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Abstract— We consider a set of decoupled dynamical sys- system. The problem of constructing decentralized control
tems and an optimal control problem where cost function and  systems is formulated as one of minimizing the closed
constraints couple the dynamical behavior of the systems. The loop norm of a feedback system subject to constraints
coupling is described through a connected graph where each th trol struct Th th h that drati
system is a node and, cost and constraints of the optimization Fm _e Con. rof structure. €au o.rs. show _a, quadratic
problem associated to each node are only function of its state invariance is a necessary and sufficient condition for the
and the states of its neighbors. For such scenario, we propose existence of decentralized controllers. In [4] the authors
a framework for designing decentralized Receding Horizon consider spatially interconnected systems, i.e. systems com-
Contral (RHC) control schames. . posed of identical linear time-invariant systems which have

In these decentralized schemes, a centralized RHC con- tructured int fi t | B loiti th
troller is broken into distinct RHC controllers of smaller sizes. & StUUCIUred interconnection topology. by exploiting the
Each RHC controller is associated to a different node and interconnection topology, the authors study decentralized
computes the local control inputs based only on the states analysis and system control design usiaginduced norms
of the node and of its neighbors. The proposed decentralized gnd LMI-s.
control schemes are formulated in a rigorous mathematical In this report we will focus ondecoupled systems. In
framework. Moreover, we highlight the main issues involved d it th bl fd tralized .t I f
in guaranteeing stability and constraint fulfillment for such a aescriptve way, the probiem ot decentralized control for
schemes and the degree of conservativeness that the decendecoupled systems can be formulated as follows. A dynam-
tralized approach introduces. ical system is composed of (or can be decomposed into)
distinct dynamical subsystems that can be independently
. _ _ actuated. The subsystems are dynamically decoupled but

The interest in decentralized control goes back to thaave common objectives and constraints which make them
seventies. Probably Wang and Davison were the first in [Jhteract with each other. Typically theteraction is local,
to envision the “increasing interest in decentralized contrdle. the goal and the constraints of a subsystem are function
systems” when “control theory is applied to solve problemsf only a subset of other subsystems’ states. The interaction
for large scale syste.ms". Slnc'e then the interest has.growmn be represented by an “interaction graph”, where the
more than exponentially despite some non-encouraging reodes represent the subsystems and an arc between two
sults on the complexity of the problem [2]. Decentralizechodes denotes a coupling term in the goal and/or in the
control techniques today can be found in a broad spectrugbnstraints associated to the nodes. Also, typically it is
of applications ranging from robotics and formation flightassumed that thexchange of information has a special
to civil engineering. Such a wide interest makes a survey dftructure, i.e., it is assumed that each subsystem can sense
all the approaches that have appeared in the literature vesyid/or exchange information with only a subset of other
difficult and goes also beyond the scope of this paper.  subsystems. Often ttigteraction graph and theinformation

Approaches to decentralized control design differ fromexchange graph coincide. A decentralized control scheme
each other in the assumptions they make @htie kind  consists of distinct controllers, one for each subsystem,
of interaction between different systems or different compowhere the inputs to each subsystem are computed only

nents of the same system (dynamics, constraints, objectivgased on local information, i.e., on the states of the subsys-
(ii) the model of the system (linear, nonlinear, constrainedem and its neighbors.

I. INTRODUCTION

continuous-time, discrete-time)jij the model of informa- ~ Our interest in decentralized control for dynamically
tion exchange between the systems) the control design decoupled systems arises from the study of formation flight.
technique used. In formation flight a certain number of vehicles have to be

~ Dynamically coupled systems have been the most studontrolled in order to behave as a formation. The vehicle
ied. In [1] the authors consider a linear time-invarianidynamics are often assumed to be decoupled. A forma-
system and give sufficient conditions for the existencéion behavior is achieved only if each vehicle computes
of feedback laws which depend only on partial systenits control laws as a function of position and speed of
outputs. Recently, in [3] the authors introduce the concepieighboring vehicles. Moreover, each vehicle is required
of quadratic invariance of a constraint set with respect to o keep a certain distance from its neighbors. Therefore,
o . . 0objective and constraints couple the overall dynamics. The
*Department of Aerospace Engineering and Mechanics, University of hicl . d b h oth
Minnesota, 107 Akerman Hall, 110 Union Street S.E., Minneapolis, MI\WaY ve IC'eS Commumcate and sense ) etween 'eaC. other
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and the constraints of the formation define theeraction  their conservativeness. We will show the applicability of
graph. the proposed approach when decentralized schemes are
Several studies have appeared on decentralized tealsed for controlling a set of vehicles in formation flight.
niques for formation tasks. LMI techniques have been useSimulation examples will be used to investigate the effect
in [5], control Lyapunov function in [6] and a vision-based of cost weights and horizon lengths on the feasibility of the
framework in [7]. We will make use of Receding Horizon decentralized RHC schemes. We will also point out some
Control (RHC) schemes. The main idea of RHC is to usénteresting behaviors of the decentralized scheme which are
the model of the plant topredict the future evolution of different from what is observed in standard centralized RHC
the system [8]. Based on this prediction, at each time stegontrol theory.
t a certain performance index is optimized under operating
constraints with respect to a sequence of future input moves.
The first of such optimal moves is tlgentrol action applied Consider a set ofN, decoupled dynamical systems,
to the plant at timeg. At time ¢ + 1, a new optimization is the i-th system being described by the discrete-time time-

Il. PROBLEM FORMULATION

solved over a shifted prediction horizon. invariant state equation:
Optimal control techniques for formation flight have been i P
extensively studied. More than twenty-five years ago, in Ty = [ (@, up) 1)

the field Qf computer graphics, Reynolds.proposed Simplﬁ/here o e R i € R™ i R™ x R™ — R™
decentralized rules which would allow to simulate flocks of, ’
birds in a reasonable time [9]. In his mo?el _eash bird (mo‘_jfespectively. Lett C R™ andi/i C R™ denote the set of
eled as point mass-model and palled bo@s) updates it qjpje inputs and states of theh system, respectively:
speed as a simple switched nonlinear function of the speeds
of its neighboring birds. The switches between different rh € XY wuheU', k>0 )
update laws allows to minimize the probability of collision ) )
between birds. Unconstrained decentralized LQR contrd’e Will refer to th(jevsxetioﬂ\/’v ?onstr?\;nxedisystems &Em
has been described in [10], [11]. Recently, centralized RHEY/SEM. Letz;, € RT*™ anday € R™™ be the vectors
schemes applied to formation flight have appeared in [12}Vhich collect the states and inputs Olf the team system at
[13]. In [14] decentralized RHC and potential functionsiMe ¥» -8 &k =[xy, @y"], Ay = [ug, - uy], with
have been _used fo_r flying multiple autonomous helicopters Fre1 = f(En, ) ©)
in a dynamical environment. o

In this paper we take explicitly into account constraintdVe denote by(z;,u;) the equilibrium pair of thei-th
and use the model of the neighbors to predict their behaviosystem andz.,i.) the corresponding equilibrium for the
In this respect, the “boids” control strategy [9] can be seeteam system.
as a special case of decentralized RHC when the predictionSo far the systems belonging to the team system are com-
horizon is one. We describe a framework for designingletely decoupled. We consider an optimal control problem
decentralized RHC control schemes, where a centralizedor the team system where cost function and constraints
RHC controller is broken into distinct RHC controllers couple the dynamic behavior of individual systems. We use
of smaller sizes. Each RHC controller is associated to @ graph topology to represent the coupling in the following
different node and computes the local control inputs baseday. We associate theth system to the-th node of the
only on the states of the node and of its neighbors. Igraph, and if an edgéi, j) connecting thei-th and j-th
general, computation is distributed over the nodes and th#de is present, then the cost and the constraints of the
number of RHC controllers is smaller than the total numbe@ptimal control problem will have a component which is a
of nodes. function of bothz* andx?. The graph will beundirected,

The main issue regarding decentralized schemes is the@. (i,7) € A = (j,i) € A. Before defining the optimal
the inputs computed locally are, in general, not guaranteetdntrol problem, we need to define a graph
to be globally feasible and to stabilize the overall team. In G— (v, A} @
general, stability and feasibility of decentralized schemes ’
are very difficult to prove and/or too conservative. A schemgyhere ) is the set of node® = {1,...,N,} and A C
with stability guarantees has been proposed in [15] fop x V the sets of arcéi,j) withi € V, j € V.
dynamically coupled systems, with information exchange Once the graph structure has been fixed, the optimization
between nodes and contractive stability constraints in theroblem is formulated as follows. Denote witfi the states
distributed RHC subproblems. of all neighboring systems of theth system, i.ei’ =

We will formulate decentralized control schemes in afzi ¢ R |(j,i) € A}, &' € R* with a* =
rigorous mathematical framework, without giving any prOOfAnalogously, ii € R™ denotes the inputs to all the

of feasibility and stability. Instead, we will highlight the neighboring systems of theth system. Let
main issues involved in guaranteeing stability and con- '

straint fulfillment for such schemes and briefly discuss gzt ut xd u?) <0 (5)

re state, input and state update function of #system,

j
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define the interconnection constraints between:ttreand of the state is solved over a shifted horizon. The resultant
the j-th systems, withy’ : R* x R™ x R™ x R™ —  controller is often referred to as Receding Horizon Control
Rm™<i.i, We will often use the following shorter form of the (RHC). More specifically, assume at timeéhe current state

interconnection constraints defined betweenitkiesystem Z; to be available and consider the following constrained

and all its neighbors: finite time optimal control problem
g7(m7,u7,7i,7,7a7) S 0 (6) - . ) N—-1 ~ ~ ~
, i y , Ja(x) = min W Zkty Uket) +In(TNe) (10a)
with gz SR x R™ x R x R™' — Rnei {U:} k=0
Consider the following cost Thyry = FHEh Uk ),
N, i=1,....,Ny, k>0
(&,a) =Y 12" ul &, @) 7 9" (@ 4 U 4 T 4 U7 ) <O,
i=1 t=1,...,N,, (i,j) € A,
i ni R oy . . . k=1,....,N—-1
wherel* : R" xR™ xR xR™ — R is the cost associated subj. to A (10b)
to thei-th system and is a function of its states and the states Thit | - 1’ uk]fv
of its neighbor nodes. Assume thiats a convex function Zi 1’ T J\;” ]
and that’(z%, u?, 7%, 4}) = 0 and consider the infinite time LT
optimal control problem TNt € f,
- To,t = Tt
Jo (@) & _min Zl(fﬁk,ﬁk) (8)  where N is the prediction horizonX; C RNoxn' g
{uo,ul,...} — . . . .
k=0 S a terminal region,y is the cost on the terminal state.
Th1 = T (g, up,), In (10) we denote withl/; £ [igy,...,an-1.] € R?,
=1, Ny, 20 s = N, x mN the optimization vectorz} , denotes the
g"I (), ul, @, ug) <0, state vector of the-th node predicted at time+ & obtained
. i=1,...,N,, k>0, by starting from the state! and applying to system (1)
subj. to o 9) . ) , . )
_ (z,j_) €A _ the input sequencey, ,, ..., u;_; ,. The tilded vectors will
x, € X, wu, elU’, denote the prediction vectors associated to the team system.
i=1,...,Ny, k>0 Let Uy = {af,,...,Ux_1,} be the optimal solution
To =2 of (10) at timet and J3 (#;) the corresponding value

function. Then, the first sample df; is applied to the

~ N, nt i i
For all z € R™ ™", if problem (9) is feasible, then . system (3)

the optimal inputzj, @7, ... will drive the N, systems to
their equilibrium pointsc? while satisfying state, input and
interconnection constraints. The optimization (10) is repeated at timer- 1, based on

Remark 1: Throughout the paper we assume that a sathe new stater; ;.
lution to problem (9) exists and it generates a feasible It is well known that stability is not ensured by the RHC
and stable trajectory for the team system. Our assumptidaw (10)—(11). Usually the terminal cokt; and the terminal
is not restrictive. If there is no infinite time centralizedconstraint seft; are chosen to ensure closed-loop stability.
optimal control problem fulfilling the constraints, then thereA treatment of sufficient stability conditions goes beyond
is no reason to look for a decentralized receding horizothe scope of this work and can be found in the surveys [8],
controller with the same properties. [16]. We assume that the reader is familiar with the basic

Remark 2: Since we assumed that the graph is undiconcept of RHC and its main issues, we refer to [8] for a
rected, there will be redundant constraints in problem (9xomprehensive treatment of the topic. In this report we will
Note the form of constraints (6) is rather general and it willassume that terminal cost and the terminal constraint set
include the case when only partial information about stated’s have been appropriately chosen in order to ensure the
of neighboring nodes is involved. stability of the closed-loop system.

With the exception of a few cases, solving an infinite In general, the optimal input:i to the i-th system
horizon optimal control problem is computationally pro-computed by solving (10) at time, will be a function
hibitive. An infinite horizon controller can be designedof the overall state informatiort;. The main objective
by repeatedly solving finite time optimal control problemsof this work is to describe how problem (10) can be
in a receding horizon fashion as described next. At eacttecomposed into smaller subproblems whose independent
sampling time, starting at the current state, an open-loogomputation can be distributed over the graph nodes. We
optimal control problem is solved over a finite horizon.propose a decentralized control scheme where problem (10)
The optimal command signal is applied to the process onlig decomposed int&/,, finite time optimal control problems,
during the following sampling interval. At the next time stepeach one associated to a different node. iFtfesubproblem
a new optimal control problem based on new measurementsll be a function of the states of theth node and the

= - (11)



states of its neighbors. The solution of thtéh subproblem
will yield a control policy for thei-th node of the form N-1

up = [z, Ip). m}n Z U 4y Uk gy Thopp Upe ) + Uy (T, T ) (128)
Remark 3: The techniques presented next will be mean- Ui k=0 ; i ;

ingful only if the graphG is not a full graph. Often, T = S (@ )

the interconnection graph is not fully connected because k=0 )

of the nature of the problem. For instance, each node Thy € X', up, €U,

could represent a production unit of a certain plant and the k=1, e V=1

production of a node could be related to only a few other x?chl,t =/ (J?i,tv“i,t),

units of the plant. Also the interconnection graph is not fully (J,9) € A,

connected because some constraints associated to certain k=0

arcs are implicitly satisfied by interconnection constraints z., € X, up, €U,

associated to other arcs. In formation flig@tjs full graph (4,4) € A,

which describes the constraints between each node (since . k=1,...,.N-1

each vehicle has to keep a certain distance form all the other suby. io g (z% ,,ul . xi . U?C ;) <0, (12b)

vehicles of the formation). Rigid graph topology [13], [17] (i,j) €A

can be used to implicitly enforce constraints between two k=1,...,.N—1

vehicles not connected by any arc of the graph. More often, 9o (2, ul, xh uh,) <0,

time-varying graph topology based on a closest neighbor (q,7i) c 7A, (7;, i) c A,

principle are used. In this work we focus on fixed graph k=1....N—-1

topology. Time-varying graphs topologies have been studied al, € Xf”, ’

n 7 i € X (0,7) € A

Remark 4: In the formulation above, we are assuming T = T,

that the equilibrium(z., @.) of the formation is known a Ty, = I,

priori. The equilibrium of the formation can be defined in N R ; » , . &

several other different ways. For instance, we can assumyhere Uy = [t ¢ Uo,ps - s Uy 1,0 U1l € R s =

that there is a leader (real or virtual) which is movingl”? * 7))V denotes the optimization vector. Denote by
e = [ugl U - uN 1 UN_y 4] the optimizer of

and the equilibrium is given in terms of distances of each’t

vehicle from the leader. Also, it is possible to formulateProPlemP;. Note that problemP; involves only the state

the equilibrium by using relative distances between vehicled

nd input variables of théth node and its neighbors.

and signed areas [13]. The approach of this paper does rlotWe will define the following decentralized RHC control

depend on the way the formation equilibrium is defined, aScheme.

long as this is known a priori. In some formation control
schemes, the equilibrium is not known a priori, but is the

1) Thei-th node at timet measures its state! and the
state of all its neighborg:.

result of the evolutions of decentralized control laws. The 2) Each node solves problen;. N
approach of the paper is not applicable to such schemes. 3) Each node implements the first sample df;*

ul = uaf’t. (13)

4) Each node repeats steps 2 to 4 at time 1, based
on the new state informatian; ,,, 7} ;.

Steps one to four describe a decentralized strategy that

IIl. DECENTRALIZED CONTROL SCHEME

uniquely defines the control inputs to the team system.

Each node knows its current states, its neighbors’ current
states, its terminal region, its neighbors’ terminal regions
and models and constraints of its neighbors. Based on such

Consider the overall problem: systems (1), gréhrand

information, each node computes its optimal inputs and

RHC policy (10)-(11). Consider thé-th system and the its neighbors’ optimal inputs. The input to the neighbors

following finite time optimal control problem

will only be used to predict their trajectories and then

discarded, while the first component of théh optimal
input of problemP; will be implemented on theé-th node.
Even if we assumeV to be infinite, the approach de-
scribed so far does not guarantee that solutions computed
(P,) : locally are globally feasible and stable (i.e. feasible for
problem (10)). The reason is simple: At ttx¢h node the

T (w7 2

prediction of the neighboring staié,; is done independently



from the prediction of probler® ;. Therefore, the trajectory they are feasible at time¢ = 0. Stability and feasi-

of 27 predicted by problenP; and the one predicted bility in classical RHC schemes is proven by using the

by problem?;, based on the same initial conditions, arevalue function a Lyapunov function. We follow the same

different (since, in generalP; and P; will be different). approach LetU0 = {uoo,.. uN 1.0} Ug e =

This will imply that constraint fqurIIment will be ensured {uo 05 - - “N . O} be the optrmizer of problen‘Pl for

by the optimizer. ;¢ for problem?; but not for the overall Oandx _ {xOO"' fUNo} x _ {xoo’” fENo}

problem (10). be the correspondrng optimal state trajectories of node
There are three main issues that arise in the decentraliz¢d gnd node 2 predicted at node 1. Analogously, let

control scheme. In order to ensure central feasibility and]2 o fudduk ob UsH = {Uom UN . o)

stability of the decentralized control scheme, be the optiorr(i)i’z'er of problenP, for t = 0 and xb? =

» Decoupled Terminal Cost. How does one choose the {42, ... 2%}, x3? = {205...., 2%} be the corre-
terminal costly; for each problen;? sponding optimal state trajectories of node 1 and node 2
o Decoupled Terml nal Region. How does one choose the predicted at node 2. By hypothesis the initial state for both
terminal region’; for each problenyp;? problems are the same, i.eq) = 245 andag = xgg
« Feasihility Issue._ Is it enough to_choose the right Consrder pr0b|emp1 The shifted sequence{sfl -
decoupled terminal cost and terminal region? {ub? 0 Junt 00} andU>' = %(1),. Just 0,0} of
We can anticipate here that the answer to the “feasibilrtproblemP1 are not feasrble at timeé = 1 since the state
issue” is negative. That is, a good choicelgf and X? is, of system 2 at time 1 (assuming no model uncertainty and
in general, not sufficient to ensure stability and feasibilitythe RHC scheme presented in the previous sectiomf @
of the decentralized scheme. Problem (12) needs to kmd notx . However, one can use construct a feasible
modified in order to guarantee feasibility. Also, the “fea-shifted sequence by using the optimizer of probl@y,
sibility issue” is the most complex one, while computingiy* = {u}¢, ..., u%" , ;0. U;"" andU}"? will be feasible
decentralized costs and terminal regions is less complex timet = 1 for problem7?1 because we have assumed no
since we have assumed that the systems are dynamicalliyerconnection constraints. Define the following sequences:

decoupled. :zo = (x(l)(l),xg ), @ = (x} L), ah = 2, 13 = 20,
. i = a:l 1 anda? = xl 2. We can compute a bound on the
A. Decoupled Terminal Costs variation of cost as follows:
If performance of the decentralized RHC is not critical, Ji (& ) < 1Y(al, U11 )1 2, U2 2)
then stability is not the major issue in decentralized RHC T (F0) — +]| Q| — HQﬂ?oHer

schemes for dynamically decoupled systems. One can al-_ ||Q($o —a2)|, — ||Ru ”p ||Ru2’1
ways sacrifice optimality of the centralized problem (10) 1(|iQ932 [ HQﬂf H )+

in order to guarantee stability. In fact, in the worst case P ’5;0 P
the cost can be chose to be decentralized as well, i.e. E (HQ“ ollp — HQU N
li(2f,ul, #,4') = (2", u') and each subsystem dynamics — ((HQ(J?M — 7 Hp Q@ o — o))
will converge to its equilibrium. In doing so we have com-

pletely neglected the coupling term in the cost. In general, if < J}V*(~

one writesl®(z%, ut, 7%, a') = I¢ (2%, u’) + alb (2%, '), then -i—||Ru ||p

0 Iy = IIQw?)IIp = 1Q(z5 — xB)ll»—

it can be easily proven that one can always cheose|0, 1] + Ek QHQ( xk 0)||p + HQ( _ uk 0)||p
such that stability is guaranteed. With= 1 we recover the (14)
original cost for each node and how claosecan be to one Definees = 2||Q( zy O_xk 0)||p+HQ(uk O_uk O)”p

is a function of the error between predictions of neighbor'spye can useJ (x as candidate Lyapunov function and
behavior and their real behavior. Next we will sketch theclaim stabllrty If€ < Q| +11Qz |, + 1Q (x5 —23) |+
classical proof of RHC stability with end-point constralntHRu ||p+ ||Ru »- The terme is a function of the error
and highlight the problems arising in decentralized RHC. petween the trajectories of node 2 predicted by node 1 and
Consider two systemsN, = 2), no input, state, and the one predicted by node 2. The larger this error is the
interconnection constraint. Assume the origin to be an equhigher is the probability that the value function does not
librium for both systems. Consider a centralized RHC probeecreases along the team system trajectories.
lem with terminal point set constraint to the origin which . i
is decomposed into two decentralized RHC scheme B Decoupled Terminal Regions
andPs. Assumell(x ul, 2% u?) = ||Qxt|, + |iQx2|ip The problem of the terminal set can be approached in
Q(z! —x )||p+|iRu1|| +||Ru2|| andi?(z!, u', 22, u?) = two different ways. One can start from the terminal &%t
|iQ$1|ip+||Q$2||p+HQ($ . )||p—i—||Ru1Hp—i—||Ru2||p De- inlprobleim (10) and decompose it infd, non-emptylsets
fine (1(xt, U, 22,U?) = Z% M@t U k), 22, U%(k)), &F € R™ which will be used in (12). TheV, setsX} C
and (2(z1, U, 22,U%) = Y,_, 1*(z, UY(k),2%,U%(k)). R™ can be also computed without taking into consideration
Consider the RHC problerf?; and P, and assume that the original invariant sef’;. We prefer to follow the latter




route for two main reasongj) it can be computationally nodes, once their initial condition is known. Therefore,
prohibitive to compute the invariant séf; in (10) for a the vectorafowk,_1 can be considered as a disturbance
large team of systemgii) it is difficult to decompose the which can lead to possible infeasibility of constraint (17).
invariant setY; into N, terminal sets, which used in (12) There are two possible schemes: open-loop and closed-
will guarantee the feasibility of the decentralized controloop constraint fulfilment. An open-loop robust constraint

schemes. ~ fulfillment is formulated next. Substitute the functiong
We propose the following construction of the sétg.  with gi : R*" x R* x R™ — R™ where
For each vehicle, we compute an hyper-rectangular inner 1) for all i, 7, which satisfy
Co : : . T U, k1]
approximation of the feasible space defined by the intercon- S
nection constraints which contains the equilibtid, 7%) as G (2 Ty ufp, 1) <0 (18)

follows. Consider the-th node and the se§%/ ¢ R™" +7’

for (i,4) € A defined by the coupling constraing$-: we have

i — {xz c Rni, e anl gi,j(mi,mj) <0l glzc(xivﬁvUq[’o,...,kq]a'&fo,...,kfu) <0
for all admissiblé f§07___7k_1].
2) The sets described by

gli(xivjiaufo,...,k—l]) <0 (19)

fori=1,...,N, k=1,..., N — 1 are nonempty.

Compute the seti}d and IZJ. satisfying
() J 1,]
Ly x I € 87
Let I' = (V; jyeali; and X} be a controlled invariant

set of thei-th system (1), subject to input and state con- . . .
! Y (1) ) P Robust closed loop formulation [18] is less conservative

straints (2) and to the additional constrairit € I* vk > 0. . . . .
) . He — 0 but more computationally involved. We will not describe the
Through the procedure described above one can indepen-, . . .
. ; . . . " details of the robust closed loop formulation for a simple
dently computeV,, terminal setst; which will be use in B . . N .

. reason. “Robust constraint fulfilment” applied to decentral-
problem (12). Such sets have the following property. If eachz control schemes results in a very conservative approach
system enters its associated terminal set, we are ensured t'h\%jn for the closed-loop case Foryinstance consi%izr the
all the interconnection constraints are satisfied and that thef& . ; P ’ ' .

. . . case of formation flight. Assume we have only two aircraft
exists a decentralized control law which keeps each one Ih A ) .
. . . . and we want to design a local controller on the first aircraft
its respective terminal set. The sum of the ratios between . X : :

i j i . . using robust constraint fulfillment. The worst case scenario
the volumes off; ; x I} ; andS* for all (i, j) € A will be a

measure of the conservativeness of the method. The smal}g'r" include, in most cases, the collision of the two aircraft

this sum is, the smaller will be the region of attraction of they are not very far from each other and if they have

the decentralized control scheme. Note that the etnd the_ sam_e dyna_rmcs and constraints. However in reality,
o P neighboring vehicles collaborate between each other to fly
I7 will be convex even ifS*? is not convex.

in formation.
C. Ensuring Feasibility 2) Reducing Conservativeness: A less conservative ap-

We have mentioned that feasibility of the decentralProach for ensuring feasibility of the decentralized scheme
ized trajectories is the main issue in decentralized contr&i2S t0 take into consideration that systems in a team are

schemes. In this section we discuss some modification ﬁpop_er_ating, and therefore the trajectory that a node_ is
the original problem which can ensure feasibility. predicting should not be extremely different form what its

1) Robust Constraint Fulfillment: Consider the coupling neighbors are executing. This idea can be formulated in
constraints of probler; at stepk several ways. For instance, one could allow the exchange of

o 4 optimizers between the nodes in order to try to be as close
9" (g4, Tp ) <0 (15) as possible to what the neighboring system has predicted
- ; about a certain node. Another possibility is to tighten the
n ing th ion . . . L -
and by. using t ? s_tate gpdate equations coupling constraints (6) by a quantity which is an indirect

Thy1e = fl(xﬁw, u;”t), k>0 (16) measure of the cooperativeness of the team [15]
J)J :fj(xj 7U’J ) (jai)e-Aa kZO 3 1~ 1 ~1 3
Lt k) 91 (2, Ty o, 1) Ujo,... k—1)) < €k (20)

rewrite them as ) . S . -
wheree;, < 0 is a new optimization variable. Finding

9 (T, Ty ufy, 1)y o, p—1)) <O (17)  efficient methods to compute, off-line, based on a priori

; A ; ; » » knowledge of the team behavior is a focus of our cur-

w~h_ere Yo, k—1] T {ub, ..., up—,} and “o,...k=1] =  rent, ongoing research. Also, the idea of tightening these
{@g, .-, up_,}. In order to ensure the feasibility of the consiraints (20) can be exploited in a two stage process.
team system, a possible approach is to “robustify” the cony e first stage of the optimization problems (12), the

straints (17) for all vehicles at all time steps. In otherwordscoup"ng constraints are substituted with the one in (20).
we can require that the coupling constraints at each node

are satisfied fomll possible behaviors of the neighboring *admissible inputs have to satisfy constraints (2)



Their parametric solution [19] Wlth respect td, yields 1) Linear cost function:
the optimizer functionu*i(el, ..., €% ). In a second stage
the nodes communicate between themselves in order to
agree on a set ofi fori = 1,...,N,, k = 1,...,N
which ensures feasibility of the decentralized trajectories. If

li(ﬂ??;,t’u};,mf?;,u@?;,t) = ‘|Qu[ui,taﬂ§;,t]/||oo +

s Qs (ko = )

the agreement algorithm ends with a positive answer, each | Quet (%h.vet = % vet) ||oo ;
vehicle will implementu* (€, ..., ). - P i
max ‘QPOS (xk pos xf pos) ‘ )

In Section IV we will show some results when the 3, (i,5) €A ’ ’ oo
p.roposed decentrallzed scheme is applleq to formenon max ‘Qvel (xi’,vel _x;mel)H 7
flight. We will also point out some interesting behaviors J:(i,5) €A 0o
of the decentralized scheme which are different from what i . _
. . . max QTPOS Lkopos — T pos
is observed in standard centralized RHC control theory. J»(1,5)€A ’ T

= (aoe =) )|

e[ @t (e = o) -
IV. EXAMPLES
({E ,vel vael))HQQ’
This section presents simulation examples of the decen- 4. (5,0) EA (5,r) €A HQT’)OS ((xk pos ’pos)
tralized control scheme (12)-(13) described in Section Ill. ( e ))H
The examples describe formation flight of vehicles flying pos — Tfpos ] ]|
at a certain altitude. Each vehicle is modeled as a point . max HQrvel ((% el — Th vel) —
mass in two dimensions with constraints on states and o (La) €A (ir)eA ’
inputs. The coupling between vehicles stems from the _ (mq e ))H )
common objective of the team (moving in formation) and its Jrvel frvel

constraints (vehicles are not allowed to violate each others

. 2) No terminal cost and constraint’ =
protection zones). ) N (T T )

0, Xp=R*

Our intention is to provide some insight into feasibility  3) Identlcal vehicle dynamics (21)
issues associated with the proposed decentralized schem@) Linear constraints on states and inputs:
through a few simulation scenarios. We will describe each , ,
simulation scenario first and then summarize our observa- |z[ < [1000 1000 24 24], |ul < [2 2]

tions in Section V. 5) Non-convex interconnection constraints:

The dynamics (1) of the-th vehicle is obtained by i g
discretizing a double integrator at 5 Hz 9" (Tl Uy Ty, Uy,) = dinin — ‘

i o d
Lk,pos — Lk pos
oo

r(,.4 49 .7 T\ L q T
g (xmuk”xk”uk) = dmin ka'[ms Lk pos oo

A B . .

Note that the cost function above includes terms that

1.0 02 0 0 0 weigh the maximum control effort and the infinity norm of
wi = |0 L 0020 1004 i 5y avector which collects all the absolute and relative errors
M0 0 1 0|02 0|k of the i-th node and its neighbors with respect to the final
00 0 1 0 02 reference values. The infinity norm of a vector is defined

as|jv||,, £ max; |v;|, wherev = [vy vy -+ v,]".
Notice also, that the interconnection constraints in item 5
where define square protection zones around vehicles that cannot

intersect each other. Solutions generated by noeleforce
i . . these collision avoidance constraints not only between itself
xl = |:xk,p05:| Ul = {x-ax!s accelerat!op and its neighbors, but among the neighbors as well.
y-axis acceleratio The specific parameters of the problem will be given
further in this section, along with the number of vehicles
and graph structure corresponding to different scenarios.
The above choice of dynamics, cost and constraints allow
us to rewrite problem (12) as a Mixed Integer Linear
Each node solves the decentralized optimization proProgram (MILP) [20], [21], for which efficient branch-
lem (12) with: and-bound solvers are available [22]. Note that any other

andzj, . is the vector ofz andy coordinates and}, ,,;
denotes a vector af-axis andy-axis velocity components.



linear or piecewise linear formulation of constraints, co<t .
and dynamics can be cast as an MILP [20]. ‘ ~ * ‘ Y o *
Next, we simulate two different scenarios where ea
node follows the decentralized RHC control scheme ¢ ° .
scribed in steps 1-4 of (13), including comparisons wi- | ‘

a centralized RHC scheme. : w—

A. Three-vehicle scenarios

The first set of simulations was conducted using thr_Z

vehicles arranged in the graph structure shown in Figure 1,
9 grap 9 ) Snapshot of decentralized (b) Snapshot of centralized so-

Such an interconnection graph implies that the decentralizedg tion att — 4.4 sec. lution at ¢ — 3.4 sec.
@ m /?- Fig. 2. Decentralized and centralized solutions of the three-vehicle
=/ N example. Final targets are denoted by X’s. The three shaded boxes

represent protection zones associated with each vehicle.

Fig. 1. Three-vehicle formation graph.

problem solved by vehicle #1 is a function of its own state§°!l€ctive motion of vehicle #1 and #2, induced by their
and the states of vehicle #2 only. The second vehicle “see§élative position objective, yields to vehicle #3 by moving
all three vehicles and would in fact be solving a centralize@Way or hovering, while #3 is speeding towards its target.
problem if the other two vehicles were implementing the [N order to offer a baseline for evaluating the decen-
solution it calculates. The last vehicle #3 is in the sam&@alized solution, the same problem was solved using the
situation as vehicle #1 by knowing only about its neighbof€ntralized scheme (10)-(11). The solution is depicted in
#2. The objective of the team is to get from their initial Figure 2(b).

positions to designated target points while taking up the This example shows that a decentralized scheme can
associated formation defined by the relative positions anind reasonable solutions to cooperative problems even
speeds at the targets. The protection zone of each vehidRough feasibility can be compromised depending on initial

is given asd,i, /2 = 1.2. conditions of the vehicles. The size of the protection zones
The three vehicles have to perform a maneuver Specifié'@ve a significant influence on overall feasibility and the
by the following initial and final conditions: quality of solutions as well.
. , L , Changing horizon length: The next simulation intends to
To = [1 -3 0 0] Y [6 5 0 0] ’ demonstrate that the role of the prediction horizon length
22 =[10 -3 0 0}', x? =11 5 0 0}', can be quite different from what standard RHC theory
- [15 3 0 0}/, a:? _ [3 5 0 0] would suggest, mainly because of the decentralized nature

of the problem. This means, for instance, that longer horizon
This setup intends to mimic a typical “challenging” conflictlengths do not necessarily provide a better solution in
scenario where vehicles have to reach their final targets tgeneral, since predictions about the future behaviour of
crossing each others paths. neighboring vehicles can be completely inaccurate. The ex-

Feasible solutions: Figure 2(a) shows the resulting trajec-ample shown in Figure 3(a) demonstrates this phenomenon
tories when the decentralized scheme (12)-(13) is applidey changing the horizon length from 9 to 14 steps (2.8
to the problem using a prediction horizon length of 9 step§econds) in the decentralized problem of Figure 2(a). The
(1.8 seconds). Weights in the cost function were chosen t@ceding horizon problem of vehicle #2 becomes infeasible
be Q, = 0.11, for vehicles #1, #3 and), = 0.1I; for at 3.2 seconds, since due to inaccurate knowledge about
vehicle #2, wherd,, € R™ denotes the identity matrix. The the neighbors’ future intentions, the three vehicles reached
dimension of the weight),, is determined by how many a point, from where vehicles #3 and #1 cannot avoid each
vehicles and control inputs are involved in the optimizatiorPthers protection zones.
problem (e.g. vehicle #1 solves for its own two control Since the centralized approach (10) resembles a standard
inputs and the two inputs of its single neighbor, whichreceding horizon RHC problem, we would anticipate that
meansQ, € R%*). Other weights had equal values oflonger horizon lengths lead to better solutions. Figure 3(b)
Qpos = Quet = Qpos = Quet = Qrpos = Qrver = Qrpos =  Shows the centralized solution using increased horizon
Qrver = 10015. length, illustrating that this is in fact the case.

It is interesting to observe that the decentralized scheme Changing cost weights. The following simulations intend
shows signs of a collective behaviour that could be atto point out that feasibility of the decentralized problem
tributed to an intuitive centralized solution. Even thoughwithout terminal cost and constraints is a function of the
vehicle #1 cannot see vehicle #3 and would almost certainligtrategy” that vehicles follow. This can be influenced by
collide with it by simply flying towards its target, the the selection of weights in the cost function.



actually moving towards the final targets. Figure 4(b) shows
the three vehicles “swapping position” relatively quickly,

. ‘{ L W before “coasting” to their final positions together in forma-
—,‘ ) 2, el tion. The selection of the weights was the same here as in
F L " I the decentralized scheme.
. i, - | v- - B. Sx-vehicle scenarios

In this section we consider scenarios with six vehicles.
The problem setup is defined by assigning the graph shown
(a) Snapshot of decentralized (b) Snapshot of centralized so- In Flgurg > t,O th,e vehicles that are “n,ed UD_One aﬁer another.
solution att = 3.2 sec. lution att = 4 sec. The objective is to move the vehicles into a triangular
formation given in Figure 5. Note that from a computational
Fig. 3. Decentralized and centralized solutions using longepoint of view, the decentralized problems solved by each
horizon length (vehicle #2 becomes infeasible at 3.2 seconds yehicle have the same complexity as in the three-vehicle
in the decentralized case). . -
example of the previous section.

The previous infeasible decentralized example for in- ©) .
stance, can be made feasible if the relative state errors in O-O-G)--G)-6) » (IE\: \J'_I‘_./'-x.,«-“«.:
the cost function are weighted much more heavily. This is = = T ()
obtained by setting)os = Quet = Qpos = Quer = I2 and e
Qrpos = Qrvel = Qrpos = Qr'uel = 100]2 This Setting
prompts the vehicles to get into the desired formation first Fig. 5. Six-vehicle formation graphs.

and then move together to the final target points as shown
in Figure 4(a). This “strategy” seems to have a beneficial 1) Sationary formation (surveillance): In this example,
effect in the team’s overall ability to perform the maneuvethe initial and final states of the individual vehicles are
in a feasible way. The same phenomenon was observed $pecified as follows

more complex, six-vehicle scenarios described in Section

IV-B. ag=[-10 0 0 0, zb=[-6 2 0 0],
A possible explanation of this effect might be that ve- ;2—[-8 0 0 0], v} =[-6 0 o],
hicles are prompted to reach their desired relative states 23 [—6 0 0 0]/ . [—6 9 0 0}
(formation) and resolve associated conflicts within a time “0 — ) = K
frame that is comparable to their horizon lengths. Once the =g = (-4 0 0 0], x;% =[-5 -1 0 0],
forrr_1at|o_n is attqmed, the_ common remaining goal of each 2 = [_2 0 0 0]/7 x? _ [_5 10 0},,
vehicle is to “drift” to their target points. This at the same 6 , 5
time becomes a much simpler objective to accomplish even o= [0 0 0 0], zp=[-4 0 0 0

in a decentralized way. The protection zone of each vehicle is givenias,, /2 =

0.3. Horizon lengths were chosen to be 9 steps (1.8 sec-
onds). Weights in the cost function had the same values

QC cEm . L ) as in the basic three-vehicle scenario. Figure 6 illustrates a
J %_%‘ L ¥l : ' feasible decentralized solution to this problem.
o : - 2) Moving formation: The stationary “surveillance-type”
; ’: ’7 [ . scenario of the previous section is modified in this example
ol ST by assigning non-zero initial and final velocities to the
; s 4+ vehicles:
ag=[-10 0 5 0], zb=[-6 2 5 0],
(@) Snapshot of decentralized (b) Snapshot of centralized so- x% = [—8 0 5 O]/, a:? = [—6 0 5 0}’,
solution att = 5.4 sec. lution att = 6.8 sec. 3 ’ 3
zg=[-6 0 5 0, a}=[-6 -2 5 0],
Fig. 4. Decentralized and centralized solutions using longer 74 —[—4 0 5 0], a2i=[-5 -1 5 0],
horizon length and weighting relative state errors more. , ! ,
zg=[-2 0 5 0], z3=[-5 1 5 0],
The centralized approach depicted in Figure 4(b) also 6 _ / 6 _
PP P gure 4(b) =100 050, 2%=[-40 0 0

serves to demonstrate that choosing larger weights on
relative position results in an attractive alternative solution The terminal position states are excluded from the cost
to the problem by reaching the desired formation beforéunction by selecting ,os = Qpos = 0-12, in order to allow



=0

Fig. 6.
Snapshot at = 6 sec.

relative formation. Other weights were chosen(@s.; =
Qm;el = Qvel = QMJel =101, andQT[)OS = Qrpos = 5015.

L (=}
4

V. FINAL OBSERVATIONS AND REMARKS

A formal stability proof of a particular scheme in the pro-

%

o Jo

&0 000w
2

posed framework which is not too conservative is still under

investigation. Our experience is that the more complex the

decentralized control scheme is, the more difficult it is to
61 give any stability or feasibility proofs. As in most of the

RHC literature, such decentralized schemes work very well
in practice even without any “theoretical stability proof”.
Simulation examples show that the decentralized ap-
proach to formation flight can provide feasible solutions
even in challenging scenarios. Depending on the particular

problem and initial conditions, feasibility issues might arise

using the proposed scheme (12). A few examples were given

. . . , to illustrate how the horizon length and weights in the cost
Decentralized solution of the stationary formation problem . . . -
function can influence the solution and feasibility of the

decentralized problem. A number of alternative approaches
based on a hierarchical decentralized scheme are currently
the formation to maintain the final velocity while establish-under investigation to ensure feasibility in a decentralized

ing the desired relative positions. The single purpose o¥@y [cite CDC?]. .
specifying terminal positions is to indicate the desired final Another important aspect of the proposed framework is

real-time implementability. The maximum computational
time associated with a single decentralized subproblem was

The remaining parameters of the problem are the same 863 seconds using a horizon length of 9 steps and a
sampling time of 0.2 seconds in the presented simulations.

Furthermore, assuming a modest number of neighboring

in the previous section.
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Fig. 7.
att = 4.8 sec.

. vehicles, explicit solutions of the underlying MILP prob-

lem can be computed off-line, which reduces the required
number of calculations to a function evaluation [23].

(1]

(2]

(3]

Decentralized solution of the moving formation scenario. Snapsh0[(4]

(5]

A feasible decentralized solution of the moving and

changing formation problem is shown in Figure 7. Note that

(6]

using other initial conditions, the resulting maneuver might
cause protection zone violations. However, it is important[7]
to emphasize that the decentralized problem is still feasible
even if vehicles not linked by common neighbors or arcsg
cross each others path. If the chosen interconnection graph
is not complete, the absence of connections between certai[g]
vehicles represents the lack of collision avoidance con-
straints between them. An incomplete graph for formation
flight can be justified if unconnected vehicles fly at differenllo]
altitudes or if the particular graph structure is chosen t
represent a rigid formation [13].

For more comprehensive illustration of simulations we
refer to videos accessible on the web-site [24].
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