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Abstract— We consider the problem of formation flight
for a set of Unmanned Air Vehicles (UAV). We propose
a decentralized control design procedure which guarantees
collision avoidance and constraint fulfillment. The control
design is based on a decentralized Receding Horizon Control
(RHC) scheme [1]. Vehicle collision avoidance is ensured by
considering a collision-free emergency maneuver which is im-
plemented when feasibility of the decentralized RHC scheme
is lost. Bounds on speed and accelerations are computed off-
line using simple polyhedral invariant set computations. Such
bounds guarantee that the implementation of the emergency
maneuver leads to collision-free trajectories.

The proposed decentralized control scheme is formulated
as mixed-integer linear programs of small sizes which can
be translated into equivalent piecewise affine state-feedback
controllers. These controllers can be implemented in real-time
once the corresponding look-up tables are downloaded to the
hardware platform of the UAVs.

I. INTRODUCTION

Interest in the formation control of Unmanned Air Vehi-
cles (UAVs) has grown significantly over the last years. The
main motivation is the wide range of military and civilian
applications where UAV formations could provide a low
cost and efficient alternative to existing technology. Among
them, distributed sensing applications are envisioned to be
the most appealing. Such applications include Synthetic
Aperture Radar (SAR) interferometry, surveillance, damage
assessment, reconnaissance, chemical or biological agent
monitoring, exploration, vegetation growth analysis, assess-
ment of topographical changes [2]. These kind of appli-
cations require the development of control system design
techniques for large and tight formations.

Formation flight can be viewed as a large control prob-
lem which computes the inputs driving the UAVs along
challenging maneuvers while maintaining relative positions
as well as safe distances between each UAV pair. Op-
timal control has been the most successful technique to
formulate and tackle such a problem [2], [3], [4], [5],
[6], [7]. Centralized optimal or suboptimal approaches have
been used in different studies. However, as the number of
UAVs increases, the solution of big, centralized, non-convex
optimization problems becomes prohibitive, even having the
most advanced optimization solver, or using oversimplified
linear vehicle dynamics [8].

In a recent work [1] we have proposed a decentralized
optimal control framework which could help overcome
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the drawbacks listed above. In particular, we make use
of distributed Receding Horizon Control (RHC) schemes.
The main idea is to break a centralized RHC controller
into distinct RHC controllers of smaller sizes. Each RHC
controller is associated to a different UAV and computes the
local control inputs based only on the states of itself and
its neighbors. On each UAV, the current state and model of
its neighbors are used to predict their possible trajectories
and move accordingly. The information-exchange topology
and inter-vehicle constraints are described by using graph
topology terminology. The framework proposed in [1] has
the following advantages:

• Different maneuvering objectives can be achieved
by changing appropriate terms in the cost function
(e.g. formation keeping, formation joining and forma-
tion flying).

• Individual vehicles use neighbor information to predict
their behavior in order to avoid collisions and act in
a cooperative, rather than worst-case way (similarly to
what we do while driving cars).

• Can handle constrained MIMO linear models as well as
constrained MIMO piecewise linear models of UAVs.

• The problem is formulated and solved as small MILPs
which can be translated into equivalent gain scheduled
controllers for real-time implementation.

The approach proposed in [1] has two main issues. First,
the formulation used time-invariant interconnection graphs.
Second, collision avoidance guarantees were formulated in
terms of the robustness of each decentralized controller to
prediction errors on neighbors’ trajectories.

In this paper we modify the approach in [1] in order to
add the following features to the list above:

• Handling of time-varying interconnection topologies.
• Use of emergency controllers and their invariant sets

as protection zones to guarantee collision avoidance
when the local RHC subproblems become infeasible.

• Use of inter-vehicle coordination rules (e.g. “right-
of-way”) which are formulated as binary decision
variables in the local decentralized controllers.

The proposed framework is a step towards a systematic
design procedure for real-time, decentralized, collision-free
formation flight.

II. UAV MODEL

The UAV dynamical model used in this paper reflects the
simplified dynamics of the Organic Air Vehicle (OAV). The



OAV is a hovering ducted fan vehicle under development at
the Honeywell Laboratories. The OAV dynamics are highly
nonlinear. An inner-loop dynamic-inversion based controller
is used to stabilize the system by actuating the control
surfaces of the vehicle [9]. At the outer level the OAV
behaves as a MIMO linear system, where the inputs are
the accelerations along the x,y,z-axes and the states are
positions and velocities of the vehicle in the x,y,z-axes. We
describe the OAV dynamics by using the following linear
discrete-time model

xk+1 = f(xk, uk) (1)

where the state update function f : R
6 × R

3 → R
6 is a

linear function of its inputs and xk ∈ R
6, uk ∈ R

3 are
states and inputs of the vehicle at time k, respectively. In
particular,

xk =

[

xk,pos

xk,vel

]

, u =





x-axis acceleration
y-axis acceleration
z-axis acceleration





and xk,pos ∈ R
3 is the vector of x, y and z coordinates

and xk,vel ∈ R
3 is the vector of x-axis, y-axis and

z-axis velocity components at time k. It is important to
emphasize that the approach proposed in this paper can
easily accommodate higher order, more complex linear or
piecewise-linear models that describe the UAV dynamics
with higher fidelity.

States and inputs of the UAV are constrained. We will
consider two types of constraints. A set of “emergency”
constraints and a set of “nominal” constraints. The “nom-
inal” constraints define the operating region of the vehi-
cle under normal operation. Nominal constraints are more
restrictive than the actual operating limits of the UAV1.
Maximum performance is used only in emergency situations
and is defined by the set of “emergency” constraints.

• Nominal constraints
xvel ∈ Xv =
{z ∈ R

3| − 10/β ft/s ≤ zi ≤ 10/β ft/s, i = 1, 2, 3}
u ∈ Xu =
{z ∈ R

3| − 3/α ft/s2 ≤ zi ≤ 3/α ft/s2, i = 1, 2, 3}
(2)

• Emergency constraints

xvel ∈ XER
v =

{z ∈ R
3| − 10 ft/s ≤ zi ≤ 10 ft/s, i = 1, 2, 3}

u ∈ XER
u =

{z ∈ R
3| − 3 ft/s2 ≤ zi ≤ 3 ft/s2, i = 1, 2, 3}

(3)

III. UAV EMERGENCY MANEUVER AND INVARIANT

SET

In this section we discuss the main idea of the proposed
approach. We consider a single UAV (1) and a state-
feedback emergency controller

uk = g(xk, re) (4)

1The positive constants α and β are suitably chosen, not critical, but
rather practical values that restrict the use of excessive vehicle performance
during nominal operation.

which controls the UAV to a chosen reference re under
the constraints (3). Denote by te the time instant when an
emergency maneuver starts. The closed-loop UAV dynamics
during emergency maneuver are

xk+1 = f(xk, g(xk, re)) for k ≥ te (5)

The emergency controller g(xk, re) can be designed to
achieve different objectives depending on the type of UAV
and on its mission. For instance the emergency maneuver
could consist of bringing the vehicle to a full stop. For
winged UAVs it could perform a continuous flight in a circle
of a given radius. Without loss of generality, in this report
we assume that an emergency maneuver started at te brings
the vehicle to the position which it had at time te and zero
terminal speed, i.e., re =

[

xte,pos,~0
]

.

We define an emergency region XER
p ⊂ R

3 centered
at xte,pos to be a polytope in the x, y, z space containing
the UAV position during emergency maneuvers. In order
to guarantee this property, we compute off-line the set
Ξ(te) ∈ R

6 of vehicle positions and speeds at the time
te such that closed loop dynamics (5) for k ≥ te and
xte

∈ Ξ(te) lie in the emergency set XER
p . Ξ(te) is a

positively invariant set of system (5) subject to constraints
on speed and acceleration (3) and on position defined by
XER

p

x ∈ Ξ(te) ⇐⇒
xvel ∈ XER

v , g(x) ∈ XER
u , xpos ∈ XER

p (te),
f(x, g(x)) ∈ Ξ(te) ∀t ≥ te

(6)

The UAV is guaranteed to satisfy emergency constraints on
speed and acceleration and to stay in the emergency region
XER

p only if the emergency maneuver (4) was started when
all the states were in Ξ(te).

If g(x) is a linear state-feedback controller, then Ξ(0) can
be easily computed with simple techniques using polyhedral
manipulations as in [10]. Another possibility is to design
an infinite-time constrained linear quadratic regulator for
system (1) subject to constraints (3), (8) as described in [11].
This procedure will compute a piecewise-linear controller
g(x) and the polyhedral invariant set Ξ(0). The set Ξ(k) is
just a translation of the set Ξ(0) to the position xk,pos.

In conclusion, once Ξ has been computed, in order to
guarantee that the vehicle performs the emergency maneu-
ver within the emergency region we have to augment the
nominal constraints (2) with the constraint

xk ∈ Ξ(k) (7)

In the following, we select XER
p as

xpos ∈ XER
p (te) = {|xte,pos − xpos| � 5} (8)

A cross section of the maximal positively invariant set is
shown in Figure 1 using limits defined in (3), (8) and an
LQR regulator. The trajectories of the UAV performing an
emergency stop will lie in the set Ξ(xte

) if at time te the
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Fig. 1. Cross section of the invariant set Ξ(te), showing the resulting
Ξv constraint set, which has to be enforced on nominal speed in order to
remain inside the invariant region using the emergency controller.

state of the UAV xte
belongs to the set Ξ(te). Since Ξ(xte

)
is centered in xte

, constraint (7) becomes

xte,vel ∈ Ξv, Ξv =
{

xv ∈ R
3|
(

~0, xv

)

∈ Ξ
}

The set Ξv will constrain the speed of the UAV to lie within
bounds from which an emergency stop can be accomplished
without violating XER

p . Ξ is a polyhedron and therefore Ξv

will be a polyhedron as well. The size of Ξv is a function
of XER

p ,XER
v and XER

u . The bigger XER
u is, the faster

the UAV can stop, which leads to a bigger set Ξv from
which an emergency stop can start. The smaller XER

p is,
the smaller the set of initial velocities becomes from which
the vehicle can stop in Ξ(te). In other words, there is a
trade-off between the nominal vehicle speed limits and the
extent to which vehicles can accelerate/decelerate.

Once the invariant set Ξ(k) has been computed we design
decentralized RHC controllers for formation flying which
enforce: (i) the constraint (7), (ii) use protection zones larger
than Ξ(k), (iii) switch to an emergency maneuver when the
constrained optimization problem becomes infeasible. The
design of decentralized RHC controllers is detailed next.

IV. DECENTRALIZED CONTROL STRATEGY

We consider a set of Nv dynamical systems representing
the UAVs, where the i-th system is described by the
discrete-time time-invariant state equation:

xi
k+1 = f i(xi

k, ui
k) (9)

where xi
k ∈ R

n, ui
k ∈ R

m, n = 6, m = 3 are states and
inputs of the i-th system, respectively, and f i is the state
update function (1). The speed and acceleration of each
UAV is constrained according to (2) and (7). Each UAV can
perform the same emergency maneuver and to each UAV
we assign a logic state xi

k,L which is 1 if the i-th vehicle
is performing an emergency maneuver at time k, xi

k,L = 0
if the vehicle is operating under nominal conditions.

We will refer to the set of Nv constrained systems as team
system. Let x̄k ∈ R

Nv×n and ūk ∈ R
Nv×m be the vectors

which collect the states and inputs of the team system at
time k, i.e. x̄k = [x̄1

k, . . . , x̄Nv

k ], ūk = [ū1
k, . . . , ūNv

k ], with

x̄k+1 = f̄(x̄k, ūk) (10)

We denote by (xi
e, u

i
e) the equilibrium pair of the i-th

system and (x̃e,ũe) the corresponding equilibrium for the
team system.

So far the individual systems belonging to the team
system are completely decoupled. We consider an optimal
control problem for the team system where cost function
and constraints couple the dynamic behavior of individual
systems. We use a graph topology to represent the coupling
in the following way. We associate the i-th system to the i-th
node of the graph, and if an edge (i, j) connecting the i-th
and j-th node is present, then the cost and the constraints
of the optimal control problem will have a component,
which is a function of both xi and xj . The graph will be
undirected, i.e. (i, j) ∈ A ⇒ (j, i) ∈ A, and the edge will
be present if the nodes are close enough.

Therefore, before defining the optimal control problem,
we need to define a time-varying graph

G(t) = {V,A(t)} (11)

where V is the set of nodes V = {1, . . . , Nv} and A(t) ⊆
V × V the set of time-varying arcs (i, j) with i ∈ V, j ∈
V . (Note that in the following description time-dependent
graphs are used as opposed to the time-independent graph
structures in [1]).Choosing the time-dependence of the set
of arcs is not a straightforward problem. Even if we assume
that each vehicle can sense every other, there are several
ways of selecting who will be considered as a neighbor
and who will not. Clearly, a small number of neighbors is
preferred, otherwise each node would solve a centralized
problem, if all of them are taken into account. On the other
hand, if we assume a more realistic scenario, where not
all vehicles can communicate with or sense every other,
a particular neighbor-selection policy can easily lead to a
disconnected graph, which could prevent the team system
from reaching the desired objective. Conditions on the graph
structure and different ways of ensuring the connected-
ness of the time-varying graph using appropriate neighbor-
selection rules are under investigation. One practical way
of helping the formation to rejoin (regain connectedness)
is to have terminal position references in each maneuver,
which would guarantee a connected graph using a particular
neighbor-selection policy. For the following exposition, we
assume that the time-dependence of the set of arcs will be
function of the relative distance of the vehicles. We define
here the set A(t) as

A(t) = {(i, j) ∈ V×V | ‖xi
t,pos−xj

t,pos‖ ≤ dmin} (12)

that is the set of all the arcs, which connect two nodes
whose distance is less than or equal to dmin. The choice of
the parameter dmin will be discussed later.



Denote with x̃i
k the states of all neighbors of the i-th

system at time k, i.e. x̃i
k = {xj

k ∈ R
nj

|(j, i) ∈ A(k)}, x̃i
k ∈

R
ñi

k with ñi
k =

∑

j dim{nj
k|(j, i) ∈ A(k)}. Analogously,

ũi
k ∈ R

m̃i
k denotes the inputs to all the neighbors of the

i-th system at time k. Let

gi,j(xi
pos, x

j
pos) ≤ 0 (13)

define the safety distance constraints between the i-th and
the j-th UAV, with gi,j : R

3 × R
3 → R

nci,j . We will
often use the following shorter form of the interconnection
constraints defined between the i-th system and all its
neighbors:

gi
k(xi

k, x̃i
k) ≤ 0 (14)

with gi
k : R

ni

× R
ñi

k → R
nci,k .

Consider the following cost

l(x̃, ũ) =

Nv
∑

i=1

lik(xi, ui, x̃i
k, ũi

k) (15)

where li : R
ni

× R
mi

× R
ñi

k × R
m̃i

k → R is the cost
associated to the i-th system and is a function of its states
and the states of its neighbor nodes. Assume that l is a
positive convex function with l(x̃e, ũe) = 0 and consider
the following decentralized scheme.

Let the following finite time optimal control problem
Pi(t) be associated to the i-th system at time t

min
Ũi

t

N−1
∑

k=0

lit(x
i
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t)

subj. to xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

xi
k,t,vel ∈ Xv, ui

k,t ∈ Xu,

k = 1, . . . , N − 1

IF xj
t,L = 0

xj
k+1,t = f j(xj

k,t, u
j
k,t), (j, i) ∈ A(t),

k ≥ 0

xj
k,t,vel ∈ Xv, uj

k,t ∈ Xu, (j, i) ∈ A(t),

k = 1, . . . , N − 1

ELSE

xj
k+1,t = f j(xj

k,t, g(xj
k,t)), k ≥ 0

END

gi,j(xi
k,t,pos, x

j
k,t,pos) ≤ 0, (i, j) ∈ A(t),

k = 1, . . . , N − 1 (16a)

gq,r(xq
k,t,pos, x

r
k,t,pos) ≤ 0, (16b)

(q, i) ∈ A(t), (r, i) ∈ A(t),

k = 1, . . . , N − 1

xi
k,t,vel ∈ Ξv, k ≥ 0 (16c)

xj
k,t,vel ∈ Ξv, (j, i) ∈ A(t), k ≥ 0 (16d)

xi
N,t ∈ X i

f , xj
N,t ∈ X j

f , (i, j) ∈ A(t)

xi
0,t = xi

t, x̃i
0,t = x̃i

t (16e)

where Ũ i
t , [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t]

′ ∈ R
s, s ,

(m̃i + mi)N denotes the optimization vector, xi
k,t denotes

the state vector of the i-th node predicted at time t + k
obtained by starting from the state xi

t and applying to
system (1) the input sequence ui

0,t, . . . , u
i
k−1,t. The tilded

vectors denote the prediction vectors associated to the
neighboring systems assuming a constant interconnection
graph. Denote by Ũ i∗

t = [u∗i
0,t, ũ

∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t]

the optimizer of problem Pi(t). Note that problem Pi(t)
involves only the state and input variables of the i-th node
and its neighbors at time t.

We will define the following decentralized RHC control
scheme. At time t (assuming logic states are initialized at
time 0)

1) Compute graph connection A(t) according to (12)
2) Each node i solves problem Pi(t)
3) If Pi(t) is feasible then xi

t,L = 0 and node i

implements the first sample of Ũ i∗
t

ui
t = u∗i

0,t. (17)

4) else xi
t,L = 1, and node i implements the emergency

controller
ui

t = g(xi
t). (18)

5) Each node repeats steps 1 to 4 at time t + 1, based
on the new state information xi

t+1, x̃i
t+1.

In order to solve problem Pi(t) each node needs to
know its current states, its neighbors’ current states, its
terminal region, its neighbors’ terminal regions and models
and constraints of its neighbors. Based on such information
each node computes its optimal inputs and its neighbors’
optimal inputs assuming a constant set of neighbors over
the horizon. The input to the neighbors will only be used to
predict their trajectories and then discarded, while the first
component of the i-th optimal input of problem Pi(t) will
be implemented on the i-th node. Moreover, each node takes
into account a possible emergency maneuver of its UAV
neighbors, using their emergency logic state information.

Without Step 4, even if we assume N to be infinite,
the decentralized RHC approach does not guarantee that
solutions computed locally are centrally feasible and stable.
The reason is simple: At the i-th node the prediction
of the neighboring state xj is done independently from
the prediction of problem Pj(t). Therefore, the trajectory
of xj predicted by problem Pi(t) and the one predicted
by problem Pj(t), based on the same initial conditions,
are different (since, in general, Pi(t) and Pj(t) will be
different). This will imply that constraint fulfillment will
be ensured by the optimizer u∗i

t for problem Pi(t) but not
for the real closed loop trajectories of all the UAVs. Further
discussion on the feasibility issue of decentralized RHC can
be found in [1].

Step 4 guarantees collision-free formation flight. The
main idea of the scheme is to use an emergency stop
maneuver if a vehicle’s local RHC problem is infeasi-
ble. Constraint (16c) on each vehicle will ensure that the



emergency maneuver can be performed as discussed in
Section III. If the polyhedron XER

p is contained within the
protection zones then the vehicles are guaranteed not to
collide.

The scheme above can lead to three different behaviors:
(i) the vehicles fly or hover in formation (with occasional
use of the emergency controllers to recover feasibility), (ii)
all the vehicles are in an emergency status, i.e. xi

t,L =
1, ∀i ∈ V or (iii) a subset of vehicles are in emergency
status and the rest are under nominal operation, yet kept
from achieving their desired goals due to the coupling in
cost between the emergency and nominal vehicles’ relative
positions. The neighboring nominal vehicles also remain
stationary in an equilibrium where the cost decrement of
moving towards the target point is balanced by the cost
increment that would result from leaving the “formation”
of stalled vehicles. This results in a dead-lock, where not
all vehicles are in emergency mode.

In the first case, vehicles could spend a finite amount of
time performing an emergency maneuver before the RHC
problem recovers from infeasibility. The second and third
cases however could end up with a dead-lock situation
where all or some subset of UAVs are in an emergency
status. In this case an emergency centralized scheme would
be needed in order to let the UAVs recover from the dead-
lock condition. A feasible solution to such a centralized
scheme with sufficiently long horizon is always guaranteed
to exist (e.g. the vehicles could fly one after the other
starting from the outside).

The control scheme presented in this section could result
in a jerky behavior of the formation by frequent switches
to emergency controllers and it could be quite conservative.
In the next section we will discuss in detail different ways
of addressing these two issues.

V. EMERGENCY MANEUVER AND PRACTICAL

IMPLEMENTATION ISSUES

In order to reduce the frequent occurrence of emergency
maneuvers we modify problem Pi in two ways. We make
use of slack variables to avoid optimal maneuvers that in-
volve touching protection zones. The other approach can be
used to establish inter-vehicle coordination (e.g. “right-of-
way”) rules by means of including binary decision variables,
that arise in the MILP problem formulation, in the cost
function or in the constraints of the local decentralized
controllers.

Simulations with the decentralized scheme applied to
formation flight showed that constraints can often become
active during maneuvers. This implies that a small error
between the predicted trajectories of neighbors and their
real trajectories can lead to infeasibility of the decen-
tralized scheme. Optimal maneuvers can be moved away
from the boundary of protection zones by modifying con-

straints (16a)-(16b) as

gi,j(xi
k,t,pos, x

j
k,t,pos) ≤ dsafe(ε

k,i,j − 1), (19)

0 ≤ εk,i,j , (20)

εk,i,j ≤ 1 (21)

and weighting in the cost the slack variables εk,i,j

min
Ũi

t

N−1
∑

k=0

(

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t)+

+
∑

j|(i,j)∈A

ρεk,i,j



 (22)

The parameters ρ > 0 and dsafe > 0 will be defined by the
user. The higher dsafe is, the less compact the formation
will look like.

In order to improve the likelihood of feasibility of
the decentralized scheme different “right-of-way” priorities
can be introduced which allows to have better prediction
about neighbors’ trajectories. This can be easily achieved
if protection zones are modeled as parallelepipeds and the
disjunctions are modeled as binary variables [8]. “Right-
of-way” priorities can be translated into weights and con-
straints on the binary variables which describe the location
of a vehicle with respect to a parallelepipedal protection
zone of another vehicle (six binary variables in three
dimensions for each vehicle couple [8]).

Note that these practical techniques will not imply feasi-
bility by themselves but reduce the frequency of emergency
maneuvers avoiding undesirable formation behavior.

There are a few important practical observations that
are due regarding the proposed emergency maneuver-based
collision avoidance. Notice that if the protection zone of
each vehicle is chosen to be equal to the invariant set
XER

p described in Section III, the emergency maneuver
guarantees only collision avoidance, not protection zone-
sized separation of vehicles at all times, as illustrated
by Figure 2(a) for a simple example. This means that
protection zones should be chosen larger than the invariant
set calculated in Section III if a certain minimum separation
is required.

We should also realize that due to the discrete nature of
the problem formulation and controller implementation, at
a certain time instant vehicles can become infeasible, when
the protection zones have already been violated as illustrated
in Figure 2(b). This situation can easily occur due to
disturbances, model mismatch or incorrect predictions about
neighbors. The emergency controller should still guarantee
collision avoidance in this case, which can be achieved
again, by enlarging the protection zones to account for the
one-time-step worst-case behavior of neighboring vehicles.
In other words, the emergency invariant sets should be con-
tained in a set that is obtained by shrinking the protection
zone with a one-step worst-case maneuver of the neighbor.



(a) Invariant sets guaran-
tee collision avoidance,
not minimum separation.

at feasiblek

at infeasiblek+1

(b) Infeasibility can occur
after protection zone viola-
tion.

Fig. 2. Typical situations that illustrate the need to select the
protection zone size to be larger than the invariant set of the
emergency controller.

A. Conservativeness and Design Parameters

The conservativeness of the presented scheme is a func-
tion of several parameters. The key parameters are XER

p

which affects Ξv , α and β. These all influence the selection
of the emergency region and the protection zones. If XER

p

is very small, then depending on the acceleration limits, Ξv

might become small, which implies that the UAVs could
only fly at very low speeds. On the other hand, if XER

p is
big, then the vehicles are required to fly very far from each
other. As a result the system might perform far from its
optimal point. It is also conceivable to use an hybrid strat-
egy: once the desired formation has been reached we can
relax the nominal constraints on speed and use maximum
vehicle performance, whereas in case of reconfiguration the
constraints xvel ∈ Ξv are reinserted. This will allow to fly
at low speeds only during decentralized maneuvers.

B. Real-time implementation

The presence of nonlinearities and constraints on one
hand, and the simplicity needed for real-time implemen-
tation on the other, would discourage the design of optimal
control strategies as presented above. Recently, a new
framework for modeling constrained switched systems and
an algorithm to synthesize piecewise affine optimal con-
trollers for such systems has been proposed [12]. Based on
such framework, the design of the decentralized controllers
will be performed in two steps. First, the decentralized
RHC controllers based on linear or piecewise linear UAV
model are tuned in simulation until the desired perfor-
mance is achieved. The RHC controllers are not directly
implementable, as it would require the mixed-integer linear
programs to be solved on-line on each UAV. Therefore, for
implementation, in the second phase the explicit piecewise
affine form of the RHC law is computed off-line by us-
ing the multiparametric mixed integer programming solver
presented in [12]. The use of equivalent piecewise affine
form of the RHC law will have several advantages. It is
immediate to implement on a UAV platform as a simple
look-up table of gain-scheduled controllers. It can also be
easily verified (an on-line optimization solver is impossible

to verify). Its worst case computational time can also be
computed immediately.

VI. EXAMPLES

The ideas presented in this paper are demonstrated in a
simulation example involving six UAVs performing planar
motion for easier illustration. A movie of the simulation can
be found on the web page [13]. The vehicles are lined up
beside each other moving with the same velocity initially.
They are required to change into an also moving triangular
formation of six vehicles, while avoiding obstacles and
collisions with each other. Each UAV uses the decentralized
RHC scheme introduced in [1] and augmented with the
emergency controllers described in this paper to ensure
collision-avoidance. The protection zones and speed con-
straints incorporated into the decentralized RHC problems
were obtained from the invariant sets associated with simple
LQR emergency controllers. The time-varying interconnec-
tion graph is obtained by each UAV communicating with at
most two of its closest neighbors. Depending on the line-of-
sight obstruction caused by obstacles, the number of visible
neighbors might be less than two at a certain time instant.
This interconnection policy means that the graph becomes
directed, since being the closest neighbor to another UAV
is not necessarily a mutual relationship.

The simulation example illustrates the use of the emer-
gency mode controllers when the decentralized RHC prob-
lems of three UAVs become infeasible. Slightly after these
UAVs begin their collision-free emergency stop maneuvers,
they recover feasibility and catch up with the other three to
get into formation while avoiding obstacles.
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