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Abstract

We consider a set of decoupled dynamical systems and an optimal control problem where
cost function and constraints couple the dynamical behavior of the systems. The coupling is
described through a connected graph where each system is a node and, cost and constraints of
the optimization problem associated to each node are only function of its state and the states
of its neighbors. For such scenario, we describe different strategies for designing decentralized
and distributed Model Predictive Control (MPC) control schemes.

In decentralized schemes a centralized MPC controller is broken into distinct MPC con-
trollers of smaller sizes. Each MPC controller is associated to a different node and com-
putes the local control inputs based only on the states of the node and of its neighbors. In
distributed control schemes certain nodes compute the control inputs for low-priority neigh-
boring nodes while using information coming from higher-priority neighboring nodes. In
general, computation is distributed over the nodes and the number of MPC controllers is
smaller than the total number of nodes.

We formulate decentralized and distributed control schemes in a rigorous mathematical
framework. Moreover, we highlight the main issues involved in guaranteeing stability and
constraint fulfillment for such schemes and the degree of conservativeness that the decentral-
ized approach introduces.

1 Introduction

The interest in decentralized control goes back to the seventies. Probably Wang and Davison
were the first in [1] to envision the “increasing interest in decentralized control systems” when
“control theory is applied to solve problems for large scale systems”. Since then the interest
has grown more than exponentially despite some non-encouraging results on the complexity of
the problem [2]. Decentralized control techniques today can be found in a broad spectrum of
applications ranging from robotics and formation flight to civil engineering. Such a wide interest
makes a survey of all the approaches that have appeared in the literature very difficult and goes
also beyond the scope of this paper.

Approaches to decentralized control design differ from each other in the assumptions they
make on: (i) the kind of interaction between different systems or different components of the
same system (dynamics, constraints, objective), (ii) the model of the system (linear, nonlinear,
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constrained, continuous-time, discrete-time), (iii) the model of information exchange between
the systems, (iv) the control design technique used.

Dynamically coupled systems have been the most studied. In [1] the authors consider a linear
time-invariant system and give sufficient conditions for the existence of feedback laws which
depend only on partial system outputs. Recently, in [3] the authors introduce the concept of
quadratic invariance of a constraint set with respect to a system. The problem of constructing
decentralized control systems is formulated as one of minimizing the closed loop norm of a
feedback system subject to constraints on the control structure. The authors show that quadratic
invariance is a necessary and sufficient condition for the existence of decentralized controllers.
In [4] the authors consider spatially interconnected systems, i.e. systems composed of identical
linear time-invariant systems which have a structured interconnection topology. By exploiting
the interconnection topology, the authors study decentralized analysis and system control design
using `2-induced norms and LMI-s.

In this report we will focus on decoupled systems. In a descriptive way, the problem of de-
centralized control for decoupled systems can be formulated as follows. A dynamical system is
composed of (or can be decomposed into) distinct dynamical subsystems that can be indepen-
dently actuated. The subsystems are dynamically decoupled but have common objectives and
constraints which make them interact between each other. Typically the interaction is local,
i.e. the goal and the constraints of a subsystem are function of only a subset of other subsystems’
states. The interaction will be represented by an “interaction graph”, where the nodes repre-
sent the subsystems and an arc between two nodes denotes a coupling term in the goal and/or
in the constraints associated to the nodes. Also, typically it is assumed that the exchange of
information has a special structure, i.e., it is assumed that each subsystem can sense and/or
exchange information with only a subset of other subsystems. Often the interaction graph and
the information exchange graph coincide. A decentralized control scheme consists of distinct
controllers, one for each subsystem, where the inputs to each subsystem are computed only
based on local information, i.e., on the states of the subsystem and its neighbors.

Our interest in decentralized control for dynamically decoupled systems arises from the study
of formation flight. In formation flight a certain number of vehicles has to be controlled in order
to let them behave as a formation. The vehicle dynamics are often assumed to be decoupled.
A formation behavior is achieved only if each vehicle computes its control laws as a function of
position and speed of neighboring vehicles. Moreover, each vehicle is required to keep a certain
distance from its neighbors. Therefore, objective and constraints couple the overall dynamics.
The way vehicles communicate and sense between each other define the information exchange
graph while the objective and the constraint of the formation define the interaction graph.

Several studies have appeared on decentralized techniques for formation tasks. LMI tech-
niques have been used in [5], control Lyapunov function in [6] and a vision-based framework
in [7].

We will make use of Model Predictive Control schemes. The main idea of MPC is to use the
model of the plant to predict the future evolution of the system [8]. Based on this prediction,
at each time step t a certain performance index is optimized under operating constraints with
respect to a sequence of future input moves. The first of such optimal moves is the control
action applied to the plant at time t. At time t+ 1, a new optimization is solved over a shifted
prediction horizon.
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Optimal control techniques for formation flight have been extensively studied. Unconstrained
decentralized LQR control has been described in [9, 10]. Recently, centralized MPC schemes
applied to formation flight have appeared in [11, 12]. In [13] decentralized MPC and potential
functions have been used for flying multiple autonomous helicopters in a dynamical environment.

In this paper we describe different strategies for designing decentralized and distributed MPC
control schemes. In decentralized schemes a centralized MPC controller is broken into distinct
MPC controllers of smaller sizes. Each MPC controller is associated to a different node and
computes the local control inputs based only on the states of the node and of its neighbors. In
distributed control schemes certain nodes compute the control inputs for low-priority neighbor-
ing nodes while using information coming from higher-priority neighboring nodes. In general,
computation is distributed over the nodes and the number of MPC controllers is smaller than
the total number of nodes.

The main issue regarding decentralized schemes is that the inputs computed locally are, in
general, not guaranteed to be globally feasible and to stabilize the overall team. In general, sta-
bility and feasibility of decentralized schemes are very difficult to prove and/or too conservative.
A scheme with stability guarantees has been proposed in [14].

We will not give any proof of feasibility and stability of the decentralized and distributed
schemes. Instead, we will formulate decentralized and distributed control schemes in a rigorous
mathematical framework. We will highlight the main issues involved in guaranteeing stabil-
ity and constraint fulfillment for such schemes and briefly discuss their conservativeness. We
will show the applicability of the proposed approach when decentralized schemes are used for
controlling a set of vehicles in formation flight.

2 Problem formulation

Consider a set of Nv decoupled dynamical systems, the i-th system being described by the
discrete-time time-invariant state equation:

xi
k+1 = f i(xi

k, u
i
k) (1)

where xi
k ∈ Rni

, ui
k ∈ Rmi

, f i : Rni
× Rmi

→ Rni
are state, input and state update function

of the i-system, respectively. Let X i ⊆ Rni
and U i ⊆ Rmi

denote the set of feasible inputs and
states of the i-th system, respectively:

xi
k ∈ X

i, ui
k ∈ U

i, k ≥ 0 (2)

We will refer to the set of Nv constrained systems as team system. Let x̃k ∈ RNv×ni
and

ũk ∈ RNv×mi
be the vectors which collect the states and inputs of the team system at time k,

i.e. x̃k = [x1
k, . . . , x

Nv

k ], ũk = [u1
k, . . . , u

Nv

k ], with

x̃k+1 = f(x̃k, ũk) (3)

We denote by (xi
e, u

i
e) the equilibrium pair of the i-th system and (x̃e,ũe) the corresponding

equilibrium for the team system.
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So far the systems belonging to the team system are completely decoupled. We consider an
optimal control problem for the team system where cost function and constraints couple the
dynamic behavior of individual systems. We use a graph topology to represent the coupling
in the following way. We associate the i-th system to the i-th node of the graph, and if an
edge (i, j) connecting the i-th and j-th node is present, then the cost and the constraints of the
optimal control problem will have a component which is a function of both xi and xj . The graph
will be undirected, i.e. (i, j) ∈ A ⇒ (j, i) ∈ A. Before defining the optimal control problem, we
need to define a graph

G = {V,A} (4)

where V is the set of nodes V = {1, . . . , Nv} andA ⊆ V×V the sets of arcs (i, j) with i ∈ V, j ∈ V.
Once the graph structure has been fixed, the optimization problem is formulated as follows.

Denote with x̃i the states of all neighboring systems of the i-th system, i.e. x̃i = {xj ∈ Rnj
|(j, i) ∈

A}, x̃i ∈ Rñi
with ñi =

∑

j|(j,i)∈A nj . Analogously, ũi ∈ Rm̃i
denotes the inputs to all the

neighboring systems of the i-th system. Let

gi,j(xi, ui, xj , uj) ≤ 0 (5)

define the interconnection constraints between the i-th and the j-th systems, with gi : Rni
×

Rmi
× Rnj

× Rmj
→ Rnci,j . We will often use the following shorter form of the interconnection

constraints defined between the i-th system and all its neighbors:

gi(xi, ui, x̃i, ũi) ≤ 0 (6)

with gi : Rni
× Rmi

× Rñi
× Rm̃i

→ Rnci .
Consider the following cost

l(x̃, ũ) =

Nv∑

i=1

li(xi, ui, x̃i, ũi) (7)

where li : Rni
×Rmi

×Rñi
×Rm̃i

→ R is the cost associated to the i-th system and is a function
only of its states and the states of its neighbor nodes. Assume that l is a convex function and
that li(xi

e, u
i
e, x̃

i
e, ũ

i
e) = 0 and consider the infinite time optimal control problem

J̃∗
∞(x̃) , min

{ũ0,ũ1,...}

∞∑

k=0

l(x̃k, ũk) (8)

subj. to







xi
k+1 = f i(xi

k, u
i
k), i = 1, . . . , Nv, k ≥ 0

gi,j(xi
k, u

i
k, x

j
k, u

j
k) ≤ 0, i = 1, . . . , Nv, (i, j) ∈ A k ≥ 0

xi
k ∈ X

i, ui
k ∈ U

i, k ≥ 0 i = 1, . . . , Nv,

x̃0 = x̃

(9)

For all x̃ ∈ RNv×ni
, if problem (9) is feasible, then the optimal input ũ∗

0, ũ
∗
1, . . . will drive

the Nv systems to their equilibrium points xi
e while satisfying state, input and interconnection

constraints.

4



Remark 1. Throughout the paper we assume that a solution to problem (9) exists and it gen-
erates a feasible and stable trajectory for the team system. Our assumption is not restrictive. If
there is no infinite time centralized optimal control problem fulfilling the constraints, then there
is no reason to look for a decentralized receding horizon controller with the same properties.

Remark 2. Since we assumed that the graph is undirected, there will be redundant constraints
in problem (9).

Remark 3. Note the form of constraints (6) is rather general and it will include the case when
only partial information about states of neighboring nodes is involved.

With the exception of a few cases, solving an infinite horizon optimal control problem is
computationally prohibitive. An infinite horizon controller can be designed by repeatedly solving
finite time optimal control problems in a receding horizon fashion as described next. At each
sampling time, starting at the current state, an open-loop optimal control problem is solved
over a finite horizon. The optimal command signal is applied to the process only during the
following sampling interval. At the next time step a new optimal control problem based on
new measurements of the state is solved over a shifted horizon. The resultant controller is
often referred to as Model Predictive Control (MPC). More into details, assume at time t the
current state x̃t to be available and consider the following constrained finite time optimal control
problem

J̃∗
N (x̃t) , min

{Ut}

N−1∑

k=0

l(x̃k,t, ũk,t) + lN (x̃N,t) (10a)

subj. to







xi
k+1,t = f i(xi

k,t, u
i
k,t), i = 1, . . . , Nv, k ≥ 0

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0, i = 1, . . . , Nv, (i, j) ∈ A k = 1, . . . , N − 1

xi
k,t ∈ X

i, ui
k,t ∈ U

i i = 1, . . . , Nv, k = 1, . . . , N − 1

x̃N,t ∈ Xf ,

x̃0,t = x̃t

(10b)

where N is the prediction horizon, Xf ⊆ RNv×ni
is a terminal region, lN is the cost on the

terminal state. In (10) we denote with Ut , [ũ0,t, . . . , ũN−1,t]
′ ∈ Rs, s , Nv×mN the optimiza-

tion vector, xi
k,t denotes the state vector of the i-th node predicted at time t + k obtained by

starting from the state xi
t and applying to system (1) the input sequence ui

0,t, . . . , u
i
k−1,t. The

tilded vectors will denote the prediction vectors associated to the team system.
Let U∗

t = {ũ∗0,t, . . . , ũ
∗
N−1,t} be the optimal solution of (10) at time t and J∗(xt) the corre-

sponding value function. Then, the first sample of U ∗
t is applied to the team system (3)

ũt = ũ∗0,t. (11)

The optimization (10) is repeated at time t+ 1, based on the new state xt+1.
It is well known that stability is not ensured by the MPC law (10)–(11). Usually the terminal

cost lN and the terminal constraint set Xf are chosen to ensure closed-loop stability. A treatment
of sufficient stability conditions goes beyond the scope of this work and can be found in the

5



surveys [8, 15]. We assume that the reader is familiar with the basic concept of MPC and its
main issues, we refer to [8] for a comprehensive treatment of the topic. In this report we will
assume that terminal cost lN and the terminal constraint set Xf have been appropriately chosen
in order to ensure the stability of the closed-loop system.

In general, the optimal input ui
t to the i-th system computed by solving (10) at time t, will

be a function of the overall state information x̃t. The main objective of this work is to describe
how problem (10) can be decomposed into smaller subproblems whose independent computation
can be distributed over the graph nodes. First, we propose a decentralized control scheme where
problem (10) is decomposed into Nv finite time optimal control problems, each one associated
to a different node. The i-th subproblem will be a function of the states of the i-th node and
the states of its neighbors. The solution of the i-th subproblem will yield a control policy for
the i-th node of the form ui

t = f i(xi
t, x̃

i
t). Secondly, we describe a distributed control scheme

where certain nodes compute the control inputs for low-priority neighboring nodes while using
information coming from higher-priority neighboring nodes. In such scheme computation is
distributed over the nodes but the correspondence between nodes and optimization problems is
not one to one. Next, we formulate decentralized and distributed control schemes in a rigorous
mathematical framework. We will start from a centralized stable MPC and discuss the main
issues involved in the decentralization of MPC problems.

Remark 4. The techniques presented next will be meaningful only if the graph G is not fully
connected. Often, the interconnection graph is not fully connected because of the nature of the
problem. For instance, each node could represent a production unit of a certain plant and the
production of a node could be related to only a few other units of the plant. Also the inter-
connection graph is not fully connected because some constraints associated to certain arcs are
implicitly satisfied by interconnection constraints associated to other arcs. For instance, in for-
mation flight, each vehicle is a node and the graph is fully connected (since each vehicle has to
keep a certain distance form all the other vehicles of the formation). However, rigid graph topol-
ogy [12] can be used in order to implicitly enforce constraints between two vehicles not connected
by any arc of the graph.

Remark 5. In the formulation above, we are assuming that the equilibrium (x̃e, ũe) of the
formation is know a priori. The equilibrium of the formation can be defined in several other
different ways. For instance, we can assume that there is a leader (real or virtual) which is
moving and the equilibrium is given in terms of distances of each vehicle from the leader. Also,
it is possible to formulate the equilibrium by using relative distances between vehicles and signed
areas [12]. The approach of this paper does not depend on the way used to define the formation
equilibrium, as long as this is know a priori. In some formation control schemes, the equilibrium
is not known apriori, but is the result of the evolutions of decentralized control laws. For such
schemes the approach of the paper will not be useful.
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3 Decentralized Control Scheme

Consider the overall problem: systems (1), graph G, and MPC policy (10)-(11). Consider the
i-th system and the following finite time optimal control problem

(Pi) : J i∗
N (xi

t, x̃
i
t) , min

Ũ i
t

N−1∑

k=0

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t) (12a)

subj. to







xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

xi
k,t ∈ X

i, ui
k,t ∈ U

i, k = 1, . . . , N − 1

xj
k+1,t = f j(xj

k,t, u
j
k,t), (j, i) ∈ A, k ≥ 0

xj
k,t ∈ X

j , uj
k,t ∈ U

j (j, i) ∈ A, k = 1, . . . , N − 1

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0, (i, j) ∈ A,

k = 1, . . . , N − 1

gq,r(xq
k,t, u

q
k,t, x

r
k,t, , u

r
k,t) ≤ 0, (q, i) ∈ A, (r, i) ∈ A,

k = 1, . . . , N − 1

xi
N,t ∈ X

i
f ,

xj
N,t ∈ X

j
f , (i, j) ∈ A

xi
0,t = xi

t,

x̃i
0,t = x̃i

t,

(12b)

where Ũ i
t , [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t]

′ ∈ Rs, s , (m̃i + mi)N denotes the optimization

vector. Denote by Ũ i∗
t = [u∗i0,t, ũ

∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t] the optimizer of problem Pi. Note that

problem Pi involves only the state and input variables of the i-th node and its neighbors.
We will define the following decentralized MPC control scheme.

1. The i-th node at time t knows its state xi
t and the state of all its neighbors x̃i

t.

2. Each node i solves problem Pi.

3. Each node i implements the first sample of Ũ i∗
t

ui
t = u∗i0,t. (13)

4. Each node repeats steps 2 to 4 at time t + 1, based on the new states information xi
t+1,

x̃i
t+1.

Steps one to four describe a decentralized strategy that uniquely defines the control inputs to
the team system. Each node knows its current states, its neighbors’ current states, its terminal
region, its neighbors’ terminal regions and models and constraints of its neighbors. Based on
such information each node computes its optimal inputs and its neighbors’ optimal inputs. The
input to the neighbors will only be used to predict their trajectories and then discarded, while
the first component of the i-th optimal input of problem Pi will be implemented on the i-th
node.
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Even if we assume N to be infinite, the approach described so far does not guarantee that
solutions computed locally are centrally feasible and stable (i.e., feasible for problem (10)).
The reason is simple. At the i-th node the prediction of the neighboring state xj

k is done
independently from the prediction of problem Pj . Therefore, the trajectory of xj predicted
by problem Pi and the one predicted by problem Pj , based on the same initial conditions, are
different (since, in general, Pi and Pj will be different). This will imply that constraint fulfillment
will be ensured by the optimizer u∗it for problem Pi but not for the overall problem (10).

There are three main issues that arise in the decentralized control scheme. In order to ensure
central feasibility and stability of the decentralized control scheme,

• Decoupled Terminal Cost. How does one choose the terminal cost liN for each problem Pi?

• Decoupled Terminal Region. How does one choose the terminal region X i
f for each problem

Pi?

• Feasibility Issue. Is it enough to choose the right decoupled terminal cost and terminal
region?

We can anticipate here that the answer to the “feasibility issue” is negative. That is, a good
choice of liN and X i

f is, in general, not sufficient to ensure stability and feasibility of the decen-
tralized scheme. Problem (12) needs to be modified in order to guarantee feasibility. Also, the
“feasibility issue” is the most complex one, while computing decentralized costs and terminal
regions is less complex since we have assumed that the systems are dynamically decoupled.

3.1 Decoupled Terminal Costs

Stability in not a major issue for decentralized schemes for dynamically decoupled systems. We
will assume that the terminal cost in (10) has been chosen as the sum of Nv terminal cost
functions liN (xi, x̃i) associated to each node and function of the node and its neighbors’ states:

lN (x̃) =

Nn∑

i=1

liN (xi, x̃i) (14)

For instance for linear systems and quadratic objective function, it would be enough to use as
terminal cost function the sum of the cost functions associated to the LQR designed for each
independent system and its neighbors.

3.2 Decoupled Terminal Regions

The problem of the terminal set can be approached in two different ways. One can start from the
terminal set Xf in problem (10) and decompose it into Nv non-empty sets X i

f ⊂ Rni
which will

be used in (12). The Nv sets X i
f ⊂ Rni

can be also computed without taking into consideration
the original invariant set Xf . We prefer to follow the latter route for two main reasons; (i) it
can be computationally prohibitive to compute the invariant set Xf in (10) for a large team of
systems, (ii) it is difficult to decompose the invariant set Xf into Nv terminal sets, which used
in (12) will guarantee the feasibility of the decentralized control schemes.
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We propose the following construction of the sets X i
f . For each vehicle, we compute an hyper-

rectangular inner approximation of the feasible space defined by the interconnection constraints
which contains the equilibria (xi

e, x̃
i
e) as follows. Consider the i-th node and the set Si,j ⊂ Rni+nj

for (i, j) ∈ A defined by the coupling constraints gi,j :

Si,j = {xi ∈ Rni

, xj ∈ Rnj

| gi,j(xi, xj) ≤ 0}.

Compute the sets I i
i,j and Ij

i,j satisfying

Ii
i,j × Ij

i,j ⊆ Si,j

Let I i =
⋂

(i,j)∈A Ii
i,j and X i

f be a controlled invariant set of the i-th system (1), subject to input

and state constraints (2) and to the additional constraint xi
k ∈ I i ∀k ≥ 0.

Through the procedure described above one can independently compute Nv terminal sets
X i

f which will be use in problem (12). Such sets have the following property. If each system
enters its associated terminal set, we are ensured that all the interconnection constraints are
satisfied and that there exists a decentralized control law which keeps each one in its respective
terminal set. In the worst case each I i will coincide with the equilibrium xi. The sum of the
ratios between the volumes of I i

i,j × Ij
i,j and Si,j for all (i, j) ∈ A will be a good measure of

the conservativeness of the method. The smaller this sum is, the smaller will be the region of
attraction of the decentralized control scheme. Note that the sets I i and Ij might be convex
even if Si,j is not convex.

3.3 Ensuring Feasibility

We have mentioned that feasibility of the decentralized trajectories is the main issue in decen-
tralized control schemes. In this section we discuss some modification to the original problem
which can ensure feasibility.

3.3.1 Robust Constraint Fulfillment

Consider the coupling constraints of problem Pi at step k

gi(xi
k,t, x̃

i
k,t) ≤ 0 (15)

and by using the state update equations

xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

xj
k+1,t = f j(xj

k,t, u
j
k,t), (j, i) ∈ A, k ≥ 0

(16)

rewrite them as
gi
k(x

i
t, x̃

i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ 0 (17)

where ui
[0,...,k−1] , {ui

0, . . . , u
i
k−1} and ũi

[0,...,k−1] , {ũi
0, . . . , ũ

i
k−1}. In order to ensure the fea-

sibility of the team system, a possible approach is to “robustify” the constraints (17) for all
vehicles at all time steps. In other words, we can require that the coupling constraints at each
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node are satisfied for all possible behaviors of the neighboring nodes, once their initial condi-
tion is known. Therefore, the vector ũi

[0,...,k−1] can be considered as a disturbance which can

lead to possible infeasibility of constraint (17). There are two possible schemes: open-loop and
closed-loop constraint fulfillment. An open-loop robust constraint fulfillment is formulated next.
Substitute the functions gi

k with ḡi
k : Rni

× Rñi
× Rmi

→ Rni
where

1. For all xi
t, x̃

i
t, u

i
[0,...,k−1] which satisfy

ḡi
k(x

i
t, x̃

i
t, u

i
[0,...,k−1]) ≤ 0 (18)

we have
gi
k(x

i
t, x̃

i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ 0

for all admissible1 ũi
[0,...,k−1].

2. The sets described by
ḡi
k(x

i
t, x̃

i
t, u

i
[0,...,k−1]) ≤ 0 (19)

for i = 1, . . . , Nv k = 1, . . . , N − 1 are nonempty.

Robust closed loop formulation [16] is less conservative but more computationally involved.
We will not describe the details of the robust closed loop formulation for a simple reason.
“Robust constraint fulfillment” applied to decentralized control schemes results in a very con-
servative approach even for the closed-loop case. For instance, consider the case of formation
flight. Assume we have only two aircraft and we want to design a local controller on the first
aircraft using robust constraint fulfillment. The worst case scenario will include, in most cases,
the collision of the two aircraft if they are not very far from each other and if they have the
same dynamics and constraints. However in reality, neighboring vehicles collaborate between
each other to fly in formation.

3.3.2 Reducing Conservativeness

A less conservative approach for ensuring feasibility of the decentralized scheme has to take into
consideration that systems in a team are cooperating, and therefore the trajectory that a node
is predicting should not be extremely different form what its neighbors are executing. This idea
can be formulated in several ways. For instance, one could allow the exchange of optimizers
between the nodes in order to try to be as close as possible to what the neighboring system has
predicted about a certain node. Another possibility is to tighten the coupling constraints (6) by
a quantity which is an indirect measure of the cooperativeness of the team [14]

gi
k(x

i
t, x̃

i
t, u

i
[0,...,k−1], ũ

i
[0,...,k−1]) ≤ εi

k (20)

where εi
k ≤ 0 is a new optimization variable. The variables εi

k might be computed off-line, based
on a priori knowledge of the team behavior or could be used in the following two stage process.
In the first stage of the optimization problems (12), the coupling constraints are substituted with

1admissible inputs have to satisfy constraints (2)
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the one in (20). Their parametric solution [17] with respect to εi
k yield the optimizer function

u∗i(εi
0, . . . , ε

i
N ). In a second stage the nodes communicate between themselves in order to agree

on a set of ε̄i
k for i = 1, . . . , Nv, k = 1, . . . , N which ensures feasibility of the decentralized

trajectories. If the agreement algorithm ends with a positive answer, each vehicle will implement
u∗i(ε̄i

0, . . . , ε̄
i
N ).

3.4 Conservativeness and Stability Proofs

The schemes discussed in the previous sections have not been described in detail, since a formal
stability proof of these schemes which is not too conservative is still under investigation. Our
experience is that the more complex the decentralized control scheme is, the more difficult it is
to give any stability or feasibility proofs. As in most of the MPC literature, such decentralized
schemes work very well in practice even if there is any “theoretical stability proof”. In Section 5
we will show some results when the main decentralized scheme is applied to formation flight.
We will also point out some interesting behavior of the decentralized scheme which is different
form what is observed in standard centralized MPC control theory.

4 Distributed Control Scheme

In this section we propose a distributed MPC control scheme. The intention is to modify the
decentralized approach presented in Section 3 in a particular way that supports feasibility by
allowing nodes to communicate their optimal solutions between each other. We will assume that
the nodes of the interconnection graph can be grouped into NP (≤ Nv) sets to which a certain
priority is assigned. The idea behind imposing a prioritized graph structure is that each node
will compute the optimal control input for the lower priority neighboring nodes, while checking
the constraint satisfaction and implementing the solution of the higher priority neighboring node
(parent). In contrast to the approach of Section 3, not all the nodes solve optimization problems:
the computation of the optimal strategy is distributed over the parent nodes of the graph.

A priority (p = 1, . . . , NP ) is assigned to every node in the following way. Each node with
priority p can only be connected to nodes with priorities p− 1, p and p+1. Furthermore, it can
be connected to only one node with higher priority p− 1, which will be referred to as the parent
node. The lower priority neighbors will be referred to as children. A node can be connected to
other p priority nodes only if they have the same parent as the node itself. These will be called
sibling nodes.

Such a prioritization of nodes can always be assigned to a tree graph, where NP is limited by
the longest path in the tree, however in general the assignment of priorities is not unique. The
interconnection graph could be more complex than a tree. It could contain circles that consist
of a parent node and a subset of its children or just a subset of the “siblings” themselves.

Each arc in this particular prioritized graph structure belongs to one of two categories. It
either connects a parent node with one of its children, or it connects siblings with each other.
The proposed control strategy assumes that arcs between a parent node and its descendants
denote information exchange and constraints as well, as it was introduced before in Sections
1 and 2. However, arcs between siblings will only signify the existence of constraints between
those nodes and not the exchange or propagation of information. Figure 1 illustrates the general

11



Figure 1: General subproblem of a single node.

subproblem for the i-th node with priority level p.
Let AiC denote the set of arcs between the i-th node and its children and AiS denote the set of

arcs connecting the i-th node to its siblings. If Vp denotes the Np number of nodes with priority
p, then AiC ⊆ Vp × Vp+1 and AiS ⊆ Vp × Vp. The overall graph structure under consideration
can be represented as

G = {V, {A[1,...,Nv ]C ,A[1,...,Nv ]S}} (21)

Clearly, this interconnection structure implies that there is a single “ultimate” leader L of
highest priority (p = 1) with ALS = ∅ and that there is a certain number of nodes (referred to
as leaves), which do not have any children. These are not necessarily “real” leaf nodes using
graph theoretical terminology, their designation is implied only by the chosen prioritization.

Consider the systems (1), a graph G with the special structure described above, and the
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following finite time optimal control problem for node i of priority level p > 1.

(P̂ i
t) : Ĵ i∗(xi

t, x
j
t , Ũ

i
t , u

j
0,t) , min

U
j
t ,(j,i)∈AiC

N−1∑

k=0

li(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) + liN (xi

N,t, x
j
N,t) (22a)

subj. to







xi
k+1,t = f i(xi

k,t, u
i
k,t), k ≥ 0

xi
k,t ∈ X

i, ui
k,t ∈ U

i, k = 1, . . . , N − 1

xj
k+1,t = f j(xj

k,t, u
j
k,t), k ≥ 0

xj
k,t ∈ X

j , uj
k,t ∈ U

j , k = 1, . . . , N − 1

(j, i) ∈ AiC ,

gi,j
k (xi

t, x
j
t , u

i
[0,...,k−1], u

j

[0,...,k−1]) ≤ 0,

(j, i) ∈ AiC , k = 1, . . . , N − 1

gq,r
k (xq

t , x
r
t , u

q

[0,...,k−1], u
r
[0,...,k−1]) ≤ 0,

(q, i) ∈ AiC , (r, i) ∈ AiC ,

(q, r) ∈ ArS and AqS , k = 1, . . . , N − 1

xj
N,t ∈ X

j
f ,

xi
0,t = xi

t,

xj
0,t = xj

t ,

Ũ i
t = [U i∗

t−1, v
i],

uj
0,t = const

(22b)

where U j
t , [uj

1,t, . . . , u
j
N−1,t]

′ ∈ Rmj(N−1) denotes the optimization vector of problem P̂ i
t .

The value of uj
0,t is assumed to be a known constant (which is the first control value of the

previous time solution of P̂ i
t−1, otherwise zero at times t < p). The control values Ũ i

t ,

[ui
0,t, . . . , u

i
N−1,t]

′ = [U i∗
t−1, v

i] = [ui∗
1,t−1 . . . , ui∗

N−1,t−1, v
i]′ ∈ RmiN are obtained from the opti-

mization vector solution of the higher priority (parent) problem P̂ l
t−1, (i, l) ∈ A

lC ; padded with
a control value vi that ensures xi

N ∈ X
i
f at the end of the horizon. Such a feasible control input

exists, since the terminal region X i
f was defined to be control invariant.

The proposed distributed scheme represents the following strategy. Consider a node i and
the associated problem P̂ i

t . Given an optimal control sequence Ũ i
t for node i, which is calculated

by its parent node, the i-th node formulates and solves a finite time optimal control problem
to obtain control sequences for its children. Node i will be implementing a control sequence Ũ i

t

received from its parent and the children of node i will be implementing the optimal control
solutions U j∗

t calculated and transmitted by node i assuming a one time step communication
delay. These optimal control solutions for the children of node i have to respect parent-children
constraints represented by gi,j

k in (22b) and any sibling constraints that exist between the children
of node i, denoted by gq,r

k . Since leaf nodes do not possess any children, they do not perform
any calculations and there is no optimization problem assigned to them.

The optimization problem for node number 1 (ultimate leader) is slightly different from the
general problem of “follower-nodes” in (22), since it needs to solve for its own control solution
vector as well, not only for the solution of the followers. The ultimate leader node solves the
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following finite time optimal control problem.

(P̂L
t ) : ĴL∗(xL

t , xj
t , u

j
0,t) , min

ŨL
t ,U

j
t ,(j,L)∈ALC

N−1∑

k=0

lL(xL
k,t, u

L
k,t, x

j
k,t, u

j
k,t) + lLN (xL

N,t, x
j
N,t) (23a)

subj. to







xL
k+1,t = fL(xL

k,t, u
L
k,t), k ≥ 0

xL
k,t ∈ X

L, uL
k,t ∈ U

L, k = 1, . . . , N − 1

xj
k+1,t = f j(xj

k,t, u
j
k,t), k ≥ 0

xj
k,t ∈ X

j , uj
k,t ∈ U

j , k = 1, . . . , N − 1

(j, L) ∈ ALC ,

gL,j
k (xL

t , xj
t , u

L
[0,...,k−1], u

j

[0,...,k−1]) ≤ 0,

(j, L) ∈ ALC , k = 1, . . . , N − 1

gq,r
k (xq

t , x
r
t , u

q

[0,...,k−1], u
r
[0,...,k−1]) ≤ 0,

(q, L) ∈ ALC , (r, L) ∈ ALC ,

(q, r) ∈ ArS and AqS , k = 1, . . . , N − 1

xL
N,t ∈ X

L
f ,

xj
N,t ∈ X

j
f ,

xL
0,t = xL

t ,

xj
0,t = xj

t ,

uj
0,t = const

(23b)

Figure 2 illustrates the propagation of the solution in a simple case where the nodes are
connected as a string, following one after another.

5 Examples

This section presents simulation examples of the decentralized control scheme (12)-(13) described
in Section 3. The examples describe formation flight of vehicles flying at a certain altitude. Each
vehicle is modeled as a point mass in two dimensions with constraints on states and inputs. The
coupling between vehicles stems from the common objective of the team (moving in formation)
and its constraints (vehicles are not allowed to violate each others protection zones).

Our intention is to provide some insight to feasibility issues associated with the proposed
decentralized scheme through a few simulation scenarios. We will describe each simulation
scenario first and then summarize our observations in Section 5.3.

The dynamics (1) of the i-th vehicle is obtained by discretizing a double integrator at 5 Hz

xi
k+1 =

A
︷ ︸︸ ︷







1 0 0.2 0

0 1 0 0.2

0 0 1 0

0 0 0 1








xi
k +

B
︷ ︸︸ ︷







0 0

0 0

0.2 0

0 0.2








ui
k (24)
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Figure 2: Propagation of the MPC subproblem solutions.

where

xi
k =

[

xi
k,pos

xi
k,vel

]

, ui
k =

[

x-axis acceleration

y-axis acceleration

]

and xi
k,pos is the vector of x and y coordinates and xi

k,vel denotes a vector of x-axis and y-axis
velocity components.

Each node solves the decentralized optimization problem (12) with:
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1. Linear cost function:

li(xi
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) =

∥
∥Qu[u

i
k,t, ũ

i
k,t]

′
∥
∥
∞
+

max

(
∥
∥Qpos

(
xi

k,pos − xi
f,pos

)∥
∥
∞

,
∥
∥Qvel

(
xi

k,vel − xi
f,vel

)∥
∥
∞

,

max
j,(i,j)∈A

∥
∥
∥Q̃pos

(

xj
k,pos − xj

f,pos

)∥
∥
∥
∞

, max
j,(i,j)∈A

∥
∥
∥Q̃vel

(

xj
k,vel − xj

f,vel

)∥
∥
∥
∞

,

max
j,(i,j)∈A

∥
∥
∥Qrpos

((

xi
k,pos − xj

k,pos

)

−
(

xi
f,pos − xj

f,pos

))∥
∥
∥
∞

,

max
j,(i,j)∈A

∥
∥
∥Qrvel

((

xi
k,vel − xj

k,vel

)

−
(

xi
f,vel − xj

f,vel

))∥
∥
∥
∞

,

max
q,r,(i,q)∈A,(i,r)∈A

∥
∥
∥Q̃rpos

((

xq
k,pos − xr

k,pos

)

−
(

xq
f,pos − xr

f,pos

))∥
∥
∥
∞

,

max
q,r,(i,q)∈A,(i,r)∈A

∥
∥
∥Q̃rvel

((

xq
k,vel − xr

k,vel

)

−
(

xq
f,vel − xr

f,vel

))∥
∥
∥
∞

)

2. No terminal cost and constraint: liN (xi
N,t, x̃

i
N,t) = 0, Xf ≡ R4

3. Identical vehicle dynamics (24)

4. Linear constraints on states and inputs:

|x| ≤
[

1000 1000 24 24
]′

, |u| ≤
[

2 2
]′

5. Non-convex interconnection constraints:

gi,j(xi
k, u

i
k, x

j
k, u

j
k) =

∥
∥
∥xi

k,pos − xj
k,pos

∥
∥
∥
∞
≥ dmin

gq,r(xq
k, u

q
k, x

r
k, u

r
k) =

∥
∥
∥x

q
k,pos − xr

k,pos

∥
∥
∥
∞
≥ dmin

Note that the cost function above includes terms that weigh the maximum control effort and
the infinity norm of a vector which collects all the absolute and relative errors of the i-th node
and its neighbors with respect to the final reference values. The infinity norm of a vector is
defined as ‖v‖∞ , maxi |vi|, where v = [v1 v2 · · · vn]

′.
Notice also, that the interconnection constraints in item 5 define square protection zones

around vehicles that cannot intersect each other. Solutions generated by node i enforce these
collision avoidance constraints not only between itself and its neighbors, but among the neighbors
as well.

The specific parameters of the problem will be given further in this section, along with the
number of vehicles and graph structure corresponding to different scenarios.

The above choice of dynamics, cost and constraints allow us to rewrite problem 12 as a
Mixed Integer Linear Program (MILP) [18, 19], for which efficient branch-and-bound solvers are
available [20]. Note that any other linear or piecewise linear formulation of constraints, cost and
dynamics can be cast as an MILP [18].

Next, we simulate two different scenarios where each node follows the decentralized MPC
control scheme described in steps 1–4 of (13), including comparisons with a centralized MPC
scheme.
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5.1 Three-vehicle scenarios

The first set of simulations was conducted using three vehicles arranged in the graph structure
shown in Figure 3. Such an interconnection graph implies that the decentralized problem solved

Figure 3: Three-vehicle formation graph.

by vehicle #1 is a function of its own states and the states of vehicle #2 only. The second
vehicle “sees” all three vehicles and would in fact be solving a centralized problem if the other
two vehicles were implementing the solution it calculates. The last vehicle #3 is in the same
situation as vehicle #1 by knowing only about its neighbor #2. The objective of the team is
to get from their initial positions to designated target points while taking up the associated
formation defined by the relative positions and speeds at the targets. The protection zone of
each vehicle is given as dmin/2 = 1.2.

The three vehicles have to perform a maneuver specified by the following initial and final
conditions:

x1
0 =

[

1 −3 0 0
]′

, x1
f =

[

6 5 0 0
]′

,

x2
0 =

[

10 −3 0 0
]′

, x2
f =

[

11 5 0 0
]′

,

x3
0 =

[

15 −3 0 0
]′

, x3
f =

[

3 5 0 0
]

This setup intends to mimic a typical “challenging” conflict scenario where vehicles have to
reach their final targets by crossing each others paths.

Feasible solutions

Figure 4(a) shows the resulting trajectories when the decentralized scheme (12)-(13) is applied
to the problem using a prediction horizon length of 9 steps (1.8 seconds). Weights in the cost
function were chosen to be Qu = 0.1I4 for vehicles #1, #3 and Qu = 0.1I6 for vehicle #2,
where In ∈ Rn denotes the identity matrix. The dimension of the weight Qu is determined by
how many vehicles and control inputs are involved in the optimization problem (e.g. vehicle #1
solves for its own two control inputs and the two inputs of its single neighbor, which means
Qu ∈ R4). Other weights had equal values of Qpos = Qvel = Q̃pos = Q̃vel = Qrpos = Qrvel =
Q̃rpos = Q̃rvel = 100I2.

It is interesting to observe that the decentralized scheme shows signs of a collective behaviour
that could be attributed to an intuitive centralized solution. Even though vehicle #1 cannot see
vehicle #3 and would almost certainly collide with it by simply flying towards its target, the
collective motion of vehicle #1 and #2, induced by their relative position objective, yields to
vehicle #3 by moving away or hovering, while #3 is speeding towards its target.
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(a) Decentralized solution at t = 4.4 sec. (b) Centralized solution at t = 3.4 sec.

Figure 4: Decentralized and centralized solutions of the three-vehicle example. Final targets are denoted
by X’s. The three shaded boxes represent protection zones associated with each vehicle.

In order to offer a baseline for evaluating the decentralized solution, the same problem was
solved using the centralized scheme (10)-(11). The solution is depicted in Figure 4(b).

This example shows that a decentralized scheme can find reasonable solutions to cooperative
problems even though feasibility can be compromised depending on initial conditions of the
vehicles. The size of the protection zones have a significant influence on overall feasibility and
the quality of solutions as well.

Changing horizon length

The next simulation intends to demonstrate that the role of the prediction horizon length can
be quite different from what standard MPC theory would suggest, mainly because of the de-
centralized nature of the problem. This means, for instance, that longer horizon lengths do not
necessarily provide a better solution in general, since predictions about the future behaviour of
neighboring vehicles can be completely inaccurate. The example shown in Figure 5(a) demon-
strates this phenomenon by changing the horizon length to 14 steps (2.8 seconds) in the decen-
tralized problem of Figure 4(a). The receding horizon problem of vehicle #2 becomes infeasible
at 3.2 seconds, since due to inaccurate knowledge about the neighbors’ future intentions, the
three vehicles reached a point, from where vehicles #3 and #1 cannot avoid each others protec-
tion zones.

Since the centralized approach (10) resembles a standard receding horizon MPC problem,
we would anticipate that longer horizon lengths lead to better solutions. Figure 5(b) shows the
centralized solution using increased horizon length, illustrating that this is in fact the case.
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(a) Decentralized solution at t = 3.2 sec. (b) Centralized solution at t = 4 sec.

Figure 5: Decentralized and centralized solutions using longer horizon length (vehicle #2 becomes

infeasible at t = 3.2 seconds in the decentralized case).

Changing cost weights

The following simulations intend to point out that feasibility of the decentralized problem with-
out terminal cost and constraints is a function of the “strategy” that vehicles follow. This can
be influenced by the selection of weights in the cost function.

The previous infeasible decentralized example for instance, can be made feasible if the relative
state errors in the cost function are weighted much more heavily. This is obtained by setting
Qpos = Qvel = Q̃pos = Q̃vel = I2 and Qrpos = Qrvel = Q̃rpos = Q̃rvel = 100I2. This setting
prompts the vehicles to get into the desired formation first and then move together to the final
target points as shown in Figure 6(a). This “strategy” seems to have a beneficial effect in the
team’s overall ability to perform the maneuver in a feasible way. The same phenomenon was
observed in more complex, six-vehicle scenarios described in Section 5.2.

A possible explanation of this effect might be that vehicles are prompted to reach their
desired relative states (formation) and resolve associated conflicts within a time frame that is
comparable to their horizon lengths. Once the formation is attained, the common remaining
goal of each vehicle is to “drift” to their target points. This at the same time becomes a much
simpler objective to accomplish even in a decentralized way.

The centralized approach depicted in Figure 6(b) also serves to demonstrate that choosing
larger weights on relative position results in an attractive alternative solution to the problem
by reaching the desired formation before actually moving towards the final targets. Figure 6(b)
shows the three vehicles “swapping position” relatively quickly, before “coasting” to their final
positions together in formation. The selection of the weights was the same here as in the
decentralized scheme.
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(a) Decentralized solution at t = 5.4 sec. (b) Centralized solution at t = 6.8 sec.

Figure 6: Decentralized and centralized solutions using longer horizon length and weighting relative

state errors more.

5.2 Six-vehicle scenarios

In this section we consider scenarios with six vehicles. The problem setup is defined by assigning
the graph shown in Figure 7 to the vehicles that are lined up one after another. The objective is to
move the vehicles into a triangular formation given in Figure 7. Note that from a computational
point of view, the decentralized problems solved by each vehicle have the same complexity as in
the three-vehicle example of the previous section.

Figure 7: Six-vehicle formation graphs.
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5.2.1 Stationary formation (surveillance)

In this example, the initial and final states of the individual vehicles are specified as follows

x1
0 =

[

−10 0 0 0
]′

, x1
f =

[

−6 2 0 0
]′

,

x2
0 =

[

−8 0 0 0
]′

, x2
f =

[

−6 0 0 0
]′

,

x3
0 =

[

−6 0 0 0
]′

, x3
f =

[

−6 −2 0 0
]

,

x4
0 =

[

−4 0 0 0
]′

, x4
f =

[

−5 −1 0 0
]′

,

x5
0 =

[

−2 0 0 0
]′

, x5
f =

[

−5 1 0 0
]′

,

x6
0 =

[

0 0 0 0
]′

, x6
f =

[

−4 0 0 0
]

The protection zone of each vehicle is given as dmin/2 = 0.3. Horizon lengths were chosen
to be 9 steps (1.8 seconds). Weights in the cost function had the same values as in the basic
three-vehicle scenario. Figure 8 illustrates a feasible decentralized solution to this problem.

Figure 8: Decentralized solution of the stationary formation problem at t = 6 sec.
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5.2.2 Moving formation

The stationary “surveillance-type” scenario of the previous section is modified in this example
by assigning non-zero initial and final velocities to the vehicles:

x1
0 =

[

−10 0 5 0
]′

, x1
f =

[

−6 2 5 0
]′

,

x2
0 =

[

−8 0 5 0
]′

, x2
f =

[

−6 0 5 0
]′

,

x3
0 =

[

−6 0 5 0
]′

, x3
f =

[

−6 −2 5 0
]

,

x4
0 =

[

−4 0 5 0
]′

, x4
f =

[

−5 −1 5 0
]′

,

x5
0 =

[

−2 0 5 0
]′

, x5
f =

[

−5 1 5 0
]′

,

x6
0 =

[

0 0 5 0
]′

, x6
f =

[

−4 0 0 0
]

The terminal position states are excluded from the cost function by selecting Qpos = Q̃pos =
0 ·I2, in order to allow the formation to maintain the final velocity while establishing the desired
relative positions. The single purpose of specifying terminal positions is to indicate the desired
final relative formation. Other weights were chosen as Qvel = Qrvel = Q̃vel = Q̃rvel = 10I2 and
Qrpos = Q̃rpos = 50I2. The remaining parameters of the problem are the same as in the previous
section.

A feasible decentralized solution of the moving and changing formation problem is shown in
Figure 9. Note that using other initial conditions, the resulting maneuver might cause protection
zone violations. However, it is important to emphasize that the decentralized problem is still
feasible even if vehicles not linked by common neighbors or arcs cross each others path. If
the chosen interconnection graph is not complete, the absence of connections between certain
vehicles represents the lack of collision avoidance constraints between them. An incomplete
graph for formation flight can be justified if unconnected vehicles fly at different altitudes or if
the particular graph structure is chosen to represent a rigid formation [12].

5.3 Final observations and remarks

Simulation examples show that the decentralized approach to formation flight can provide fea-
sible solutions even in challenging scenarios. Depending on the particular problem and initial
conditions, feasibility issues might arise using the proposed scheme 12. A few examples were
given to illustrate how the horizon length and weights in the cost function can influence the so-
lution and feasibility of the decentralized problem. A number of alternative approaches similar
to the hierarchical distributed scheme presented in Section 4 are currently under investigation
to ensure feasibility in a decentralized way.

Another important aspect of the proposed framework is real-time implementability. The max-
imum computational time associated with a single decentralized subproblem at any sampling
time was 0.063 seconds using a horizon length of 9 steps in the presented simulations. Further-
more, assuming a modest number of neighboring vehicles, explicit solutions of the underlying
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Figure 9: Decentralized solution of the moving formation scenario at t = 4.8 sec.

MILP problem can be computed off-line, which reduces the required number of calculations to
a function evaluation [21].

For more comprehensive illustration of simulations we refer to videos accessible on the web-
site [22].
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