modules can be auto-

generated from the simulation and loaded onto the 󰅮light computer for experimental 󰅮light

testing. Data collected from the 󰅮light tests is used to update the simulation models when nec-

essary.

2.2.1 Nonlinear Simulation

The core of the Freyja FRP package is a high-󰅮idelity, six degree-of-freedom (DOF) nonlinear

simulation of FRP aircraft dynamics. The FRP nonlinear simulation is a comprehensive proto-

typing platform and incorporates the following submodels:

• Instrumented airframe mass and inertia properties
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• Propulsion (motor and propeller) dynamics

• Servo-actuator dynamics

• Computational time delays

• Identi󰅮ied aerodynamic force and moment coef󰅮icients (Ultra Stick 25e) or lookup tables

(Ultra Stick 120)

• Sensor noise properties

• Environmental effects (e.g., standard atmosphere, winds, turbulence, gravity, magnetic

󰅮ield)

The simulationmodel computes the net forces andmoments due to aerodynamics, propulsion,

and environmental conditions (e.g. atmospheric conditions, gravity, wind) and uses numerical

integration to solve the rigid body equations of motion.

The simulation is modular; the physical properties unique to each FRP UAV can easily be

enabled. The aerodynamic models were derived and are implemented differently for each air-

frame. The Ultra Stick 120 aerodynamic model is derived from wind tunnel experiments at

NASA Langley Research Center. The coef󰅮icients are provided in a set of extensive lookup ta-

bles based on those tests. Details regarding this model are provided in Chapter 4. The Ultra

Stick 25emodel was obtained at a single, nominal 󰅮light condition using open-loop 󰅮light tests

with a frequency domain system identi󰅮ication approach. The aerodynamic model was vali-

dated for this 󰅮light condition, and the coef󰅮icients are constant. Hence, 󰅮light tests using Ultra

Stick 25e airframes are generally conducted starting the UAV at the nominal 󰅮light condition.

Finally, the Ultra Stick Mini aerodynamic model is entirely derived from wind tunnel data.

The emphFreyja simulation also includes automated trimming and linearization routines

to obtain a linear plant model. The linear model is useful for understanding system behavior

and is typically a starting point for the design of new 󰅮light control laws or fault detection al-

gorithms. After achieving satisfactory performance with the linear plant, the algorithm can be

placed in feedback with the nonlinear dynamics for veri󰅮ication.

2.2.2 Software-in-the-Loop Simulation

Instead of using a Simulink implementation of the 󰅮light control laws (as in the full nonlinear

simulation), the SIL places the auto-generated 󰅮light control code (written in C) in feedback

with the nonlinear UAV dynamics. This is done by including the 󰅮light control software as a
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S-function in Simulink. The SIL resulting SILmodel can be used to verify the correctness of the

󰅮light software auto-generation from Simulink (a mathematical discrete-time model) to C.

2.2.3 Hardware-in-the-Loop Simulation

The HIL module allows for nonlinear simulations with the auto-generated 󰅮light software run-

ning on the actual 󰅮light computer. The MathWorks Real TimeWindows Target toolbox allows

the simulation to run in real-time on departmental PCs while communicating with the 󰅮light

control hardware. During HIL simulations, a modi󰅮ied version of the 󰅮light software is used to

use data from the nonlinear simulation in lieu of actual sensor data. Additionally, the actuator

commands generated by the 󰅮light computer sent to the nonlinear simulation as inputs. The

HIL simulation module is used to verify that all hardware-software compatibility issues are

resolved prior to 󰅮light testing. By using linear, nonlinear, SIL, and HIL simulations, any 󰅮light

software algorithm can buy its way onto a FRP aircraft for 󰅮light testing.

2.3 FRP Contribution to Research Community

The UMN FRP infrastructure is designed to be an open-source, low-cost platform for aerosys-

tems basic research and technology demonstration at UMN and beyond. The research group

at UMN promotes open-source development of both the experimental and software FRPmod-

ules. Extensive resources are made freely available at the group website http://www.uav.

aem.umn.edu, including:

• Airframe speci󰅮ications and parts lists

• Subversion repository of Freyja software and simulation package

• Thorough documentation of the hardware and software

• Archived 󰅮light data

• Media

• Peer-reviewed publications

This collection of resources can serve as a benchmark experimental platform for other re-

searchers to design and validate their own 󰅮light software algorithms and compare perfor-

mance with UMN designs [17].
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Chapter 3

Failure Modes and Effects Analysis

This chapter provides a failure modes and effects analysis (FMEA) for the UMN Ibis UAV in-

troduced in Chapter 2. A FMEA can be used to obtain an understanding of potential opera-

tional liabilities and can be an important tool for risk mitigation and fault tolerant design. An

overview of the FMEA methodology is provided, and a thorough analysis for the Ibis follows.

This scope of this chapter is mostly limited to failure modes affecting the UAV control surfaces

and actuators, as those failures and effects are of primary importance to the control engineer.

Further details regarding the FMEA for all Ibis subsystems can be found in Appendix A.

3.1 FMEA Overview

There are two broad classi󰅮ications of system reliability analysis tools in use today: induc-

tive (bottom-up) and deductive (top-down) procedures. Deductive reliability analysis requires

identifying high-level system failure events and determining all lower-level eventswhich could

directly cause such a failure event. This procedure is repeated, 󰅮lowing causes of failure events

down to the lowest-level components. A bene󰅮it of this approach is the limited focus on one

or more undesirable events and their possible causes. Fault tree analysis (FTA) is a deductive

technique that is prevalent in aerospace and other safety-critical industries. One reason that

FTA is favored is that extending the FTA with probabilistic risk assessment is straightforward

when failure event rates are well-understood. For a detailed treatment of FTA as applied to

aerospace systems, see [18].

For inductive reliability analysis, the failure modes of system components are determined

at the lowest level possible, and the effects of those failures upon higher-level subsystems are
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traced forward to higher subsystems. This repeated for different initiating causes until analy-

sis of all predictable failure modes are considered. The end consequences can vary according

to the selected initiating cause. Eventually, the initiating causes and associated failure paths

leading to total system loss can be determined. An inductive analysis has the bene󰅮it of encour-

aging system-wide understanding of potential failuremodes and effects. For systems that have

not undergone detailed reliability assessment, such as the FRPUAVs, the inductive approaches

are a necessary starting point.

A FMEA is a particular inductive methodology used to analyze and discover: (1) all poten-

tial failure modes of a system, (2) the effects of these failures on the system and (3) how to

correct and/or mitigate the failures or effects on the system. The correction and mitigation

priority is usually based on a ranking of the severity and probability of the failure [19]. The

FMEA is typically limited in scope to systemhardware failures and their consequences. Human

factors and software failures can be excluded from this analysis, although these considerations

may remain essential to ensuring total system reliability.

A FMEA ismost commonly performed during the early stages of systemdevelopment in or-

der to understand as many of the potential failure modes as possible and to design strategies

to mitigate those risks. Reliability concerns can often be more easily addressed during pre-

liminary system development. For more mature systems, a FMEA may be performed as part

of a continuous product improvement effort and may be useful in identifying necessary hard-

ware upgrades or design modi󰅮ications for future design variants. For safety-critical systems,

with which reliability is a paramount design feature, reliability must be analyzed throughout

all phases of system development.

The FMEA procedure can be summarized into several large steps. First, the functions of all

system components must be documented and the various system operational environments

must be understood. Based on this information, all potential failure modes should be identi-

󰅮ied for each component. Next, the effects of each failure mode must be considered, with spe-

cial attention paid to any common-mode system failures. Potential failures and effects are fre-

quently assigned aqualitative severity (or criticality) ranking according to their damagepoten-

tial and/or probability of occurrence. Several different severity criteria are employed accord-

ing to application and industry. Finally, the information garnered throughout the FMEA pro-

cess can be used to revise the system design to better mitigate the identi󰅮ied risks. A 󰅮lowchart

of this procedure is shown in Figure 3.1.
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Figure 3.1: Flowchart of typical FMEA procedures
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Figure 3.2: Ibis UAV in 󰅮light

3.2 Ibis Hardware Elements

This section sets up the FMEA by detailing the hardware onboard the Ibis UAV, organized by

broad subsystem. Reliability block diagrams are presented to clarify hardware dependencies.

3.2.1 Airframe Subsystem

The aircraft has a conventional 󰅮ixed-wing con󰅮iguration with a single fuselage, a symmetric

airfoil wing, and a vertical tail with horizontal stabilizers (Fig. 3.2). The landing gear wheels

are mounted upon a dual-strut 󰅮ixed external undercarriage. The wheels are of a dense foam

material and hence do not utilize in󰅮latable tires.

3.2.2 Powerplant Subsystem

The Ibis uses an electric powerplant systemwhich comprises all the components necessary to

produce thrust (Fig. 3.3). Two Turnigy 5000mAh 2S 20C lithium polymer batteries provide

the current for the propulsion system. Those batteries are connected in series to a Castle Cre-

ations ICE2 HV80 electronic speed controller. The speed controller receives commands via a

AcroName Robotics Rx multiplexer (RxMux) which allows control of a set of servos or motors

from two different signal sources. The aircraft may be piloted via R/C or with an onboard au-

topilot, and the RxMux enables this pilot mode switching. The speed controller regulates the

voltage transmitted to the electric motor, a brushless 1900W Actro 40-4 model. The motor

shaft connects to the propeller hub and a spinner with dual Graupner 14 x 9.5 folding pro-

peller blades.
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Figure 3.3: Reliability block diagram for powerplant components.

3.2.3 Effectors Subsystem

The control surface con󰅮iguration on Ibis consists of an elevator, rudder, left/right ailerons, and

left/right 󰅮laps. Each of the six control surfaces uses a single Hitec HS-5625MG digital electric

servo actuator. The servos are powered by a 1350mAh 3-cell lithium polymer battery with a

Castle Creations Phoenix battery eliminator circuit (BEC). Another Castle Creations ICE2HV80

electronic speed controller interfaces with the RxMux to relay pulse widthmodulation (PWM)

position commands to the servos. The effectors subsystem is shown in Fig. 3.4.

3.2.4 Avionics and Sensors Subsystem

The Ibis uses several components in its avionics suite for guidance, navigation, control, data ac-

quisition, and telemetry. The onboard 󰅮light computer is a Phytec MPC5200B microcontroller

with a daughterboard. The computer is mounted to a interface board designed by UMNwhich

is responsible for the power and communication interface to other avionics components . The

󰅮light computer sends telemetry data to a Free Wave MM2-T 900 MHz Modem which then

broadcasts the data to the ground station. A Spektrum AR7010 radio receiver takes manual

pilot commands from the ground and they are relayed to the RxMux and an Arduino Pro Mini

328 PWM reader. The read PWMdata is then transmitted to the 󰅮light computer. As previously
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Figure 3.4: Reliability block diagram for effectors components.

described, receiver commands transmitted to the RxMux are relayed to the servos and motor

speed controller during manually-piloted 󰅮light.

The sensor suite carried by Ibis is detailed in Section 2.1.3. At the time of this analysis, sev-

eral of the sensor measurements are used merely for data acquisition and have no role in the

guidance, navigation, or control of the aircraft. The critical sensors which are most important

to the FMEA are the IMU, GPS, air data probe, and the pressure transducers. The IMU, GPS,

pressure transducers, rotary potentiometers, motor speed sensor, camera, and voltage regu-

lator each require power and use the servo battery. All sensor measurements are transmitted

to the 󰅮light computer for data acquisition and, depending on the measurement, vehicle con-

trol. Note that planned future research will involve different sensors such as the camera (for

visual-based guidance, navigation, control). The avionics and sensors components are shown

in Fig. 3.5.

3.3 Failures Modes and Effects Analysis of Ibis UAV

Using the high level model of Ibis described in Sec. 3.2, the FMEA of the vehicle is performed at

the component level. The function of each component is identi󰅮ied. A failuremode is de󰅮ined as

themanner ormechanism inwhich a component, subsystem, or systemcould potentially fail to

meet or deliver the intended function. Table 3.1 summarizes the subsystems and components

considered in the analysis.
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Table 3.1: Ibis UAV Hardware Subsystems and Components

Subsystem ID Number Component

A. Airframe

A.1 Fuselage

A.2 Wing

A.3 Landing Gear

B. Powerplant

B.1 Motor Battery (x2)

B.2 Electronic Speed Controller

B.3 Motor

B.4 Propeller Hub

B.5 Spinner

B.6 Folding Propeller Blades

C. Effectors

C.1 Servo Battery

C.2 RxMux

C.3 Electronic Speed Controller

C.4 BEC

C.5 Servo (x6)

C.6 Control Surfaces (x6)

D. Avionics and Sensors

D.1 Flight Computer

D.2 Interface Board

D.3 Modem

D.4 Radio Receiver

D.5 PWM Reader

D.6 IMU

D.7 GPS

D.8 Air Data Probe

D.9 Pressure Transducer (x??)

D.10 AOA/AOS Vanes (x2)

D.11 Rotary Potentionmeters (x8)

D.12 ADC (x2)

D.13 Camera Battery

D.14 Camera Voltage Regulator

D.15 Camera
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3.3.1 Evaluation Metrics

Each identi󰅮ied failuremode is qualitatively classi󰅮ied according to its likelihood of occurrence,

criticality of failure effects, and overall risk to the system based on the previous two factors.

The failure likelihood is evaluated on a simple three-point scale of low, medium, and high. For

one-off research and development platforms such as Ibis, the likelihood of individual failure

modes may not be known with con󰅮idence. Hence, a coarse rating scale is appropriate to help

represent likelihoods of failure.

Table 3.2: Failure Likelihood Categories

Rating Description

High Failure likely to repeatably occur

Medium Failure likely to occur occasionally

Low Unlikely that failure would occur

The effects of each failure mode are assigned to a criticality category. As this is an avia-

tion platform, failure effects can range from solely affecting a component, to the entire vehicle

system, to other systems, people, or property. The failure criticality is chosen for each failure

mode based upon the worst-case consequence of the failure to develop a conservative under-

standing of the set of potential failures and effects. The criticality categories taken from the

NASA standards for 󰅮light platform FMEA [20] and are de󰅮ined as follows:

Category 1 Catastrophic - Failure modes that could result in damage to the vehicle, property

damage, serious injury, or loss of life.

Category 1R Catastrophic - Failuremodesof identical or equivalent redundanthardware items

that, if all failed, could result in Category 1 effects

Category 2 Critical - Failure modes that could result in loss of one or moremission objectives

Category 2R Critical - Failuremodes of identical or equivalent redundant hardware items that

could result in Category 2 effects if all failed.

Category 3 Signi󰅳icant - Failure modes that could cause degradation to mission objectives

Category 4 Minor - Failure modes that could result in insigni󰅮icant or no loss to mission ob-

jectives
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Unlike with the likelihood metric, the worse-case effects of a given fault mode should be rela-

tively well-understood by the engineer. Thus, fault criticality can be rated on a more discrimi-

nating scale than likelihood.

The likelihood of a given failure and the associated effects of that failure’s occurrence can

be combined to provide some qualitative estimate of the risk associatedwith the failuremode.

Broadly, critical faultmodes that are likely to occur pose the utmost risk to the systemandmust

be top priorities when enhancing system reliability. Rare andminor faults, however, pose little

risk and hence, little may be gained by targeting reliability improvement efforts at mitigat-

ing these failure conditions. Because risk, like failure likelihood, is an imprecise measure, a

three-point high, medium, and low rating scale is suf󰅮icient to identify systemweaknesses and

prioritize improvements.

Table 3.3: FMEA Risk Matrix

Criticality

Likelihood 4 3 2R 2 1R 1

High M M H H H H

Medium L M M M H H

Low L L M M M M

3.3.2 Airframe

Potential fault modes affecting the airframe are major structural failures that would lead to a

signi󰅮icant vehicle damage and loss of mission, if not outright loss of vehicle. Little can be done

to mitigate the occurrence of these failures, and only regular maintenance and inspection can

prevent them from occurring. The failure modes are included in the FMEA for completeness.

Table A.1 contains a full FMEA summary for the airframe subsystem.

3.3.3 Powerplant

Failures affecting the powerplant subsystem can have severe consequences for the aircraft.

Each powerplant component has failure modes that could lead to a total loss of thrust, which

could result in loss of mission, loss of control, and/or loss of the vehicle itself. The electronic

components pose a higher risk, in general, than the mechanical components, as they are more

prone to sudden failures that are harder to predict. Table A.1 contains a full FMEA summary
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for the powerplant subsystem.

3.3.4 Avionics and Sensors

The avionics and sensors system contains several components that are essential for safe 󰅮light,

especially the 󰅮light computer (required for autopilot modes of operation) and R/C compo-

nents (required for manual piloting). Failures affecting these components are most critical,

but other components that provide important GNC measurements (i.e. air data probes, pres-

sure transducers, GPS)must also remain functioning properly inmost cases. Even if the vehicle

does not lose control due to a particular failure, importantmission datamay be lost ormission

objectives may become impossible. Table A.1 contains a full FMEA summary for the avionics

and sensors subsystem.

3.3.5 Effectors

The subsystem of the greatest interest to the control engineer is the effectors subsystem. The

effectors are the means by which the vehicle is controlled as desired, and effector failures will

directly lead to unintended forces andmoments acting upon the vehicle. Moreover, such faults

are of interest in the aerospace fault-tolerant control research community. Detecting and as-

sessing UAV tolerance to such servo-actuator faults is the focus of the latter part of this disser-

tation. A brief description of major servo actuator fault modes follows.

Bias

Here, the control surface has a constant (or slowly changing) difference between the com-

manded and actual de󰅮lection. This can arise due to poor rigging, slippage of servo actuator

gears, or bent control linkages. This is a common fault mode for small UAVs with exposed

servos and dif󰅮icult handling and operating conditions. A controller can often correct for the

effects of a bias and ensure continued operation, although this depends on the bias severity.

Oscillatory or Increased Deadband

The servo actuator remains operative, yet its dynamics are changed and control effectiveness is

reduced. These failure modes may have either software or hardware causes. A well-designed

control systemmay be robust to these disturbances, but the effects could lead to a loss of mis-

sion (LOM), loss of control (LOC), and loss of vehicle (LOV).
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Floating Surface

The surface freely 󰅮loats about its hinge due to aerodynamic moments and may cause uncom-

manded, time-varying disturbances to the system. All control authority in the channel is lost.

Stuck-at and Hardover

The control surface is locked at a single position. This can be caused by a broken control link-

age, broken servo gears, or an unbalanced control surface. A hardover is the most extreme of

all the failures because the surface is 󰅮ixed at one of its extreme positions. Hence, it imposes

the maximum uncommanded control forces and moments on the system and can induce dan-

gerous uncommanded maneuvers.

Table A.1 contains a full FMEA summary for the effectors subsystem.
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Chapter 4

Redesigning Ibis for Improved

Reliability

The reliability assessment for Ibis revealed several opportunities tomakedesign changes to the

airframe to improve system reliability. This chapter describes those changes to the airframe

and the corresponding changes to the 󰅮light research platform simulation.

4.1 Baldr: Reliability-focused Ibis Variant

A UMN senior design team studied the overall reliability of the Ibis aircraft and recommended

several changes to improve system reliability. The changes to Ibis are primarily designed to in-

crease the physical (hardware) redundancy of the aircraft for safety-critical components. Up-

grades to other components were also suggested. With these ideas in mind, the design team

sought to build a reliability-focused variant of the Ibis UAV from an original, unaltered Ultra

Stick 120 airframe. The changes described throughout Section 4.1 were the work of the senior

design team, and full details can be found in their report [21]. The UAV resulting from these

modi󰅮ications is named Baldr, and it is referred to as such herein.

4.1.1 Increased Physical Redundancy

Based on a FMEA and fault tree analysis, critical components were identi󰅮ied as candidates for

increased redundancy in the Baldr build. The selections were made according to the vehicle’s

sensitivity to failures of those components and the ability to bolster the redundancy in a cost-

effective manner. The elevator surface, the rudder surface, and the avionics battery were the

components chosen for modi󰅮ication.
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Figure 4.1: Rudder and vertical stabilizer on Ultra Stick 120 (not to scale). The directions of

the body-󰅮ixed axes are indicated.

Split Elevator Design

In a conventional con󰅮igurationof theUltra Stick 120, such as Ibis, the elevator is a single control

surface with a single actuator. Because the vehicle was determined to be sensitive to elevator

impediments or failures, the decisionwasmade to split the elevator into two surfaces (left and

right) and provide each surface an independent servo-actuator. The surfacewas split symmet-

rically with respect to the aircraft body x-axis (i.e., lengthwise). The split elevator should leave

some degree of functional pitch control authority in the event that a single elevator servo loses

effectiveness or fails entirely.

Split Rudder Design

Like the elevator, the rudder on Ibis is a single surfacewith a single servo-actuator. The rudder,

however, is not symmetrical relative to the lateral-directional body axes as shown in Figure 4.1.

Thus, deciding where to split the rudder is not trivial. The goal is to split the rudder into two

surfaces – top and bottom rudder – such that each surface can be actuated independently and

produce an equivalent side force and yawing moment for a given de󰅮lection. To do this, the

combined vertical stabilizer and rudder surface shown in Figure 4.1 must be modeled as a

two dimensional wing (i.e., the stabilizer) with a 󰅮lap (i.e., the rudder). An arbitrary candidate

cut line is drawn horizontally, and the mean aerodynamic chord (MAC) is computed for the

resultant rudder partitions (Figure 4.2). TheMAC of each section has a vertical stabilizer com-

ponent and a rudder (󰅮lapped) component. The lift coef󰅮icient per unit span can be expressed

as a function of the rudder de󰅮lection and the ratio of 󰅮lapped chord to total chord length. This
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Figure 4.2: Rudder splittingwith a candidate cut line and computedmean aerodynamic chords

(MAC) for the resultant partitions.

can be used to compute the total lift force on each partition as a function of rudder de󰅮lection.

The ideal horizontal cut location was determined to be at 𝑧 = −9.78 cm from the lower aft

corner of the rudder. At this location, the top and bottom rudders produce equal side force

and yaw moment for equal de󰅮lection. Refer to [21] for the full details of this calculation. The

rudder surface was cut in this position during the construction of Baldr.

Redundant Avionics Battery and Upgraded Receiver

A disruption to the power supply of the vehicle R/C components (e.g., receiver, servos, failsafe

switch) could prove catastrophic. As a result, the addition of a second avionics battery was

recommended to provide redundancy. Adding a second battery, however, would have required

the design of a battery isolation circuit. A more advanced receiver, the Spektrum AR12120,

was determined to have built-in battery isolation and had four satellite receivers (Ibis had 1).

Three of the satellite receivers were to be powered via the main power hub, but the fourth

receiver was redundant. Thus, upgrading the receiver provided satellite receiver redundancy

and solved the problem of battery isolation.

A complication of the upgrade was that powering the AR12120 and the daughterboard

with only two batteries was infeasible. The proposed solution was to use three batteries. Two

batteries would power the receiver, which in turn would power the servos and failsafe switch.

The third battery would power the daughterboard and other avionics components. The result

is a complete decoupling of the power supply to the 󰅮light computer and avionics from that of

the critical R/C components. To ensure that the voltages to the receiver were properly regu-

lated, two Castle Creations battery eliminator circuits were included between the two receiver
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batteries and the receiver.

4.1.2 Other Modi󰅯ications due to Splitting Surfaces

Splitting the elevator and rudder introduced two new surfaces, which required two additional

servos and surface de󰅮lection potentiometers (CTS 250 series 100 kΩ). The potentiometer sig-

nals require conversion, and the Ibis carries three Semtech SX8724C analog-to-digital convert-

ers (ADC). Each ADC supports three channels, but on Ibis, only two channels per ADC were

used for convenience reasons. The addition of the two additional potentiometers required the

addition of a fourth ADC on Baldr.

4.2 Baldr Simulation

The hardwaremodi󰅮ications and upgrades selected for Baldr needed to be re󰅮lected in the cor-

responding FRP simulation. The most signi󰅮icant changes to the model required were accu-

rately accounting for the split control surface aerodynamic effects. This section describes the

original aerodynamicmodel forFASER and Ibis anddevelops an extendedmodel of split control

surface aerodynamic effects for the reliability variant Baldr.

Fixed-wing aircraft conventionally use coupled left and right horizontal control surfaces.

This coupling can be either mechanical or analytical. As previously described, Ibis has a me-

chanically coupled elevator. On many other aircraft, however, the elevator typically comprises

a left and right surface and uses direct analytical coupling. Hence, the 󰅮light computer com-

mands each surface to de󰅮lect equivalently, but the surfaces are independently actuated. Flaps

exhibit similar analytical coupling. Ailerons tend to be inversely coupled to affect the rolling

motion of the vehicle.

The design changes described in Section 4.1 left the elevator and rudder mechanically de-

coupled on Baldr, resulting in eight independently actuated control surfaces. Understanding

the aerodynamic effects for each of these individual surfaces is useful for the development of

control recon󰅮iguration or reallocation algorithms.

4.2.1 Original Ibis Aerodynamic Model

The Ibis aerodynamic model was developed using FASER aircraft wind tunnel data collected

at NASA Langley Research Center [22, 16, 23]. The model uses lookup tables that describe

the non-dimensional aerodynamic force and moment coef󰅮icients for the vehicle throughout

a large 󰅮light envelope. The model considers three main categories of aerodynamic effects:
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Figure 4.3: Body and stability frame de󰅮initions for example aircraft.

(i) the basic airframe effects; (ii) the control surface effects; and (iii) the dynamic derivative

effects.

The force and moment coef󰅮icients for all aerodynamic effects are expressed in the vehicle

stability frame. The stability frame is used to align the X-body-axis (𝑋𝑏)with the oncoming 󰅮low

direction. The stability frame is simply a rotation of the the body frame about the Y-body-axis

(𝑌𝑏) by the trim angle of attack 𝛼. The body and stability frame conventions are shown in

Figure 4.3 for an example aircraft. The forces of interest are the drag force𝐷 along the 𝑋𝑠-axis,

the side force 𝑌 along the 𝑌𝑠 axis, and the lift force 𝐿 along the 𝑍𝑠-axis. The corresponding

moments of interest are the rollingmoment 𝑙, the pitchingmoment𝑚, and the yawingmoment

𝑛.

The independent variables for the FASERwind tunnel tests were angle of attack 𝛼, sideslip

angle 𝛽, power level, elevator de󰅮lection 𝛿𝑒, aileron de󰅮lection 𝛿𝑎, rudder de󰅮lection 𝛿𝑟, and

󰅮lap de󰅮lection 𝛿𝑓. The response variables were non-dimensional aerodynamic coef󰅮icients

for drag, side, and lift forces (𝐶𝐷, 𝐶𝑌, and 𝐶𝐿) and rolling, pitching, and yawing moments (𝐶𝑙 ,

𝐶𝑚, and 𝐶𝑛). Flight envelope sweeps were conducted using a one-factor-at-a-time (OFAT) ap-

proach. Eachdata point producedmeasured values for all independent and response variables.
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Table 4.1: Modeled Force and Moment Coef󰅮icients for Ibis/FASER Control Effects

Surface or Rate Modeled Coef󰅯icients

Elevator (𝛿𝑒) 𝐶𝐷, 𝐶𝐿, 𝐶𝑚

Rudder (𝛿𝑟) 𝐶𝑌, 𝐶𝑛

Aileron (𝛿𝑎) 𝐶𝑙

Flaps (𝛿𝑓) 𝐶𝐷, 𝐶𝐿, 𝐶𝑚

Roll rate (𝑝) 𝐶𝑌, 𝐶𝑙 , 𝐶𝑛

Pitch rate (𝑞) 𝐶𝑚

Yaw rate (𝑟) 𝐶𝑌, 𝐶𝑙 , 𝐶𝑛

Coef󰅮icient values obtained from the OFAT approach were re󰅮ined using modern experimental

design techniques and multivariate orthogonal functions [22].

The way the basic airframe affects the overall aerodynamic force and moment coef󰅮icients

is a nonlinear function of vehicle’s orientationwith respect to the relativewind. These baseline

aerodynamic coef󰅮icients are denoted 𝐶𝑖0(𝛼, 𝛽) for 𝑖 = 𝐷, 𝑌, 𝐿, 𝑙, 𝑚, 𝑛 [24].

The net control surface effects are denoted 𝐶𝑖𝛿(𝛼, 𝛽, 𝛿, 𝐽), where 𝛿 represents all control

surface de󰅮lections and 𝑖 = 𝐷, 𝑌, 𝐿, 𝑙, 𝑚, 𝑛.

The dynamic derivative effects are denoted 𝐶𝑖Ω(𝛼, 𝛽, Ω) where Ω is the stability axis rota-

tion rate and 𝑖 = 𝐷, 𝑌, 𝐿, 𝑙, 𝑚, 𝑛. The coef󰅮icients are obtained using two methods. First, DAT-

COM estimates of linear dynamic derivatives are used for the pitch damping coef󰅮icient (𝐶𝑚𝑞
).

Next, the effects of roll and yaw rate on 𝐶𝑌, 𝐶𝑙 , and 𝐶𝑛 are modeled as nonlinear functions of 𝛼

and the respective nondimensional angular rate based on forced oscillation wind tunnel data

[23].

The effects of control surfaces and rates are modeled for only those coef󰅮icients revealed

to be signi󰅮icant in wind tunnel experiments. These signi󰅮icant relationships are listed in Ta-

ble 4.1. Force andmoment coef󰅮icients not listed for a given effector or angular velocity do not

depend on changes to the respective parameter and are assumed to be zero.

The contributions of individual control effects are summed to yield net control effects force

and moment coef󰅮icients. For example, 𝐶𝐷𝛿 = 𝐶𝐷𝛿𝑒 + 𝐶𝐷𝛿𝑓 , the sum of the respective elevator

and contributions to the net drag force coef󰅮icient. The net aerodynamic force and moment

coef󰅮icients are obtained by summing the baseline, control surface, and dynamic derivative

effects:

𝐶𝑖 = 𝐶𝑖0 + 𝐶𝑖𝛿 + 𝐶𝑖Ω (4.1)
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The Ibis simulation uses these non-dimensional coef󰅮icients to compute the net forces andmo-

ments acting on the vehicle and numerically integrates the equations of motion.

4.2.2 Enhanced Baldr Aerodynamic Model

Because Baldr has a physically split rudder and elevator, along with analytically decoupled

ailerons and 󰅮laps, the Ibis coef󰅮icient models shown in Table 4.1 no longer describe all rele-

vant aerodynamic effects. Hence, extensions to the existing lookup table data needed to be in-

corporated into the Baldrmodel; these extensions would allow the newmodel to characterize

the effect of any individual surface (e.g., left elevator, left aileron) on the six force and moment

coef󰅮icients. A 󰅮irst principles geometric analysis was performed to enhance the aerodynamics

lookup tables. A summary of that analysis and the validation of the enhanced models are now

presented. For the Baldr aircraft, the individual control surfaces are denoted as follows: left

elevator (𝑒𝐿); right elevator (𝑒𝑅); top rudder (𝑟𝑇); bottom rudder (𝑟𝐵); left aileron (𝑎𝐿); right

aileron (𝑎𝑅); left 󰅮lap (𝑓𝐿); right 󰅮lap (𝑓𝑅).

Drag Force Coef󰅯icient (𝐶𝐷) Modeling

The drag force control surface effects model for Ibis is of the form

𝐶𝐷𝛿 = 𝐶𝐷𝛿𝑒(𝛼, 𝛿𝑒, 𝐽) + 𝐶𝐷𝛿𝑓(𝛼, 𝛿𝑓, 𝐽) (4.2)

for a single elevator and directly coupled 󰅮laps. Splitting and decoupling the control surfaces

requires changes to the model. The lookup table values for the elevators and 󰅮laps were split

equally between the left and right surfaces as shown in Equations 4.3-4.6

𝐶𝐷𝛿𝑒𝐿(𝛼, 𝛿𝑒𝐿, 𝐽) = 1/2 ⋅ 𝐶𝐷𝛿𝑒(𝛼, 𝛿𝑒𝐿, 𝐽) (4.3)

𝐶𝐷𝛿𝑒𝑅(𝛼, 𝛿𝑒𝑅, 𝐽) = 1/2 ⋅ 𝐶𝐷𝛿𝑒(𝛼, 𝛿𝑒𝑅, 𝐽) (4.4)

𝐶𝐷𝛿𝑓𝐿(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) = 1/2 ⋅ 𝐶𝐷𝛿𝑓(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) (4.5)

𝐶𝐷𝛿𝑓𝑅(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) = 1/2 ⋅ 𝐶𝐷𝛿𝑓(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) (4.6)

Figure 4.4 shows drag coef󰅮icient effect of left elevator de󰅮lection (𝐶𝐷𝛿𝑒𝐿) versus 𝛼 using the

updated lookup tables. Wind tunnel data exists for 𝛿𝑒 = {−10, 0, 20} deg; the other values are

interpolatedwithin the range of de󰅮lection. The Simulinkmodel can linearly extrapolate for 𝛿𝑒

outside the [-10, 20] range, but it is not necessary to validate the correctness of the enhanced

models. As Figure 4.4 shows, the drag coef󰅮icient correctly increases as 𝛼 increases (due to the

longitudinal component of the increased lift force) and as 𝛿𝑒𝐿 becomes more positive (which
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Figure 4.4: Drag force coef󰅮icient for left elevator (𝐶𝐷𝛿𝑒𝐿). The coef󰅮icient for the right elevator

is identical.

increases the effective 𝛼 of the surface). Not pictured is the data for 𝐶𝐷𝛿𝑒𝑅 , which matches that

of Figure 4.4 as expected.

Figure 4.5 similarly shows the drag coef󰅮icient for left 󰅮lap de󰅮lection, 𝐶𝐷𝛿𝑓𝐿 . Wind tunnel

data only exists for 𝛿𝑓 = {0, 30} deg, so the model is interpolated such that the effects are

modeled on the 𝛿𝑓𝐿 ∈ [−25, 25] deg interval. Given any de󰅮lection 𝛿𝑓𝐿, it is assumed that

the drag coef󰅮icient is equivalent for de󰅮lection−𝛿𝑓𝐿; the lookup tables for 𝐶𝐷𝛿𝑓𝐿 are extended

accordingly. Like the elevators, the right 󰅮lap drag coef󰅮icient is identical to the left.

The effects of ailerons on drag are unmodeled for Ibis; hence, there is no drag penalty for

use of ailerons. For Baldr, which may use unusual control allocation to gain a reliability ad-

vantage over Ibis, this effect should be modeled more carefully. Because the aileron is roughly

of the same dimensions as the 󰅮lap, and because both surfaces are longitudinally equidistant

from the nose of the vehicle, the simplifying assumption was made that:

𝐶𝐷𝛿𝑎𝐿 = 1/2 ⋅ 𝐶𝐷𝛿𝑓(𝛼, 𝛽, 𝛿𝑎𝐿, 𝐽) (4.7)

Thus, the effects of the aileron de󰅮lection are determined as if it was an equivalent 󰅮lap de󰅮lec-

tion. This relationship holds for the right aileron and right 󰅮lap, and plots of these relation-

ships are equivalent to the data shown in Figure 4.5. It should be noted that, although the 󰅮laps
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Figure 4.5: Drag force coef󰅮icient for left 󰅮lap (𝐶𝐷𝛿𝑓𝐿). The coef󰅮icients for the right 󰅮lap, left

aileron, and right aileron are identical.

lookup table takes 𝛽 as an input, the 󰅮lap force and moment coef󰅮icients do not depend on 𝛽.

The inclusion of the 𝛽 parameter is to ensure that the aileron lookup tables have consistent

dimensions (𝐶𝑙𝛿𝑎 depends on 𝛽).

Tunnel data for rudder dragdoes not exist, soweassume that𝐶𝐷𝛿𝑟𝑇 ≡𝐶𝐷𝛿𝑟𝐵 ≡0. The lookup

tables in the Baldr simulation are populated with zeros for relationships where good data is

absent. This will enable dynamic updates to the lookup tables based upon 󰅮light data collected

in future system identi󰅮ication experiments.

Side Force Coef󰅯icient (𝐶𝑌) Modeling

All Baldr horizontal surfaces are assumed to contribute zero side force. Hence, modeling 𝐶𝑌 is

restricted to the top and bottom rudders. The original lookup table data for𝐶𝑌𝛿𝑟 is only de󰅮ined

for 𝛿𝑟 ∈ {−20,−5, 0}. The lookup tables must be expanded such that

∀𝛿𝑟 > 0, 𝐶𝑌𝛿𝑟(𝛼, 𝛽, 𝛿𝑟, 𝐽) = 𝐶𝐿𝛿𝑓(𝛼, −𝛽,−𝛿𝑟, 𝐽) (4.8)

With thismodi󰅮ication, the lookup tables canbe furthermodi󰅮ied to account for the split rudder.

As described in Section 4.1.1, the top and bottom rudders are sized such that they induce

equal side force for equal de󰅮lection. Thus, the values in the Ibis lookup tables corresponding
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Figure 4.6: Side force coef󰅮icient for top rudder (𝐶𝑌𝛿𝑟𝑇). The coef󰅮icient for the bottom rudder

is identical.

to rudder drag can be split equally between the top and bottom rudder as shown in Equa-

tions 4.9-4.10.

𝐶𝑌𝛿𝑟𝑇(𝛼, 𝛽, 𝛿𝑟𝑇, 𝐽) = 1/2 ⋅ 𝐶𝑌𝛿𝑟(𝛼, 𝛽, 𝛿𝑟𝑇, 𝐽) (4.9)

𝐶𝑌𝛿𝑟𝐵(𝛼, 𝛽, 𝛿𝑟𝐵, 𝐽) = 1/2 ⋅ 𝐶𝑌𝛿𝑟(𝛼, 𝛽, 𝛿𝑟𝐵, 𝐽) (4.10)

Figure 4.6 shows the contribution of the top rudder to the side force coef󰅮icient.

Lift Force Coef󰅯icient (𝐶𝐿) Modeling

Recall that the original lookup table data for 𝐶𝐿𝛿𝑓 is de󰅮ined for 𝛿𝑓 ∈ {0, 30}. The lookup tables

must be expanded such that

∀𝛿𝑓 < 0, 𝐶𝐿𝛿𝑓(𝛼, 𝛽, 𝛿𝑓, 𝐽) = 𝐶𝐿𝛿𝑓(𝛼, 𝛽, −𝛿𝑓, 𝐽) (4.11)

With this modi󰅮ication, the lift force coef󰅮icient modeling can be extended using the same ap-

proach used for the drag force coef󰅮icient. The 𝐶𝐿 values from the Ibis lookup tables are split
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equally for the left and right elevator and 󰅮laps (Equations 4.12-4.15).

𝐶𝐿𝛿𝑒𝐿(𝛼, 𝛿𝑒𝐿, 𝐽) = 1/2 ⋅ 𝐶𝐿𝛿𝑒(𝛼, 𝛿𝑒𝐿, 𝐽) (4.12)

𝐶𝐿𝛿𝑒𝑅(𝛼, 𝛿𝑒𝑅, 𝐽) = 1/2 ⋅ 𝐶𝐿𝛿𝑒(𝛼, 𝛿𝑒𝑅, 𝐽) (4.13)

𝐶𝐿𝛿𝑓𝐿(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) = 1/2 ⋅ 𝐶𝐿𝛿𝑓(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) (4.14)

𝐶𝐿𝛿𝑓𝑅(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) = 1/2 ⋅ 𝐶𝐿𝛿𝑓(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) (4.15)

The 𝐶𝐿 model for the left/right ailerons is the same as that for the left/right 󰅮laps. Note

that the aileron sign convention, for the purposes of this work, departs from the usual con-

vention. Ordinarily, a positive aileron de󰅮lection occurs with the right aileron’s trailing edge

down and with the left aileron’s trailing edge up. Because Baldr uses decoupled ailerons, both

ailerons are de󰅮ined as having positive de󰅮lections with their trailing edges down. This simpli-

󰅮ies the modeling of longitudinal aerodynamic effects. These changes are re󰅮lected by Equa-

tions 4.16-4.17.

𝐶𝐿𝛿𝑎𝐿 = 1/2 ⋅ 𝐶𝐿𝛿𝑓(𝛼, 𝛽, 𝛿𝑎𝐿, 𝐽) (4.16)

𝐶𝐿𝛿𝑎𝑅 = 1/2 ⋅ 𝐶𝐿𝛿𝑓(𝛼, 𝛽, 𝛿𝑎𝑅, 𝐽) (4.17)

Figures 4.7-4.8 show the lift force coef󰅮icient for left elevator and left 󰅮lap, respectively. The

model displayed Figure 4.8 is identical to that of the right 󰅮lap and both ailerons.

Roll Moment Coef󰅯icient 𝐶𝑙

The aileron is the only Ibis surface for which the roll moment effects are modeled. The lookup

tables are de󰅮ined for 𝛿𝑎 ∈ {0, 5, 25} deg, and they must be expanded such that

∀𝛿𝑎 < 0, 𝐶𝑙𝛿𝑎(𝛼, 𝛽, 𝛿𝑎) = 𝐶𝑙𝛿𝑎(𝛼, −𝛽,−𝛿𝑎) (4.18)

Note that new table entries with negated 𝛽 and 𝛿𝑎 breakpoints must be established. With this

modi󰅮ication, the lookup table can be further modi󰅮ied to account for the decoupled ailerons

on Baldr (Equations 4.19-4.20).

𝐶𝑙𝛿𝑎𝐿(𝛼, 𝛽, 𝛿𝑎𝐿) = −1/2 ⋅ 𝐶𝑙𝛿𝑎(𝛼, 𝛽, 𝛿𝑎𝐿) (4.19)

𝐶𝑙𝛿𝑎𝑅(𝛼, 𝛽, 𝛿𝑎𝐿) = 1/2 ⋅ 𝐶𝑙𝛿𝑎(𝛼, 𝛽, 𝛿𝑎𝑅) (4.20)

Note the sign change for the left aileron due to the different sign conventions used in the tunnel

experiments and in this dissertation. Figure 4.9 shows the roll moment coef󰅮icient for the left

aileron; the coef󰅮icient for the right aileron is the negative of the data shown.
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Figure 4.7: Lift force coef󰅮icient for left elevator (𝐶𝐿𝛿𝑒𝐿). The coef󰅮icient for the right elevator is

identical.
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Figure 4.8: Lift force coef󰅮icient for left 󰅮lap (𝐶𝐿𝛿𝑓𝐿). The coef󰅮icients for the right 󰅮lap, left

aileron, and right ailerons are identical.
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Figure 4.9: Roll moment coef󰅮icient for left aileron (𝐶𝑙𝛿𝑎𝐿). The coef󰅮icient for the right aileron

is the negative of the data shown here.

The rollmoment coef󰅮icient for the left and right elevators is unmodeled for Ibis. Asymmet-

ric de󰅮lections can induce a rolling moment, however, so these effects must be characterized.

The roll moment is modeled as the lift force acting upon each elevator surface multiplied by

the roll moment arm length

𝐶𝑙𝛿𝑒𝐿(𝛼, 𝛿𝑒𝐿, 𝐽) = 𝐶𝐿𝛿𝑒𝐿(𝛼, 𝛿𝑒𝐿, 𝐽) ⋅
𝑦̄ℎ𝑠𝑡𝑎𝑏

𝑏
(4.21)

𝐶𝑙𝛿𝑒𝑅(𝛼, 𝛿𝑒𝑅, 𝐽) = −𝐶𝐿𝛿𝑒𝑅(𝛼, 𝛿𝑒𝑅, 𝐽) ⋅
𝑦̄ℎ𝑠𝑡𝑎𝑏

𝑏
(4.22)

where 𝑏 is the aircraft wingspan and 𝑦̄ℎ𝑠𝑡𝑎𝑏 is the moment arm length (i.e., the distance from

the left horizontal stabilizer center of pressure to 𝑋𝑏). The center of pressure is assumed to

be the centroid of the surface. Scaling 𝑦̄ℎ𝑠𝑡𝑎𝑏 by 𝑏 preserves the non-dimensionality of 𝐶𝑙 . For

𝛿𝑒𝐿 > 0, 𝐶𝐿𝛿𝑒𝐿 > 0; the increased lift force on the left wing induces a positive rolling moment.

For 𝛿𝑒𝑅 > 0, however, a negative rolling moment is induced (hence, the sign difference in

Equation 4.22).

A similar approach is used tomodel the roll coef󰅮icients for the rudders and 󰅮laps, as shown
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Figure 4.10: Roll moment coef󰅮icient for left 󰅮lap (𝐶𝑙𝛿𝑓𝐿). The coef󰅮icient for the right 󰅮lap is the

negative of the data shown here.

in Equations 4.23-4.26.

𝐶𝑙𝛿𝑟𝑇(𝛼, 𝛽, 𝛿𝑟𝑇, 𝐽) = 𝐶𝑌𝛿𝑟𝑇(𝛼, 𝛽, 𝛿𝑟𝑇, 𝐽) ⋅
𝑧̄𝑟𝑇

𝑏
(4.23)

𝐶𝑙𝛿𝑟𝐵(𝛼, 𝛽, 𝛿𝑟𝐵, 𝐽) = −𝐶𝑌𝛿𝑟𝐵(𝛼, 𝛽, 𝛿𝑓𝐵, 𝐽) ⋅
𝑧̄𝑟𝐵

𝑏
(4.24)

𝐶𝑙𝛿𝑓𝐿(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) = 𝐶𝐿𝛿𝑓𝐿(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) ⋅
𝑦̄𝑤𝑖𝑛𝑔

𝑏
(4.25)

𝐶𝑙𝛿𝑓𝑅(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) = −𝐶𝐿𝛿𝑓𝑅(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) ⋅
𝑦̄𝑤𝑖𝑛𝑔

𝑏
(4.26)

𝑧̄𝑟𝑇 and 𝑧̄𝑟𝐵 are the distance from the rudder surface center of pressure to 𝑋𝑏 for the top and

bottom rudder, respectively. Note that Equations 4.23-4.24 use 𝐶𝑌 to compute the rolling mo-

ment induced by the split rudders. In Equations 4.25-4.26, 𝑦̄𝑤𝑖𝑛𝑔 is the distance from thewing

center of pressure to 𝑋𝑏.

Figure 4.10 shows the roll moment coef󰅮icient for the left aileron; as indicated in Equa-

tion 4.26, the coef󰅮icient for the right aileron is the negative of the data shown. Roll moment

coef󰅮icient 󰅮igures for the top and bottom rudders are omitted; their roll effects are 1-2 orders

of magnitude smaller, respectively, than the aileron surfaces.
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Pitch Moment Coef󰅯icient 𝐶𝑚

The Ibis simulation includes 𝐶𝑚 models for both the elevator and the 󰅮laps. The lookup table

values canbe split to describe the contributions of the left and right elevator and 󰅮laps as shown

in Equations 4.27-4.32.

𝐶𝑚𝛿𝑒𝐿
(𝛼, 𝛽, 𝛿𝑒𝐿, 𝐽) = 1/2 ⋅ 𝐶𝑚𝛿𝑒

(𝛼, 𝛽, 𝛿𝑒𝐿, 𝐽) (4.27)

𝐶𝑚𝛿𝑒𝑅
(𝛼, 𝛽, 𝛿𝑒𝑅, 𝐽) = 1/2 ⋅ 𝐶𝑚𝛿𝑒

(𝛼, 𝛽, 𝛿𝑒𝑅, 𝐽) (4.28)

𝐶𝑚𝛿𝑓𝐿
(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) = 1/2 ⋅ 𝐶𝑚𝛿𝑓

(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) (4.29)

𝐶𝑚𝛿𝑓𝑅
(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) = 1/2 ⋅ 𝐶𝑚𝛿𝑓

(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) (4.30)

The pitching moment due to ailerons is related to the lift and drag forces induced by the

surface de󰅮lection. Because the ailerons and 󰅮laps are assumed tohave the same lift anddrag ef-

fects, it follows that the 𝐶𝑚 model for the decoupled 󰅮laps (Equations 4.29-4.32) also describes

the 𝐶𝑚 effects of the decoupled ailerons:

𝐶𝑚𝛿𝑎𝐿
(𝛼, 𝛽, 𝛿𝑎𝐿, 𝐽) = 𝐶𝑚𝛿𝑓𝐿

(𝛼, 𝛽, 𝛿𝑎𝐿, 𝐽) (4.31)

𝐶𝑚𝛿𝑎𝑅
(𝛼, 𝛽, 𝛿𝑎𝑅, 𝐽) = 𝐶𝑚𝛿𝑓𝑅

(𝛼, 𝛽, 𝛿𝑎𝑅, 𝐽) (4.32)

Figures 4.11-4.12 show the pitch moment coef󰅮icients for the left elevator and left 󰅮lap,

respectively. The data shown in Figure 4.12 is the same as for the left and right aileron pitch

moment coef󰅮icients.

The pitching moment due to rudder de󰅮lection is assumed to be zero.

YawMoment Coef󰅯icient 𝐶𝑛

The Ibis simulation only includes 𝐶𝑛 models for 𝛿𝑟 ∈ {−20,−5, 0}, and the lookup tables must

be expanded such that

∀𝛿𝑟 < 0, 𝐶𝑛𝛿𝑟(𝛼, 𝛽, 𝛿𝑟, 𝐽) = 𝐶𝑛𝛿𝑓(𝛼, −𝛽,−𝛿𝑟, 𝐽) (4.33)

With this modi󰅮ication, the lookup table can be futher modi󰅮ied to account for the split rudder

(Equations 4.34-4.35). Because the split rudders are designed to produce equal side force for

equal de󰅮lection, the yawing moment models are equivalent.

𝐶𝑛𝛿𝑟𝑇(𝛼, 𝛽, 𝛿𝑟𝑇) = 1/2 ⋅ 𝐶𝑛𝛿𝑟(𝛼, 𝛽, 𝛿𝑟𝑇) (4.34)

𝐶𝑛𝛿𝑟𝐵(𝛼, 𝛽, 𝛿𝑟𝐵) = 1/2 ⋅ 𝐶𝑛𝛿𝑟(𝛼, 𝛽, 𝛿𝑟𝐵) (4.35)

39



0 10 20 30 40

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

α [deg]

∆
 C

m

 

 

δeL = −10°

δeL = −5°

δeL = 0°

δeL = 5°

δeL = 10°

δeL = 15°

δeL = 20°

Figure 4.11: Pitch moment coef󰅮icient for left elevator (𝐶𝑚𝛿𝑒𝐿
). The coef󰅮icient for the right

elevator is identical.
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Figure 4.12: Pitch moment coef󰅮icient for the left 󰅮lap (𝐶𝑚𝛿𝑓𝐿
). The coef󰅮icients for the right

󰅮lap, left aileron, and right aileron are identical.
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Figure 4.13: Yaw moment coef󰅮icient for top rudder (𝐶𝑛𝛿𝑟𝑇). The coef󰅮icient for the bottom

rudder is identical.

Figure 4.13 shows the yaw moment coef󰅮icient for the top rudder; the coef󰅮icient for the

bottom rudder is identical.

Similar to the methods used for modeling 𝐶𝑙 , 𝐶𝑛 is computed by determining the drag

force on the relevant surface and multiplying by the yaw moment arm length – the distance

to 𝑍𝑏. This approach is followed for each of the six horizontal surfaces according to Equa-

tions 4.36-4.41.

𝐶𝑛𝛿𝑒𝐿(𝛼, 𝛽, 𝛿𝑒𝐿, 𝐽) = −𝐶𝐷𝛿𝑒𝐿(𝛼, 𝛽, 𝛿𝑒𝐿, 𝐽) ⋅
𝑦̄ℎ𝑠𝑡𝑎𝑏

𝑏
(4.36)

𝐶𝑛𝛿𝑒𝑅(𝛼, 𝛽, 𝛿𝑒𝑅, 𝐽) = 𝐶𝐷𝛿𝑒𝑅(𝛼, 𝛽, 𝛿𝑒𝑅, 𝐽) ⋅
𝑦̄ℎ𝑠𝑡𝑎𝑏

𝑏
(4.37)

𝐶𝑛𝛿𝑓𝐿(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) = −𝐶𝐷𝛿𝑓𝐿(𝛼, 𝛽, 𝛿𝑓𝐿, 𝐽) ⋅
𝑦̄𝑤𝑖𝑛𝑔

𝑏
(4.38)

𝐶𝑛𝛿𝑓𝑅(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) = 𝐶𝐷𝛿𝑓𝑅(𝛼, 𝛽, 𝛿𝑓𝑅, 𝐽) ⋅
𝑦̄𝑤𝑖𝑛𝑔

𝑏
(4.39)

𝐶𝑛𝛿𝑎𝐿(𝛼, 𝛽, 𝛿𝑎𝐿, 𝐽) = −𝐶𝐷𝛿𝑎𝐿(𝛼, 𝛽, 𝛿𝑎𝐿, 𝐽) ⋅
𝑦̄𝑤𝑖𝑛𝑔

𝑏
(4.40)

𝐶𝑛𝛿𝑎𝑅(𝛼, 𝛽, 𝛿𝑎𝑅, 𝐽) = 𝐶𝐷𝛿𝑎𝑅(𝛼, 𝛽, 𝛿𝑎𝑅, 𝐽) ⋅
𝑦̄𝑤𝑖𝑛𝑔

𝑏
(4.41)

From Equations 4.5-4.7, it is apparent that Equations 4.38 and 4.40 are equivalent relations;
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Figure 4.14: Yaw moment coef󰅮icient for left elevator (𝐶𝑛𝛿𝑒𝐿). The coef󰅮icient for the right ele-

vator is negative of the data shown.

this also holds for Equations 4.39 and 4.41.

Figures 4.14-4.15 show the yaw moment coef󰅮icient for the left elevator and left 󰅮lap, re-

spectively. 𝛼 is chosen as the independent variable for these 󰅮igures (as opposed to 𝛽) because

these coef󰅮icients do not vary with 𝛽 according to the models. This phenomenon is likely a

de󰅮iciency in the model, but the 𝛽 dependence can be further evaluated in future 󰅮light testing.

The data shown in Figure 4.15 is identical to that for the left aileron, and the negative of the

right 󰅮lap and right aileron. Note that de󰅮lection of the 󰅮laps and ailerons induce signi󰅮icantly

larger yawing moments than do the elevators (but smaller than the rudders).

Summary

This section has highlighted the de󰅮iciencies of the original Ibis aerodynamicmodel for simula-

tions using split and/or analytically decoupled control surfaces. Based on the physical modi󰅮i-

cations to the rudder and elevator that were made on Baldr, an enhanced aerodynamic model

was developed which characterized the most signi󰅮icant effects for each independent control

surface. These characterizationsweremade using a 󰅮irst principles geometry-based approach,

with the goal of establishing a new baseline aerodynamic model that is more representative
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Figure 4.15: Yaw moment coef󰅮icient for left 󰅮lap (𝐶𝑛𝛿𝑓𝐿). The coef󰅮icient for the left aileron is

identical, while the coef󰅮icients for the right 󰅮lap and right aileron are the negative of the data

shown.
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off the real effects than the original. A visual summary of those changes is presented in Ta-

ble 4.2, where maroon denotes the relationships originally modeled for Ibis from wind tunnel

data, and gold denotes the extensions to those models for split and decoupled surfaces. The

Table 4.2: Coef󰅮icients in Original (Maroon) and Enhanced (Gold) Aerodynamic Models

𝐶𝐷 𝐶𝑌 𝐶𝐿 𝐶𝑙 𝐶𝑚 𝐶𝑛

𝛿𝑒

𝛿𝑒𝐿, 𝛿𝑒𝑅

𝛿𝑎

𝛿𝑎𝐿, 𝛿𝑎𝑅

𝛿𝑟

𝛿𝑟𝑇, 𝛿𝑟𝐵

𝛿𝑓

𝛿𝑓𝐿, 𝛿𝑓𝑅

lookup tables for Baldr were con󰅮igured such that all relationships, including the unmodeled

relationships marked with gray, could be dynamically updated using 󰅮light test data from sys-

tem identi󰅮ication experiments. Improving this aerodynamic model enables further research

in the areas of fault-tolerant recon󰅮igurable control using the UMN Freyja simulation and Baldr

UAV.

44



Chapter 5

Reliability Assessment Using Trim

State Discovery

Conventional industry reliability approaches do not scale well to small UAS. The FMEA tradi-

tionally assumesworst-case effects of failures and can be overly conservative. Typically, perva-

sive hardware redundancywith thorough FMEA and FTA is suf󰅮icient to achieve the high levels

of reliability that have become standard in the commercial aerospace industry. Where adaptive

or recon󰅮iguration strategies are used, they are limited and can be crude. Small UAS, however,

do not have the luxury of pervasive hardware redundancy. For truly reliable small UAS, analyt-

ical redundancy approachesmust be developed that can quickly and accurately detect failures,

isolate failures, and recon󰅮igure the control strategy to safely accommodate failures. Extending

the FMEAusing detailed control systems analysis complement traditional tools by determining

which 󰅮light conditions or operational modes may be achievable for a healthy and faulted sys-

tem. Developing a deeper understanding of a system’s physical performance limitations can

provide a richer view of failure modes, their effects and criticality, design changes necessary

to prevent or mitigate overall risk, and insight regarding appropriate certi󰅮ication procedures.

This section describes the determination of the achievable 󰅮light envelope for Ibis andBaldr

under different control coupling con󰅮igurations. Splitting the control surfaces, as recomm-

mended for Baldr in Chapter 4 provides hardware redundancy for surface actuation failures.

Further recon󰅮igurationbydecoupling the control commands to each surfacepair provides fur-

ther analytical redundancy. Control action can sometimes be reallocated to different effectors

to compensate for the loss of control authority in a failed channel; this capability is necessary

for many active adaptive control techniques.

A trim state discovery analysis is used to determine the 󰅮light envelope for a single 󰅮light
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condition – steady wings-level 󰅮light. After identifying the operating points within the achiev-

able 󰅮light envelope, a linear model can be obtained for each operating point. Several familiar

linear analysis tools can be applied to this linear model set, and the resulting data will reveal

the extent to which the vehicle can accommodate faults such as those described in Chapter 3

and Appendix A.

5.1 Trim State Discovery Method

The vehicle model has implicit state equations in the general form 𝑓(𝐱̇, 𝐱, 𝐮) = 0, where 𝑓

is an array of nonlinear functions, 𝐱 is the system state vector, and 𝐮 is the input vector. An

equilibrium point of the nonlinear system is achieved when these state equations are satis󰅮ied

by 𝐱̇ ≡ 0, 𝐮 ≡ 0 (or constant). For an aircraft, this is said to be a stick-󰅳ixed, steady-state 󰅮light

condition.

The Earth position equations ofmotion can be decoupled and excluded from consideration

in the trimming procedure. A steady-state 󰅮light condition can be described using the remain-

ing states. The 󰅮light condition of interest is steady, wings-level 󰅮light (SLF), and the following

constraints must hold for SLF:

𝑝̇, 𝑞̇, 𝑟̇and 𝑢̇, 𝑣̇, 𝑤̇ (equivalently 𝑉̇, 𝛽̇, 𝛼̇) ≡ 0 (5.1)

𝜙, 𝜙̇, 𝜃̇, 𝜓̇ ≡ 0 ⇔ 𝑝, 𝑞, 𝑟 ≡ 0 (5.2)

where 𝑝, 𝑞, and 𝑟 are the body-frame angular velocities, 𝑢, 𝑣, and 𝑤 are the body-frame ve-

locities, and 𝜙, 𝜃, and 𝜓 are the roll, pitch, and yaw angles respectively. SLF is chosen as the

reference 󰅮light condition because it is such a common 󰅮light mode during cruise phase and

for 󰅮lying from waypoint to waypoint. A vehicle that is unable to maintain SLF would, in most

instances, be unable to complete its mission and would be at risk for loss of control or total

loss of vehicle.

A particular SLF condition is chosen by specifying the trim targets airspeed 𝑉∗ = 23m/s,

󰅮light path angle 𝛾∗ = 0deg, sideslip 𝛽∗ = 0 deg, and altitude ℎ∗ = 100m. This SLF condi-

tion represents the nominal experimental 󰅮light test condition for most Ibis research. A trim

solution of the form 𝑓(𝐱∗, 𝐮∗) = 0 is computed via numerical gradient-descent optimization

(fmincon), in which 𝐱∗ and 𝐮∗ are the trimmed state and control input vectors, respectively.

The trim solution for this nominal, unfaulted 󰅮light condition is denoted (𝐱∗𝟎, 𝐮
∗
𝟎) [25].

A stuck elevator primarily affects the aircraft longitudinal dynamics, for example. The ob-

jective of the trim state discovery is to determine the set of feasible SLF trim conditions across
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Figure 5.1: Counterclockwise spiral trim target selection over airspeed - angle of attack grid.

the 𝑉-𝛼 plane (i.e., sideslipping conditions are ignored and 𝛽 ≡ 0). To achieve this, trim at-

tempts are made at locations throughout the 𝑉-𝛼 plane that are de󰅮ined by a rectangular grid

centered at (𝑉∗0 , 𝛼
∗
0) = (23, 4.5)with grid increments (Δ𝑉 , Δ𝛼) = (0.34, 0.25).

The numerical optimization algorithm used for trimming is sensitive to the initial condi-

tions provided to the nonlinear simulation model. The algorithm performs more effectively

when the initial inputs, outputs, and states are ‘close’ to the solution. The results from a previ-

ously determined trim condition are used as initial conditions to better condition subsequent

optimizations. Three features of the trim state discovery algorithm help to condition the opti-

mizations for the best results. First, 󰅮ine grid increments are selected to minimize the changes

due to nonlinear effects between grid locations. Second, the extent of the viable 󰅮light en-

velope is determined by successively moving outward from the nominal trim condition in a

counterclockwise spiral path (Fig. 5.1). The full rectangular grid is covered by the spiral path,

and trim attempts are made at each point along the path. This quasi-polar approach allows

for an exploration of the trim space with a monotonically-increasing distance from the well-

understood nominal trim condition. Finally, the distance in the 𝑉-𝛼 plane to all previously-

determined successful trim conditions is obtained at each spiral path location. The nearest

previously-determined successful trim condition results are selected to initialize the nonlinear

model trim optimization. Together these safeguards ensure a well-conditioned optimization

and improved quality of results. Additionally, the realistic input saturation limits are charac-

terized in the optimization speci󰅮ications; all control surfaces are restricted to de󰅮lections on
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the [-25, 25] deg interval, and the throttle is limited to nondimensional values on [0, 1]. These

saturation limits are accurate for UMN FRP aircraft.

The trim state discovery procedure can be summarized as follows:

1. Con󰅮igure nonlinear model in Freyja simulation package for aircraft of interest.

2. Set trim target for reference 󰅮light condition of interest

3. Trim aircraft at this target to obtain initial operating point

4. Generate spiral trim target path in 𝑉-𝛼 plane as shown in Fig 5.1

5. Attempt trim at each location in spiral path

(a) Compute distances to all previously-determined successful operating points in 𝑉-𝛼

space and select nearest operating point

(b) Initialize nonlinear model with values from nearest operating point

(c) Attempt trim; if successful, save results.

5.2 Achievable SteadyWings-level Flight Envelope for Ibis

The trim state discovery procedure is 󰅮irst applied for the Ibis aircraft using the conventional

control surface con󰅮iguration described in Section 4.1. Thus, the 󰅮laps are directly coupled

while the ailerons are inversely coupled. A total of 1,298 (out of 10,201) operating conditions

satisfying the SLF constraintswere identi󰅮ied over the𝑉-𝛼 trim target grid. Fig. 5.2 shows these

operating points projected onto the 𝑉-𝛼 plane. The SLF envelope is contiguous when viewed

in the 𝑉-𝛼 plane. At the slowest airspeeds, the velocity contribution to lift force is reduced

and higher angles of attack (with corresponding increases in lift coef󰅮icient) are required to

achieve suf󰅮icient lift for SLF. As the airspeed increases, the velocity contribution to the lift force

outweighs increases in the lift coef󰅮icient – allowing for SLFwith reduced angles of attack. Note

that the vehicle is limited to angles-of-attack on the [0, 15] deg interval, while the airspeeds

vary between [12, 37]m/s.

Fig. 5.3displays the sameoperatingpoints projected in the𝛿𝑒-𝛼 plane, revealing that nearly

all discovered trim conditions have negative elevator de󰅮lection. An alternative way to inter-

pret Fig. 5.3 is the set of achievable SLF conditions with a stuck elevator fault of varying mag-

nitudes. Each vertical slice of the 󰅮light envelope indicates the achievable angle of attack range

when the elevator is stuck at a given position. Hence, Ibis could not be trimmed in SLF with an
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Figure 5.2: Achievable SLF conditions identi󰅮ied via trim state discovery for Ibis aircraft.

elevator stuck at any positive de󰅮lection. A small number of operating points are achievable for

𝛿𝑒 < -15 deg, but these points are not contiguouswith the rest of the 󰅮light envelope. One could

infer that attempting to operate at 𝛿𝑒 < -15 deg may be dif󰅮icult when facing environmental

and other disturbances in a real operating environment. Also note that there are few achiev-

able trim conditions with 𝛿𝑒 near 0. This suggests that SLF likely cannot be maintained with

a 󰅮loating surface elevator failure. Thus, a large portion of the [-25, 25] deg allowable elevator

de󰅮lection range falls outside of the envelope where SLF is achievable.

The values of all inputs across the SLF 󰅮light envelope can be viewed in a similar format as

Fig. 5.3. Those plots are omitted in this dissertation, but Ibis requires signi󰅮icant aileron and

󰅮lap de󰅮lections as well as large throttle inputs to reach many locations within the SLF 󰅮light

envelope. Hence, even though much of the available elevator control authority is unused, the

same cannot be said for all inputs.

One way to check the results of the trim state discovery is to examine experimental data

fromprior Ibis research 󰅮light tests. Flightswhere the aircraft wasmostly 󰅮lying at SLF, or near-

SLF, conditions were selected, and the data was extracted for when the vehicle was 󰅮lying with

the autopilot engaged. This 󰅮light test data can be plotted in the same planes as the operating

points identi󰅮ied via trim state discovery to provide a comparison between the simulation and
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Figure 5.3: Achievable SLF conditions identi󰅮ied via trim state discovery for Ibis aircraft pro-

jected in 𝛿𝑒-𝛼 plane.

experimental results. Fig. 5.4 shows the behavior of Ibis in the 𝑉-𝛼 plane. Note that the 󰅮light

data is aggregated; some of the data points are from 󰅮light conditions other than SLF. Data ob-

tained at some of these other conditions is likely responsible for some of the 󰅮light envelope

excursions shown in Fig. 5.4. In general, there is large agreement between the experimental

data and the 󰅮light envelope obtained via trim state discovery simulation. As stated previously,

most Ibis 󰅮light tests are conducted at 𝑉 = 23m/s, and consequently, the 󰅮light test data is

clustered near that airspeed. Further explanations for disagreements between the simulation

and experimental data could include (i) model or simulation inaccuracy; (ii) unmodeled en-

vironmental effects encountered during 󰅮light tests (e.g., wind gusts); (iii) sensor inaccuracy

for the angle-of-attack vane and pitot-static probes used to collect measurements of 𝛼 and 𝑉.

Another way to examine the question of system vulnerability to elevator faults is to view the

relative incidence of different elevator de󰅮lections during SLF. Fig. 5.5 shows the experimental

󰅮light test data in the 𝛿𝑒 (commanded) - 𝛼 plane. The commanded elevator positions are pre-

dominately clustered in the interval [-11, -2] deg, albeit at a lower angle of attack than the trim

state discovery predicted would be possible. The data suggests that if an elevator is going to

get stuck in SLF, it is likely to get stuck in a position where SLF could plausibly be maintained.
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Figure 5.4: Ibis 󰅮llight envelope excursions during 󰅮light tests. Note that the 󰅮light data is ag-

gregate, and includes some data from 󰅮light conditions other than SLF.

While servos are most likely to stick at their last functioning position due to an internal gear

failure, other events may cause servos to become stuck outside their typical range of opera-

tion. In these rare cases, recon󰅮iguration or adaptation to maintain SLF may not be possible,

and alternative emergency measures must be considered.

When the experimental data is visualized in this space, 󰅮light envelope excursions aremore

evident. It may be the case that the trim routine built into the trim state discovery yields a

conservative estimate of the 󰅮light envelope due to numerical issues associated with the trim

optimization. That is, the procedure may to successfully trim the vehicle at some locations

where it is actually capable of 󰅮lying. There is, perhaps, no ef󰅮icient way to identify the entire

󰅮light envelope via experimentation, so the information obtained via simulation becomes the

best available information regarding the vehicle’s achievable operating regime. To reiterate,

however, the comparisons shown in Fig. 5.4-5.5 are indirect; the 󰅮light data is not exclusively

obtained at trimmed SLF conditions and likely has its own margin of error.
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Figure 5.5: Ibis 󰅮light envelope excursions during 󰅮light tests. The 󰅮light data indicated is for

the commanded elevator de󰅮lection rather than the actual position (which was not measured

during 󰅮light testing). Note that the 󰅮light data is aggregate, and includes some data from 󰅮light

conditions other than SLF.
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Figure 5.6: Achievable SLF conditions identi󰅮ied via trim state discovery for Baldr aircraft.

5.3 Linear Analysis

While signi󰅮icant insight can be gained by simply visualizing the shape of the achievable 󰅮light

envelope, a linear analysis of the systemdynamics at eachoperating point can reveal evenmore

information. The nonlinear equations of motion are linearized about all operating points to

obtain a linear model set, where each model in the set corresponds to a particular SLF trim

condition.

For the linear analysis, a new trim state discovery is 󰅮irst conducted for Baldr to take ad-

vantage of the enhanced aerodynamic modeling described in Section 4.2. A particular control

surface failuremode is con󰅮igured for the trim state discoveryprocedure to see the effects upon

the achievable 󰅮light envelope. In this case, each trim target is set such that 𝛿𝑒𝐿 ≡ 0, which

represents a 󰅮loating surface, or alternatively, a stuck surface. Fig. 5.6 shows the 1,212 achiev-

able SLF conditions identi󰅮ied forBaldrwith a failed left elevator. The overall shape of the 󰅮light

envelope is similar to that of Ibis (Fig. 5.2) when viewed in the 𝑉-𝛼 plane. At higher airspeeds,

Baldr has slightly fewer achievable operating points than Ibis. It turns out, however, that con-

trol inputs to the 󰅮laps and ailerons are signi󰅮icantly smaller than for the Ibis 󰅮light envelope

due to the ability to decouple all control surface surfaces and make 󰅮iner trim adjustments.
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5.3.1 Open-loop Analysis

Gap Metric and Plant Changes Throughout Flight Envelope

A linear model is generated for each of these operating points. One question worth investigat-

ing is how the aircraft dynamics vary across the 󰅮light envelope. The gap metric is a mathe-

matical measure of the dissimilarity between two systems with equivalent input and output

dimensions [26, 27], and it can be used to ascertain variations within the linear model set.

The gapmetric values are nondimensional, ranging from 0 to 1. A small value implies that any

controller that can stabilize system 𝐺1 is likely to stabilize system 𝐺2, with similarity between

the closed-loop gains of the two systems. A gap value of 0 indicates that 𝐺1 ≡ 𝐺2, while a gap

value of 1 implies that 𝐺1 and 𝐺2 are dissimilar and are unlikely to be stabilized by the same

controller [28].

During 󰅮light testing, theUMNFRP aircraft typically use a classical, loop-at-a-time autopilot

designed for SLFwith 𝑉 = 23m/s and ℎ = 100m (the same condition used to initialize the trim

state discovery procedure). The linear model associated with this preferred, nominal 󰅮light

testing condition (denoted 𝑃0) can be used as the baseline system for the gap metric compu-

tation throughout the linear model set. The resulting gap values between 𝑃0 and {𝑃1, 𝑃2...𝑃𝑛},

where 𝑛 is the number of linear models in the set, will measure the dissimilarity of the system

dynamics across the identi󰅮ied 󰅮light envelope. Moreover, it will provide insight regarding how

well the baseline classical controllers may be expected to perform in the event that the aircraft

must operate at some off-nominal SLF condition.

Figure 5.7 shows the computed gap values across the SLF envelope. There is a discernible

‘sweet spot’ near the nominal SLF condition where the linear models are all roughly equiv-

alent. For models obtained at airspeeds outside the [20, 25]m/s interval, however, there is

a precipitous increase in the gap values. At the slowest airspeeds, the model dynamics are

starkly different and the gap values approach 1.

Frequency Response and Relative Ef󰅯icacy of Control Inputs

By examining the frequency response characteristics across the linear model set, one can ob-

tain a direct viewof how signi󰅮icantly the input-output relationship can change inside the 󰅮light

envelope. The magnitude frequency responses are computed for each model, and the pitch

control authority of two longitudinal effectors (i.e., right elevator, throttle) is compared to that

of the right aileron. Recall that the ailerons, usually inversely coupled, were decoupled for the
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Figure 5.7: Gap values throughout the SLF envelope when compared to nominal SLF baseline

condition.

Baldr trim state discovery. A recon󰅮igured control law may attempt to create additional longi-

tudinal control authority by decoupling the ailerons so theymay act as 󰅮laperons or spoilerons.

Fig. 5.8 shows the frequency responses from [𝛿𝑒𝑅, 𝛿𝑡, 𝛿𝑎𝑅] to 𝜃 in the frequency band relevant

for vehicle control, (𝜔 = 0.1-10 rad/s). Themagnitudes for each frequency response are scaled

according to the remaining allowable control action in each channel at the respective 󰅮light

condition. For example, the throttle would have more available control authority with a trim

value of 0.5 versus 0.95 due to the impending saturation in the latter case. This adjustment is

re󰅮lected in the responses plotted in Fig. 5.8.

For the relevant frequency band, the throttle and aileron both have signi󰅮icantly poorer

longitudinal control authority than the elevator, and the control authority is even poorer in the

pitch rate channel. Hence, with a disabled elevator, there can be little active damping of pitch

rate disturbances using alternative effectors. This result suggests that any candidate adaptive

control algorithmmayhave serious dif󰅮iculty successfully controlling the vehicle if the elevator

becomes completely disabled.

A close examination of Fig. 5.8 shows that there are discrete changes in model dynamics

in different regions of the 󰅮light envelope. By visualizing the magnitude frequency response
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Figure 5.8: Magnitude frequency response from (a) right elevator to pitch angle; (b) throttle

to pitch angle; and (c) right aileron to pitch angle. The magnitudes are normalized according

to the remaining allowable input before saturation

data differently, those changes can be localized to those different parts of the 󰅮light envelope.

A simple way of quantifying pitch control authority for a given model in the set is to compute

the 𝐻∞-norm from the input channel of interest to the pitch angle output within the relevant

bandwidth. The 𝐻∞-norm is the peak gain over this frequency domain, and the greater the

norm, the better control authority that input-output channel exhibits over the system. Using

this approach, it is straightforward to assess the relative pitch control authority for each effec-

tor at each location in the 󰅮light envelope.

Fig. 5.9 shows the ratio of throttle pitch control authority to right elevator pitch control

authority (i.e., the ratio of their respective 𝐻∞ norms). Throughout almost the entire 󰅮light

envelope, the throttle channel has signi󰅮icantly less pitch control authority than the elevator.

Only at the lowest airspeeds does throttle exhibit paritywith the elevator, and it is ineffective at

airspeeds near or above that of nominal 󰅮light testing condition. At high airspeeds the throttle

exhibits almost no pitch control authority at all. These are notable observations because the

throttle is the secondary longitudinal effector after the elevator. In the event of a fully disabled

elevator, it seems unlikely that active throttle control would be effective for maintaining SLF

conditions, much less more demanding maneuvers.

Similarly, the ratio of right aileron pitch control authority to right elevator pitch control
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Figure 5.9: Relative pitch control authority,

authority can be viewed (Fig. 5.10). The data indicates that the ailerons also have the great-

est pitch control authority at low airspeeds, and also begin to exhibit greater authority at the

highest achievable speeds. In the center of the 󰅮light envelope, where 󰅮light tests are typically

conducted, neither the aileron nor the throttle has signi󰅮icant longitudinal control authority;

much of the achievable trim space has no feasible control recon󰅮iguration if the entire eleva-

tor is stuck. Displaying this information in this fashion highlights the dif󰅮iculty of using adap-

tive/recon󰅮igurable control and suggests that there are some fundamental physical limitations

to these approaches that cannot be ignored.

5.4 Summary

This chapter demonstrated that trim state discovery can be used to complement a conven-

tional failure modes and effects analysis. Determining the achievable operational regime in

various states of system health can provide detailed information regarding speci󰅮ic failure ef-

fects and system vulnerabilities. Additionally, familiar tools from linear systems analysis can

be applied to predict how the system dynamics will change throughout the 󰅮light envelope.

This analysis indicates that there is signi󰅮icant vulnerability to elevator faults, especially for

the coupled single-redundancy architecture implemented for Ibis. Baldr fares better with its
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Figure 5.10: Relative pitch control authority,

independently-actuated, decoupled surfaces, but the Ultra Stick 120 airframe appears to have

limited potential for exotic recon󰅮iguration approaches. This result is likely common for low-

cost, hobby-gradevehicles that donothaveadvancedairframedesignorhardware redundancy.

Dynamics that are more suitable for adaptive control may need to be ’designed-into’ the origi-

nal airframe for the best chances of success.

The results of this analysis reveal several avenues to improve FRP vehicle reliability and

extend research efforts at UMN. The enhanced modeling and trim state discovery tools should

be valuable for prototyping and implementing reliability algorithms such as 󰅮light envelope

protection that can be tailored to phase of 󰅮light and assessing the feasibility of active recon-

󰅮iguration algorithms. Moreover, this type of analysis can serve as an important feedback loop

to the FMEA and FTA and inform future design choices.

The trim state discovery tools designed for this research are fully compatiblewith the UMN

FRP open-source simulation package, and researchers can freely use them for their ownwork.

While the analysis in this chapterwas limited to a single class of 󰅮light conditions, steadywings-

level 󰅮light, any class of reference 󰅮light conditions can be studied (e.g. coordinated turns,

steady descent, steady climb) in conjunction with any control surface impairments of inter-

est.
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Finding ways to better integrate reliability engineering tools with control system tools will

be increasingly important as the demand for low-cost, reliable UAS soars.
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Chapter 6

Fault Detection and Isolation for

Control Surface Impairments

Designing for improved reliability can help make UAS more reliable and viable, but there will

inevitably be in-󰅮light failures that must be detected and accommodated for truly safe opera-

tion. Designing fault detection and isolation (FDI) algorithms that are suitable for UAS appli-

cations is an important plank in a comprehensive strategy to make UAS more fault-tolerant.

Exacting reliability standards for safety-critical systems spanning the energy, biomedical, and

transportation industries necessitate novel approaches to system monitoring and FDI. Ad-

vances are particularly important to the future of unmanned aviation, as the US Federal Avi-

ation Administration has been required to safely integrate UAVs into the national airspace

by 2015 [5]. To do so will require reliability certi󰅮ication procedures akin to those used for

manned aviation.

Manned aircraft have stringent reliability requirements, allowing less than a single catas-

trophicmalfunctionper109 hours of operation. Fordecades,manufacturers have achieved this

reliability via a strategy of hardware redundancy (HR) throughout the 󰅮light control systemde-

sign, encompassing multiple control surfaces, actuation systems, sensors, and 󰅮light comput-

ers [1, 2]. Voting algorithms typically check for consistency of behavior among HR subsystems

and usually provide direct fault isolation. HR, however, carries a cost, payload, and power con-

sumption penalty. The resources consumed by HR in the interest of fault-tolerance may not

allow suf󰅮icient resources for other performance objectives (e.g. payload capacity, endurance,

maneuverability). These constraints, coupled with the increasing acceptance of UAV technol-

ogy by regulators, drives an increasing demand for low-cost, fault-tolerant aerospace systems.

An alternative to HR is analytical redundancy (AR), in which health monitoring software
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uses a system process model to generate residuals (the differences between estimates and

measurements of the system states). A residual should be a good representation of the fault

of interest yet insensitive to process andmeasurement noises. Residual evaluation algorithms

involve processing and decisioning logic leading to a fault diagnosis [29]. Common techniques

for residual generation include parity-equations, state-observers, or parameter estimations

[30]. Data-driven approaches to FDI eschew model information in favor of signal processing

techniques. Data-driven techniques are often used to detect discrete changes in a process. See

[30, 31, 29] for a detailed treatment ofmodel-based andmodel-free fault detectionmethods. A

certi󰅮iable AR strategy may incorporate layered model-based and data-driven FDI approaches

with system-level evaluative and recon󰅮iguration procedures. Current vehicle health manage-

ment approaches increasingly use prognostic algorithms to estimate useful component life,

enabling condition-basedmaintenance to preemptively replace degraded components prior to

failure. These techniques are primarily built on statistical, data-driven algorithms [32]. Prog-

nostic approachesmay be useful for 󰅮leet management and can reduce the incidence of certain

faults, but any post-fault control recon󰅮iguration strategy still requires rapid, accurate FDI.

The objective of the work described in this chapter is to design and apply robust model-

based residual generation and data-driven anomaly detection approaches to a small, low-cost

UAV platform. Extensive nominal and faulted closed-loop experimental 󰅮light tests are con-

ducted with various control surface actuation fault modes selected for study. Closed-loop val-

idation of the algorithm is performed because FDI research is often performed for open-loop

systems which ignores signi󰅮icant in󰅮luences that controller robustness may have on the de-

tection performance [33]. Furthermore, using 󰅮ield-collected data enables practical evaluation

of detection approaches in the presence of realistic sensor noise, exogenous disturbances, and

unmodeled dynamics. Few model-based FDI algorithms have been applied to real data. This

work expands the literature to include validation of model-based and data-driven techniques

for both simulation and experimental data.

A robust observer residual generation algorithm based on the 𝐻∞ model-matching archi-

tecture [34, 35] is developed using a linear model of the UAV. Next, a statistics-based, data-

driven algorithm is developed to operate exclusively on raw 󰅮light test datawithout knowledge

of the system dynamics. The main contribution of this work is that experimental data allows

for a side-by-side comparison of FDI techniques arising from different philosophies of system

monitoring within a realistic operational environment. Existing literature has not shown the

experimental application of such techniques for comparable systems, and recent regulatory

changes have made practical research efforts in this area imperative. This work further pro-

vides a FDI benchmark problem for a small UAV with simulation and real 󰅮light data for other
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researchers to test their algorithms. Conclusions about strengths and weaknesses of each ap-

proach for the UAV platform and thoughts on future FDI development can be derived from this

research.

6.1 Experimental Scope

The aircraft used in the FDI design and experiments is the FRP Ultrastick 25e [36]. Note that

the Ultra Stick 25e airframe uses the conventional control surface con󰅮iguration described in

Chapter 2 rather than the split/decoupled surfaces described later in this dissertation.

The research focus is limited to the lateral-directional aircraft dynamics; commanded air-

craft maneuvers and injected faults were chosen to excite these dynamics. Hence, the 󰅮light

data signals of interest are (1) roll angle command, 𝜙𝑐𝑚𝑑 [deg]; (2) roll angle response mea-

surement, 𝜙𝑚 [deg]; (3) aileron de󰅮lection command, 𝛿𝑎𝑐𝑚𝑑
[deg]; (4) roll rate, 𝑝 [deg/s]; (5)

yaw rate, 𝑟 [deg/s]. Data acquisition in-󰅮light is at a sampling rate of 50 Hz. The aileron and

rudder control surfaces are actuated by separate, identical servos. Two controllers are used

for the FRP: a 𝐻∞ pitch-tracking autopilot controls the longitudinal motion of the aircraft and

a linear quadratic optimal roll angle controller described in detail in [37]. The pitch tracking

controller takes pitch angle 𝜃 [deg], pitch rate 𝑞 [deg], and airspeed TAS [m/s] in negative feed-

back. The roll angle controller takes as inputs the roll angle reference command 𝜙𝑐𝑚𝑑 as well

as the three state measurements 𝑝𝑚, 𝑟𝑚, and 𝜙𝑚 (each in negative feedback). A state-space

representation of the controller is given in [38].

The control and model-based FDI techniques used in this work require a linear model of

the trimmed aircarft. The steady, level reference 󰅮light condition selected has an indicated

airspeedof 17m/s and angle of attack of 4.2 deg. The six degree-of-freedomnonlinearmodel is

linearized about this condition and the longitudinal dynamics are decoupled. This yields a four

state, two input, three output linear approximation of the FRP lateral-directional dynamics, 𝐺.

The four states are (1) lateral velocity in body-frame, 𝑣 [ft/s]; (2) roll rate, 𝑝 [deg/s]; (3) yaw

rate, 𝑟 [deg/s]; (4) roll angle, 𝜙 [deg]. The two system inputs are de󰅮lections of the aileron 𝛿𝑎

[deg] and rudder 𝛿𝑟 [deg]. The three measurements of interest are 𝑝𝑚, 𝑟𝑚, and 𝜙𝑚.

To accurately characterize the FRP, the linear UAV dynamics are augmented with linear

component models in the simulation architecture (Fig. 6.1). The surface actuators with time

delay, 𝐴𝑐𝑡, aremodeledwith a 2x2 block diagonal, 󰅮irst-order systemwith 8 Hz bandwidth and

a 40 ms 󰅮irst-order Pade time delay. The roll-angle controller is denoted 𝐶, and the FDI 󰅮ilter

to be designed in Section 6.4 is denoted 𝐹. Details regarding the uncertainty model and 𝐻∞

input/output signal weighting are presented in Section 6.4.
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Figure 6.1: System Interconnection for Ultrastick UAV

6.2 Fault Scenarios Considered

Actuators and sensors provide the physical system inputs andmeasurement feedback, respec-

tively, required for desired vehicle operation. Thus, undetected faults affecting these subsys-

tems canmakeaircraft control dif󰅮icult or impossible. Thiswork focuses ondetectionof aileron

control surface actuation impairments. A set of faults are chosen for this research that excite

the lateral-directional dynamics of the aircraft and provide insight into the effects of aileron

actuation faults. Speci󰅮ically, four aileron faults were considered: (1) 5 deg aileron ramp; (2)

10 deg aileron ramp; (3) 5 deg aileron bias; (4) 10 deg aileron bias. A bias can be modeled

as erroneous, instantaneous step in the control surface position. Input biases can cause rapid

changes in aircraft behavior. An injected ramp fault involves a linear increase in the surface

de󰅮lection over some time interval and represents a non-instantaneous degradation in the ac-

tuation subsystem. Ramps are slow-acting in comparison to bias faults and aremoredif󰅮icult to

detect. Two fault magnitudes are selected in order to better understandmagnitude in󰅮luences

on fault manifestation and detection.
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6.3 Flight Testing

A 󰅮light test procedure is developed enabling repeatable aircraft maneuvers in the faulted and

unfaulted 󰅮light conditions. The experimental data can be used by model-based and model-

free detection techniques to provide vehicle health information. The reference 󰅮light condition

described in Sec. ?? is chosen for the 󰅮lights. The test maneuver is a 20 deg roll doublet. The

ability of the autopilot to successfully track this reference signal will vary depending on which

fault (if any) is engaged. The sequence of maneuvers commanded by the 󰅮light computer –

beginning with time 𝑡0 is as follows:

1. 𝑡0: controller engaged, 𝜙𝑐𝑚𝑑 = 0 deg, 𝜃𝑐𝑚𝑑 = 5 deg (constant throughout 󰅮light)

2. 𝑡0 + 2 sec: 20 deg doublet with 4 sec period

3. 𝑡0 + 6 sec: doublet complete

4. 𝑡0 + 8 sec: fault injection starts

5. 𝑡0 + 10 sec: 20 deg doublet with 4 sec period

6. 𝑡0 + 16 sec: 20 deg doublet with 4 sec period

7. 𝑡0 + 20 sec: 𝜙𝑐𝑚𝑑 = 0; ramp fault reaches 󰅮inal value

Each aileron fault mode received four 󰅮lights (except the 10 degree aileron bias with three

󰅮lights), and a complete sequence constitutes a single 󰅮light. The roll angle responses during

these maneuvers are shown in Fig. 6.2.

Subplot 6.2(a) shows the roll doublet tracking for four test 󰅮lights of the unfaulted UAV.

Note the variation in the response of the bank angle 𝜙 during the unfaulted 󰅮light. Any fault

detection 󰅮ilter, model-based or data-driven, must be robust to these variations as they are not

due to a faulty vehicle. This is part of the challenge of applying fault detection algorithms to

real 󰅮light data. Subplots 6.2(b)-(e) show tracking for the 5 deg ramp, 10 deg ramp, 5 deg bias,

and 10 deg bias fault scenarios, respectively. Note that for ramp faults the tracking degradation

does not occur until several seconds after the fault is injected at 𝑡 = 8 s. The bias faults have an

adverse impact immediately after the fault injection, though the 󰅮light control system begins to

effectively reduce the magnitude of the tracking error throughout the remainder of the 󰅮light

duration. Finally note that, as expected, the largermagnitude faultsmore adversely impact the

fault tracking performance than do smaller magnitude faults.

The linear model described in Sec. ?? is an accurate approximation of the nonlinear 󰅮light

dynamics of the FRP at the 󰅮light condition of interest. Fig. 6.3 compares the simulated and
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Figure 6.3: Experimental UAV Flight Test vs. Linear Simulation: Output measurements for

unfaulted 󰅮lights.

actual aircraft output measurements for a single unfaulted test 󰅮light. Note that the actual roll

angle and aileron commands used during the 󰅮light test are provided as inputs to the simula-

tion. There is broad agreement in the measurement outputs, and much of the disparities that

do exist are the result of a slightly out-of-trim aircraft at the initialization of the roll doublet

commands. An aircraft operating near a steady, level reference 󰅮light condition is not a highly

nonlinear system; hence, a linear approximation of the vehicle dynamics will suf󰅮ice for FDI

algorithm development. The experimental 󰅮light data is important to constructing and com-

paring the model-based and model-free fault detection methods described in the subsequent

sections. Moreover, the online availability of 󰅮light data recorded from these 󰅮light tests and

other FRP research activities is an essential component to the UAV FDI benchmark problem.

6.4 Model-based Fault Detection

Several observer-based FDI techniques have been proposed and validated using simulation

results [39, 35], yet there is a dearth of existing literature regarding application of these tech-

niques to data from real, operating engineering systems. In particular, the aerospace 󰅮light
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control community has not yet undertaken concerted efforts in this regard. Model-free health

management approaches are increasingly being applied for prognostics purposes thatmay not

provide the post-fault information necessary for automatic control recon󰅮iguration strategies

[32, ?, 40]. Data-driven anomaly detection for single autonomous vehicles has not received fo-

cused attention. Hence, the application of model-based and data-driven FDI techniques to an

experimental autonomous system such as the UMN FRP is a positive addition to the existing

literature. This section details the factorsmotivating the choice ofmodel-based detection algo-

rithm, an overview of the robust 󰅮iltering methodology, the mathematical model representing

the FRP, and the synthesis of the FDI 󰅮ilter.

6.4.1 Design Considerations

There are three broad model-based design approaches.

Integrated design

The controller and 󰅮ilter are designed simultaneously to satisfy objectives. Because the con-

troller and 󰅮ilter may be optimized to meet particular objectives, integrated design can fre-

quently yield excellent results. For many existing systems with 󰅮ixed control laws, however,

an engineer may not be able to alter the controller. Hence, the integrated approach is often

infeasible.

Discrete closed-loop design

The controller and 󰅮ilter are designed separately. This approach is often used when integrated

design is not possible since it allows for 󰅮ilter design with existing closed-loop systems. The

󰅮ilter is developed using a closed-loop system with the controller behavior is embedded into

the FDI 󰅮ilter. This approach was applied for air data sensor faults in [41, 42, 43].

Discrete open-loop design

The controller and 󰅮ilter are designed separately, and the 󰅮ilter is synthesized based upon the

open-loop system dynamics. This approachmay not achieve the same performance as the pre-

viousmethods, but it does provide the advantage of 󰅮lexibility: any controller can be used for a

given plant since the 󰅮ilter is synthesized independently. This work develops a discrete open-

loop design that will provide 󰅮lexibility for future control research with the FRP.
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For a well-performing FDI system, a candidate residual generator should exhibit the fol-

lowing desirable attributes:

• Sensitivity to certain faults and insensitivity to others

• Robustness to modeling uncertainty

• Good attenuation of external disturbances and noise at the FDI 󰅮ilter output

• Ability to distinguish faults that occur simultaneously

• A non-zero steady-state 󰅮ilter output in response to a non-zero fault; zero output other-

wise

These attributes account for many of the advantages of model-based techniques in general.

Recall that the FRP is a small, low-cost UAV. Such platforms are often out󰅮itted with low-

quality sensors and the system dynamics are not necessarily well-known as high 󰅮idelity mod-

els can be expensive to develop. Hence, robustness to model uncertainty, noise, and distur-

bances is important for the FRP and similar platforms. Robust 𝐻∞ model-based techniques

[44, 35] explicitly address model uncertainty concerns and are applicable for open-loop or a

closed-loop systems. These approaches are well-suited for the UAV FDI problem.

6.4.2 𝐻∞ FDI Formulation

The standard𝐻∞model-matching approach [34, 35] is a robust 󰅮ilteringmethodused to design

the FDI 󰅮ilter. Other robust 󰅮iltering approaches have been used in [45, 46]. This technique

seeks to minimize the 𝐻∞ norm of error signals of interest over the convex set of controllers

(or an observer, in this case), 𝐹(𝑠).

The speci󰅮ic design objective is to minimize the in󰅮inity norm (i.e worst-case gain) of the

transfer functionmatrix from aileron fault 𝐟 and sensor noise inputs 𝐧𝐩, 𝐧𝐫, 𝐧𝝓 to theweighted

fault estimation error, 𝐞̃𝐟 = 𝑊𝑃(𝐟𝐚− ̂𝐟), where ̂𝐟 is the aileron fault estimate produced by the FDI

󰅮ilter𝐹 (Fig. 6.1). Many standard algorithms to solve this problemare available in the literature

[34, 47]. Weighting functions are used to shape the frequency content of disturbances, errors,

and the 󰅮ilter performance objective across frequency. This fault detection architecture is easy

for the control engineer to adopt and adapt given its similarity to 𝐻∞ control. Moreover, its

residual generation satis󰅮ies many of the attributes desired for a FDI system.

1) Uncertainty Modeling: The dynamics of the UAV vary by 󰅮light condition. Any FDI algo-

rithm must provide accurate estimates despite these changing dynamics. The UAV can have

small airspeed changes due to disturbances, maneuvers, or unmodeled effects, hence the FDI
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󰅮ilter should be insensitive to small airspeed variations not resulting from an aileron fault.

An input multiplicative uncertainty model is used in the 𝐻∞ framework to overbound the dy-

namic uncertainty in the linearmodel at different equilibrium 󰅮light conditions ranging from𝑉

= 16-20 m/s, with the nominal equilibrium at 𝑉 = 17 m/s. For more signi󰅮icant changes in air-

speed, model accuracy and 󰅮ilter sensitivity to real faults are reduced. Thus, the quality of the

diagnosis is degraded, and a 󰅮iltering approach that incorporates scheduling may prove more

effective [42, 43].

The plant model set can be represented by 𝐺Δ(𝑠) = 𝐺(𝑠)[𝐼 + 𝑊𝑢(𝑠)Δ(𝑠)] where 𝐺(𝑠) is

the nominal plant dynamics and Δ(𝑠) ∶= {𝚫 ∶ Δ ∈ 𝐂2𝑥2, 𝜎̄(Δ) ≤ 1} is the set of all complex,

norm-bounded uncertainty. Note that the uncertainty in each channel is modeled as being en-

tirely independent of the other. 𝑊𝑢(𝑠) = diag([𝑊𝑢𝑎
(𝑠)𝑊𝑢𝑟

(𝑠)]) is a weighting function that

describes the upper bound on percentage of system gain variation from the corresponding

control input across all frequency. The UAV dynamics are linearized for straight, level 󰅮light

for airspeeds of 16-20 m/s at 1 m/s intervals, yielding a set of linear, time-invariant models.

The frequency responses of this model set from the inputs to the outputs of interest (𝑝,𝑟,𝜙)

are examined, and an appropriate𝑊𝑢 is computed to overbound the model set. The most sig-

ni󰅮icant changes in the aircraft dynamics occur at low frequencies concerning the gain from

both aileron and rudder de󰅮lection to roll rate. Selecting weighting functions to overbound

this variation with airspeed will overbound the variation in the other channels of interest as

well. Two fourth-order weighting functions were calculated using the Robust Control Toolbox

[28] to provide a tight bound for the dynamics variations.

𝑊𝑢𝑎
=
0.5338𝑠4 + 2.427𝑠3 + 21.7𝑠2 + 4.234𝑠 + .1471

𝑠4 + 13.58𝑠3 + 71.06𝑠2 + 24.67𝑠 + 0.1613
(6.1)

𝑊𝑢𝑟
=
0.5675𝑠4 + 3.591𝑠3 + 12.03𝑠2 + 1.239𝑠 + 0.03823

𝑠4 + 3.845𝑠3 + 63.18𝑠2 + 6.248𝑠 + 0.04674
(6.2)

Fig. 6.4(a)-(b) shows the magnitude frequency response of the model set while Fig. 6.4(c)

shows the the input uncertainty weights𝑊𝑢𝑎
and𝑊𝑢𝑟

. Note that the weights chosen are in-

dicative of increased levels of model uncertainty due to changing dynamics at very low and

high frequencies.

2) Fault, Sensor Noise, and Performance Weighting: Several weighting transfer functions

are de󰅮ined: aileron fault weight𝑊𝑓, roll rate sensor noise weight𝑊𝑛𝑝
, yaw rate sensor noise

weight𝑊𝑛𝑟
, roll angle sensor noise weight𝑊𝑛𝜙

, and performance weight𝑊𝑃. The frequency

responseof the aileron fault ismodeledbya 󰅮irst order low-pass 󰅮ilter𝑊𝑓 applied to the injected

fault signal. As fast faults should not signi󰅮icantly affect the UAV response, the low-pass rolls off

for frequencies exceeding the bandwidth of the UAV dynamics. The𝑊𝑓 DC gain corresponds
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Figure 6.4: Magnitude frequency responses for overbounded lateral model set and corre-

sponding multiplicative input uncertainty weighting functions.
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tions.

to a 10 degree expected maximum 𝛿𝑎 fault. The noise weighting functions are determined

based on sensormanufacturer speci󰅮ications. Sensor noise hasmostly high-frequency content,

and the yaw-rate gyroscope noise model, 𝑊𝑛𝑟
, re󰅮lects high frequency noise up to 3.5 deg/s.

The roll rate gyroscope noise model,𝑊𝑛𝑝
, uses increased gain as a tuning parameter to drive

the high frequency poles of the FDI 󰅮ilter to lower frequencies. The performance weighting

function,𝑊𝑃, acts on the aileron fault estimate error. It is selected to shape the closed-loop 󰅮ilter

sensitivity function, affecting the steady-state error, bandwidth, and thehigh frequency roll-off.

The performanceweight at a given frequency is inversely related to the desiredmaximum fault

estimation error magnitude. 𝑊𝑃 is chosen to meet desired performance speci󰅮ications of less

than 3% fault estimation steady-state error (i.e. low frequency gain of𝑊𝑃 is ≤ 33.5) and rise

(detection) time of less than 20 seconds. Theseweights used for FDI 󰅮ilter synthesis are shown

in Fig. 6.5.

3) FDI Filter Synthesis: The interconnection shown in Fig. 6.1 is used to generate aweighted

generalized plant. The 𝐻∞-synthesis algorithm is applied to this generalized plant to yield a

the 20-state 󰅮ilter 𝐹 with one output, ̂𝑓, and four inputs, [𝑝𝑚 𝑟𝑚 𝜙𝑚 𝛿𝑎]. A 10-state FDI 󰅮ilter is

derived using balanced realizationmodel reduction. A 󰅮irst order low-pass 󰅮ilter with a 2 rad/s

bandwidth is applied to the output of 𝐹 to further limit high frequency variations.

6.5 Data-driven Anomaly Detection

This section details the factors motivating data-driven detection and the development of the

applied methodology.
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Model-based FDI techniques can be designed to reliably detect known failure modes, but

their performance can degrade for unexpected faults. Data-driven methods, however, do not

utilize knowledge of the system dynamics. This approach to system monitoring allows data-

driven algorithms to sometimes detect anomalies that may not be properly estimated by a

model-based FDI algorithm. Data-driven techniques also have the advantage of avoiding ex-

pensive and time-consumingengineeringnecessary forhigh-󰅮idelity system identi󰅮ication,model

validation, and robust 󰅮ilter design [48, 49]. However, eschewing insight regarding the system

behavior can lead to results that are misleading or insuf󰅮icient for detecting and identifying

faults. Thus, model-based and data-driven techniques should be seen as complementary. The

proposeddata-driven approach for this research should operate using only the 󰅮light data gath-

ered during theUltrastick 󰅮light tests to allow the performance of the algorithm to be compared

and contrasted with that of the𝐻∞ FDI 󰅮ilter. Moreover, unlike methods that are commonly se-

lected for static systems orwhich are chosen for prognostics purposes, the desired data-driven

technique will provide a rapid indication of anomalous behavior subsequent to the incidence

of a fault. In this respect, the data-driven approach would shadow the model-based approach

and provide information which could be used for residual evaluation, fault isolation, and con-

trol recon󰅮iguration.

The selected data-driven technique requires a set of unfaulted training data collected dur-

ing the 󰅮light tests. Beginning at the 𝑡 =1 s time sample, a 1 s trailing time window is de󰅮ined

for each unfaulted 󰅮light dataset. A baseline parameter 𝑏𝑡𝑟𝑎𝑖𝑛 is de󰅮ined as shown in Equa-

tion 6.3, where ℱ is the fast Fourier transform (FFT). FFT algorithms can be implemented on

small computers such that they may operate on-line in order to produce computations for the

data-driven anomaly detector, and as such, they are well suited to the application of interest

here.

𝑏𝑡𝑟𝑎𝑖𝑛 = |ℱ(|𝜙𝑐𝑚𝑑𝑡𝑟𝑎𝑖𝑛
− 𝜙𝑚𝑡𝑟𝑎𝑖𝑛

|)| (6.3)

For each successive time sample until the conclusion of the 󰅮light, 𝑏𝑡𝑟𝑎𝑖𝑛 is computed. To prop-

erly capture the dynamic response of the aircraft in this data, the 󰅮irst 󰅮ive discrete Fourier

transform (DFT) components are used while the higher frequency components are discarded.

The frequencies corresponding to these components are [0, 4.91, 9.82, 14.73, 19.64] rad/s,

encompassing the bandwidth of the UAV lateral dynamics. The mean, 𝜇𝑡𝑟𝑎𝑖𝑛, and standard de-

viation, 𝜎𝑡𝑟𝑎𝑖𝑛, are computed from the DFT components over each trailing window in order to

establish a statistical representation of the expected nominal aircraft behavior at each point

during the 󰅮light. The test (i.e. faulted) 󰅮light data is analyzed by computing a 󰅮ive-component
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𝑏𝑡𝑒𝑠𝑡:

𝑏𝑡𝑒𝑠𝑡 = |ℱ(|𝜙𝑐𝑚𝑑𝑡𝑒𝑠𝑡
− 𝜙𝑚𝑡𝑒𝑠𝑡

|)| (6.4)

A Z-test is then performed. The null hypothesis is that the test 󰅮light DFT data 𝑏𝑡𝑒𝑠𝑡 comes

from a distribution with mean 𝜇𝑡𝑟𝑎𝑖𝑛 and standard deviation 𝜎𝑡𝑟𝑎𝑖𝑛. Con󰅮irmation of the null

hypothesis is indicative of unfaulted 󰅮light; rejecting the null hypothesis is be indicative of an

anomaly affecting the test 󰅮light data for a certain con󰅮idence level. The Z-test generates a

𝑃-value, i.e., the probability of observing the given result, or onemore extreme, by chance if the

null hypothesis is true. Small values of 𝑃 indicate questionable validity of the null hypothesis.

The reciprocal of the 𝑃-value is used as an initial anomaly score on a log plot so that more

disparate test and training data yields a higher anomaly score. A simple threshold mechanism

is constructed by applying further scaling such that three standard deviations of the anomaly

scores for the unfaulted training set corresponds to a 󰅮inal scaled anomaly score of 1. Scores

exceeding 1 are strongly indicative of disparities between the test data and training data.

With existing computational resources suitable for small, low-cost 󰅮light systems and a

preloaded training data set, these statistical computations may be performed on-line. This

enables real-time implementation of the data-driven anomaly detection algorithm.

6.6 Flight Test Experimental Results

The 󰅮irst section presents model-based and data-driven FDI results in linear simulation. A

comparison is made between the algorithms based exclusively on data collected from faulted

󰅮light tests as described in Sec. 6.2-6.3.

6.6.1 Linear UAV Simulation Performance

It is useful to examine the performance in simulation with the linear model with which the

model-based 󰅮ilter was initially designed. The closed-loop UAV linear model trimmed about

the reference 󰅮light condition is constructed. A desired fault pro󰅮ile is speci󰅮ied (e.g. unfaulted,

5 degree ramp, etc.), and the autopilot input 𝜙𝑐𝑚𝑑 is taken from the corresponding 󰅮light data

and used to drive the model. Similarly, the commanded aileron de󰅮lection 𝛿𝑎𝑐𝑚𝑑
is provided

from the same 󰅮light test. The commanded rudder de󰅮lection 𝛿𝑟𝑐𝑚𝑑
was not logged during

󰅮light testing, and hence is computed by the simulation roll angle control law. Both surface

commands are processed by the actuator and time delay models.

The control surface signals are further modi󰅮ied by including model uncertainty to verify

the robustness of the FDI algorithm to unmodeled dynamics. The uncertainty norm bound is
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adjusted to describe the maximum allowable model dynamics variation across frequency. A

constant uncertainty bound of 35% was selected. A random uncertainty in each channel was

selected, leading to variation in the gain and phase of the nominal linear model. Signi󰅮icant

estimation degradation was observed for larger uncertainty bounds. Additive sensor noise is

applied to the linear model outputs associated with the state measurements. The 󰅮ilter 𝐹, in

conjunction with the low-pass 󰅮ilter described in Sec. 6.4.2, generates the fault estimate.

Fig. 6.6 shows the simulated roll angle tracking–(a) and (c)–and fault detectionperformance–

(b) and (d)–for two particular 󰅮light tests: a 5 degree aileron fault and a 5 degree bias fault. The

simulated 󰅮light trajectory is a reasonable approximation of the experimental trajectory. The

inclusion of uncertainty accounts for model errors which may affect the FDI 󰅮ilter. Despite

model differences, both faults are rapidly and accurately detected by the model-based𝐻∞ FDI

󰅮ilter. The small spikes in the fault estimates are the result of the start or conclusion of a roll

maneuver by the experimental vehicle. Future iterations on this design could focus on im-

proving the 󰅮ilter robustness and detection accuracy. These results in the presence of actuator

dynamics, sensor noise, and signi󰅮icant model uncertainty con󰅮irm that the model-based 𝐻∞

FDI approach is viable for this application.

The anomalydetector corresponding to thedata-drivenapproach, in contrast, hasdif󰅮iculty

detecting slow-acting ramp faults (Fig. 6.6). The anomaly score does not increase consistently

until the ramp fault is nearing its maximum value. The rapid bias fault, however, is quickly

detectedwith a sharp increase in the anomaly scorewithin 1 s of fault injection. Also notable is

that the anomaly scores canbehighprior to fault injection; themodel uncertainty incorporated

in the simulation causes the test data set to be somewhat different from the nominal training

data used in the detection algorithm. Hence training data plays a signi󰅮icant role in the overall

performance of data-driven techniques. This is much like the role that the ”model” plays in the

model-based design.

The 󰅮light test data used in this research is critical for the development of different FDI

modules for real systems. While data is always important for data-driven techniques, it is also

useful for the model-based approach described herein.

6.6.2 Data-driven vs Model-based Detector Performance

Viewing the performance of the data-driven detection algorithm simply involves processing

the roll angle tracking error as described in Sec. 6.5 and computing the scaled anomaly score

for each data sample. This processing can be performed on the existing 󰅮light data to yield the

equivalent of a real-time anomaly score computed by an onboard detector. Similarly, with the
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Figure 6.6: Linear UAV Simulations: Roll rate tracking and normalized fault detection perfor-

mance with constant 35% input uncertainty bound
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model-based FDI 󰅮ilter already designed, a real-time equivalent fault estimate can be computed

directly from the 󰅮light data. The advantage of the data-driven detector is that arriving at this

stage of the analysis is signi󰅮icantly faster than with the model-based approach.

Fig. 6.7 shows the anomaly scores for 󰅮ive different 󰅮lights, each operating with a different

fault scenario (including one unfaulted 󰅮light). Overlaid is the normalized fault and fault esti-

mate from the 𝐻∞ 󰅮ilter generated using only the respective 󰅮light data. Fig. 6.7(a) shows that

the anomaly score is consistently below the threshold of 1 for unfaulted 󰅮light. Similarly, the

FDI 󰅮ilter is near zero during the 󰅮light, indicating no aileron fault. The anomaly score nicely

mirrors the bias faults (Fig. 6.7(d)-(e)) in the seconds following the fault injection. After ap-

proximately 10 seconds, however, the anomaly score regresses to a lesser value, re󰅮lecting that

the score computation involves a trailing window of data samples for comparison to the train-

ing data set. Hence the data-driven 󰅮ilters will have dif󰅮iculty with steady-state errors that are

compensated by the 󰅮light control system. This highlights the interaction that can occur be-

tween the FDI and control system. A more detailed discussion of this interaction can be found

in [33]. In contrast, the FDI 󰅮ilter nicely tracks the bias fault for the length of the 󰅮light test and

accurately captures the fault magnitude. For ramp faults, the data-driven approach is slow

to react. This may be a consequence of the lack of model knowledge embedded in the data-

driven algorithm. The model-based FDI 󰅮ilter, however, tracks the ramp fault within a couple

of seconds of its insertion and continues to track its increasing magnitude during 󰅮light. The

󰅮light test data indicates the FDI 󰅮ilter is able to both detect and isolate the bias and ramp faults

associated with the aileron.

These qualitative impressions are supported by a simple quantitative metric that can be

applied to the results shown in Fig. 6.7. The Theil Inequality Coef󰅮icient (TIC) is used as a met-

ric to compare time histories [50]. Normalized such that 0 represents an identical matchwhile

1 suggests a worst-case disparity, the TIC can be used to measure fault estimate performance

relative to an actual fault occurring in a 󰅮light test. The TIC is de󰅮ined in Eqn. 6.5 where 𝑛 is the

number of data samples in the data set, 𝑓 is the true fault signal, and ̂𝑓 is the fault estimate.

The TIC can be applied to the model-based fault estimates to assess the relative tracking per-

formance for each fault mode. For the data-driven approach, measures of the time to reach

the simple fault threshold described in Sec. 6.5 and the persistence above that threshold can

provide information about the relative ease of detection associated with each fault mode.

TIC = ⎛

⎝
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Table 6.1: Experimental FDI Performance Metrics

Fault mode TIC (MB) Time to Detection (DD) Persistence (DD)

5 deg ramp 0.185 2.52 s 0.12 s

10 deg ramp 0.134 0.22 s 1.22 s

5 deg bias 0.159 0.16 s 5.64 s

10 deg bias 0.093 0.30 s 6.50 s

Table 6.1 provides theTIC for themodel-basedFDI 󰅮ilter (denotedMB) aswell as time tode-

tection andpersistencemetrics for the experimental data-driven results (denotedDD). TheTIC

con󰅮irms that bias faults weremore easily tracked and that faults of a largermagnitude proved

easier to detect. Since large bias faults induce a more signi󰅮icant, faster-acting aerodynamic

force to the body of the vehicle and lead to increased control action, both themodel-based and

data-driven detectors recognize the anomalous behavior easily.

Revisiting thedesirable attributes of a FDI systemdiscussed in Section6.4, both approaches

show sensitivity to the fault modes tested and are mostly insensitive to the commanded dou-

blet maneuvers. The robustness of these detectors to other faults, (e.g. sensor, different con-

trol surface) or simultaneous faults was not considered in this research; this is an opportunity

for future investigation. As the linear simulation results indicate, the model-based approach

demonstrates a superior robustness to anticipated model variation due to aircraft maneuvers

and unmodeled dynamics. Additionally, themodel-based 󰅮ilter was successfully designed to be

insensitive to trim offset at the beginning of each 󰅮light run, implementation of a closed-loop

feedback system, wind gusts and sensor noise.

The robustness of the model-based design to these factors existing in real systems demon-

strates the utility of this approach. Moreover, the accurate fault estimates are valuable infor-

mation for many system recon󰅮iguration algorithms that could be employed in fault-tolerant,

safety-critical systems. In contrast, the anomaly detector exhibits reduced robustness to un-

modeled effects and consequentlymay not clearly detect the injection of a particular fault. The

data-driven technique used in this research, however, enjoys the signi󰅮icant advantage of ease

of development and may exhibit better FDI performance for unexpected faults. The model-

based FDI and data-driven anomaly detection results may additionally be compared against

other approaches using the experimental UAV data benchmark.
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Chapter 7

Conclusion and Discussion

This dissertation detailed a conventional failure modes and effects analysis for the University

of Minnesota 󰅮light research platform aircraft Ibis, a small low-cost UAV. The FMEA identi󰅮ied

several critical fault modes for which the vehicle could experience loss of control or other sig-

ni󰅮icant failures. Design modi󰅮ications were made to Ibis to yield a reliability-focused variant,

Baldr.

The stuck elevator failure mode was selected for further study, and a trim state discov-

ery analysis was performed to identify the achievable steady wings-level 󰅮light envelope us-

ing control recon󰅮iguration. The resulting information was used to extend the prior FMEA to

showmore detailed failure effects and system vulnerabilities. The trim state discovery results

indicated signi󰅮icant elevator fault vulnerability–especially for hardover and 󰅮loating surface

faults, two of the more common control surface impairments. The shape of the 󰅮light envelope

indicated where the vehicle was likely able to 󰅮ly and suggested that much of the available ele-

vator range is not utilized to maintain steady, level 󰅮light. In addition, experimental 󰅮light-test

data was superimposed on the identi󰅮ied 󰅮light envelope to validate these results. Candidate

󰅮light envelope protection schemes or recon󰅮iguration algorithms could restrict the elevator

de󰅮lection during certain operational modes to reduce the likelihood of a stuck surface in non-

recoverable position.

The linearized model set was analyzed in the frequency domain to understand how con-

trol authority of the elevators and other effectors change throughout the 󰅮light envelope. The

throttle and ailerons were both shown to provide very limited pitch control authority in the

event of an elevator failure, raising questions about the viability of adaptive/recon󰅮igured con-

trol strategies for there airframes. While these aircraftmay not be a good platform for adaptive

79



control research, this is probably common for low-cost vehicleswithout advanced airframe de-

sign. Dynamics suitable for adaptive control solutionsmayneed to be ‘designed-into’ airframes

in order to be effective strategies, and this advanced design may not be feasible for low-cost

systems.

This system dynamics analysis can provide a rich understanding of how system capabil-

ities and vulnerabilities change throughout an operational envelope. The FMEA convention-

ally assumes worst-case scenarios, but fundamental linear analysis tools can provide a FMEA

feedback loopwith the additional insight necessary tomake appropriate design decisions. The

analysis can be extended to all of the Ibis effectors and provides a general framework for any

small UAV reliability analysis.

Finally, model-based and data-driven fault detection and isolation modules were designed

for the UMN 󰅮light research platform aircraft. These modules were validated in simulation

and for real 󰅮light test data, demonstrating that the approaches are complementary and can be

employed together on real UAS in their operating environment. Rapid and accurate fault de-

tection and isolation can trigger control recon󰅮iguration algorithms, emergency path-planning

strategies, and provide valuable system health data for maintenance.

This work presents many future avenues for research that will be invaluable to the growth

of safe UAS technology. The extended FMEA can be applied to all phases of 󰅮light (e.g. takeoff,

landing, loiter), and fault-tolerance algorithms can bemore 󰅮inely tuned to each operating con-

dition. These tools can help to extract themaximumperformance of fault-tolerance algorithms

and mitigate the effects of reduced hardware redundancy. Coupling this enhanced reliability

assessment and analytical fault detection approaches provides feedback about system fault

tolerance, and it can assist in developing more formalized certi󰅮ication procedures for small

UAS. This is a timely, necessary challenge for the aerospace industry, and there will be many

opportunities to build upon this work as UAS applications continue to thrive.
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Appendix A

Failure Modes and Effects Analysis

Summary

This appendix includes a summary of the IbisUAV failuremodes and effects analysis, presented

in a conventional spreadsheet format. The individual components are organized by subsystem

as shown in Table 3.1.
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Table A.1: Failure Modes, Effects, and Criticality Summary

No. Failure Mode Cause Likelihood Effects Criticality Risk Controls

A. AIRFRAME SUBSYSTEM

A.1 Fuselage: Aircraft main body section. Contains payload. Positions control and stabilization surfaces in relationship to lifting surfaces.

A.1-a open avionics door • unsecured door M • avionics pallet

loss

• battery loss

• loss of thrust

• LOM, LOC, LOV

1 H • install locking door

• af󰅮ix payload to fuse-

lage

A.1-b structural • in-air collision

• hard landing

L • altered

aerodynamics

• vibration

• LOM, LOC, LOV

1 M • pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

A.2Wing: Aircraft lifting surface.

A.2-a structural • in-air collision

• hard landing

L • altered

aerodynamics

• vibration

• LOM, LOC, LOV

1 M • pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

A.3 Landing Gear: Undercarriage and wheels to support vehicle takeoff and landing.

A.3-a structural • in-air collision

• hard landing

L • crash during

takeoff roll

• inability to

safely land

• LOM, LOC, LOV

1 M • pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

8
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No. Failure Mode Cause Likelihood Effects Criticality Risk Controls

A.3-b loss of wheel • loose wheel nut M • crash during

takeoff roll

• inability to

safely land

• LOV

1 H • locking wheel nuts

• pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

B. POWERPLANT SUBSYSTEM

B.1 Motor Batteries: Powers the aircraft motor.

B.1-a internal • internal short

circuit

• overheating

M • loss of thrust

• vehicle becomes

glider

• LOM, LOC, LOV

1R H • pre-/post-󰅮light in-

spection

B.1-b external • overcharging

• overdischarging

• mechanical

damage

• extreme

temperatures

M • loss of thrust

• vehicle becomes

glider

• LOM, LOC, LOV

1R H • charge and store

according to speci󰅮ica-

tions

• ensure battery is se-

cured

B.2 Electronic Speed Controller: Sends signals for motor rotation. Varies motors speed and may act as a dynamic brake.

B.2-a incorrect voltage

output

• internal

circuitry short

or damage

M • incorrect motor

speed

• LOC, LOM

3 M • create livestream func-

tionality for ESC data

• override default cutoff

setting to ‘soft’ cutoff

with safer setting

8
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B.2-b interruption of

power to unit

• damage to

battery

connections

H • intermittent

loss of thrust

• incorrect motor

speed

• LOC, LOM

2 H • create livestream func-

tionality for ESC data

• override default cutoff

setting to ’soft’ cutoff

with safer setting

B.2-c cutoff switch

tripped

• damage to

battery

connections

H • intermittent

loss of thrust

• incorrect motor

speed

• LOC, LOM

1 H • create livestream func-

tionality for ESC data

• override default cutoff

setting to ‘soft’ cutoff

with safer setting

B.2-d voltage output is

outside thresholds

for motor

• internal

circuitry short

or damage

M • intermittent

loss of thrust

• vehicle becomes

glider

• LOM, LOC, LOV

1 H • create livestream func-

tionality for ESC data

• override default cutoff

setting to ’soft’ cutoff

with safer setting

B.2-e disconnection

frommotor

battery

• damage to

battery

connections

H • total loss of

thrust

• LOM, LOC, LOV

1 H • securely af󰅮ix connec-

tions

• add redundant wiring

B.3 Motor: Turns hub, spinner, and propeller to generate thrust

B.3-a Bearing failure • insuf󰅮icient

lubrication

M • motor spins

with dif󰅮iculty

or not at all

• loss of thrust

LOM, LOC, LOV

1 H • scheduled mainte-

nance

• pre-/post-󰅮light in-

spection

8
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B.3-b Short circuit at coil • unbalanced

propeller

vibration

L • stuck motor

• loss of thrust

• LOM, LOC, LOV

1 M • scheduled mainte-

nance

• pre-/post-󰅮light in-

spection

B.3-c Loose windings • unbalanced

propeller

vibration

L • incorrect motor

speed

• LOC, LOM

3 L • scheduled mainte-

nance

• pre-/post-󰅮light in-

spection

B.4 Propeller hub: Connects motor driveshaft to propeller blades

B.4-a disconnection

frommotor

driveshaft

• in-air collision

• hard landing

• loose bearings

L • loss of propeller

• loss of thrust

• LOM, LOC, LOV

1 M • pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

• use locking bearings

B.5 Spinner: Aerodynamic fairing for propeller hub; provides more laminar air󰅮low and less turbulence entering propeller cross-section.

B.5-a structural failure

or cracking

• in-air collision

• hard landing

L • possible fouled

air󰅮low

• slight reduction

of maximum

power

4 L • pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

9
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B.6 Propeller blades: Provide thrust

B.6-a structural failure

or cracking

• in-air collision

• hard landing

L • moderate to

severe

reduction in

maximum

power

• total loss of

thrust

• LOM, LOC, LOV

1 M • pre-/post-󰅮light in-

spections

• 󰅮ly only in safe environ-

ments

B.6-b loss of blade from

hub

• vibration due to

propeller

imbalance

L • total loss of

thrust

• LOM, LOC, LOV

1 M • pre-/post-󰅮light in-

spections

C. EFFECTORS SUBSYSTEM

C.1 Servo Battery: Powers avionics and effectors subsystems

C.1-a internal • internal short

circuit

• overheating

M • loss of power to

servos

• vehicle is

uncontrollable

• LOM, LOC, LOV

1 H • pre-/post-󰅮light charge

retention inspection

C.1-b external • overcharging

• overdischarging

• mechanical

damage

• extreme

temperatures

M • loss of power to

servos

• vehicle is

uncontrollable

• LOM, LOC, LOV

1 H • charge and store

according to speci󰅮ica-

tions

• ensure battery is se-

cured

9
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C.2 Rx Mux Servo Multiplexer: uses R/C servo signals to switch servo output between manual pilot on ground or autopilot

C.2-a inconsistent servo

signal

• noise from

other wiring

L • undesired

operation mode

switching

between auto

and manual

pilot

1 M • proper grounding

• shielded wiring

C.2-b circuit overload • power surge

• electrostatic

discharge

M • no actuation

signals sent to

servos, control

surfaces

1 H • proper grounding

• anti-ESD handling and

maintenance

C.2-c disconnection

from servo battery

• excessive

vibration

• severed wires

H • no actuation

signals sent to

servos, control

surfaces

1 H • redundant wiring

• use locking connectors

C.3 Electronic Speed Controller: Controls servo command signals

C.3-a-e —– see B.2-a-e —–

C.4 Battery Eliminator Circuit (BEC): Splits and regulates power to receiver, failsafe switch, servos

C.4-a circuit overload • power surge

• electrostatic

discharge

L • loss of power to

receiver, failsafe

switch, servos

• vehicle is

uncontrollable

• LOM, LOC, LOV

1 M • proper grounding

• anti-ESD handling and

maintenance

9
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C.4-b disconnection

from servo battery

• excessive

vibration

• severed wires

H • loss of power to

receiver, failsafe

switch, servos

• vehicle is

uncontrollable

• LOM, LOC, LOV

1 H • redundant wiring

• use locking connectors

C.4-c loss of voltage feed

to receiver

• overheating due

to excessive

current drawn

from connected

component(s)

L • vehicle

switched to

autopilot

• no manual

control

• potential LOM,

LOV

1 M • improve cooling

• ventilation

C.4-d loss of voltage feed

to RxMux

• overheating due

to excessive

current drawn

from connected

component(s)

L • control surfaces

unpowered

• motor

unpowered

• LOM, LOC, LOV

1 M • improve cooling

• ventilation

C.4-e loss of voltage feed

to servos

• overheating due

to excessive

current drawn

from connected

component(s)

M • surfaces 󰅮ixed at

current

positions

• vehicle is

uncontrollable

• LOM, LOC, LOV

1 H • improve cooling

• ventilation

9
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C-4-f incorrect voltage

to servos

• short circuit

• mechanical

damage

L • incorrect

surface

de󰅮lections

commanded

1 M • surge protection

C.4-g incorrect voltage

to RxMux

• short circuit

• mechanical

damage

L • undesired

operation mode

switching

between auto

and manual

pilot

2 M • surge protection

C.5 Servo: Actuates control surfaces according to pilot or autopilot commands.

C.5-a-1 elevator: bias • poor rigging

• slippage of

gears

• broken linkages

M • reduced pitch

control

effectiveness

• LOM

2 M • inspections

• redundant surface

• redundant servo

C.5-a-2 elevator: stuck-at

position

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

M • loss of pitch

control

effectiveness

• dive/stall

• LOM, LOC, LOV

1 H • inspections

• redundant surface

• redundant servo

C.4-a-3 elevator: hardover

(maximum

de󰅮lection)

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

L • loss of pitch

control

• induced

dive/stall

• LOM, LOC, LOV

1 M • inspections

• redundant surface

• redundant servo

9
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C.5-a-4 elevator: 󰅮loating

surface

• broken linkage

• broken servo

driveshaft

M • loss of pitch

control

• LOM, LOC, LOV

H H • inspections

• redundant surface

• redundant servo

C.5-a-5 elevator:

oscillatory

• electrical

damage

• electrical

interference

L • uncommanded

pitching

1 M • inspections

• redundant surface

• redundant servo

• shielding

C.5-a-6 elevator:

increased

deadband

• damaged gears L • reduced pitch

control

effectiveness

• LOM

2 M • inspections

• redundant surface

• redundant servo

C.5-a-7 elevator:

increased stiction

• damaged gears L • slower actuator

dynamics

• reduced or total

loss of pitch

control

effectiveness

2 M • inspections

• redundant surface

• redundant servo

C.5-b-1 rudder: bias • poor rigging

• slippage of

gears

• broken linkages

M • reduced yaw

control

effectiveness

• LOM

2 M • inspections

• redundant surface

• redundant servo

9
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C.5-b-2 rudder: stuck-at

position

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

M • loss of yaw

control

effectiveness

• LOM, LOC, LOV

1 H • inspections

• redundant surface

• redundant servo

C.5-b-3 rudder: hardover

(maximum

de󰅮lection)

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

L • loss of yaw

control

• induced hard

yaw

• LOM, LOC, LOV

1 M • inspections

• redundant surface

• redundant servo

C.5-b-4 rudder: 󰅮loating

surface

• broken linkage

• broken servo

driveshaft

M • loss of yaw

control

• LOM, LOC, LOV

1 H • inspections

• redundant surface

• redundant servo

C.5-b-5 rudder: oscillatory • electrical

damage

• electrical

interference

L • uncommanded

yawing

1 M • inspections

• redundant surface

• redundant servo

• shielding

C.5-b-6 rudder: increased

deadband

• damaged gears L • reduced yaw

control

effectiveness

• LOM

2 M • inspections

• redundant surface

• redundant servo

9
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C.5-b-7 rudder: increased

stiction

• damaged gears L • slower actuator

dynamics

• reduced or total

loss of yaw

control

effectiveness

2 M • inspections

• redundant surface

• redundant servo

C.5-c-1 left/right aileron:

bias

• poor rigging

• slippage of

gears

• broken linkages

M • reduced roll

control

effectiveness

• LOM

2R M • inspections

• redundant surface

• redundant servo

C.5-c-2 left/right aileron:

stuck-at position

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

M • loss of roll

control

effectiveness

• LOM, LOC, LOV

1R H • inspections

• redundant surface

• redundant servo

C.5-c-3 left/right aileron:

hardover

(maximum

de󰅮lection)

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

L • loss of roll

control

• induced hard

yaw

• LOM, LOC, LOV

1R M • inspections

• redundant surface

• redundant servo

C.5-c-4 left/right aileron:

󰅮loating surface

• broken linkage

• broken servo

driveshaft

M • loss of roll

control

• LOM, LOC, LOV

1R H • inspections

• redundant surface

• redundant servo

9
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C.5-c-5 left/right aileron:

oscillatory

• electrical

damage

• electrical

interference

L • uncommanded

rolling

1R M • inspections

• redundant surface

• redundant servo

• shielding

C.5-c-6 left/right aileron:

increased

deadband

• damaged gears L • reduced roll

control

effectiveness

• LOM

2R M • inspections

• redundant surface

• redundant servo

C.5-c-7 left/right aileron:

increased stiction

• damaged gears L • slower actuator

dynamics

• reduced or total

loss of roll

control

effectiveness

2R M • inspections

• redundant surface

• redundant servo

C.5-d-1 left/right 󰅮lap: bias • poor rigging

• slippage of

gears

• broken linkages

M • altered lift/drag

properties

4 L • inspections

• redundant surface

• redundant servo

C.5-d-2 left/right 󰅮lap:

stuck-at position

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

M • altered lift/drag

properties

2R M • inspections

• redundant surface

• redundant servo

9
8



No. Failure Mode Cause Likelihood Effects Criticality Risk Controls

C.5-d-3 left/right 󰅮laps:

hardover

(maximum

de󰅮lection)

• broken linkage

• broken servo

driveshaft

• unbalanced

surface

L • altered lift/drag

properties

• induced

maneuvering

2R M • inspections

• redundant surface

• redundant servo

C.5-d-4 left/right 󰅮laps:

󰅮loating surface

• broken linkage

• broken servo

driveshaft

M • loss of 󰅮lap

control

• altered lift/drag

properties

4 L • inspections

• redundant surface

• redundant servo

C.5-d-5 left/right 󰅮laps:

oscillatory

• electrical

damage

• electrical

interference

L • uncommanded

maneuvering

2R M • inspections

• redundant surface

• redundant servo

• shielding

C.5-d-6 left/right 󰅮laps:

increased

deadband

• damaged gears L • reduced 󰅮lap

effectiveness

4 L • inspections

• redundant surface

• redundant servo

C.5-c-7 left/right 󰅮laps:

increased stiction

• damaged gears L • slower actuator

dynamics

• reduced or total

loss of 󰅮lap

control

4 L • inspections

• redundant surface

• redundant servo

9
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D.1 Flight Computer: Provides guidance, navigation, control, fault detection algorithm implementation. Provides data acquisition.

D.1-a Disconnection

from BEC

• vibrations

• damaged wiring

M • loss of data and

automatic

control

• manual control

only

• LOM, LOC, LOV

1 H • locking connectors

• redundant wiring

D.1-b Disconnection

from IMU

• vibrations

• damaged wiring

M • loss of IMU data

• incorrect

effector

commands

applied

• LOM, LOC, LOV

1 H • locking connectors

• redundant wiring

D.1-c Disconnection

from ADC

• vibrations

• damaged wiring

M • loss of surface

position

measurements

• incorrect

effector

commands

could be applied

• LOM

2 M • locking connectors

• redundant wiring

1
0
0



No. Failure Mode Cause Likelihood Effects Criticality Risk Controls

D.1-d Disconnection

from pressure

transducer

• vibrations

• damaged wiring

M • loss of pressure

data, airspeed,

altitude

measurements

• vehicle may 󰅮ly

erratically

• LOM, LOC, LOV

1 H • locking connectors

• redundant wiring

D.2 Interface Board: Power and signal interface between 󰅮light computer, avionics, effectors, powerplant

D.2-a Internal short

circuit

• manufacturing

defect

M • Loss of

communication

between

computer and

other

components

• LOM, LOC, LOV

1 H • thorough testing and

inspections

D.3 Modem: Broadcasts telemetry data to ground station

D.3-a Disconnection

from battery

• vibrations

• damaged wiring

M • no 󰅮light data

received

• no telemetry

data sent to

ground station

• LOM

3 M • locking connectors

• redundant wiring

1
0
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D.3-b Disconnection

from BEC

• vibrations

• damaged wiring

M • no 󰅮light data

received

• no telemetry

data sent to

ground station

• LOM

3 M • locking connectors

• redundant wiring

D.4 Radio Receiver: Receives commands from ground pilot radio controller

D.4-a Antenna fade • signal noise in

󰅮light test

environment

L • partial or total

loss of manual

control

• possible LOM,

LOC, LOV

1 M • N/A

D.4-b Disconnection

from BEC

• vibrations

•damaged wiring

M •loss of manual

control •autopilot

only •possible

LOM, LOC, LOV

1 H • locking connectors • re-

dundant wiring

D.5 PWM Reader: Transmits received radio commands to interface board and 󰅮light computer

D.5-a loss of pilot control • vibrations

• damaged wiring

L • loss of manual

control

• LOM, LOC, LOV

1 M • emergency landing

1
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D.5-b Loss of autopilot

control

• vibrations

• damaged wiring

L • loss of autopilot

control

• LOM, LOC, LOV

1 M • manual emergency

landing

D.5-c Loss of servo

control

• vibrations

• damaged wiring

L • loss of surface

control

• LOM, LOC, LOV

1 M • emergency landing

D.5-d Loss of speed

control

• vibrations

• damaged wiring

L • loss of speed

control

• LOM, LOC, LOV

1 M • emergency landing

D.6 IMU: Provides velocity, orientation, and gravitational force measurements

D.6-a Circuitry overload

and failure

• power surge

• electrostatic

discharge

L • loss of attitude,

rate data

• autopilot

ineffective;

manual control

only

• LOM, LOC, LOV

1 M • manual emergency

landing

• surge protection,

grounding

D.6-b Decalibration • reverts to

factory setting

• physical

damage

M • erroneous

attitude, rate

data, 󰅮light data

• autopilot may

have reduced

ef󰅮icacy

• LOM

2 M • inspections

• recalibration

1
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D.6-c Disconnection

from BEC

• vibrations

• damaged wiring

M • loss of attitude,

rate data

• autopilot

ineffective;

manual control

only

• LOM, LOC, LOV

1 M • locking connectors

• redundant wiring

D.7 GPS: Provides location, velocity, altitude, time data

D.7-a Circuitry overload

and failure

• power surge

• electrostatic

discharge

M • navigation

states lost

• autopilot

ineffective

• manual control

only

• LOM, LOC, LOV

1 H • manual emergency

landing

• surge protection,

grounding

D.7-b Disconnection

from antenna

• vibrations

• damaged wiring

M • Navigation

states lost

• autopilot

ineffective;

manual control

only

• LOM, LOC, LOV

1 H • locking connectors

• redundant wiring

1
0
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D.7-c Disconnection

from BEC

• vibrations

• damaged wiring

M • Navigation

states lost

• autopilot

ineffective;

manual control

only

• LOM, LOC, LOV

1 H • locking connectors

• redundant wiring

D.7-d Antenna fade • signal noise in

󰅮light test

environment

M • Navigation

states lost

intermittently

• autopilot

ineffective;

manual control

only

• LOM, LOC, LOV

1 H • N/A

D.8 Air Data Probe: Provides static and total pressure measurements (does it also do AOA/AOS?)

D.8-a Partial or full pitot

port blockage

• debris

• water/conden-

sation

H • incorrect

airspeed

measurement

• uncommanded

maneuvering

• LOM, LOC, LOV

1 H • keep probe covered

when not in use

• clean probe before use

with pressurized air

• 󰅮ly in appropriate envi-

ronments

1
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D.8-b Static port

blockage

• debris

• water/conden-

sation

H • incorrect

altitude or

airspeed

measurement

• uncommanded

maneuvering

• LOM, LOC, LOV

1 H • keep probe covered

when not in use

• clean probe before

use with pressurized

air 󰅮ly in appropriate

environments

D.8-c Misalignment • hard landing,

bumps

M • Incorrect

measurements

2 M • inspections

D.9 Pressure Transducer: Converts pneumatic pressure signal to digital format for data acquisition

D.9-a Disconnection

from BEC

• vibrations

• damaged wiring

M • Loss of pressure

measurements

• Loss of primary

altitude,

airspeed

measurements

• Uncommanded

maneuvering

• LOM, LOC, LOV

1 H • locking connectors

• redundant wiring

1
0
6



No. Failure Mode Cause Likelihood Effects Criticality Risk Controls

D.10 AOA/AOS Vane: Measures vehicle angle of attack and angle of sideslip

D.10-a Stuck/sticky vane • insuf󰅮icient

lubrication

L • LOM if

collecting

AOA/AOS

de󰅮lection data;

otherwise the

criticality is

minor and risk

is low

3 L • inspections

• lubrication

D.11 Rotary Potentiometers: Measure de󰅮lection of AOA/AOS vanes and control surfaces

D.11-a Total failure • short-circuit

due to wiper

and track wear

L • exhibits high

noise as

wiper/track

wear and

approach failure

• LOM if

collecting

surface,

AOA/AOS

de󰅮lection data;

otherwise the

criticality is

minor and risk

is low

3 L • inspections

1
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D.11-b Incorrect

measurement

• loose strap M • LOM if

collecting

surface,

AOA/AOS

de󰅮lection data;

otherwise the

criticality is

minor and risk

is low

3 M • inspections

D.12 ADC: Convert rotary potentiometer signals to digital format for data acquisition

D.12-a Loss of ADC chip

functionality

• short-circuit L • Exhibits high

noise as

wiper/track

wear and

approach failure

• LOM if

collecting

surface,

AOA/AOS

de󰅮lection data;

otherwise the

criticality is

minor and risk

is low

3 L • inspections

1
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D.13 Camera Battery: Powers camera

D.13-a see B.1 L • LOM if using

camera to 󰅮ilm

• LOM, LOC, LOV

if using

vision-based

GNC

• otherwise the

criticality is

minor and risk

is low

3 L see B.1

D.14 Camera Voltage Regulator: Regulates voltage for camera system

D.14-a see B.2-a-e L • LOM if using

camera to 󰅮ilm

• LOM, LOC, LOV

if using

vision-based

GNC

• otherwise the

criticality is

minor and risk

is low

3 L see B.2-a-e

1
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D.15 Camera: Provides image data for guidance, navigation, control research

D.15-a Disconnection

from power supply

• vibrations

• damaged wiring

L • LOM if using

camera to 󰅮ilm

• LOM, LOC, LOV

if using

vision-based

GNC

• otherwise the

criticality is

minor and risk

is low

2 M • locking connectors

• redundant wiring

1
1
0
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