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Abstract— We consider a set of decoupled dynamical sys-
tems and an optimal control problem where cost function and
constraints couple the dynamical behavior of the systems. The
coupling is described through a connected graph where each
system is a node and, cost and constraints of the optimization
problem associated to each node are only function of its state
and the states of its neighbors. For such scenario, we propose
a framework for designing decentralized Receding Horizon
Control (RHC) control schemes.

In these decentralized schemes, a centralized RHC con-
troller is broken into distinct RHC controllers of smaller sizes.
Each RHC controller is associated to a different node and
computes the local control inputs based only on the states
of the node and of its neighbors. The proposed decentralized
control schemes are formulated in a rigorous mathematical
framework. Moreover, we highlight the main issues involved
in guaranteeing stability and constraint fulfillment for such
schemes and the degree of conservativeness that the decen-
tralized approach introduces.

I. I NTRODUCTION

The interest in decentralized control goes back to the
seventies. Probably Wang and Davison were the first in [1]
to envision the “increasing interest in decentralized control
systems” when “control theory is applied to solve problems
for large scale systems”. Since then the interest has grown
more than exponentially despite some non-encouraging re-
sults on the complexity of the problem [2]. Decentralized
control techniques today can be found in a broad spectrum
of applications ranging from robotics and formation flight
to civil engineering. Such a wide interest makes a survey of
all the approaches that have appeared in the literature very
difficult and goes also beyond the scope of this paper.

Approaches to decentralized control design differ from
each other in the assumptions they make on: (i) the kind
of interaction between different systems or different compo-
nents of the same system (dynamics, constraints, objective),
(ii) the model of the system (linear, nonlinear, constrained,
continuous-time, discrete-time), (iii) the model of informa-
tion exchange between the systems, (iv) the control design
technique used.

Dynamically coupled systems have been the most stud-
ied. In [1] the authors consider a linear time-invariant
system and give sufficient conditions for the existence
of feedback laws which depend only on partial system
outputs. Recently, in [3] the authors introduce the concept
of quadratic invariance of a constraint set with respect to a
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system. The problem of constructing decentralized control
systems is formulated as one of minimizing the closed
loop norm of a feedback system subject to constraints
on the control structure. The authors show that quadratic
invariance is a necessary and sufficient condition for the
existence of decentralized controllers. In [4] the authors
consider spatially interconnected systems, i.e. systems com-
posed of identical linear time-invariant systems which have
a structured interconnection topology. By exploiting the
interconnection topology, the authors study decentralized
analysis and system control design using�2-induced norms
and LMI-s.

In this report we will focus ondecoupled systems. In
a descriptive way, the problem of decentralized control for
decoupled systems can be formulated as follows. A dynam-
ical system is composed of (or can be decomposed into)
distinct dynamical subsystems that can be independently
actuated. The subsystems are dynamically decoupled but
have common objectives and constraints which make them
interact with each other. Typically theinteraction is local,
i.e. the goal and the constraints of a subsystem are function
of only a subset of other subsystems’ states. The interaction
will be represented by an “interaction graph”, where the
nodes represent the subsystems and an arc between two
nodes denotes a coupling term in the goal and/or in the
constraints associated to the nodes. Also, typically it is
assumed that theexchange of information has a special
structure, i.e., it is assumed that each subsystem can sense
and/or exchange information with only a subset of other
subsystems. Often theinteraction graph and theinformation
exchange graph coincide. A decentralized control scheme
consists of distinct controllers, one for each subsystem,
where the inputs to each subsystem are computed only
based on local information, i.e., on the states of the subsys-
tem and its neighbors.

Our interest in decentralized control for dynamically
decoupled systems arises from the study of formation flight.
In formation flight a certain number of vehicles have to be
controlled in order to behave as a formation. The vehicle
dynamics are often assumed to be decoupled. A forma-
tion behavior is achieved only if each vehicle computes
its control laws as a function of position and speed of
neighboring vehicles. Moreover, each vehicle is required
to keep a certain distance from its neighbors. Therefore,
objective and constraints couple the overall dynamics. The
way vehicles communicate and sense between each other
define theinformation exchange graph while the objective



and the constraints of the formation define theinteraction
graph.

Several studies have appeared on decentralized tech-
niques for formation tasks. LMI techniques have been used
in [5], control Lyapunov function in [6] and a vision-based
framework in [7]. We will make use of Receding Horizon
Control (RHC) schemes. The main idea of RHC is to use
the model of the plant topredict the future evolution of
the system [8]. Based on this prediction, at each time step
t a certain performance index is optimized under operating
constraints with respect to a sequence of future input moves.
The first of such optimal moves is thecontrol action applied
to the plant at timet. At time t + 1, a new optimization is
solved over a shifted prediction horizon.

Optimal control techniques for formation flight have been
extensively studied. More than twenty-five years ago, in
the field of computer graphics, Reynolds proposed simple
decentralized rules which would allow to simulate flocks of
birds in a reasonable time [9]. In his model each bird (mod-
eled as point mass-model and called “boids”) updates its
speed as a simple switched nonlinear function of the speeds
of its neighboring birds. The switches between different
update laws allows to minimize the probability of collision
between birds. Unconstrained decentralized LQR control
has been described in [10], [11]. Recently, centralized RHC
schemes applied to formation flight have appeared in [12],
[13]. In [14] decentralized RHC and potential functions
have been used for flying multiple autonomous helicopters
in a dynamical environment.

In this paper we take explicitly into account constraints
and use the model of the neighbors to predict their behavior.
In this respect, the “boids” control strategy [9] can be seen
as a special case of decentralized RHC when the prediction
horizon is one. We describe a framework for designing
decentralized RHC control schemes, where a centralized
RHC controller is broken into distinct RHC controllers
of smaller sizes. Each RHC controller is associated to a
different node and computes the local control inputs based
only on the states of the node and of its neighbors. In
general, computation is distributed over the nodes and the
number of RHC controllers is smaller than the total number
of nodes.

The main issue regarding decentralized schemes is that
the inputs computed locally are, in general, not guaranteed
to be globally feasible and to stabilize the overall team. In
general, stability and feasibility of decentralized schemes
are very difficult to prove and/or too conservative. A scheme
with stability guarantees has been proposed in [15] for
dynamically coupled systems, with information exchange
between nodes and contractive stability constraints in the
distributed RHC subproblems.

We will formulate decentralized control schemes in a
rigorous mathematical framework, without giving any proof
of feasibility and stability. Instead, we will highlight the
main issues involved in guaranteeing stability and con-
straint fulfillment for such schemes and briefly discuss

their conservativeness. We will show the applicability of
the proposed approach when decentralized schemes are
used for controlling a set of vehicles in formation flight.
Simulation examples will be used to investigate the effect
of cost weights and horizon lengths on the feasibility of the
decentralized RHC schemes. We will also point out some
interesting behaviors of the decentralized scheme which are
different from what is observed in standard centralized RHC
control theory.

II. PROBLEM FORMULATION

Consider a set ofNv decoupled dynamical systems,
the i-th system being described by the discrete-time time-
invariant state equation:

xi
k+1 = f i(xi

k, ui
k) (1)

where xi
k ∈ R

ni

, ui
k ∈ R

mi

, f i : R
ni × R

mi → R
ni

are state, input and state update function of thei-system,
respectively. LetX i ⊆ R

ni

andU i ⊆ R
mi

denote the set of
feasible inputs and states of thei-th system, respectively:

xi
k ∈ X i, ui

k ∈ U i, k ≥ 0 (2)

We will refer to the set ofNv constrained systems asteam
system. Let x̃k ∈ R

Nv×ni

andũk ∈ R
Nv×mi

be the vectors
which collect the states and inputs of the team system at
time k, i.e. x̃k = [x1

k, . . . , xNv

k ], ũk = [u1
k, . . . , uNv

k ], with

x̃k+1 = f(x̃k, ũk) (3)

We denote by(xi
e, u

i
e) the equilibrium pair of thei-th

system and(x̃e,ũe) the corresponding equilibrium for the
team system.

So far the systems belonging to the team system are com-
pletely decoupled. We consider an optimal control problem
for the team system where cost function and constraints
couple the dynamic behavior of individual systems. We use
a graph topology to represent the coupling in the following
way. We associate thei-th system to thei-th node of the
graph, and if an edge(i, j) connecting thei-th and j-th
node is present, then the cost and the constraints of the
optimal control problem will have a component which is a
function of bothxi andxj . The graph will beundirected,
i.e. (i, j) ∈ A ⇒ (j, i) ∈ A. Before defining the optimal
control problem, we need to define a graph

G = {V ,A} (4)

whereV is the set of nodesV = {1, . . . , Nv} and A ⊆
V × V the sets of arcs(i, j) with i ∈ V , j ∈ V .

Once the graph structure has been fixed, the optimization
problem is formulated as follows. Denote with̃xi the states
of all neighboring systems of thei-th system, i.e.̃x i =
{xj ∈ R

nj |(j, i) ∈ A}, x̃i ∈ R
ñi

with ñi =
∑

j|(j,i)∈A nj .

Analogously, ũi ∈ R
m̃i

denotes the inputs to all the
neighboring systems of thei-th system. Let

gi,j(xi, ui, xj , uj) ≤ 0 (5)



define the interconnection constraints between thei-th and
the j-th systems, withgi : R

ni × R
mi × R

nj × R
mj →

R
nci,j . We will often use the following shorter form of the

interconnection constraints defined between thei-th system
and all its neighbors:

gi(xi, ui, x̃i, ũi) ≤ 0 (6)

with gi : R
ni × R

mi × R
ñi × R

m̃i → R
nci .

Consider the following cost

l(x̃, ũ) =
Nv∑
i=1

li(xi, ui, x̃i, ũi) (7)

whereli : R
ni×R

mi×R
ñi×R

m̃i → R is the cost associated
to thei-th system and is a function of its states and the states
of its neighbor nodes. Assume thatl is a convex function
and thatli(xi

e, u
i
e, x̃

i
e, ũ

i
e) = 0 and consider the infinite time

optimal control problem

J̃∗
∞(x̃) � min

{ũ0,ũ1,...}

∞∑
k=0

l(x̃k, ũk) (8)

subj. to




xi
k+1 = f i(xi

k, ui
k),

i = 1, . . . , Nv, k ≥ 0
gi,j(xi

k, ui
k, xj

k, uj
k) ≤ 0,

i = 1, . . . , Nv, k ≥ 0,
(i, j) ∈ A

xi
k ∈ X i, ui

k ∈ U i,
i = 1, . . . , Nv, k ≥ 0

x̃0 = x̃

(9)

For all x̃ ∈ R
Nv×ni

, if problem (9) is feasible, then
the optimal inputũ∗

0, ũ
∗
1, . . . will drive the Nv systems to

their equilibrium pointsxi
e while satisfying state, input and

interconnection constraints.
Remark 1: Throughout the paper we assume that a so-

lution to problem (9) exists and it generates a feasible
and stable trajectory for the team system. Our assumption
is not restrictive. If there is no infinite time centralized
optimal control problem fulfilling the constraints, then there
is no reason to look for a decentralized receding horizon
controller with the same properties.

Remark 2: Since we assumed that the graph is undi-
rected, there will be redundant constraints in problem (9).
Note the form of constraints (6) is rather general and it will
include the case when only partial information about states
of neighboring nodes is involved.

With the exception of a few cases, solving an infinite
horizon optimal control problem is computationally pro-
hibitive. An infinite horizon controller can be designed
by repeatedly solving finite time optimal control problems
in a receding horizon fashion as described next. At each
sampling time, starting at the current state, an open-loop
optimal control problem is solved over a finite horizon.
The optimal command signal is applied to the process only
during the following sampling interval. At the next time step
a new optimal control problem based on new measurements

of the state is solved over a shifted horizon. The resultant
controller is often referred to as Receding Horizon Control
(RHC). More specifically, assume at timet the current state
x̃t to be available and consider the following constrained
finite time optimal control problem

J̃∗
N (x̃t) � min

{Ut}

N−1∑
k=0

l(x̃k,t, ũk,t) + lN (x̃N,t) (10a)

subj. to




xi
k+1,t = f i(xi

k,t, u
i
k,t),

i = 1, . . . , Nv, k ≥ 0
gi,j(xi

k,t, u
i
k,t, x

j
k,t, u

j
k,t) ≤ 0,

i = 1, . . . , Nv, (i, j) ∈ A,
k = 1, . . . , N − 1

xi
k,t ∈ X i, ui

k,t ∈ U i

i = 1, . . . , Nv,
k = 1, . . . , N − 1

x̃N,t ∈ Xf ,
x̃0,t = x̃t

(10b)

where N is the prediction horizon,Xf ⊆ R
Nv×ni

is
a terminal region,lN is the cost on the terminal state.
In (10) we denote withUt � [ũ0,t, . . . , ũN−1,t]′ ∈ R

s,
s � Nv × mN the optimization vector,xi

k,t denotes the
state vector of thei-th node predicted at timet+k obtained
by starting from the statexi

t and applying to system (1)
the input sequenceui

0,t, . . . , u
i
k−1,t. The tilded vectors will

denote the prediction vectors associated to the team system.
Let U∗

t = {ũ∗
0,t, . . . , ũ

∗
N−1,t} be the optimal solution

of (10) at time t and J̃∗
N (x̃t) the corresponding value

function. Then, the first sample ofU ∗
t is applied to the

team system (3)
ũt = ũ∗

0,t. (11)

The optimization (10) is repeated at timet + 1, based on
the new statext+1.

It is well known that stability is not ensured by the RHC
law (10)–(11). Usually the terminal costlN and the terminal
constraint setXf are chosen to ensure closed-loop stability.
A treatment of sufficient stability conditions goes beyond
the scope of this work and can be found in the surveys [8],
[16]. We assume that the reader is familiar with the basic
concept of RHC and its main issues, we refer to [8] for a
comprehensive treatment of the topic. In this report we will
assume that terminal costlN and the terminal constraint set
Xf have been appropriately chosen in order to ensure the
stability of the closed-loop system.

In general, the optimal inputui
t to the i-th system

computed by solving (10) at timet, will be a function
of the overall state informatioñxt. The main objective
of this work is to describe how problem (10) can be
decomposed into smaller subproblems whose independent
computation can be distributed over the graph nodes. We
propose a decentralized control scheme where problem (10)
is decomposed intoNv finite time optimal control problems,
each one associated to a different node. Thei-th subproblem
will be a function of the states of thei-th node and the



states of its neighbors. The solution of thei-th subproblem
will yield a control policy for thei-th node of the form
ui

t = f i(xi
t, x̃

i
t).

Remark 3: The techniques presented next will be mean-
ingful only if the graphG is not a full graph. Often,
the interconnection graph is not fully connected because
of the nature of the problem. For instance, each node
could represent a production unit of a certain plant and the
production of a node could be related to only a few other
units of the plant. Also the interconnection graph is not fully
connected because some constraints associated to certain
arcs are implicitly satisfied by interconnection constraints
associated to other arcs. In formation flight,G is full graph
which describes the constraints between each node (since
each vehicle has to keep a certain distance form all the other
vehicles of the formation). Rigid graph topology [13], [17]
can be used to implicitly enforce constraints between two
vehicles not connected by any arc of the graph. More often,
time-varying graph topology based on a closest neighbor
principle are used. In this work we focus on fixed graph
topology. Time-varying graphs topologies have been studied
in [?].

Remark 4: In the formulation above, we are assuming
that the equilibrium(x̃e, ũe) of the formation is known a
priori. The equilibrium of the formation can be defined in
several other different ways. For instance, we can assume
that there is a leader (real or virtual) which is moving
and the equilibrium is given in terms of distances of each
vehicle from the leader. Also, it is possible to formulate
the equilibrium by using relative distances between vehicles
and signed areas [13]. The approach of this paper does not
depend on the way the formation equilibrium is defined, as
long as this is known a priori. In some formation control
schemes, the equilibrium is not known a priori, but is the
result of the evolutions of decentralized control laws. The
approach of the paper is not applicable to such schemes.

III. D ECENTRALIZED CONTROL SCHEME

Consider the overall problem: systems (1), graphG, and
RHC policy (10)-(11). Consider thei-th system and the
following finite time optimal control problem

(Pi) :

J i∗
N (xi

t, x̃
i
t) �

min
Ũi

t

N−1∑
k=0

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t) (12a)

subj. to




xi
k+1,t = f i(xi

k,t, u
i
k,t),

k ≥ 0
xi

k,t ∈ X i, ui
k,t ∈ U i,

k = 1, . . . , N − 1
xj

k+1,t = f j(xj
k,t, u

j
k,t),

(j, i) ∈ A,
k ≥ 0

xj
k,t ∈ X j , uj

k,t ∈ Uj ,

(j, i) ∈ A,
k = 1, . . . , N − 1

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0,

(i, j) ∈ A,
k = 1, . . . , N − 1

gq,r(xq
k,t, u

q
k,t, x

r
k,t, u

r
k,t) ≤ 0,

(q, i) ∈ A, (r, i) ∈ A,
k = 1, . . . , N − 1

xi
N,t ∈ X i

f ,

xj
N,t ∈ X j

f , (i, j) ∈ A
xi

0,t = xi
t,

x̃i
0,t = x̃i

t,

(12b)

where Ũ i
t � [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t]

′ ∈ R
s, s �

(m̃i + mi)N denotes the optimization vector. Denote by
Ũ i∗

t = [u∗i
0,t, ũ

∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t] the optimizer of

problemPi. Note that problemPi involves only the state
and input variables of thei-th node and its neighbors.

We will define the following decentralized RHC control
scheme.

1) The i-th node at timet measures its statexi
t and the

state of all its neighbors̃xi
t.

2) Each nodei solves problemPi.
3) Each nodei implements the first sample of̃U i∗

t

ui
t = u∗i

0,t. (13)

4) Each node repeats steps 2 to 4 at timet + 1, based
on the new state informationxi

t+1, x̃i
t+1.

Steps one to four describe a decentralized strategy that
uniquely defines the control inputs to the team system.
Each node knows its current states, its neighbors’ current
states, its terminal region, its neighbors’ terminal regions
and models and constraints of its neighbors. Based on such
information, each node computes its optimal inputs and
its neighbors’ optimal inputs. The input to the neighbors
will only be used to predict their trajectories and then
discarded, while the first component of thei-th optimal
input of problemPi will be implemented on thei-th node.

Even if we assumeN to be infinite, the approach de-
scribed so far does not guarantee that solutions computed
locally are globally feasible and stable (i.e. feasible for
problem (10)). The reason is simple: At thei-th node the
prediction of the neighboring statexj

k is done independently



from the prediction of problemPj . Therefore, the trajectory
of xj predicted by problemPi and the one predicted
by problemPj , based on the same initial conditions, are
different (since, in general,Pi and Pj will be different).
This will imply that constraint fulfillment will be ensured
by the optimizeru∗i

t for problemPi but not for the overall
problem (10).

There are three main issues that arise in the decentralized
control scheme. In order to ensure central feasibility and
stability of the decentralized control scheme,

• Decoupled Terminal Cost. How does one choose the
terminal costliN for each problemPi?

• Decoupled Terminal Region. How does one choose the
terminal regionX i

f for each problemPi?
• Feasibility Issue. Is it enough to choose the right

decoupled terminal cost and terminal region?

We can anticipate here that the answer to the “feasibility
issue” is negative. That is, a good choice ofl i

N andX i
f is,

in general, not sufficient to ensure stability and feasibility
of the decentralized scheme. Problem (12) needs to be
modified in order to guarantee feasibility. Also, the “fea-
sibility issue” is the most complex one, while computing
decentralized costs and terminal regions is less complex
since we have assumed that the systems are dynamically
decoupled.

A. Decoupled Terminal Costs

If performance of the decentralized RHC is not critical,
then stability is not the major issue in decentralized RHC
schemes for dynamically decoupled systems. One can al-
ways sacrifice optimality of the centralized problem (10)
in order to guarantee stability. In fact, in the worst case
the cost can be chose to be decentralized as well, i.e.
li(xi, ui, x̃i, ũi) = li(xi, ui) and each subsystem dynamics
will converge to its equilibrium. In doing so we have com-
pletely neglected the coupling term in the cost. In general, if
one writesli(xi, ui, x̃i, ũi) = li1(x

i, ui) + αli2(x̃
i, ũi), then

it can be easily proven that one can always chooseα ∈ [0, 1]
such that stability is guaranteed. Withα = 1 we recover the
original cost for each node and how closeα can be to one
is a function of the error between predictions of neighbor’s
behavior and their real behavior. Next we will sketch the
classical proof of RHC stability with end-point constraint
and highlight the problems arising in decentralized RHC.

Consider two systems (Nv = 2), no input, state, and
interconnection constraint. Assume the origin to be an equi-
librium for both systems. Consider a centralized RHC prob-
lem with terminal point set constraint to the origin which
is decomposed into two decentralized RHC schemeP1

andP2. Assumel1(x1, u1, x2, u2) = ‖Qx1‖p + ‖Qx2‖p +
‖Q(x1−x2)‖p+‖Ru1‖p+‖Ru2‖p andl2(x1, u1, x2, u2) =
‖Qx1‖p+‖Qx2‖p+‖Q(x1−x2)‖p+‖Ru1‖p+‖Ru2‖p. De-
fine l1(x1, U1, x2, U2) =

∑N
k=1 l1(x1, U1(k), x2, U2(k)),

and l2(x1, U1, x2, U2) =
∑N

k=1 l2(x1, U1(k), x2, U2(k)).
Consider the RHC problemP1 and P2 and assume that

they are feasible at timet = 0. Stability and feasi-
bility in classical RHC schemes is proven by using the
value function a Lyapunov function. We follow the same
approach. LetU 1,1∗

0 = {u1,1
0,0, . . . , u

1,1
N−1,0}, U2,1∗

0 =
{u2,1

0,0, . . . , u
2,
N−1,0} be the optimizer of problemP1 for

t = 0 andx1,1
0 = {x1,1

0,0, . . . , x
1,1
N,0}, x2,1

0 = {x2,1
0,0, . . . , x

2,1
N,0}

be the corresponding optimal state trajectories of node
1 and node 2 predicted at node 1. Analogously, let
U2,1∗

0 = {u1,2
0,0, . . . , u

1,2
N−1,0}, U2,2∗

0 = {u2,2
0,0, . . . , u

2,2
N−1,0}

be the optimizer of problemP2 for t = 0 and x1,2
0 =

{x1,2
0,0, . . . , x

1,2
N,0}, x2,2

0 = {x2,2
0,0, . . . , x

2,2
N,0} be the corre-

sponding optimal state trajectories of node 1 and node 2
predicted at node 2. By hypothesis, the initial state for both
problems are the same, i.e.,x1,1

0,0 = x1,2
0,0 andx2,1

0,0 = x2,2
0,0.

Consider problemP1. The shifted sequencesU 1,1
1 =

{u1,1
1,0, . . . , u

1,1
N−1,0, 0} andU 2,1

1 = {u2,1
1,0, . . . , u

2,1
N−1,0, 0} of

problemP1 are not feasible at timet = 1 since the state
of system 2 at time 1 (assuming no model uncertainty and
the RHC scheme presented in the previous section) isx2,2

1,0

and notx2,1
1,0. However, one can use construct a feasible

shifted sequence by using the optimizer of problemP 2,
U2,2

1 = {u2,2
1,0, . . . , u

2,2
N−1,0, 0. U1,1

1 andU 2,2
1 will be feasible

at timet = 1 for problemP1 because we have assumed no
interconnection constraints. Define the following sequences:
x̃0 = (x1,1

0,0, x
2,2
0,0), x̃1 = (x1,1

1,1, x
2,2
1,1), x1

0 = x1,1
0,0, x2

0 = x2,2
0,0,

x1
1 = x1,1

1,1 andx2
1 = x2,2

1,1. We can compute a bound on the
variation of cost as follows:

J1∗
N (x̃1) ≤ l1(x1

1, U
1,1
1 , x2

1, U
2,2
1 ) =

J1∗
N (x̃0) − +‖Qx1

0‖p − ‖Qx2
0‖p+

−‖Q(x1
0 − x2

0)‖p − ‖Ru1,1
0,0‖p − ‖Ru2,1

0,0‖p

−∑N−1
k=1 (‖Qx2,1

k,0‖p − ‖Qx2,2
k,0‖p)+

−∑N−1
k=1 (‖Qu2,1

k,0‖p − ‖Qu2,2
k,0‖p)+

−∑N−1
k=1 ((‖Q(x1,1

k,0 − x2,1
k,0)‖p) − (‖Q(x1,1

k,0 − x2,2
k,0)‖p))

≤ J1∗
N (x̃0) − ‖Qx1

0‖p − ‖Qx2
0‖p − ‖Q(x1

0 − x2
0)‖p−

+‖Ru1,1
0,0‖p − ‖Ru2,1

0,0‖p+
+

∑N−1
k=1 2‖Q(x2,1

k,0 − x2,2
k,0)‖p + ‖Q(u2,1

k,0 − u2,2
k,0)‖p

(14)
Defineε =

∑N−1
k=1 2‖Q(x2,1

k,0−x2,2
k,0)‖p+‖Q(u2,1

k,0−u2,2
k,0)‖p.

We can useJ1∗
N (x̃ as candidate Lyapunov function and

claim stability if ε ≤ ‖Qx1
0‖p +‖Qx2

0‖p +‖Q(x1
0−x2

0)‖p +
‖Ru1,1

0,0‖p +‖Ru2,1
0,0‖p. The termε is a function of the error

between the trajectories of node 2 predicted by node 1 and
the one predicted by node 2. The larger this error is the
higher is the probability that the value function does not
decreases along the team system trajectories.

B. Decoupled Terminal Regions

The problem of the terminal set can be approached in
two different ways. One can start from the terminal setXf

in problem (10) and decompose it intoNv non-empty sets
X i

f ⊂ R
ni

which will be used in (12). TheNv setsX i
f ⊂

R
ni

can be also computed without taking into consideration
the original invariant setXf . We prefer to follow the latter



route for two main reasons;(i) it can be computationally
prohibitive to compute the invariant setXf in (10) for a
large team of systems,(ii) it is difficult to decompose the
invariant setXf into Nv terminal sets, which used in (12)
will guarantee the feasibility of the decentralized control
schemes.

We propose the following construction of the setsX i
f .

For each vehicle, we compute an hyper-rectangular inner
approximation of the feasible space defined by the intercon-
nection constraints which contains the equilibria(x i

e, x̃
i
e) as

follows. Consider thei-th node and the setS i,j ⊂ R
ni+nj

for (i, j) ∈ A defined by the coupling constraintsg i,j :

Si,j = {xi ∈ R
ni

, xj ∈ R
nj | gi,j(xi, xj) ≤ 0}.

Compute the setsI i
i,j andIj

i,j satisfying

Ii
i,j × Ij

i,j ⊆ Si,j

Let Ii =
⋂

(i,j)∈A Ii
i,j and X i

f be a controlled invariant
set of thei-th system (1), subject to input and state con-
straints (2) and to the additional constraintxi

k ∈ Ii ∀k ≥ 0.
Through the procedure described above one can indepen-

dently computeNv terminal setsX i
f which will be use in

problem (12). Such sets have the following property. If each
system enters its associated terminal set, we are ensured that
all the interconnection constraints are satisfied and that there
exists a decentralized control law which keeps each one in
its respective terminal set. The sum of the ratios between
the volumes ofI i

i,j×Ij
i,j andSi,j for all (i, j) ∈ A will be a

measure of the conservativeness of the method. The smaller
this sum is, the smaller will be the region of attraction of
the decentralized control scheme. Note that the setsI i and
Ij will be convex even ifS i,j is not convex.

C. Ensuring Feasibility

We have mentioned that feasibility of the decentral-
ized trajectories is the main issue in decentralized control
schemes. In this section we discuss some modification to
the original problem which can ensure feasibility.

1) Robust Constraint Fulfillment: Consider the coupling
constraints of problemPi at stepk

gi(xi
k,t, x̃

i
k,t) ≤ 0 (15)

and by using the state update equations

xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

xj
k+1,t = f j(xj

k,t, u
j
k,t), (j, i) ∈ A, k ≥ 0

(16)

rewrite them as

gi
k(xi

t, x̃
i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ 0 (17)

where ui
[0,...,k−1] � {ui

0, . . . , u
i
k−1} and ũi

[0,...,k−1] �
{ũi

0, . . . , ũ
i
k−1}. In order to ensure the feasibility of the

team system, a possible approach is to “robustify” the con-
straints (17) for all vehicles at all time steps. In other words,
we can require that the coupling constraints at each node
are satisfied forall possible behaviors of the neighboring

nodes, once their initial condition is known. Therefore,
the vectorũi

[0,...,k−1] can be considered as a disturbance
which can lead to possible infeasibility of constraint (17).
There are two possible schemes: open-loop and closed-
loop constraint fulfillment. An open-loop robust constraint
fulfillment is formulated next. Substitute the functionsg i

k

with ḡi
k : R

ni × R
ñi × R

mi → R
ni

where

1) For all xi
t, x̃

i
t, u

i
[0,...,k−1] which satisfy

ḡi
k(xi

t, x̃
i
t, u

i
[0,...,k−1]) ≤ 0 (18)

we have

gi
k(xi

t, x̃
i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ 0

for all admissible1 ũi
[0,...,k−1].

2) The sets described by

ḡi
k(xi

t, x̃
i
t, u

i
[0,...,k−1]) ≤ 0 (19)

for i = 1, . . . , Nv k = 1, . . . , N − 1 are nonempty.

Robust closed loop formulation [18] is less conservative
but more computationally involved. We will not describe the
details of the robust closed loop formulation for a simple
reason. “Robust constraint fulfillment” applied to decentral-
ized control schemes results in a very conservative approach
even for the closed-loop case. For instance, consider the
case of formation flight. Assume we have only two aircraft
and we want to design a local controller on the first aircraft
using robust constraint fulfillment. The worst case scenario
will include, in most cases, the collision of the two aircraft
if they are not very far from each other and if they have
the same dynamics and constraints. However in reality,
neighboring vehicles collaborate between each other to fly
in formation.

2) Reducing Conservativeness: A less conservative ap-
proach for ensuring feasibility of the decentralized scheme
has to take into consideration that systems in a team are
cooperating, and therefore the trajectory that a node is
predicting should not be extremely different form what its
neighbors are executing. This idea can be formulated in
several ways. For instance, one could allow the exchange of
optimizers between the nodes in order to try to be as close
as possible to what the neighboring system has predicted
about a certain node. Another possibility is to tighten the
coupling constraints (6) by a quantity which is an indirect
measure of the cooperativeness of the team [15]

gi
k(xi

t, x̃
i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ εi

k (20)

where εi
k ≤ 0 is a new optimization variable. Finding

efficient methods to computeεi
k off-line, based on a priori

knowledge of the team behavior is a focus of our cur-
rent, ongoing research. Also, the idea of tightening these
constraints (20) can be exploited in a two stage process.
In the first stage of the optimization problems (12), the
coupling constraints are substituted with the one in (20).

1admissible inputs have to satisfy constraints (2)



Their parametric solution [19] with respect toε i
k yields

the optimizer functionu∗i(εi
0, . . . , ε

i
N ). In a second stage

the nodes communicate between themselves in order to
agree on a set of̄εi

k for i = 1, . . . , Nv, k = 1, . . . , N
which ensures feasibility of the decentralized trajectories. If
the agreement algorithm ends with a positive answer, each
vehicle will implementu∗i(ε̄i

0, . . . , ε̄
i
N ).

In Section IV we will show some results when the
proposed decentralized scheme is applied to formation
flight. We will also point out some interesting behaviors
of the decentralized scheme which are different from what
is observed in standard centralized RHC control theory.

IV. EXAMPLES

This section presents simulation examples of the decen-
tralized control scheme (12)-(13) described in Section III.
The examples describe formation flight of vehicles flying
at a certain altitude. Each vehicle is modeled as a point
mass in two dimensions with constraints on states and
inputs. The coupling between vehicles stems from the
common objective of the team (moving in formation) and its
constraints (vehicles are not allowed to violate each others
protection zones).

Our intention is to provide some insight into feasibility
issues associated with the proposed decentralized scheme
through a few simulation scenarios. We will describe each
simulation scenario first and then summarize our observa-
tions in Section V.

The dynamics (1) of thei-th vehicle is obtained by
discretizing a double integrator at 5 Hz

xi
k+1 =

A︷ ︸︸ ︷

1 0 0.2 0
0 1 0 0.2
0 0 1 0
0 0 0 1


xi

k +

B︷ ︸︸ ︷


0 0
0 0

0.2 0
0 0.2


ui

k (21)

where

xi
k =

[
xi

k,pos

xi
k,vel

]
, ui

k =
[
x-axis acceleration
y-axis acceleration

]

andxi
k,pos is the vector ofx andy coordinates andxi

k,vel

denotes a vector ofx-axis andy-axis velocity components.

Each node solves the decentralized optimization prob-
lem (12) with:

1) Linear cost function:

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) =

∥∥Qu[ui
k,t, ũ

i
k,t]

′∥∥
∞ +

max
( ∥∥Qpos

(
xi

k,pos − xi
f,pos

)∥∥
∞ ,∥∥Qvel

(
xi

k,vel − xi
f,vel

)∥∥
∞ ,

max
j,(i,j)∈A

∥∥∥Q̃pos

(
xj

k,pos − xj
f,pos

)∥∥∥
∞

,

max
j,(i,j)∈A

∥∥∥Q̃vel

(
xj

k,vel − xj
f,vel

)∥∥∥
∞

,

max
j,(i,j)∈A

∥∥∥Qrpos

((
xi

k,pos − xj
k,pos

)
−

−
(
xi

f,pos − xj
f,pos

))∥∥∥
∞

,

max
j,(i,j)∈A

∥∥∥Qrvel

((
xi

k,vel − xj
k,vel

)
−

−
(
xi

f,vel − xj
f,vel

))∥∥∥
∞

,

max
q,r,(i,q)∈A,(i,r)∈A

∥∥∥Q̃rpos

((
xq

k,pos − xr
k,pos

)
−

−
(
xq

f,pos − xr
f,pos

))∥∥∥
∞

,

max
q,r,(i,q)∈A,(i,r)∈A

∥∥∥Q̃rvel

((
xq

k,vel − xr
k,vel

)
−

−
(
xq

f,vel − xr
f,vel

))∥∥∥
∞

)

2) No terminal cost and constraint:l i
N (xi

N,t, x̃
i
N,t) =

0, Xf ≡ R
4

3) Identical vehicle dynamics (21)
4) Linear constraints on states and inputs:

|x| ≤ [
1000 1000 24 24

]′
, |u| ≤ [

2 2
]′

5) Non-convex interconnection constraints:

gi,j(xi
k, ui

k, xj
k, uj

k) = dmin −
∥∥∥xi

k,pos − xj
k,pos

∥∥∥
∞

gq,r(xq
k, uq

k, xr
k, ur

k) = dmin −
∥∥∥xq

k,pos − xr
k,pos

∥∥∥
∞

Note that the cost function above includes terms that
weigh the maximum control effort and the infinity norm of
a vector which collects all the absolute and relative errors
of the i-th node and its neighbors with respect to the final
reference values. The infinity norm of a vector is defined
as‖v‖∞ � maxi |vi|, wherev = [v1 v2 · · · vn]′.

Notice also, that the interconnection constraints in item 5
define square protection zones around vehicles that cannot
intersect each other. Solutions generated by nodei enforce
these collision avoidance constraints not only between itself
and its neighbors, but among the neighbors as well.

The specific parameters of the problem will be given
further in this section, along with the number of vehicles
and graph structure corresponding to different scenarios.

The above choice of dynamics, cost and constraints allow
us to rewrite problem (12) as a Mixed Integer Linear
Program (MILP) [20], [21], for which efficient branch-
and-bound solvers are available [22]. Note that any other



linear or piecewise linear formulation of constraints, cost
and dynamics can be cast as an MILP [20].

Next, we simulate two different scenarios where each
node follows the decentralized RHC control scheme de-
scribed in steps 1–4 of (13), including comparisons with
a centralized RHC scheme.

A. Three-vehicle scenarios

The first set of simulations was conducted using three
vehicles arranged in the graph structure shown in Figure 1.
Such an interconnection graph implies that the decentralized

Fig. 1. Three-vehicle formation graph.

problem solved by vehicle #1 is a function of its own states
and the states of vehicle #2 only. The second vehicle “sees”
all three vehicles and would in fact be solving a centralized
problem if the other two vehicles were implementing the
solution it calculates. The last vehicle #3 is in the same
situation as vehicle #1 by knowing only about its neighbor
#2. The objective of the team is to get from their initial
positions to designated target points while taking up the
associated formation defined by the relative positions and
speeds at the targets. The protection zone of each vehicle
is given asdmin/2 = 1.2.

The three vehicles have to perform a maneuver specified
by the following initial and final conditions:

x1
0 =

[
1 −3 0 0

]′
, x1

f =
[
6 5 0 0

]′
,

x2
0 =

[
10 −3 0 0

]′
, x2

f =
[
11 5 0 0

]′
,

x3
0 =

[
15 −3 0 0

]′
, x3

f =
[
3 5 0 0

]
This setup intends to mimic a typical “challenging” conflict
scenario where vehicles have to reach their final targets by
crossing each others paths.

Feasible solutions: Figure 2(a) shows the resulting trajec-
tories when the decentralized scheme (12)-(13) is applied
to the problem using a prediction horizon length of 9 steps
(1.8 seconds). Weights in the cost function were chosen to
be Qu = 0.1I4 for vehicles #1, #3 andQu = 0.1I6 for
vehicle #2, whereIn ∈ R

n denotes the identity matrix. The
dimension of the weightQu is determined by how many
vehicles and control inputs are involved in the optimization
problem (e.g. vehicle #1 solves for its own two control
inputs and the two inputs of its single neighbor, which
meansQu ∈ R

4). Other weights had equal values of
Qpos = Qvel = Q̃pos = Q̃vel = Qrpos = Qrvel = Q̃rpos =
Q̃rvel = 100I2.

It is interesting to observe that the decentralized scheme
shows signs of a collective behaviour that could be at-
tributed to an intuitive centralized solution. Even though
vehicle #1 cannot see vehicle #3 and would almost certainly
collide with it by simply flying towards its target, the

(a) Snapshot of decentralized
solution att = 4.4 sec.

(b) Snapshot of centralized so-
lution at t = 3.4 sec.

Fig. 2. Decentralized and centralized solutions of the three-vehicle
example. Final targets are denoted by X’s. The three shaded boxes
represent protection zones associated with each vehicle.

collective motion of vehicle #1 and #2, induced by their
relative position objective, yields to vehicle #3 by moving
away or hovering, while #3 is speeding towards its target.

In order to offer a baseline for evaluating the decen-
tralized solution, the same problem was solved using the
centralized scheme (10)-(11). The solution is depicted in
Figure 2(b).

This example shows that a decentralized scheme can
find reasonable solutions to cooperative problems even
though feasibility can be compromised depending on initial
conditions of the vehicles. The size of the protection zones
have a significant influence on overall feasibility and the
quality of solutions as well.

Changing horizon length: The next simulation intends to
demonstrate that the role of the prediction horizon length
can be quite different from what standard RHC theory
would suggest, mainly because of the decentralized nature
of the problem. This means, for instance, that longer horizon
lengths do not necessarily provide a better solution in
general, since predictions about the future behaviour of
neighboring vehicles can be completely inaccurate. The ex-
ample shown in Figure 3(a) demonstrates this phenomenon
by changing the horizon length from 9 to 14 steps (2.8
seconds) in the decentralized problem of Figure 2(a). The
receding horizon problem of vehicle #2 becomes infeasible
at 3.2 seconds, since due to inaccurate knowledge about
the neighbors’ future intentions, the three vehicles reached
a point, from where vehicles #3 and #1 cannot avoid each
others protection zones.

Since the centralized approach (10) resembles a standard
receding horizon RHC problem, we would anticipate that
longer horizon lengths lead to better solutions. Figure 3(b)
shows the centralized solution using increased horizon
length, illustrating that this is in fact the case.

Changing cost weights: The following simulations intend
to point out that feasibility of the decentralized problem
without terminal cost and constraints is a function of the
“strategy” that vehicles follow. This can be influenced by
the selection of weights in the cost function.



(a) Snapshot of decentralized
solution att = 3.2 sec.

(b) Snapshot of centralized so-
lution at t = 4 sec.

Fig. 3. Decentralized and centralized solutions using longer
horizon length (vehicle #2 becomes infeasible att = 3.2 seconds
in the decentralized case).

The previous infeasible decentralized example for in-
stance, can be made feasible if the relative state errors in
the cost function are weighted much more heavily. This is
obtained by settingQpos = Qvel = Q̃pos = Q̃vel = I2 and
Qrpos = Qrvel = Q̃rpos = Q̃rvel = 100I2. This setting
prompts the vehicles to get into the desired formation first
and then move together to the final target points as shown
in Figure 4(a). This “strategy” seems to have a beneficial
effect in the team’s overall ability to perform the maneuver
in a feasible way. The same phenomenon was observed in
more complex, six-vehicle scenarios described in Section
IV-B.

A possible explanation of this effect might be that ve-
hicles are prompted to reach their desired relative states
(formation) and resolve associated conflicts within a time
frame that is comparable to their horizon lengths. Once the
formation is attained, the common remaining goal of each
vehicle is to “drift” to their target points. This at the same
time becomes a much simpler objective to accomplish even
in a decentralized way.

(a) Snapshot of decentralized
solution att = 5.4 sec.

(b) Snapshot of centralized so-
lution at t = 6.8 sec.

Fig. 4. Decentralized and centralized solutions using longer
horizon length and weighting relative state errors more.

The centralized approach depicted in Figure 4(b) also
serves to demonstrate that choosing larger weights on
relative position results in an attractive alternative solution
to the problem by reaching the desired formation before

actually moving towards the final targets. Figure 4(b) shows
the three vehicles “swapping position” relatively quickly,
before “coasting” to their final positions together in forma-
tion. The selection of the weights was the same here as in
the decentralized scheme.

B. Six-vehicle scenarios

In this section we consider scenarios with six vehicles.
The problem setup is defined by assigning the graph shown
in Figure 5 to the vehicles that are lined up one after another.
The objective is to move the vehicles into a triangular
formation given in Figure 5. Note that from a computational
point of view, the decentralized problems solved by each
vehicle have the same complexity as in the three-vehicle
example of the previous section.

Fig. 5. Six-vehicle formation graphs.

1) Stationary formation (surveillance): In this example,
the initial and final states of the individual vehicles are
specified as follows

x1
0 =

[−10 0 0 0
]′

, x1
f =

[−6 2 0 0
]′

,

x2
0 =

[−8 0 0 0
]′

, x2
f =

[−6 0 0 0
]′

,

x3
0 =

[−6 0 0 0
]′

, x3
f =

[−6 −2 0 0
]
,

x4
0 =

[−4 0 0 0
]′

, x4
f =

[−5 −1 0 0
]′

,

x5
0 =

[−2 0 0 0
]′

, x5
f =

[−5 1 0 0
]′

,

x6
0 =

[
0 0 0 0

]′
, x6

f =
[−4 0 0 0

]
The protection zone of each vehicle is given asdmin/2 =

0.3. Horizon lengths were chosen to be 9 steps (1.8 sec-
onds). Weights in the cost function had the same values
as in the basic three-vehicle scenario. Figure 6 illustrates a
feasible decentralized solution to this problem.

2) Moving formation: The stationary “surveillance-type”
scenario of the previous section is modified in this example
by assigning non-zero initial and final velocities to the
vehicles:

x1
0 =

[−10 0 5 0
]′

, x1
f =

[−6 2 5 0
]′

,

x2
0 =

[−8 0 5 0
]′

, x2
f =

[−6 0 5 0
]′

,

x3
0 =

[−6 0 5 0
]′

, x3
f =

[−6 −2 5 0
]
,

x4
0 =

[−4 0 5 0
]′

, x4
f =

[−5 −1 5 0
]′

,

x5
0 =

[−2 0 5 0
]′

, x5
f =

[−5 1 5 0
]′

,

x6
0 =

[
0 0 5 0

]′
, x6

f =
[−4 0 0 0

]
The terminal position states are excluded from the cost

function by selectingQpos = Q̃pos = 0·I2, in order to allow



Fig. 6. Decentralized solution of the stationary formation problem.
Snapshot att = 6 sec.

the formation to maintain the final velocity while establish-
ing the desired relative positions. The single purpose of
specifying terminal positions is to indicate the desired final
relative formation. Other weights were chosen asQvel =
Qrvel = Q̃vel = Q̃rvel = 10I2 andQrpos = Q̃rpos = 50I2.
The remaining parameters of the problem are the same as
in the previous section.

Fig. 7. Decentralized solution of the moving formation scenario. Snapshot
at t = 4.8 sec.

A feasible decentralized solution of the moving and
changing formation problem is shown in Figure 7. Note that
using other initial conditions, the resulting maneuver might
cause protection zone violations. However, it is important
to emphasize that the decentralized problem is still feasible
even if vehicles not linked by common neighbors or arcs
cross each others path. If the chosen interconnection graph
is not complete, the absence of connections between certain
vehicles represents the lack of collision avoidance con-
straints between them. An incomplete graph for formation
flight can be justified if unconnected vehicles fly at different
altitudes or if the particular graph structure is chosen to
represent a rigid formation [13].

V. FINAL OBSERVATIONS AND REMARKS

A formal stability proof of a particular scheme in the pro-
posed framework which is not too conservative is still under
investigation. Our experience is that the more complex the
decentralized control scheme is, the more difficult it is to
give any stability or feasibility proofs. As in most of the
RHC literature, such decentralized schemes work very well
in practice even without any “theoretical stability proof”.

Simulation examples show that the decentralized ap-
proach to formation flight can provide feasible solutions
even in challenging scenarios. Depending on the particular
problem and initial conditions, feasibility issues might arise
using the proposed scheme (12). A few examples were given
to illustrate how the horizon length and weights in the cost
function can influence the solution and feasibility of the
decentralized problem. A number of alternative approaches
based on a hierarchical decentralized scheme are currently
under investigation to ensure feasibility in a decentralized
way [cite CDC?].

Another important aspect of the proposed framework is
real-time implementability. The maximum computational
time associated with a single decentralized subproblem was
0.063 seconds using a horizon length of 9 steps and a
sampling time of 0.2 seconds in the presented simulations.
Furthermore, assuming a modest number of neighboring
vehicles, explicit solutions of the underlying MILP prob-
lem can be computed off-line, which reduces the required
number of calculations to a function evaluation [23].

For more comprehensive illustration of simulations we
refer to videos accessible on the web-site [24].
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