
Francesco Borrelli

Constrained Optimal Control of
Linear and Hybrid Systems
SPIN Springer’s internal project number, if known

– Monograph –

February 20, 2003

Springer

Berlin Heidelberg NewYork
Hong Kong London
Milan Paris Tokyo

To my family.

Acknowledgments

This book is a revised version of my Ph.D. thesis from the automatic
control laboratory at ETH-Zurich, written during the years 2001 to 2002.
My thesis advisors were Manfred Morari and Alberto Bemporad. Almost all
the material presented in this book is extracted from work done jointly with
them. I would like to express my deepest gratitude to Alberto and Manfred
for sharing with me their ideas and for always being helpful and supportive.
My wholehearted gratitude also goes to Professor David Mayne for his careful
reading of the book and suggestions on how to improve it. A great thanks goes
to Davor Hrovat and Mike Fordor who gave me the opportunity to collaborate
with the Ford Research Laboratories in Dearborn, USA.

During my Ph.D. I have been in contact with many extraordinary re-
searchers. Among them I’d like to acknowledge the help of Frank Allgöwer,
Rolf Findeisen, Fabio Torrisi, Domenico Mignone, Pascal Grieder, Giancarlo
Ferrari Trecate, Eric Kerrigan, Carlo Filippi, Luigi Glielmo and Francesco
Vasca. A special thanks goes to Mato Baotic, whose help was essential in
speeding up the most recent part of my research.

Thanks also to Gianni, Anna, Agata, Antonio, Gennaro and Peppe for
living with me the world beyond science.

This research was supported by the Swiss National Science Foundation,
the Federal Office for Education and Science through the Esprit Project 26270
VHS (Verification of Hybrid Systems) and ABB.

Contents

Preface . 7

Notation and Definitions . 11

Part I Multiparametric Programming

Multiparametric Programming: a Geometric Approach 17
1.1 Introduction . 18
1.2 General Results for Multiparametric Nonlinear Programs 19
1.3 Multiparametric Linear Programming . 25

1.3.1 Geometric Algorithm for mp-LP . 27
1.3.2 Determining the Affine Subspace K 27
1.3.3 Determining the Critical Regions . 30
1.3.4 Degeneracy . 34
1.3.5 A Summary of the mp-LP Algorithm 39
1.3.6 Complexity Analysis . 41

1.4 Multiparametric Quadratic Programming 45
1.4.1 Geometric Algorithm for mp-QP . 46
1.4.2 A Summary of the mp-QP Algorithm 49
1.4.3 Propagation of the Set of Active Constraints 50
1.4.4 Continuity, Convexity and C(1) Properties 50
1.4.5 Complexity Analysis . 54
1.4.6 Other Algorithms for solving mp-QP. 55

1.5 Multiparametric Mixed-Integer Linear Programming 57
1.5.1 Geometric Algorithm for mp-MILP 57
1.5.2 Theoretical Results . 60

1.6 Multiparametric Mixed-Integer Quadratic Programming 61

4 Contents

Part II Optimal Control of Linear Systems

Constrained Finite Time Optimal Control . 65
2.1 Problem Formulation . 66
2.2 State Feedback Solution of CFTOC, 2-Norm Case 68

2.2.1 Complexity Analysis . 71
2.2.2 Examples . 72

2.3 State Feedback Solution of CFTOC, 1,∞-Norm Case 76
2.3.1 Complexity Analysis . 79
2.3.2 Example . 79

2.4 Time Varying Systems . 80

Constrained Infinite Time Optimal Control . 85
3.1 Solution to the Infinite Time Constrained LQR Problem. 86
3.2 Examples . 87

Receding Horizon Control . 89
4.1 Introduction . 90
4.2 Problem Formulation . 91

4.2.1 Stability of RHC . 93
4.2.2 Stability, ∞-Norm case . 95

4.3 State Feedback Solution of RHC, 2-Norm Case 97
4.3.1 Examples . 98

4.4 State Feedback Solution of RHC, 1,∞-Norm Case 104
4.4.1 Idle Control and Multiple Optima 104
4.4.2 Examples . 105

4.5 On-Line Computation Time . 112
4.6 RHC Extensions . 112

Constrained Robust Optimal Control . 117
5.1 Introduction . 118
5.2 Problem Formulation . 119
5.3 State Feedback Solution to CROC Problems 121

5.3.1 Preliminaries on Multiparametric Programming 122
5.3.2 Closed Loop CROC . 124
5.3.3 Open Loop CROC. 125
5.3.4 Solution to CL-CROC and OL-CROC via mp-MILP . . . 126

5.4 Robust Receding Horizon Control . 127
5.5 Examples . 127

Reducing On-line Complexity . 131
6.1 Introduction . 132
6.2 Efficient On-Line Algorithms . 132

6.2.1 Efficient Implementation, 1,∞-Norm Case 134

Contents 5

6.2.2 Efficient Implementation, 2-Norm Case 135
6.3 Example . 142

6.3.1 CFTOC based on LP . 142
6.3.2 CFTOC based on QP . 143

Part III Optimal Control of Hybrid Systems

Hybrid Systems . 147
7.1 Introduction . 148
7.2 Mixed Logic Dynamical (MLD) Systems . 150
7.3 HYSDEL . 153
7.4 Theoretical Properties of PWA Systems . 153

Constrained Optimal Control for Hybrid Systems 157
8.1 Introduction . 158
8.2 Problem Formulation . 159
8.3 State Feedback Solution of CFTOC, 2-Norm Case 160
8.4 State Feedback Solution of CFTOC, 1,∞-Norm Case 166
8.5 Efficient Computation of the Optimal Control Input 167
8.6 Efficient Computation of the State Feedback Solution 169
8.7 Computation of the State Feedback Solution, 1,∞-Norm Case 170

8.7.1 Example . 170
8.8 Computation of the State Feedback Solution, 2-Norm Case . . . 171

8.8.1 Preliminaries and Basic Steps . 172
8.8.2 Efficient Dynamic Program for the Computation of

the Solution . 177
8.8.3 Example . 178

8.9 Receding Horizon Control . 179
8.9.1 Convergence . 180
8.9.2 Extensions . 181
8.9.3 Examples . 181

Part IV Applications

Ball and Plate . 191
9.1 Ball and Plate Dynamic Model . 192
9.2 Constrained Optimal Control . 194

9.2.1 Tuning . 195
9.3 Experimental Setup . 195

6 Contents

Traction Control . 199
10.1 Introduction . 200
10.2 Vehicle Model . 201

10.2.1 Discrete-Time Hybrid Model of the Vehicle 202
10.3 Constrained Optimal Control . 204
10.4 Controller Design . 206

10.4.1 Tuning . 207
10.4.2 Combustion Torque Delay . 207

10.5 Motivation for Hybrid Control . 208
10.6 Experimental Setup and Results . 208
10.7 HYSDEL Hybrid Model . 209

Bibliography

References . 211

Preface

Many practical control problems are dominated by characteristics like

• state, input and operational constraints,
• switches between different operating regimes, and
• the interaction of continuous-time and discrete event systems.

At present no methodology is available to design controllers for such sys-
tems in a systematic manner. The most common approach resorts to using
tools developed for unconstrained linear systems, patched with a collection of
heuristic rules.

This book introduces a design theory for controllers for constrained and
switching dynamical systems. It leads to algorithms which systematically solve
control synthesis problems for classes of systems, where there are few, or no
tools, currently available.

We will focus on two classes of discrete-time dynamical systems: (i) con-
strained linear systems and (ii) constrained linear hybrid systems, i.e., systems
that include logic states and inputs, whose mode of operation can switch be-
tween a finite number of affine systems and where the mode transitions can
be triggered by states crossing specific thresholds or by exogenous inputs.

For these two classes of systems we study optimal control problems and
their state feedback solution. Our approach will make use of multiparametric
programming and our main objective will be to derive properties of the state
feedback solution, as well as to obtain algorithms to compute it efficiently.

We start by extending the theory of the Linear Quadratic Regulator to lin-
ear systems with linear constraints. We consider other norms in the objective
function, we solve the robust case with additive and parametric uncertainty
and finally extend all these results to hybrid systems. In the concluding part of
the book, the applicability of the theory is demonstrated through two exper-
imental case studies: a mechanical laboratory process and a traction control
system developed jointly with Ford Motor Company in Michigan.

The book is structured as follows.

8 Contents

The first part of the book is a self-contained introduction to multi-
parametric programming. In our framework, parametric programming is the
main technique used to study and compute state feedback optimal control
laws. In fact, we formulate the finite time optimal control problems as math-
ematical programs where the input sequence is the optimization vector. De-
pending on the dynamical model of the system, the nature of the constraints,
and the cost function used, a different mathematical program is obtained.
The current state of the dynamical system enters the cost function and the
constraints as a parameter that affects the solution of the mathematical pro-
gram. We study the structure of the solution as this parameter changes and we
describe algorithms for solving multi-parametric linear, quadratic and mixed
integer programs. They constitute the basic tools for computing the state feed-
back optimal control laws for these more complex systems in the same way as
algorithms for solving the Riccati equation are the main tools for computing
optimal controllers for linear systems.

In the second part of the book we focus on linear systems with polyhedral
constraints on inputs and states. We study finite time and infinite time op-
timal control problems with cost functions based on 2, 1 and ∞ norms. We
demonstrate that the solution to all these optimal control problems can be ex-
pressed as a piecewise affine state feedback law. Moreover, the optimal control
law is continuous and the value function is convex and continuous. The results
form a natural extension of the theory of the Linear Quadratic Regulator to
constrained linear systems. They also have important consequences for the
implementation of receding horizon control laws. Precomputing off-line the
explicit piecewise affine feedback policy reduces the on-line computation for
the receding horizon control law to a function evaluation, therefore avoiding
the on-line solution of a mathematical program as is done in model predictive
control. The evaluation of the piecewise affine optimal feedback policy is care-
fully studied and we propose algorithms to reduce its storage demands and
computational complexity.

We also address the robustness of the optimal control laws. For uncertain
linear systems with polyhedral constraints on inputs and states, we develop
an approach to compute the state feedback solution to min-max control prob-
lems with a linear performance index. Robustness is achieved against additive
norm-bounded input disturbances and/or polyhedral parametric uncertainties
in the state-space matrices. We show that the robust optimal control law over
a finite horizon is a continuous piecewise affine function of the state vector
and that the value function is convex and continuous.

In the third part of the book we focus on linear hybrid systems. We give an
introduction to the different formalisms used to model hybrid systems focusing
on computation-oriented models. We study finite time optimal control prob-
lems with cost functions based on 2, 1 and ∞ norms. The optimal control law
is shown to be, in general, piecewise affine over non-convex and disconnected
sets. Along with the analysis of the solution properties we present algorithms
that efficiently compute the optimal control law for all the considered cases.

Contents 9

In the forth and last part of the book the applicability of the theoretical
results is demonstrated on a mechanical laboratory process and a traction
control system developed jointly with Ford Motor Company in Michigan.

Francesco Borrelli

Notation and Definitions

12 Contents

Notation

Let M ∈ R
m×n, Q ∈ R

n×n, x ∈ R
n.

• M ′ denotes the matrix M transpose.
• Q � 0 if and only if (iff) x′Qx ≥ 0 ∀x ∈ R

n. Q � 0 iff x′Qx > 0 ∀x ∈ R
n\0.

• ‖Qx‖2 denotes the squared Euclidean norm of the vector x weighted with
the matrix Q, i.e., ‖Qx‖2 = x′Qx. ‖x‖ denotes the squared Euclidean
norm of the vector x.

• ‖Mx‖1 and ‖Mx‖∞ denote the 1-norm and ∞-norm of the vector Mx,
respectively, i.e., ‖Mx‖1 = |M1x|+ . . . + |Mmx|
and ‖Mx‖∞ = max{|M1x|, . . . , |Mmx|}, where Mi denotes the i-th row of
the matrix M .

• Let u ∈ R
n and v ∈ R

n. The inequality u ≤ v will be satisfied iff ui ≤
vi, ∀i = 1, . . . , n where ui and vi denote the i-th component of the vectors
u and v, respectively.

• Let u ∈ R
n and c ∈ R. The inequality u ≤ c will be satisfied iff ui ≤

c, ∀i = 1, . . . , n where ui denotes the i-th component of the vector u.
• “CFTOC” will be used as the acronym of “Constrained Finite Time Op-

timal Control”.
“CROC” as the acronym of “Constrained Robust Optimal Control”.
“OL-CROC” as the acronym of “Open-Loop Constrained Robust Optimal
Control”.
“CL-CROC” as the acronym of “Closed-Loop Constrained Robust Opti-
mal Control”.
“LQR” as the acronym of “Linear Quadratic Regulator”.
“CLQR” as the acronym of “Constrained Linear Quadratic Regulator”.
“MPC” as the acronym of “Model Predictive Control”.
“RHC” as the acronym of “Receding Horizon Control”.
“LP” as the acronym of “Linear Program”.
“QP” as the acronym of “Quadratic Program”.

Definitions

Definition 0.1. A polyhedron is a set that equals the intersection of a finite
number of closed halfspaces.

Definition 0.2. A non-convex polyhedron is a non-convex set given by the
union of a finite number of polyhedra.

Definition 0.3. Given a polyhedron P = {x|Ax ≤ b}, the faces of the polyhe-
dron are the sets described by the same set of inequalities with some inequal-
ities holding with equality, i.e., {x|Bx = c, Dx ≤ d} where A = [B D] and

Contents 13

b = [c d]′. The faces of zero dimension are the extreme points of P. A facet is
a face of maximal dimension not equal to the polyhedron.

Definition 0.4. Two polyhedra Pi, Pj of R
n are called neighboring polyhedra

if their interiors are disjoint and Pi ∩ Pj is (n − 1)-dimensional (i.e., is a
common facet).

Definition 0.5. A function h(θ) : Θ → R, is quasiconvex if for each θ1, θ2 ∈
Θ, h(λθ1 + (1− λ)θ2) ≤ max{h(θ1), h(θ2)} for each λ ∈ (0, 1).

Definition 0.6. A collection of sets R1, . . ., RN is a partition of a set Θ if (i)⋃N
i=1 Ri = Θ, (ii) Ri ∩Rj = ∅, ∀i �= j. Moreover R1, . . ., RN is a polyhedral

partition of a polyhedral set Θ if R1, . . ., RN is a partition of Θ and the R̄i’s
are polyhedral sets, where R̄i denotes the closure of the set Ri.

Definition 0.7. A collection of sets R1, . . ., RN is a partition in the broad
sense of a set Θ if (i)

⋃N
i=1 Ri = Θ, (ii) (Ri\∂Ri) ∩ (Rj\∂Rj) = ∅, ∀i �= j,

where ∂ denotes the boundary. Moreover R1, . . ., RN is a polyhedral partition
in the broad sense of a polyhedral set Θ if R1, . . ., RN is a partition in the
broad sense of Θ and the Ri’s are polyhedral sets.

Definition 0.8. A function h(θ) : Θ → R
k, where Θ ⊆ R

s, is piecewise
affine (PWA) if there exists a partition R1,. . . ,RN of Θ and h(θ) = Hiθ + ki,
∀θ ∈ Ri, i = 1, . . . , N .

Definition 0.9. A function h(θ) : Θ → R
k, where Θ ⊆ R

s, is piecewise affine
on polyhedra (PPWA) if there exists a polyhedral partition R1,. . . ,RN of Θ
and h(θ) = Hiθ + ki, ∀θ ∈ Ri, i = 1, . . . , N .

Definition 0.10. A function h(θ) : Θ → R
k, where Θ ⊆ R

s, is piecewise
quadratic (PWQ) if there exists a partition R1,. . . ,RN of Θ and h(θ) =
θ′Hiθ + kiθ + li, ∀θ ∈ Ri, i = 1, . . . , N .

Definition 0.11. A function h(θ) : Θ → R
k, where Θ ⊆ R

s, is piece-
wise quadratic on polyhedra (PPWQ) if there exists a polyhedral partition
R1,. . . ,RN of Θ and h(θ) = θ′Hiθ + kiθ + li, ∀θ ∈ Ri, i = 1, . . . , N .

A piecewise affine function defined over a partition in the broad sense may
be multi-valued if it is discontinuous (because of the double definition of the
function along the boundary of two regions). However, continuous piecewise
affine functions can be easily defined over a partition in the broad sense. In
particular, it is simpler to define a continuous PPWA function on a polyhedral
partition in the broad sense. This allows one to avoid keeping track for all the
polyhedra of the partition which facets belong to the polyhedra and which
not. The same holds for PWQ functions.

Part I

Multiparametric Programming

1

Multiparametric Programming: a Geometric
Approach

18 1 Multiparametric Programming: a Geometric Approach

In this chapter we introduce the concept of multiparametric programming
and we recall the main results of nonlinear parametric programming. Then,
we describe three algorithms for multiparametric linear programs (mp-LP),
multiparametric quadratic programs (mp-QP) and multiparametric mixed-
integer linear programs (mp-MILP).

1.1 Introduction

The operations research community has addressed parameter variations in
mathematical programs at two levels: sensitivity analysis, which characterizes
the change of the solution with respect to small perturbations of the parame-
ters, and parametric programming, where the characterization of the solution
for a full range of parameter values is sought. More precisely, programs which
depend only on one scalar parameter are referred to as parametric programs,
while problems depending on a vector of parameters are referred to as multi-
parametric programs.

There are several reasons to look for efficient solvers of multiparametric
programs. Typically, mathematical programs are affected by uncertainties due
to factors which are either unknown or that will be decided later. Parametric
programming systematically subdivides the space of parameters into charac-
teristic regions, which depict the feasibility and corresponding performance as
a function of the uncertain parameters, and hence provide the decision maker
with a complete map of various outcomes.

Our interest in multiparametric programming arises from the field of sys-
tem theory and optimal control. For discrete time dynamical systems finite
time constrained optimal control problems can be formulated as mathemati-
cal programs where the cost function and the constraints are functions of the
initial state of the dynamical system. In particular, Zadeh and Whalen [160]
appear to have been the first ones to express the optimal control problem for
constrained discrete time linear systems as a linear program. By using mul-
tiparametric programming we can characterize and compute the solution of
the optimal control problem explicitly as a function of the initial state.

We are also motivated by the so-called model predictive control (MPC)
technique. MPC is very popular in the process industry for the automatic reg-
ulation of process-units under operating constraints [117], and has attracted
a considerable research effort in the last decade, as recently surveyed in [112].
MPC requires an optimization problem to be solved on-line in order to com-
pute the next command action. Such an optimization problem depends on
the current sensor measurements. The computation effort can be moved off-
line by solving multiparametric programs, where the command inputs are the
optimization variables and the measurements are the parameters [18].

The first method for solving parametric linear programs was proposed by
Gass and Saaty [72], and since then extensive research has been devoted to

1.2 General Results for Multiparametric Nonlinear Programs 19

sensitivity and (multi)-parametric analysis, as testified by the hundreds of
references in [68] (see also [69] for recent advances in the field).

Multiparametric analysis makes use of the concept of a critical region.
Given a parametric program, a critical region is a set of the parameters space
were the local conditions for optimality remain unchanged.

The first method for solving multiparametric linear programs was formu-
lated by Gal and Nedoma [70]. The method constructs the critical regions
iteratively, by visiting the graph of bases associated with the LP tableau of
the original problem. Subsequently only a few authors have dealt with multi-
parametric linear programming [68, 65, 132].

The first method for solving multiparametric quadratic programs was pro-
posed by Bemporad and coauthors in [25]. The method constructs a criti-
cal region in a neighborhood of a given parameter, by using Karush-Kuhn-
Tucker conditions for optimality, and then recursively explores the parameter
space outside such a region. Other algorithms for solving mp-QPs appeared
in [135, 147, 10] and will be reviewed briefly in Section 1.4.6.

In [1, 57] two approaches were proposed for solving mp-MILP problems. In
both methods the authors use an mp-LP algorithm and a branch and bound
strategy that avoids the complete enumeration of combinations of 0-1 integer
variables by comparing the available bounds on the multiparametric solutions.

In this chapter we first recall the main results of nonlinear multipara-
metric programming [64], then we describe three algorithms for solving mul-
tiparametric linear programs (mp-LP), multiparametric quadratic programs
(mp-QP) and multiparametric mixed-integer linear programs (mp-MILP).

The main idea of the three multiparametric algorithms presented in this
chapter is to construct a critical region in a neighborhood of a given param-
eter, by using necessary and sufficient conditions for optimality, and then to
recursively explore the parameter space outside such a region. For this reason
the methods are classified as “geometric”. All the algorithms are extremely
simple to implement once standard solvers are available: linear programming,
quadratic programming and mixed-integer linear programming for solving mp-
LP, mp-QP and mp-MILP, respectively.

Note that though an LP can be viewed as a special case of a QP by setting
the Hessian H to zero, the results of [25] on the mp-QP presented in Section 1.4
are restricted to the case H > 0. As a matter of fact, mp-LP deserves a special
analysis, which provides insight into the properties of mp-LP and, leads to a
different algorithm than mp-QP, which is described in detail in Section 1.3.

1.2 General Results for Multiparametric Nonlinear
Programs

Consider the nonlinear mathematical program dependent on a parameter x
appearing in the cost function and in the constraints

20 1 Multiparametric Programming: a Geometric Approach

J∗(x) = inf
z

f(z, x)

subj. to g(z, x) ≤ 0
(1.1)

where z ∈ M ⊆ R
s is the optimization variable, x ∈ X ⊆ R

n is the parameter,
f : R

s×R
n → R is the cost function and g : R

s×R
n → R

ng are the constraints.
A small perturbation of the parameter x in the mathematical program (1.1)

can cause a variety of results. Depending on the properties of the functions f
and g the solution z∗(x) may vary smoothly or change drastically as a function
of x. We denote by R(x) the point-to-set map that assigns to a parameter x
the set of feasible z, i.e.

R(x) = {z ∈ M |g(z, x) ≤ 0} (1.2)

by K∗ the set of feasible parameters, i.e.,

K∗ = {x ∈ R
n|R(x) �= ∅} (1.3)

by J∗(x) the real-valued function which expresses the dependence on x of the
minimum value of the objective function over K∗, i.e.

J∗(x) = inf
z
{f(z, x)|z ∈ R(x)} (1.4)

and by Z∗(x) the point-to-set map which expresses the dependence on x of
the set of optimizers, i.e.,

Z∗(x) = {z ∈ R(x)|f(z, x) ≤ J∗(x)} (1.5)

J∗(x) will be referred to as optimal value function or simply value function,
Z∗(x) will be referred to as optimal set. If Z∗(x) is a singleton for all x, then
z∗(x) � Z∗(x) will be called optimizer function. In this book we will assume
that K∗ is closed and J∗(x) is finite for every x belonging to K∗. We denote
by gi(z, x) the i-th component of the vector valued function g(x, z).

In Chapter 2 of [64] Fiacco summarizes conditions under which the solu-
tion of nonlinear multiparametric programs (1.1) is locally well behaved and
establish properties of the solution as a function of the parameters. The de-
scription of such conditions requires the definition of continuity of point-to-set
maps. Before introducing this concept we will show thorough two simple ex-
amples that continuity of the constraints gi(z, x) with respect to x and z is
not enough to imply any regularity of the value function and the optimizer
function.

Example 1.1. Consider the following problem:

J∗(x) = inf
z

z

subj. to zx ≥ 0
−10 ≤ z ≤ 10
−10 ≤ x ≤ 10

(1.6)

1.2 General Results for Multiparametric Nonlinear Programs 21

where z ∈ R and x ∈ R. For each fixed x the set of feasible z is a segment. The
point-to-map set R(x) is plotted in Figure 1.1a. The function g1 : (z, x) �→ zx
is continuous. Nevertheless, the value function J∗(x) = z∗(x) has a disconti-
nuity in the origin as can be seen in Figure 1.1b.

z

x

(a) Point to map set R(x) corre-
sponding to Example 1.1

z
*

x

(b) Value function z∗ solution to
Example 1.1

Fig. 1.1. Solution to Example 1.1

Example 1.2. Consider the following problem:

J∗(x) = inf
z1,z2

−z1

subj. to g1(z1, z2) + x ≤ 0
g2(z1, z2) + x ≤ 0

(1.7)

where examples of the functions g1(z1, z2) and g2(z1, z2) are plotted in Fig-
ures 1.2(a)–1.2(c). Figures 1.2(a)–1.2(c) also depicts the point to set map
R(x) = {[z1, z2] ∈ R

2|g1(z1, z2) + x ≤ 0, g2(z1, z2) + x ≤ 0} for three fixed
x. Starting from x = x̄1 as x increases the domain of feasibility in the space
z1, z2 shrinks; at the beginning it is connected (Figure 1.2(a)), then it becomes
disconnected (Figure 1.2(b)) and eventually connected again (Figure 1.2(c)).
No matter how smooth one chooses the functions g1 and g2, the value function
J∗(x) = z∗1(x) will have a discontinuity at x = x̄3.

As mentioned before, the concept of continuity of point-to-set map is a
critical requirement for the set R(x) to lead to some regularity of the value
and optimizer function. Consider a point-to-set map R : x ∈ X �→ R(x) ⊆ M .
We give the following definitions:

Definition 1.1. R(x) is open at a point x̄ ∈ K∗ if {xk} ⊂ K∗, xk → x̄ and
z̄ ∈ R(x̄) imply the existence of an integer m and a sequence {zk} ∈ M such
that zk ∈ R(xk) for k ≥ m and zk → z̄

22 1 Multiparametric Programming: a Geometric Approach

z2

g1(1 2,)=z z x1

z1

g2(1 2,)=z z x1

(a) Functions g1(z1, z2) and
g2(z1, z2). In gray the set R(x̄1)
defined by problem (1.7)

z2

z1

g1 2(1 2,)=z z x

g2 2(1 2,)=z z x

(b) Set R(x̄2) in Example 1.2

z2

z1

g1(1 2,)=z z x3

g2(1 2,)=z z x3

(c) Set R(x̄3) in Example 1.2

x

J x
*
()

x1
x3

(d) Value function

Fig. 1.2. Three projections of the point to map set defined by problem (1.7) in
Example 1.2 and corresponding value function

Definition 1.2. R(x) is closed at a point x̄ ∈ K∗ if {xk} ⊂ K∗, xk → x̄,
zk ∈ R(xk), and zk → z̄ imply z̄ ∈ R(x̄).

Definition 1.3. R(x) is continuous at a point x̄ in K∗ if it is both open and
closed at x̄. R is continuous in K∗ if R is continuous for any x in K∗.

The definitions above are illustrated through two examples.

Example 1.3. Consider

R(x) = {z ∈ R|z ∈ [0, 1] if x < 1, z ∈ [0, 0.5] if x ≥ 1}

The point-to-set map R(x) is plotted in Figure 1.3. It easy to see that R(x) is
not closed but open. In fact, if one considers a sequence {xk} that converges

1.2 General Results for Multiparametric Nonlinear Programs 23

to x̄ = 1 from the left and extracts the sequence {zk} plotted in Figure 1.3
converging to z̄ = 0.75, then z̄ /∈ R(x̄) since R(1) = [0, 0.5].

1

1

z

x

{ }zk

{ }xk

Fig. 1.3. Point to map set R(x) corresponding to Example 1.3

Example 1.4. Consider

R(x) = {z ∈ R|z ∈ [0, 1] if x ≤ 1, z ∈ [0, 0.5] if x > 1}

The point-to-set map R(x) is plotted in Figure 1.4. It easy to verify that
R(x) is closed but not open. In fact, if one considers a sequence {xk} that
converges to x̄ = 1 from the right and chooses z̄ = 0.75 ∈ R(x̄), one is not
able to construct a sequence {zk} ∈ M such that zk ∈ R(xk) for and zk → z̄

1

1

z

x

{ }zk

{ }xk

Fig. 1.4. Point to map set R(x) corresponding to Example 1.4

The examples above are only illustrative. In general, it is difficult to test
if a set is closed or open by applying the definitions. Several authors have
proposed sufficient conditions on gi which imply the continuity of R(x). In
the following we will summarize the main results of [131, 52, 88, 27].

24 1 Multiparametric Programming: a Geometric Approach

Theorem 1.1. If M is convex, if each component gi(z, x) of g(z, x) is con-
tinuous on M ×X and convex in z for each fixed x ∈ X and if there exists a
z̄ such that g(z̄, x̄) < 0, then R(x) is a continuous map.

The proof is given in [88]. Note that convexity in z for each x is not enough
to imply the continuity of R(x) everywhere in K∗. We remark that in Exam-
ple 1.1 the origin does not satisfy the last hypothesis of Theorem (1.1).

Theorem 1.2. If M is convex, if each component gi(z, x) of g(x, z) is con-
tinuous on M ×X and convex in z and x then R(x) is a continuous map.

The proof is simple and omitted here.
Now we are ready to give the two main theorems on the continuity of the

value function and optimizer function.

Theorem 1.3. Consider problem (1.1)–(1.2). If R(x) is a continuous point-
to-set map and f(z, x) continuous, then J∗(x) is continuous.

Theorem 1.4. Consider problem (1.1)–(1.2). If R(x) is a continuous point-
to-set map, R(x) is convex for every x ∈ K∗, f(z, x) continuous and strictly
quasiconvex in z for each x, then J∗(x) and z∗(x) are continuous functions.

Theorems 1.1 and 1.2 can be combined with Theorems 1.3 and 1.4 to get
the following corollaries:

Corollary 1.1. Consider the multiparametric nonlinear program (1.1). As-
sume that M is a compact convex set in R

s, f and g are both continuous
on M × R

n and each component of g is convex on M × K∗. Then J∗(·) is
continuous for all x ∈ K∗

Corollary 1.2. Consider the multiparametric nonlinear program (1.1). As-
sume that M is a compact convex set in R

s, f and g are both continuous on
M × R

n and each component of g is convex on M for each x ∈ K∗. Then
J∗(x) is continuous at x if it exists z̄ such that g(z̄, x) < 0.

1.3 Multiparametric Linear Programming

Consider the right-hand-side multiparametric linear program (mp-LP)

J∗(x) = min
z

J(z, x) = c′z

subj. to Gz ≤ W + Sx,
(1.8)

where z ∈ R
s are the optimization variables, x ∈ R

n is the vector of param-
eters, J(z, x) ∈ R is the objective function and G ∈ R

m×s, c ∈ R
s, W ∈ R

m,
and S ∈ R

m×n. Given a closed polyhedral set K ⊂ R
n of parameters,

K � {x ∈ R
n : Tx ≤ Z}, (1.9)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the LP (1.8)
is feasible. For any given x̄ ∈ K∗, J∗(x̄) denotes the minimum value of the
objective function in problem (1.8) for x = x̄. The function J∗ : K∗ → R will
denote the function which expresses the dependence on x of the minimum
value of the objective function over K∗, J∗(·) will be called value function.
The set-valued function Z∗ : K∗ → 2R

s

, where 2R
s

is the set of subsets of
R

s, will describe for any fixed x ∈ K∗ the set of optimizers z∗(x) related to
J∗(θ). We aim at determining the feasible region K∗ ⊆ K of parameters, the
expression of the value function and the expression of one of the optimizer
z∗(x) ∈ Z∗(x).

We give the following definition of primal and dual degeneracy:

Definition 1.4. For any given x ∈ K∗ the LP (1.8) is said to be primal
degenerate if there exists a z∗(x) ∈ Z∗(x) such that the number of active
constraints at the optimizer is greater than the number of variables s.

Definition 1.5. For any given x ∈ K∗ the LP (1.8) is said to be dual degen-
erate if its dual problem is primal degenerate.

The multiparametric analysis makes of the concept of critical region (CR).
In [70] a critical region is defined as a subset of the parameter space on which a
certain basis of the linear program is optimal. The algorithm proposed in [70]
for solving multiparametric linear programs generates non-overlapping critical
regions by generating and exploring the graph of bases. In the graph of bases
the nodes represent optimal bases of the given multiparametric problem and
two nodes are connected by an edge if it is possible to pass from one basis
to another by one pivot step (in this case the bases are called neighbors).
Our definition of critical regions is not associated with the bases but with
the set of active constraints and is directly related to the definition given
in [2, 113, 69, 65]. Below we give a definition of optimal partition directly
related to that of Filippi [65], which is the extension of the idea in [2, 113] to
the multiparametric case.

Let J � {1, . . . , m} be the set of constraint indices. For any A ⊆ J , let GA

and SA be the submatrices of G and S, respectively, consisting of the rows
indexed by A and denote with Gj , Sj and Wj the j-th row of G, S and W ,
respectively.

26 1 Multiparametric Programming: a Geometric Approach

Definition 1.6. The optimal partition of J associated with x is the partition
(A(x), NA(x)) where

A(x) � {j ∈ J : Gjz
∗(x)− Sjx = Wj for all z∗(x) ∈ Z∗(x)}

NA(x) � {j ∈ J : Gjz
∗(x)− Sjx < Wj for some z∗(x) ∈ Z∗(x)}.

It is clear that (A(x), NA(x)) are disjoint and their union is J . For a given
x∗ ∈ K∗ let (A, NA) � (A(x∗), NA(x∗)), and let

CRA � {x ∈ K : A(x) = A}
CRA � {x ∈ K : A(x) ⊇ A}. (1.10)

The set CRA is the critical region related to the set of active constraints A,
i.e., the set of all parameters x such that the constraints indexed by A are
active at the optimum of problem (1.8). Clearly, CRA ⊇ CRA.

The following result was proved by Filippi [65].

Theorem 1.5. Let (A, NA) � (A(x∗), NA(x∗)) for some x∗ ∈ K, and let
d be the dimension of range GA

⋂
range SA. If d = 0 then CRA = {x∗}. If

d > 0 then

i) CRA is an open1 polyhedron of dimension d2;
ii) CRA is the closure of CRA;
iii) every face of CRA takes the form of CRA′ for some A′ ⊇ A.

By Theorem 1.5 and the definition of critical regions in (1.10), it follows
that the set K∗ is always partitioned in a unique way. On the contrary, in
the case of degeneracies, in the approach of [68] the partition is not uniquely
defined, as it can be generated in a possibly exponentially number of ways,
depending on the particular path followed by the algorithm to visit different
bases [2, 28].

In this chapter, we aim at determining all the full-dimensional critical re-
gions contained in K∗ according to Definition 1.10. Rather than solving the
problem by exploring the graph of bases of the associated LP tableau [70, 68],
our approach is based on the direct exploration of the parameter space [25]. As
will be detailed in the following sections, this has the following advantages: (i)
a polynomial-time algorithm for LP can be used, (ii) degeneracy can be han-
dled in a simpler way, (iii) the algorithm is easily implementable recursively,
and (iv) the main ideas of the algorithm generalize to nonlinear multiparamet-
ric programming [25, 57]. In the absence of degeneracy the algorithm explores
implicitly the graph of bases without resorting to pivoting. In case of degener-
acy it avoids visiting the graph of degenerate bases. Therefore, the approach
is different from other methods based on the simplex tableau [68].
1 Given the polyhedron Bξ ≤ v we call open polyhedron the set Bξ < v.
2 The dimension of a polyhedron P is defined here as the dimension of the smallest

affine subspace containing P .

1.3 Multiparametric Linear Programming 27

Before going further, we recall some well known properties of the value
function J∗(x) : R

n → R and of the set K∗.

Theorem 1.6. (cf. [68, p. 178, Th. 1]). Assume that for a fixed x0 ∈ K there
exists a finite optimal solution z∗(x0) of (1.8). Then, for all x ∈ K, (1.8) has
either a finite optimum or no feasible solution.

Theorem 1.7. (cf. [68, p. 179, Th. 2]) Let K∗ ⊆ K be the set of all parame-
ters x such that the LP (1.8) has a finite optimal solution z∗(x). Then K∗ is
a closed polyhedral set in R

n.

The following Theorem 1.8 summarizes the properties enjoyed by the mul-
tiparametric solution, cf. [68, p. 180].

Theorem 1.8. The function J∗(·) is convex and piecewise affine over K∗

(and in particular affine in each critical region CRAi).
If the optimizer z∗(x) is unique for all x ∈ K∗, then the optimizer function

z∗ : K∗ → R
s is continuous and piecewise affine. Otherwise it is always

possible to define a continuous and piecewise affine optimizer function z∗(x) ∈
Z∗(x) for all z ∈ K∗.

In the next section we describe an algorithm to determine the set K∗, its
partition into full-dimensional critical regions CRAi , the PWA value function
J∗(·) and a PWA optimizer functions z∗(·).

1.3.1 Geometric Algorithm for mp-LP

The algorithm consists of two main steps, which can be summarized as follows:

1. Determine the dimension n′ ≤ n of the smallest affine subspace K that
contains K∗. If n′ < n, find the equations in x which define K.

2. Determine the partition of K∗ into critical regions CRAi , and find the
function J∗(·) and a PWA optimizer function z∗(·).
Below we give the details of the two steps. The first step is a preliminary

one whose goal is to reduce the number of parameters in order to obtain a full-
dimensional feasible region of parameters. This eases the second step, which
computes the multiparametric solution and represents the core of the mp-LP
algorithm.

1.3.2 Determining the Affine Subspace K
In order to work with a minimal dimension of the parameter vector, the first
step of the algorithm aims at finding the affine subspace K ⊆ R

n containing
the parameters x which render (1.8) feasible.

28 1 Multiparametric Programming: a Geometric Approach

A first simple but important consideration concerns the column rank rS of
S. Clearly, if rS < n, n− rS parameters can be eliminated by a simple coordi-
nate transformation in R

n. Therefore from now on, without loss of generality,
we will assume that S has full column rank.

Besides this obvious preliminary reduction of the parameter space, there
is another case where the number of parameters can be further reduced, as
shown in the following example.

Example 1.5.
min 2z1 + 3z2

subj. to

z1 + z2 ≤ 9− x1 − x2

z1 − z2 ≤ 1− x1 − x2

z1 + z2 ≤ 7 + x1 + x2

z1 − z2 ≤ −1 + x1 + x2

−z1 ≤ −4
−z2 ≤ −4

z1 ≤ 20− x2

(1.11)

where K = {x : −100 ≤ x1 ≤ 100, −100 ≤ x2 ≤ 100}. The reader can
easily check that for any x ∈ K∗ the point z = [4, 4] is the only feasible for
problem (1.11), therefore the solution to (1.11) consists of one critical region:

z∗1 = 4 z∗2 = 4 ∀(x1, x2) ∈ CR{1,2,3,4,5,6}

where CR{1,2,3,4,5,6} is
x1 + x2 = 1

−100 ≤ x1 ≤ 100
−100 ≤ x2 ≤ 100.

�

The example shows that, even if the matrix S has full column rank, the
polyhedron K∗ is contained in a sub-space of dimension n′ < n, namely a line
in R

2.
Therefore, before solving the mp-LP problem, we need a test for checking

the dimension n′ of the smallest affine subspace K that contains K∗. More-
over, when n′ < n, we need the equations describing K in R

n. The equations
are then used for a change of coordinates in order to reduce the number of
parameters from n to n′ and to get a polyhedron K∗ that has full dimension
in R

n′
.

Recall (1.8) and construct the LP problem in the space R
s+n

min
z

J(z, x) = c′z

subj. to Gz − Sx ≤ W.
(1.12)

Clearly, the constraints in (1.12) define a polyhedron P in R
s+n. The following

lemma shows that the projection ΠRn(P) of P on the parameter space R
n is

K∗.

1.3 Multiparametric Linear Programming 29

Lemma 1.1.

x∗ ∈ K∗ ⇐⇒ ∃z : Gz − Sx∗ ≤ W ⇐⇒ x∗ ∈ ΠRn(P).

As a direct consequence of Proposition 1.1, the dimension n′ of the small-
est affine subspace that contains K∗ can be determined by computing the
dimension of the projection ΠRn(P).

Definition 1.7. A true inequality of the polyhedron C = {ξ ∈ R
s : Bξ ≤ v}

is an inequality Biξ ≤ vi such that ∃ξ̄ ∈ C : Biξ̄ < vi.

Given an H-representation of a polyhedron C, i.e., a set of halfspaces defin-
ing C, the following simple procedure determines the set I of all the not-true
inequalities of C.

Algorithm 1.3.1

Input: Polyhedron C
Output: Set I of all the not-true inequalities of C
1 let I ← ∅; M← {1, . . . , m};
2 while M �= ∅,
3 let j ← first element of M;

4 let M←M\ {j};
5 solve the following LP problem:

min Bjξ

s.t. Biξ ≤ vi, ∀i ∈ M
(1.13)

and let ξ∗ be an optimizer;

6 if Bjξ
∗ = vj then I ← I ∪ {j};

7 for h ∈ M,

8 if Bhx∗ < vh then M←M\ {h};
9 end ;

10 end .

Algorithm 1.3.2 describes a standard procedure to determine the dimen-
sion n′ ≤ n of the smallest affine subspace K that contains K∗, and when
n′ < n it finds the equations defining K. In the following we will suppose
without loss of generality that the set K is full-dimensional.

30 1 Multiparametric Programming: a Geometric Approach

Algorithm 1.3.2

Input: Matrices G, S, W

Output: Dimension n′ ≤ n of the smallest affine subspace K that

contains K∗ if n′ < n, then K = {x ∈ R
n Tx = Z}

1 discard the true inequalities from the constraints in (1.12);

2 if no inequality is left then K ← R
n;

3 else
4 let Pa � {(z, x) : Gaz − Sax = Wa} be the affine subspace

obtained

by collecting the remaining non-true inequalities;

5 let {u1, . . . , uk′} be a basis of the kernel of G′
a;

6 if k′ = 0 then ΠRn(Pa) and (by Proposition (1.1)) K∗ are

full-dimensional,

K ← R
n;

7 else K ← {x| Tx = Z}, where

T = −

u′

1
...

u′
k′

Sa, Z =

u′

1
...

u′
k′

Wa; (1.14)

8 end .

Step 5 can be computed by a standard singular value decomposition. When
k′ > 0, from the equations Tx = Z a simple transformation (e.g. a Gauss
reduction) leads to a new set of free n′ parameters, where n′ = n − rankT .
From now on, without loss of generality, we will assume that K is the whole
space R

n.

1.3.3 Determining the Critical Regions

In this section we detail the core of the mp-LP algorithm, namely the deter-
mination of the critical regions CRAi within the given polyhedral set K. We
assume that there is neither primal nor dual degeneracy in the LP problems.
These cases will be treated in Section 1.3.4. We denote by z∗ : K∗ → R

s

the real-valued optimizer function, where Z∗(x) = {z∗(x)}. The method uses
primal feasibility to derive the H-polyhedral representation of the critical re-
gions, the slackness conditions to compute the optimizer z∗(x), and the dual
problem to derive the optimal value function J∗(x). The dual problem of (1.8)
is defined as

1.3 Multiparametric Linear Programming 31

max
y

(W + Sx)′y

subj. to G′y = c
y ≤ 0.

(1.15)

The primal feasibility, dual feasibility, and the slackness conditions for prob-
lems (1.8), (1.15) are

PF: Gz ≤ W + Sx (1.16a)
DF: G′y = c, y ≤ 0 (1.16b)
SC: (Gjz −Wj − Sjx)yj = 0, ∀j ∈ J. (1.16c)

Choose an arbitrary vector of parameters x0 ∈ K and solve the primal
and dual problems (1.8), (1.15) for x = x0. Let z∗0 and y∗

0 be the optimizers
of the primal and the dual problem, respectively. The value of z∗0 defines the
following optimal partition

A(x0) � {j ∈ J : Gjz
∗
0 − Sjx0 −Wj = 0}

NA(x0) � {j ∈ J : Gjz
∗
0 − Sjx0 −Wj < 0} (1.17)

and consequently the critical region CRA(x0).
By hypothesis y∗

0 is unique, and by definition of critical region y∗
0 remains

optimal for all x ∈ CRA(x0). The value function in CRA(x0) is

J∗(x) = (W + Sx)′y∗
0 (1.18)

which is an affine function of x on CRA(x0), as was stated in Theorem 1.8.
Moreover, for the optimal partition (1.17) the PF condition can be rewritten
as

GAz∗(x) = WA + SAx (1.19a)
GNAz∗(x) < WNA + SNAx. (1.19b)

In the absence of dual degeneracy the primal optimizer is unique, and (1.19a)
can be solved to get the solution z∗(x). In fact, equations (1.19a) form a system
of l equalities where, in the absence of primal degeneracy, l = s is the number
of active constraints. From (1.19a), it follows

z∗(x) = −G−1
A SAx + G−1

A WA = Ex + Q, (1.20)

which implies the linearity of z∗ with respect to x. From the primal feasibility
condition (1.19b), we get immediately the representation of the critical region
CRA(x0)

GNA(Ex + Q) < WNA + SNAx. (1.21)

The closure CRA(x0) of CRA(x0) is obtained by replacing “<” by “≤” in
(1.21).

32 1 Multiparametric Programming: a Geometric Approach

Once the critical region CRA(x0) has been defined, the rest of the space
Rrest = K\CRA(x0) has to be explored and new critical regions generated.
An effective approach for partitioning the rest of the space was proposed
in [57] and formally proved in [25]. In the following we report the theorem
that justifies such a procedure to characterize the rest of the region Rrest.

Theorem 1.9. Let Y ⊆ R
n be a polyhedron, and R0 � {x ∈ Y : Ax ≤ b} be

a polyhedral subset of Y , where b ∈ R
m×1, R0 �= ∅. Also let

Ri =
{

x ∈ Y :
Aix > bi

Ajx ≤ bj, ∀j < i

}
i = 1, . . . , m

where b ∈ R
m×1 and let Rrest � ∪m

i=1Ri. Then

(i) Rrest ∪R0 = Y
(ii)R0 ∩Ri = ∅, Ri ∩Rj = ∅, ∀i �= j

i.e., {R0, R1, . . . , Rm} is a partition of Y .

Proof: (i) We want to prove that given an x ∈ Y , then either x belongs
to R0 or to Ri for some i. If x ∈ R0, we are done. Otherwise, there exists an
index i such that Aix > bi. Let i∗ = min

i≤m
{i : Aix > bi}. Then x ∈ Ri∗ , as

Ai∗x > bi∗ and Ajx ≤ bj , ∀j < i∗, by definition of i∗.
(ii) Let x ∈ R0. Then there does not exist any i such that Aix > bi, which

implies that x �∈ Ri, ∀i ≤ m. Let x ∈ Ri and take i > j. Because x ∈ Ri, by
definition of Ri (i > j) Ajx ≤ bj, which implies that x �∈ Rj . �

A Two Dimensional Example

In order to demonstrate the procedure proposed in Theorem 1.9 for parti-
tioning the set of parameters K, consider the case when only two parameters
x1 and x2 are present. As shown in Figure 1.5(a), K is defined by the in-
equalities {x−

1 ≤ x1 ≤ x+
1 , x−

2 ≤ x2 ≤ x+
2 }, and R0 by the inequalities

{C1 ≤ 0, . . . , C5 ≤ 0} where C1, . . ., C5 are linear in x. The procedure
consists of considering one by one the inequalities which define R0. Consider-
ing, for example, the inequality C1 ≤ 0, the first set of the rest of the region
Rrest � K − R0 is given by R1 = {C1 ≥ 0, x1 ≥ x−

1 , x−
2 ≤ x2 ≤ x+

2 }, which
is obtained by reversing the sign of the inequality C1 ≤ 0 and removing re-
dundant constraints in K (see Figure 1.5(b)). Thus, by considering the rest of
the inequalities, the complete rest of the region is Rrest =

⋃5
i=1 Ri, where R1,

. . ., R5 are given in Table 1.1 and are graphically reported in Figure 1.5(d).
Note that for the case when K is unbounded, the inequalities involving K in
Table 1.1 are simply suppressed.

Remark 1.1. The procedure proposed in Theorem 1.9 for partitioning the set
of parameters allows one to recursively explore the parameter space (see Re-
mark 1.7 below). Such an iterative procedure terminates after a finite time,

1.3 Multiparametric Linear Programming 33

1

2

2

2

1 1

+

-

- +

K

R0

x
x

x

x

x
x

(a) Set of parameters K and ini-
tial region R0

R0
R1

1

2

2

2

1 1

+

-

- +

K

C1��

C2��

C1��

x
xx

x

x
x

(b) Partition of Rrest - Step 1

R1

1

2

2

2

1 1

+

-

- +

R2

K

R0

C
1�� C2��

x
xx

x

x
x

(c) Partition of Rrest - Step 2

R1

1

2

2

2

1 1

+

-

- +

R5

R3

K

R4

R0

R2

x
xx

x

x
x

(d) Final partition of Rrest

Fig. 1.5. Two dimensional example: partition of the rest of the space Rrest � K−R0

Region Inequalities
R1 C1 ≥ 0, x ≥ x−

1 , x−
2 ≤ x2 ≤ x+

2

R2 C2 ≥ 0, C1 ≤ 0, x2 ≤ x+
2

R3 C3 ≥ 0, C2 ≤ 0, x2 ≤ x+
2 , x1 ≤ x+

1

R4 C4 ≥ 0, C1 ≤ 0, C3 ≤ 0, x1 ≤ x+
1 , x2 ≥ x−

2

R5 C5 ≥ 0, C1 ≤ 0, C4 ≤ 0

Table 1.1. Definition of the partition of Rrest � K − R0

34 1 Multiparametric Programming: a Geometric Approach

x

R1

1

2

2

2

1 1

+

-

- +

R2

K

CR{6,7}

X

X

CR{3,7}

x

x

x x
x

Fig. 1.6. Example: critical region explored twice

as the number of possible combinations of active constraints decreases with
each iteration. However, this way of partitioning defines new polyhedral re-
gions Rk to be explored that are not related to the critical regions which still
need to be determined. This may split some of the critical regions, due to the
artificial cuts induced by Theorem 1.9. In [25], post-processing is used to join
cut critical regions. As an example, in Figure 1.6 the critical region CR{3,7} is
discovered twice, one part during the exploration of R1 and the second part
during the exploration of R2. Although algorithms exist for convexity recog-
nition and computation of the union of polyhedra [21], the post-processing
operation is computationally expensive. Therefore, in our algorithm the crit-
ical region obtained by (1.21) is not intersected with halfspaces generated by
Theorem 1.9, which is only used to drive the exploration of the parameter
space. As a result, no post processing is needed to join subpartitioned critical
regions. On the other hand, some critical regions may appear more than once.
Duplicates can be uniquely identified by the set of active constraints and can
be easily eliminated. To this aim, in the implementation of the algorithm we
keep a list of all the critical regions which have already been generated in or-
der to avoid duplicates. In Figure 1.6 the critical region CR{3,7} is discovered
twice but stored only once.

1.3.4 Degeneracy

Primal Degeneracy

By applying a Gauss reduction to (1.19a) we obtain[
U P
0 D

] [
z
x

]
=

[
q
r

]
. (1.22)

1.3 Multiparametric Linear Programming 35

Assuming that U is nonsingular (the case detU = 0, corresponding to dual
degeneracy, will be addressed in Section (1.6), the optimizer is given by

z∗(x) = −U−1Px + U−1q = Ex + Q, (1.23)

and in (1.18) one may choose any one of the dual optimizers y∗
0 in order to

characterize the value function. The H-polyhedral representation of the critical
region CRA(θ0) is

GNA(Eθ + Q) < WNA + SNAθ (1.24a)
Dθ = r. (1.24b)

We distinguish between two cases:
Case 1. Matrix D is the null matrix and r is the null vector. Then we have

a full-dimensional primal degenerate critical region CRA(x0).
Case 2. The rank of D is p > 0. Then, CRA(x0) has dimension n′ − p <

n′ = dim(K). By Theorem 1.5 and the minimality of the dimension n′ of
K determined by Algorithm 1.3.1, we conclude that CRA(x0) is an (n′ − p)-
dimensional face of another critical region CRA′ for some combination A′ ⊃
A(x0).

Remark 1.2. Note that case 2 occurs only if the chosen parameter vector x0

lies on the face of two or more neighboring full-dimensional critical regions,
while case 1 occurs when a full-dimensional set of parameters makes the LP
problem (1.8) primal degenerate.

Remark 1.3. If case 2 occurs, to avoid further recursion of the algorithm not
producing any full-dimensional critical region, and therefore lengthen the
number of steps required to determine the solution to the mp-LP, we per-
turb the parameter x0 by a random vector ε ∈ R

n, where

‖ε‖2 < mini{ |Tix0−Zi|√
TiTi

′ }, (1.25)

‖·‖2 denotes the standard Eucledian norm and Rk = {x : Tx ≤ Z} is the poly-
hedral region where we are looking for a new critical region. Equation (1.25)
ensures that the perturbed vector x0 = x0 + ε is still contained in Rk.

Example 1.6. Consider the mp-LP problem

36 1 Multiparametric Programming: a Geometric Approach

min z1 + z2 + z3 + z4

subj. to

−z1 + z5 ≤ 0
−z1 − z5 ≤ 0
−z2 + z6 ≤ 0
−z2 − z6 ≤ 0

−z3 ≤ x1 + x2

−z3 − z5 ≤ x2

−z3 ≤ −x1 − x2

−z3 + z5 ≤ −x2

−z4 − z5 ≤ x1 + 2x2

−z4 − z5 − z6 ≤ x2

−z4 + z5 ≤ −1x1 − 2x2

−z4 + z5 + z6 ≤ −x2

z5 ≤ 1
−z5 ≤ 1

z6 ≤ 1
−z6 ≤ 1

(1.26)

where K is given by
−2.5 ≤ x1 ≤ 2.5
−2.5 ≤ x2 ≤ 2.5.

(1.27)

A solution to the mp-LP problem (the mp-LP is also dual degenerate) is
shown in Figure 1.7 and the constraints which are active in each associated
critical region are reported in Table 1.2. Clearly, as z ∈ R

6, CR6 and CR11
are primal degenerate full-dimensional critical regions.

In this examples dual degeneracy occurs as well. In particular, critical
regions CR5-CR6-CR7, CR10-CR11-CR12, CR2-CR8 and CR1-CR13 form a
group of 4 dual degenerate regions. Dual degeneracy will be discussed into
details next.

Dual Degeneracy

If dual degeneracy occurs, the set Z∗(x) may not be a singleton for some
x ∈ K∗, and therefore the inequalities defining the critical region cannot be
simply determined by substitution in (1.21). In order to get such inequalities,
one possibility is to project the polyhedron defined by the equality and in-
equality (1.19) onto the parameter space (for efficient tools to compute the
projection of a polyhedron see e.g. [67]), which however does not directly allow
defining an optimizer z∗(·). In order to compute z∗(x) in the dual degenerate
region CR{A(x0)} one can simply choose a particular optimizer on a vertex
of the feasible set, determine set Â(x0) of active constraints for which GÂ(x0)

is full rank, and compute a subset ĈRÂ(x0)
of the dual degenerate critical

region (namely, the subset of parameters x such that only the constraints
Â(x0) are active at the optimizer, which is not a critical region in the sense of

1.3 Multiparametric Linear Programming 37

Critical Region Value function
CR1=CR{2,3,4,7,10,11} 2x1+3x2

CR2=CR{1,3,4,5,9,13} -2x1-3x2

CR3=CR{1,3,4,6,9,13} -x1-3x2-1
CR4=CR{1,3,6,9,10,13} -2x2-1
CR5=CR{1,2,3,7,10,11} x1

CR6=CR{1,3,6,7,9,10,11,12} x1

CR7=CR{1,3,7,10,11,15} x1

CR8=CR{1,3,4,5,9,12} -2x1-3x2

CR9=CR{2,4,8,11,12,14} 2x2-1
CR10=CR{1,2,4,5,9,12} -x1

CR11=CR{2,4,5,8,9,10,11,12} -x1

CR12=CR{2,4,5,9,12,16} -x1

CR13=CR{2,3,4,7,11,14} 2x1+3x2

CR14=CR{2,3,4,8,11,14} x1+3x2-1

Table 1.2. Critical regions and corresponding value function for Example 1.6

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

CR1

CR2

CR3 CR4

CR5
CR6

CR7

CR8

CR9

CR10 CR11

CR12
CR13

CR14

x
2
x
2

x1x1

Fig. 1.7. Polyhedral partition of the parameter space corresponding to the solution
of Example 1.6

Definition 1.6). The algorithm proceeds by exploring the space surrounding
ĈRÂ(x0)

as usual. The arbitrariness in choosing an optimizer leads to different
ways of partitioning CR{A(x0)}, where the partitions can be simply calculated
from (1.20) and (1.21) and, in general, may overlap. Nevertheless, in each re-
gion a unique optimizer is defined. The storing of overlapping regions can be
avoided by intersecting each new region (inside the dual degenerate region)
with the current partition computed so far. This procedure is illustrated in
the following example.

Example 1.7. Consider the following mp-LP reported in [68, page 152]

38 1 Multiparametric Programming: a Geometric Approach

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

CR{2}

CR{1,5}

CR{1,3}
x
2
x
2

x1x1

Fig. 1.8. Polyhedral partition of the parameter space corresponding to the solution
of Example 1.7

min −2z1 − z2

subj. to

z1 + 3z2 ≤ 9− 2x1 + 1x2

2z1 + z2 ≤ 8 + x1 − 2x2

z1 ≤ 4 + x1 + x2

−z1 ≤ 0
−z2 ≤ 0

(1.28)

where K is given by:
−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10.

(1.29)

The solution is represented in Figure 1.8 and the critical regions are listed in
Table 1.3.

Region Optimum Optimal value
CR{2} not single valued −x1 + 2x1 − 8
CR{1,5} z∗

1 = −2x1 + x2 + 9, z∗
2 = 0 4x1 − 2x2 − 18

CR{1,3} z∗
1 = x1 + x2 + 4, z∗

2 = −x1 + 1.6667 −x1 − 2x2 − 9.6667

Table 1.3. Critical regions and corresponding optimal value for Example 1.7

The critical region CR{2} is related to a dual degenerate solution with
multiple optima. The analytical expression of CR{2} is obtained by projecting
the H-polyhedron

1.3 Multiparametric Linear Programming 39

z1 + 3z2 + 2x1 − 1x2 < 9
2z1 + z2 − x1 + 2x2 = 8
z1 − x1 − x2 < 4
−z1 < 0
−z2 < 0

(1.30)

on the parameter-space to obtain:

CR{2} =

(x1, x2) :

2.5x1 − 2x2 ≤ 5
−0.5x1 + x2 ≤ 4
−12x2 ≤ 5
−x1 − x2 ≤ 4

 (1.31)

For all x ∈ CR{2}, only one constraint is active at the optimum, which makes
the optimizer not unique.

Figures 1.9 and 1.10 show two possible ways of covering CR{2}. The gen-
eration of overlapping regions is avoided by intersecting each new region with
the current partition computed so far, as shown in Figure 1.11 where C̃R{2,4},
C̃R{2,1} represents the intersected critical region.

Remark 1.4. In case of dual degeneracy, the method of [68] explores one of
several possible paths on the graph of the bases. The degenerate region is split
into non-overlapping sub-regions, where an optimizer is uniquely defined. As
a result, the method of [68] provides a continuous mapping z∗(x) inside the
dual degenerate critical region.

Similarly as in [68], in our algorithm the particular choice of the opti-
mal vertices determines the way of partitioning the degenerate critical region.
However, this choice is arbitrary and therefore our method may lead to dis-
continuities over the artificial cuts inside the dual degenerate critical region
in case overlapping regions are found.

In Figure 1.9, the regions are overlapping, and in Figure 1.11 artificial
cuts are introduced, with consequent discontinuity of z∗(x) at the boundaries
inside the degenerate critical region CR{2}. On the contrary, no artificial cuts
are introduced in Figure 1.10. Therefore the mapping z∗(x) is continuous over
CR{2}.

1.3.5 A Summary of the mp-LP Algorithm

Based on the above discussion, the mp-LP solver can be summarized in the
following recursive Algorithm 1.3.3. Note that the algorithm generates a par-
tition of the state space in the broad sense. The algorithm could be modified
to store the critical regions as defined in (1.10) which are open sets, instead of
storing its closure. In this case the algorithm has to explore and store all the
critical regions that are not full-dimensional in order to generate a partition of
the set of feasible parameters. From a practical point of view such procedure
is not necessary since the value function and the optimizer are continuous
functions of x.

40 1 Multiparametric Programming: a Geometric Approach

Algorithm 1.3.3

Input: Matrices cc, G, W , S of the mp-LP (1.8) and set K in (1.9)

Output: Multiparametric solution to the mp-LP (1.8)

1 let Yk ← K be the current region to be explored.

2 let x0 be in the interior of Yk;

3 solve the LP (1.8), (1.15) for x = x0;

4 if the optimizer is not unique, then let z∗0 be one of the optimal

vertices of the LP (1.8) for x = x0 endif
5 let A(x0) be the set of active constraints as in (1.17);

6 if there is primal degeneracy then
7 let U, P, D matrices as in (1.22) after a Gauss reduction

to (1.19a);

8 determine z∗(x) from (1.23) and CRA(x0) from (1.24);

9 choose y∗
0 among one of the possible optimizers;

10 else
11 determine z∗(x) from (1.20) and CRA(x0) from (1.21);

12 endif ;

13 let J∗(x) as in (1.18) for x = x0;

14 partition the rest of the region as in Theorem 1.9;

15 for each nonempty element CRi of the partition do
16 Yk ← CRi and go to Step 2;

17 endfor .

Remark 1.5. As remarked in Section 1.3.4, if rank(D) > 0 in step 7, the region
CRA(x0) is not full-dimensional. To avoid further recursion in the algorithm
which does not produce any full-dimensional critical region, after computing
U, P, D if D �= 0 one should compute a random vector ε ∈ R

n satisfying (1.25)
and such that the LP (1.8) is feasible for x0 + ε and then repeat step 5 with
x0 ← x0 + ε.

Remark 1.6. Note that step 4 can be easily executed by using an active set
method for solving the LP (1.8) for x = x0. Note also that primal basic
solutions are needed only to define optimizers in a dual degenerate critical
region.

As remarked in the previous section, if one is only interested in char-
acterizing the dual degenerate critical region, without characterizing one of
the possible optimizer function x∗(·), step 4 can be avoided and instead of
executing steps 6-12 one can compute the projection CRA(θ0) of the polyhe-
dron (1.19) on K (note that A(θ0) has to be the set of active constraints as
defined in (1.6)).

1.3 Multiparametric Linear Programming 41

Remark 1.7. The algorithm determines the partition of K recursively. After
the first critical region is found, the rest of the region in K is partitioned
into polyhedral sets {Ri} as in Theorem 1.9. By using the same method, each
set Ri is further partitioned, and so on. This can be represented as a search
tree, with a maximum depth equal to the number of combinations of active
constraints (see Section (1.3.6) below).

1.3.6 Complexity Analysis

Algorithm 1.3.3 solves an mp-LP by partitioning K∗ into Nn convex polyhe-
dral regions CRAi . During the execution, Nr ≥ Nn regions Rk are generated.
Nr and Nn depend on the dimension s of the optimization vector, the number
n of parameters, and the number m of constraints in the optimization prob-
lem (1.8). For the mono-parametric case, [119] proves that the complexity of
the algorithm is exponential.

In an LP, in the absence of degeneracy, the optimizer is a vertex of the
feasible set, and therefore at least s constraints must be active. The number
of possible combinations of active constraints at the solution of an LP (i.e.,
the number of combinations of s constraints out of a set of m) is

M = (m
s) =

m!
(m− s)!s!

(1.32)

and represents an upper-bound on the number of different critical regions that
are generated by the algorithm, i.e., Nn ≤ M .

An upper-bound to Nn can be found by using the approach of [132], where
the number Nn of critical regions is shown to be less than or equal to the
number µ of extreme points of the feasible region of the dual problem (1.15),
where µ does not depend on S and n. In the worst case, the feasible region
is a polyhedron in R

m with s + m facets. By recalling the result in [77] for
computing an upper-bound to the number of extreme points of a polyhedron,
we obtain

Nn ≤ µ ≤
(

s+m−�m/2�
�m/2	

)
+

(
s+m−1−�(m−1)/2�

�(m−1)/2	
)

. (1.33)

The number of regions Nr that can be generated by the algorithm is finite
and therefore the algorithm will terminate in finite time. A worst-case estimate
of Nr can be computed from the way Algorithm 1.3.3 generates regions Ri

to explore the set of parameters K. The following analysis does not take into
account that (i) redundant constraints are removed, and that (ii) possible
empty sets are not further partitioned. The first region R0 = CRA(x0) is
defined by the constraints Gz(x) ≤ W +Sx (m constraints). If there is no dual
degeneracy and no primal degeneracy only s constraints can be active, and
hence CRA(x0) is defined by q = m− s constraints. From Theorem 1.9, Rrest

consists of q convex polyhedra {Ri}, each one defined by at most q inequalities.
For each Ri, a new critical region CR is determined which consists of at

42 1 Multiparametric Programming: a Geometric Approach

most 2q inequalities (the additional q inequalities come from the condition
CR ⊆ Ri), and therefore the corresponding Rrest partition includes at most
2q sets, each one defined by at most 2q inequalities. As mentioned above, this
way of generating regions can be associated with a search tree. By induction,
it is easy to prove that at the tree level k + 1 there are k!mk regions, each
one defined by at most (k + 1)q constraints. As observed earlier, each R is
the largest set corresponding to a certain combination of active constraints.
Therefore, the search tree has a maximum depth of µ, as at each level there
is one admissible combination less. In conclusion, the number of regions is
Nr ≤

∑µ−1
k=0 k!qk, each one defined by at most µq linear inequalities.

1.3 Multiparametric Linear Programming 43

X
x

1

x1x1

5

4

1

2

z1

c x const
T �

CR{2,5}

x
2
x
2

z
2

(a) First region ĈR{2,5} ⊂
CR{2}, and below the feasible set
in the z-space corresponding to
x̄1 ∈ ĈR{2,5}

x2x2
X

CR{2,4}

4

5

3

2

x1x1

z1

c x const
T �

x
2
x
2

z
2

(b) Second region ĈR{2,4} ⊂
CR{2}, and below the feasible set
in the z-space corresponding to
x̄2 ∈ ĈR{2,4}

CR{2,1}

4

5

2

3

1

x
x

3

x1x1

z1

c
x
co
n
st

T
�

x
2
x
2

z
2

(c) Third region ĈR{2,1} ⊂
CR{2}, and below the feasible set
in the z-space corresponding to
x̄3 ∈ ĈR{2,1}

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

CR{2,5}

CR{2,4}

CR{2,1}

x
2
x
2

x1x1

(d) Final partition of CR{2}.

Note that the region ĈR{2,5} is

hidden by region ĈR{2,4} and re-

gion ĈR{2,1}

Fig. 1.9. A possible sub-partition of the degenerate region CR2 in Example 1.7
where the regions ĈR{2,5} and ĈR{2,4} and ĈR{2,1} are overlapping. Note that
below each picture the feasible set and the slope of the value function in the z-space
is depicted when the parameter x is fixed at the point indicated by ×.

44 1 Multiparametric Programming: a Geometric Approach

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

� 2

�
1

CR{2,5}

(a) First region ĈR{2,5} ⊂
CR{2}

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

CR{2,5}

CR{2,3}

x
2
x
2

x1x1

(b) Second region ĈR{2,3} ⊂
CR{2}

Fig. 1.10. A possible solution to Example 1.7 where the regions ĈR{2,5} and

ĈR{2,3} are non-overlapping

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

CR{2,4}
~

CR{2,1}

~

CR{2,5}

x
2
x
2

x1x1

Fig. 1.11. A possible solution for Example 1.7 where C̃R{2,4} is obtained by in-

tersecting ĈR{2,4} with the complement of ĈR{2,5}, and C̃R{2,1} by intersecting

ĈR{2,1} with the complement of ĈR{2,5} and ĈR{2,4}

1.4 Multiparametric Quadratic Programming

This section is extracted from the paper [25] and modified to fit the structure
of the book. It is included here because many of the subsequent results are
based on it.

In this section we investigate multiparametric quadratic programs (mp-
QP) of the form:

J∗(x) = min
z

{
J(z, x) = 1

2z′Hz
}

subj. to Gz ≤ W + Sx,
(1.34)

where z ∈ R
s are the optimization variables, x ∈ R

n is the vector of param-
eters, H ∈ R

s×s, H � 0, W ∈ R
m, and S ∈ R

m×n. Note that the general
problem with J(z, x) = z′Hz + x′Fz can always be transformed in the mp-
QP (1.34) by using the variable substitution z̃ � z + H−1F ′x.

Given a close polyhedral set K ⊂ R
n of parameters,

K � {x ∈ R
n : Tx ≤ Z}, (1.35)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the QP (1.34)
is feasible and the optimum J∗(x) is finite. For any given x̄ ∈ K∗, J∗(x̄)
denotes the minimum value of the objective function in problem (1.34) for
x = x̄. The function J∗ : K∗ → R will denote the function which expresses
the dependence on x of the minimum value of the objective function over K∗,
J∗(·) will be called value function. The single-valued function z∗ : K∗ → R

s,
will describe for any fixed x ∈ K∗ the optimizer z∗(x) related to J∗(x).

We aim at determining the feasible region K∗ ⊆ K of parameters x and
at finding the expression of the value function J∗(·) and of the optimizer
function z∗(·). In particular, we will prove that the optimizer function z∗(x)
is a continuous PPWA function of x.

Denote with Gj , Sj , Wj , Tj and Zj the j-th row of G, S, W , T and
Z, respectively. We give the following definition of active and weakly active
constraints:

Definition 1.8. The i-th constraint is active at x if Giz
∗(x)−Wi −Six = 0,

it is inactive if Giz
∗(x)−Wi − Six < 0. We also define the i-th constraint as

weakly active constraint if it is active and its corresponding Lagrange multi-
plier λi is zero.

Let J � {1, . . . , m} be the set of constraint indices. For any A ⊆ J , let GA

and SA be the submatrices of G and S, respectively, consisting of the rows
indexed by A.

Definition 1.9. The optimal partition of J associated with x is the partition
(A(x), NA(x))

A(x) � {j ∈ J : Gjz
∗(x)− Sjx = Wj}

NA(x) � {j ∈ J : Gjz
∗(x)− Sjx < Wj}

(1.36)

46 1 Multiparametric Programming: a Geometric Approach

where A(x) is the optimal active set and will be simply referred to as the set
of active constraints at x.

As in the LP case, the multiparametric analysis uses the concept of Critical
Region (CR). For a given x∗ ∈ K∗ let (A, NA) � (A(x∗), NA(x∗)), and let

CRA � {x ∈ K : A(x) = A} (1.37)

The set CRA is the critical region related to the set of active constraints A,
i.e., the set of all parameters x such that the constraints indexed by A are
active at the optimum of problem (1.34).

Definition 1.10. For a given set of active constraints A we say that Linear
Independence Constraint Qualification(LICQ) holds if the rows of GA are
linearly independent.

In the following the set CRi denotes the critical region related to the set
of active constraints Ai.

1.4.1 Geometric Algorithm for mp-QP

As in the mp-LP, the algorithm consists of two main steps, which can be
summarized as follows:

1. Determine the dimension n′ ≤ n of the smallest affine subspace K that
contains K∗. If n′ < n, find the equations in x which define K.

2. Determine the partition of K∗ into critical regions CRi, and find the
expression of the functions J∗(·) and z∗(·) for each critical region.

The first preliminary step is identical to the mp-LP case, in the following we
detail the second step as appears in [25].

In order to start solving the mp-QP problem, we need an initial vector x0

inside the polyhedral set K of parameters over which we want to solve the
problem, such that the QP problem (1.34) is feasible for x = x0.

A good choice for x0 is the center of the largest ball contained in K for
which a feasible z exists, determined by solving the LP

maxx,z,ε ε
subj. to Tix + ε‖Ti‖ ≤ Zi, i = 1, . . . , nT

Gz − Sx ≤ W
(1.38)

where nT is the number of rows Ti of the matrix T . In particular, x0 will be
Chebychev center of K when the QP problem (1.34) is feasible for such an
x0. If ε ≤ 0, then the QP problem (1.34) is infeasible for all x in the interior
of K. Otherwise, we fix x = x0 and solve the QP problem (1.34), in order
to obtain the corresponding optimal solution z0. Such a solution is unique,
because H � 0, and therefore uniquely determines a set of active constraints
A0 out of the constraints in (1.34). We can then prove the following result

1.4 Multiparametric Quadratic Programming 47

Theorem 1.10. Let H � 0. Consider a combination of active constraints A0,
and assume that LICQ holds. Then, the optimal z∗ and the associated vector
of Lagrange multipliers λ∗ are uniquely defined affine functions of x over the
critical region CR0.

Proof: The first-order Karush-Kuhn-Tucker (KKT) optimality condi-
tions [12] for the mp-QP are given by

Hz∗ + G′λ∗ = 0, λ ∈ R
m, (1.39a)

λi(Giz
∗ −Wi − Six) = 0, i = 1, . . . , m, (1.39b)

λ∗ ≥ 0, (1.39c)
Gz∗ ≤ W + Sx, (1.39d)

We solve (1.39a) for z∗,
z∗ = −H−1G′λ∗ (1.40)

and substitute the result into (1.39b) to obtain the complementary slack-
ness condition λ∗(−G H−1 G′ λ∗ − W − Sx) = 0. Let λ∗

NA0
and λ∗

A0

denote the Lagrange multipliers corresponding to inactive and active con-
straints, respectively. For inactive constraints, λ∗

NA0
= 0. For active con-

straints, (−GA0H
−1GA0

′)λ∗
A0
−WA0 − SA0x = 0, and therefore

λ∗
A0

= −(GA0H
−1GA0

′)−1(WA0 + SA0x) (1.41)

where GA0 , WA0 , SA0 correspond to the set of active constraints A0, and
(GA0H

−1GA0
′)−1 exists because the rows of GA0 are linearly independent.

Thus λ∗ is an affine function of x. We can substitute λ∗
A0

from (1.41) into
(1.40) to obtain

z∗ = H−1GA0
′(GA0H

−1GA0
′)−1(WA0 + SA0x) (1.42)

and note that z∗ is also an affine function of x. �

Theorem 1.10 characterizes the solution only locally in the neighborhood of
a specific x0, but it does not provide the construction of the set CR0 where this
characterization remains valid. This region can be characterized immediately.
The variable z∗ from (1.40) must satisfy the constraints in (1.34)

GH−1GA0
′(GA0H

−1GA0
′)−1(WA0 + SA0x) ≤ W + Sx (1.43)

and by (1.39c) the Lagrange multipliers in (1.41) must remain nonnegative

−(GA0H
−1GA0

′)−1(WA0 + SA0x) ≥ 0 (1.44)

as we vary x. After removing the redundant inequalities from (1.43) and (1.44)
we obtain a compact representation of CR0. Obviously, CR0 is a polyhedron in
the x-space, and represents the largest set of x ∈ K such that the combination
of active constraints at the minimizer remains unchanged. Once the critical
region CR0 has been defined, the rest of the space CRrest = K −CR0 has to
be explored and new critical regions generated. �

48 1 Multiparametric Programming: a Geometric Approach

Remark 1.8. Note that a critical region CR0 as defined in (1.37) is a set ob-
tained by removing from a polyhedron some (possibly none or all) of it facets.
Therefore CR0 can be neither closed nor opened, while equations (1.43)–(1.44)
describe its closure.

Theorem 1.9 in Section 1.3.1 provides a way of partitioning the non-convex
set K \CR0 into polyhedral subsets Ri. For each Ri, a new vector xi is deter-
mined by solving the LP (1.38), and, correspondingly, an optimum z∗i , a set of
active constraints Ai, and a critical region CRi. Theorem 1.9 is then applied
to partition Ri \ CRi into polyhedral subsets, and the algorithm proceeds
iteratively. The complexity of the algorithm will be discussed in Section 1.4.2.

Note that Theorem 1.9 introduces cuts in the x-space which might split
critical regions into subsets. Therefore, after the whole x-space has been cov-
ered, those polyhedral regions CRi are determined where the function z∗(x)
is the same. If their union is a convex set, it is computed to permit a more
compact description of the solution [21]. Alternatively, in the previous chapter
it has been proposed not to intersect (1.43)–(1.44) with the partition gener-
ated by Theorem 1.9, and simply use Theorem 1.9 to guide the exploration.
As a result, some critical regions may appear more than once. Duplicates can
be easily eliminated by recognizing regions where the combination of active
constraints is the same. In the sequel, we will denote by Nr the final num-
ber of polyhedral cells defining the mp-QP solution (i.e., after the union of
neighboring cells or removal of duplicates, respectively).

Degeneracy

So far, we have assumed that the rows of GA0 are linearly independent. It can
happen, however, that by solving the QP (1.34) one determines a set of active
constraints for which this assumption is violated. For instance, this happens
when more than s constraints are active at the optimizer z∗0 ∈ R

s, i.e., in a
case of primal degeneracy. In this case the vector of Lagrange multipliers λ∗

0

might not be uniquely defined, as the dual problem of (1.34) is not strictly
convex. Note that dual degeneracy and nonuniqueness of z∗0 cannot occur, as
H � 0. Let GA0 ∈ R

�×s, and let r = rankGA0 , r < 	. In order to characterize
such a degenerate situation, consider the QR decomposition GA0 =

[
R1
0

]
Q

of GA0 , and rewrite the active constraints in the form

R1z
∗
0 = W1 + S1x (1.45a)
0 = W2 + S2x (1.45b)

where
[

S1
S2

]
= Q−1SA0 ,

[
W1
W2

]
= Q−1WA0 . If S2 is nonzero, because of the

equalities (1.45b) CR0 is a lower dimensional region, which, in general, corre-
sponds to a common boundary between two or more full-dimensional regions.
Therefore it is not worth to explore this combination GA0 , SA0 , WA0 . On the

1.4 Multiparametric Quadratic Programming 49

other hand, if both W2 and S2 are zero the KKT conditions do not lead di-
rectly to (1.43)–(1.44), but only to a polyhedron expressed in the (λ, x) space.
In this case, a full-dimensional critical region can be obtained by a projection
algorithm [67], which, however, is computationally expensive.

In this chapter we suggest a simpler way to handle such a degenerate situa-
tion, which consists of collecting r constraints arbitrarily chosen, and proceed
with the new reduced set, therefore avoiding the computation of projections.
Because of the recursive nature of the algorithm, the remaining other possi-
ble subsets of combinations of constraints leading to full-dimensional critical
regions will automatically be explored later.

1.4.2 A Summary of the mp-QP Algorithm

Based on the above discussion and results, the main steps of the off-line mp-
QP solver are outlined in the following algorithm.

Algorithm 1.4.1

Input: Matrices H, G, W, S of Problem (1.34) and set K in (1.35)

Output: Multiparametric solution to Problem (1.34)

1 Let K ⊆ Rn be the set of parameters (states);

2 execute partition(K);

3 end.

procedure partition(Y)
4 let x0 ∈ Y and ε the solution to the LP (1.38);

5 if ε ≤ 0 then exit; (no full dimensional CR is in Y)

6 Solve the QP (1.34) for x = x0 to obtain (z∗0 , λ∗
0);

7 Determine the set of active constraints A0 when z = z∗0 , x = x0,

and build GA0 , WA0 , SA0 ;

8 If r = rankGA0 is less than the number 	 of rows of GA0 , take

a subset of r linearly independent rows, and redefine

GA0 , WA0 , SA0 accordingly;

9 Determine λ∗
A0

(x), z∗(x) from (1.41) and (1.42);

10 Characterize the CR from (1.43) and (1.44);

11 Define and partition the rest of the region as in Theorem 1.9;

12 For each new sub-region Ri, partition(Ri); end procedure.

The algorithm explores the set K of parameters recursively: Partition the
rest of the region as in Theorem 1.9 into polyhedral sets Ri, use the same
method to partition each set Ri further, and so on. This can be represented

50 1 Multiparametric Programming: a Geometric Approach

as a search tree, with a maximum depth equal to the number of combinations
of active constraints (see Sect. 1.4.5 below).

The algorithm solves the mp-QP problem by partitioning the given pa-
rameter set K into Nr convex polyhedral regions. Note that the algorithm
generates a partition of the state space in the broad sense. The algorithm
could be modified to store the critical regions as defined in (1.37) instead of
storing its closure. This can be done by keeping track of which facet belongs
to a certain critical region and which not. From a practical point of view,
such procedure is not necessary since the value function and the optimizer are
continuous functions of x.

1.4.3 Propagation of the Set of Active Constraints

We will summarize the main results published in [148] on the properties of
the set of active constraints of two neighboring critical regions.

Definition 1.11. Given a critical region CRj we say that it is degenerate of
the first type if there exists a point x ∈ CRj where the LICQ does not hold.

Definition 1.12. Given a critical region CRj we say that it is degenerate
of the second type if there exists a point x ∈ CRj for which some of the
constraints in Aj are weakly active.

We say that CRj is a non-degenerate critical region if it is not degenerate of
first and second type. We say that the mp-QP (1.34) is non-degenerate if its
solutions consists of non-degenerate critical regions.

Theorem 1.11. Consider two set of active constraints Aj and Aj and let
CRi and CRj be the corresponding critical region, respectively. Assume that
the mp-QP (1.34) is non-degenerate and that C̄Ri and C̄Rj are neighbors,
where C̄Ri and C̄Rj denote the closure of the sets CRi and CRj , respectively.
Then, Ai ⊂ Aj and #Ai = #Aj − 1 or Aj ⊂ Ai and #Ai = #Aj + 1.

1.4.4 Continuity, Convexity and C(1) Properties

Convexity of the value function J∗(x) and continuity of the solution z∗(x)
easily follow from the results on multiparametric programming summarized
in Section 1.2. In the following we give a simple proof based on the linearity
result of Theorem 1.10. This fact, together with the convexity of the set of
feasible parameters K∗ ⊆ K and the piecewise linearity of the solution z∗(x)
is proved in the next Theorem.

Theorem 1.12. Consider the multiparametric quadratic program (1.34) and
let H � 0. Then, the set of feasible parameters K∗ ⊆ K is convex. The
optimizer z∗(x) : K∗ → R

s is continuous and piecewise affine on polyhedra,
in particular it is affine in each critical region, and the optimal solution J∗(x) :
K∗ → R is continuous, convex and piecewise quadratic on polyhedra.

1.4 Multiparametric Quadratic Programming 51

Proof: We first prove convexity of K∗ and J∗(x). Take a generic x1,
x2 ∈ K∗, and let J∗(x1), J∗(x2) and z1, z2 the corresponding optimal values
and minimizers. Let α ∈ [0, 1], and define zα � αz1 + (1 − α)z2, xα � αx1 +
(1−α)x2. By feasibility, z1, z2 satisfy the constraints Gz1 ≤ W +Sx1, Gz2 ≤
W + Sx2. These inequalities can be linearly combined to obtain Gzα ≤ W +
Sxα, and therefore zα is feasible for the optimization problem (1.34) where
x(t) = xα. This proves that z(xα) exists, and therefore convexity of K∗ =⋃

i CRi. In particular, K∗ is connected. Moreover, by optimality of J∗(xα),
J∗(xα) ≤ 1

2z′αHzα, and hence J∗(xα)− 1
2 [αz′1Hz1+(1−α)z′2Hz2] ≤ 1

2z′αHzα−
1
2 [αz′1Hz1 +(1−α)z′2Hz2] = 1

2 [α2z′1Hz1 +(1−α)2z′2Hz2 +2α(1−α)z′2Hz1−
αz′1Hz1− (1−α)z′2Hz2] = − 1

2α(1−α)(z1− z2)′H(z1− z2) ≤ 0, i.e. J∗(αx1 +
(1− α)x2) ≤ αJ∗(x1) + (1− α)J∗(x2), ∀x1, x2 ∈ K, ∀α ∈ [0, 1], which proves
the convexity of J∗(x) on K∗. Within the closed polyhedral regions CRi in
K∗ the solution z∗(x) is affine (1.42). The boundary between two regions
belongs to both closed regions. Since H � 0, the optimum is unique, and
hence the solution must be continuous across the boundary. The fact that
J∗(x) is continuous and piecewise quadratic follows trivially. �

Let J∗(x) be the convex and piecewise quadratic value function in (1.34):

J∗(x) = qi(x) � x′Qix + T ′
ix + Vi, if x ∈ CRi, i = 1, . . . , Nr. (1.46)

We will prove that if the mp-QP problem (1.34) is not degenerate then
J∗(x) is a C(1) function.

Theorem 1.13. Assume that the mp-QP problem (1.34) is not degenerate.
Consider the value function J∗(x) in (1.46) and let CRi, CRj be the closure
of two neighboring critical regions corresponding to the set of active constraints
Ai and Aj, respectively, then

Qi −Qj � 0 or Qi −Qj � 0 and Qi �= Qj (1.47)

and
Qi −Qj � 0 iff Ai ⊂ Aj , (1.48)

Proof: Let CRi and CRj be the closure of two neighboring critical regions
and Ai and Aj be the corresponding sets of active constraints at the optimum
of QP (1.34). Let Ai ⊂ Aj . We want to prove that the difference between the
quadratic terms of qi(x) and qj(x) is negative semidefinite, i.e., Qi −Qj � 0
and that Qi �= Qj .

Without loss of generality we can assume that Ai = ∅. If this is not the
case a simple substitution of variables based on the set of active constraints
GAiz

∗ = WAi + SAix transforms Problem (1.34) into a QP in a lower dimen-
sional space.

For the unconstrained case we have z∗ = 0 and J∗
z (x) = 0. Consequently

qi(x) = 0. (1.49)

52 1 Multiparametric Programming: a Geometric Approach

For the constrained case, from equation (1.42) we obtain

qj(x) =
1
2
x′(S′

Aj
Γ−1SAj)x + W ′

Aj
Γ−1SAj x +

1
2
W ′

Aj
Γ−1WAj . (1.50)

where Γ = GAj H
−1G̃′

Aj
, Γ = Γ ′ � 0. The difference of the quadratic terms

of qi(x) and qj(x) gives

Qi −Qj = −1
2
S′

Aj
Γ−1SAj � 0. (1.51)

What is left to prove is Qi �= Qj . We will prove this by showing that
Qi = Qj if and only if CRi = CRj . From (1.43)-(1.44) the polyhedron CRj

where the set of active constraints Aj is constant is defined as

CRj = {x | GH−1G′
Aj

Γ−1(WAj +SAj x) ≤ W +Sx, −Γ−1(WAj +SAj x) ≥ 0}.
(1.52)

From (1.51) we conclude that Qi = Qj if and only if SAj = 0. The continuity
of J∗

z (x) implies that qi(x) − qj(x) = 0 on the common facet of CRi and
CRj . Therefore, by comparing (1.49) and (1.50), we see that SAj = 0 implies
WAj = 0. Finally, for SAj = 0 and WAj = 0, from (1.52) it follows that
CRi = CRj = {x | 0 ≤ W + Sx}. �

The following property of convex piecewise quadratic functions was proved
in [132]:

Theorem 1.14. Consider the value function J∗(x) in (1.46) satisfying (1.47)
and its quadratic expression qi(x) and qj(x) on two neighboring polyhedra CRi,
CRj then

qi(x) = qj(x) + (a′x− b)(γa′x− b̄), (1.53)

where γ ∈ R/{0}.

Equation (1.53) states that the functions qi(x) and qj(x) in two neighboring
regions CRi, CRj of a convex piecewise quadratic function on polyhedra sat-
isfying (1.47) either intersect on two parallel hyperplanes: a′x−b and γa′x− b̄
if b̄ �= γb (see Figure 1.12(a)) or are tangent in one hyperplane: a′x−b if b̄ = γb
(see Figure 1.12(b)). We will prove next that if the mp-QP problem (1.34) is
not degenerate then J∗(x) is a C(1) function by showing that the case depicted
in Figure 1.12(a) is not consistent with Theorem 1.13. In fact, Figure 1.12(a)
depicts the case Qi−Qj � 0, that implies Ai ⊂ Aj by Theorem 1.13. However
qj(0) < qi(0) and from the definitions of qi and qj this contradicts the fact
that Ai ⊂ Aj .

Theorem 1.15. Assume that the mp-QP problem (1.34) is not degenerate,
then the value function J∗(x) in (1.46) is C(1).

Proof: We will prove by contradiction that b̄ = γb. Suppose there exists
two neighboring polyhedra CRi and CRj such that b̄ �= γb. Without loss of

1.4 Multiparametric Quadratic Programming 53

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

Pi
Pj

q x()i

q x()j

(a) not differentiable one

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

Pi
Pj

q x()i

q x()j

(b) differentiable one

Fig. 1.12. Two piecewise quadratic convex functions

generality assume that (i) Qi−Qj � 0 and (ii) CRi is in the halfspace a′x ≤ b
defined by the common boundary. Let F̄ij be the common facet between CRi

and CRj and Fij its interior.
From (i) and from (1.53), either γ < 0 or γ = 0 if Qi − Qj = 0. Take

x0 ∈ Fij . For sufficiently small ε ≥ 0, the point x � x0 − aε belongs to CRi.
Let J∗(ε) � J∗(x0 − aε), qi(ε) � qi(x0 − aε), and consider

qi(ε) = qj(ε) + (a′aε)(γa′aε + (b̄ − γb)). (1.54)

From convexity of J∗(ε), J∗−(ε) ≤ J∗+(ε) where J∗−(ε) and J∗+(ε) are the
left and right derivatives of J∗(ε) with respect to ε. This implies q′j(ε) ≤
q′i(ε) where q′j(ε) and q′i(ε) are the derivatives of qj(ε) and qi(ε), respectively.
Condition q′j(ε) ≤ q′i(ε) is true if and only if −(b̄ − γb)) ≤ 2γ(a′a)ε, that
implies −(b̄− γb) < 0 since γ < 0 and ε > 0.

From (1.54) qj(ε) < qi(ε) for all ε ∈ (0, −(b̄−γb)
γa′a).

Thus there exists x ∈ CRi with qj(x) < qi(x). This is a contradiction since
from Theorem 1.13, Ai ⊂ Aj . �

Note that in case of degeneracy the value function J∗(x) in (1.46) may not
be C(1). The following counterexample was given in [28].

Example 1.8. Consider the mp-QP (1.34) with

54 1 Multiparametric Programming: a Geometric Approach

H =

 3 3 −1
3 11 23
−1 23 75

G =

1 1 1
1 3 5
−1 −1 −1
−1 −3 −5
−1 0 0
0 −1 0
0 0 −1

W =

1
0
−1
0
0
0
0

S =

0
1
0
−1
0
0
0

(1.55)

and K = {x ∈ R|1 ≤ x ≤ 5}.
The problem was solved by using algorithm 1.4.1. The solution consists of

5 critical regions. The critical regions and the expression of the value function
are reported in Table 1.4. The reader can verify that the value function is not
continuously differentiable at x = 3. Indeed, at x = 3 the LICQ condition
does not hold and therefore, the hypothesis of Theorem 1.15 is not fulfilled.

Region Optimal value
CR{1,2,3,4,6} = {x|1 ≤ x < 1.5} 2.5x2 − 6x + 5
CR{1,2,3,4} = {x|1.5 ≤ x ≤ 2} 0.5x2 + 0.5
CR{1,2,3,4,7} = {x|2 < x < 3} x2 − 2x + 2.5
CR{1,2,3,4,5,7} = {x|x = 3} x2 − 2x + 2.5
CR{1,2,3,4,5} = {x|3 < x ≤ 5} 5x2 − 24x + 32.5

Table 1.4. Critical regions and value function corresponding to the solution of
Example 1.8

1.4.5 Complexity Analysis

The number Nr of regions in the mp-QP solution depends on the dimen-
sion n of the parameter, and on the number of degrees of freedom s and
constraints m in the optimization problem (1.34). As the number of combi-
nations of 	 constraints out of a set of m is (m

�) = m!
(m−�)!�! , the number of

possible combinations of active constraints at the solution of a QP is at most∑m
�=0 (m

�) = 2m.
Let Nn be the number of different regions that are generated by the mp-QP

algorithm 1.4.1, Nn ≥ Nr. A worst-case estimate of Nn can be computed from
the way Algorithm 1.4.1 generates critical regions. The first critical region CR0

is defined by the constraints λ(x) ≥ 0 (m constraints) and Gz(x) ≤ W + Sx
(m constraints). If the strict complementary slackness condition holds, only
m constraints can be active, and hence every CR is defined by m constraints.
From Theorem 1.9, CRrest consists of m convex polyhedra Ri, defined by at

1.4 Multiparametric Quadratic Programming 55

most m inequalities. For each Ri, a new CRi is determined which consists of
2m inequalities (the additional m inequalities come from the condition CRi ⊆
Ri), and therefore the corresponding CRrest partition includes 2m sets defined
by 2m inequalities. As mentioned above, this way of generating regions can be
associated with a search tree. By induction, it is easy to prove that at the tree
level k+1 there are k!mk regions defined by (k+1)m constraints. As observed
earlier, each CR is the largest set corresponding to a certain combination
of active constraints. Therefore, the search tree has a maximum depth of
2m, as at each level there is one admissible combination less. In conclusion,
the number of regions Nn explored in the solution to the mp-QP problem is
Nn ≤

∑2m−1
k=0 k!mk, each one defined by at most m2m linear inequalities. Note

that the above analysis is largely overestimating the complexity, as it does not
take into account (i) the elimination of redundant constraints when a CR is
generated, and (ii) that possible empty sets are not partitioned further.

1.4.6 Other Algorithms for solving mp-QP

The solution of multiparametric quadratic programs was also addressed by
Seron, DeDoná and Goodwin in [135, 56] in parallel with the study of Bem-
porad and coauthors in [25]. The method in [135, 56] was proposed initially
for the special class of mp-QPs deriving from optimal control of linear systems
with input constraints only, but it can be easily extended to the more gen-
eral mp-QP fromulation (1.34). More recently, new mp-QP solvers have been
proposed by Tondel, Johansen and Bemporad in [147] and by Baotic in [10].

All these algorithms are based on an iterative procedure that builds up
the parametric solution by generating new polyhedral regions of the parameter
space at each step. The methods differ in the way they explore the parameter
space, that is, the way they identify active constraints corresponding to the
critical regions neighboring to a given critical region.

In [135, 56] the authors construct the unconstrained critical region and
then generate neighboring critical regions by enumerating all possible combi-
nations of active constraints.

In [147] the authors explore the parameter space outside a given region CRi

by examining its set of active constraints Ai. The critical regions neighboring
to CRi are constructed by elementary operations on the active constraints set
Ai that can be seen as an equivalent “pivot” for the quadratic program. For
this reason the method can be considered as an extension of the method of
Gal [68] to multiparametric quadratic programming.

In [10] the author uses a direct exploration of the parameter space as in [25]
but he avoids the partition of the state space described in Theorem 1.9. Given
a polyhedral critical region CRi, the procedure goes through all its facets and
generates the center of each facet. For each facet Fi a new parameter xi

ε is
generated, by moving from the center of the facet in the direction of the normal
to the facet by a small step. If such parameter xi

ε is infeasible or is contained
in a critical region already stored, then the exploration in the direction of Fi

56 1 Multiparametric Programming: a Geometric Approach

stops. Otherwise, the set of active constraints corresponding to the critical
region sharing the facet Fi with the region CRi is found by solving a QP for
the new parameter xi

ε.
In our experience the solvers in [10, 147] are the most efficient.

1.5 Multiparametric Mixed-Integer Linear Programming

Consider the mp-LP

J∗(x) = min
z

{J(z, x) = c′z}
subj. to Gz ≤ W + Sx.

(1.56)

where z is the optimization variable, x ∈ R
n is the vector of parameters,

G′ = [G1
′ . . .Gm

′] and Gj ∈ R
n denotes the j-th row of G, c ∈ R

s, W ∈ R
m,

and S ∈ R
m×n. When we restrict some of the optimization variables to be 0

or 1, z � {zc, zd}, zc ∈ R
sc , zd ∈ {0, 1}sd and s � sc +sd, we refer to (1.8) as a

(right-hand-side) multiparametric mixed-integer linear program (mp-MILP).

1.5.1 Geometric Algorithm for mp-MILP

Consider the mp-MILP (1.56). Given a close polyhedral set K ⊂ R
n of pa-

rameters,
K � {x ∈ R

n : Tx ≤ Z} (1.57)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the
MILP (1.56) is feasible and the optimum J∗(x) is finite. For any given x̄ ∈ K∗,
J∗(x̄) denotes the minimum value of the objective function in problem (1.56)
for x = x̄. The function J∗ : K∗ → R will denote the function which ex-
presses the dependence on x of the minimum value of the objective func-
tion over K∗, J∗(·) will be called value function. The set-valued function
Z∗ : K∗ → 2R

sc × 2{0,1}sd will describe for any fixed x ∈ K∗ the set of
optimizers z∗(x) related to J∗(x).

We aim at determining the region K∗ ⊆ K of feasible parameters x and
at finding the expression of the value function J∗(x) and the expression an
optimizer function z∗(x) ∈ Z∗(x).

Remark 1.9. If the parameters x are restricted to be only integer values, we
can solve this problem by embedding it into problem (1.56) with x continuous.

Two main approaches have been proposed for solving mp-MILP problems.
In [1], the authors develop an algorithm based on branch and bound (B&B)
methods. At each node of the B&B tree an mp-LP is solved. The solution
at the root node represents a valid lower bound, while the solution at a node
where all the integer variables have been fixed represents a valid upper bound.
As in standard B&B methods, the complete enumeration of combinations of 0-
1 integer variables is avoided by comparing the multiparametric solutions, and
by fathoming the nodes where there is no improvement of the value function.

In [57] an alternative algorithm was proposed, which will be detailed in
this section. Problem (1.56) is alternatively decomposed into an mp-LP and
an MILP subproblem. When the values of the binary variable are fixed, an mp-
LP is solved, and its solution provides a parametric upper bound to the value
function J∗(x). When the parameters in x are treated as free variables, an

58 1 Multiparametric Programming: a Geometric Approach

MILP is solved, that provides a new integer vector. The algorithm is composed
of an initialization step, and a recursion between the solution of an mp-LP
subproblem and an MILP subproblem.

Initialization

Solve the following MILP problem

min
{z,x}

c′z

subj. to Gz − Sx ≤ W
x ∈ K

(1.58)

where x is treated as an independent variable. If the MILP (1.58) is infeasi-
ble then the mp-MILP (1.56) admits no solution, i.e. K∗ = ∅; otherwise its
solution z∗ provides a feasible integer variable z̄d.

mp-LP subproblem

At a generic step of the algorithm we have a polyhedral partition of the initial
set of parameters K. For each polyhedron of the partition we know if

1. the MILP (1.58) is infeasible for all x belonging to the polyhedron.
2. the MILP (1.58) is feasible for all x belonging to the polyhedron and we

have a current upper bound on the affine value function J∗(x) (in the
polyhedron) and an integer variable that improves the bound at least at
a point x of the polyhedron,

3. the MILP (1.58) is feasible for all x belonging to the polyhedron and we
know the optimal affine value function J∗(x) inside the polyhedron.

Obviously the algorithm will continue to iterate only on the polyhedra corre-
sponding to point 2. above (if there is no such a polyhedron then the algorithm
ends) and in particular, at step j we assume to have stored

1. A list of Nj polyhedral regions CRi and for each of them an associated
parametric affine upper bound J̄i(x) (J̄i(x) = +∞ if no integer solution
has been found yet in CRi).

2. For each CRi a set of integer variables Zi = z̄0
di

, . . . , z̄Nbi

di
, that have

already been explored in the region CRi.
3. For each CRi an integer feasible variable z̄Nbi+1

di
/∈ Zi such that there

exists zc and x̂ ∈ CRi for which Gz ≤ W + Sx̂ and c′z < J̄i(x̂) where
z = {zc, z̄

Nbi+1
di

}. That is, z̄Nbi+1
di

is an integer variable that improves the
current bound for at least one point of the current polyhedron.

At step j = 0, set: N0 = 1, CR1 = K, Z1 = ∅, J̄1 = +∞, z̄1
d1

= z̄d.
For each CRi we solve the following mp-LP problem

1.5 Multiparametric Mixed-Integer Linear Programming 59

J̃i(x) = min
z

c′z

subj. to Gz ≤ W + Sx

zd = z̄Nbi+1
di

x ∈ CRi

(1.59)

By Theorem 1.8, the solution of mp-LP (1.59) provides a partition of CRi

into polyhedral regions Rk
i , k = 1, . . . , NRi and and a PWA value function

J̃i(x) = (J̃R
k

i (x) � ck
i x + pk

i) if x ∈ Rk
i , k = 1, . . . , NRi (1.60)

where J̃R
j

i (x) = +∞ in Rj
i if the integer variable z̄di is not feasible in Rj

i and
a PWA continuous control law z∗(x) (z∗(x) is not defined in Rj

i if J̃R
j

i (x) =
+∞).

The function J̃i(x) will be an upperbound of J∗(x) for all x ∈ CRi. Such
bound J̃i(x) on the value function have to be compared with the current
bound J̄i(x) in CRi in order to obtain the lowest of the two parametric value
functions and to update the bound.

While updating J̄i(x) three cases are possible:

1. J̄i(x) = J̃R
k

i (x) ∀x ∈ Rk
i if (J̃R

k

i (x) ≤ J̄i(x) ∀ x ∈ Rk
i)

2. J̄i(x) = J̄i(x) ∀x ∈ Rk
i (if J̃R

k

i (x) ≥ J̄i(x) ∀ x ∈ Rk
i)

3. J̄i(x) =

{
J̄i(x) ∀x ∈ (Rk

i)1 � {x ∈ Rk
i |J̃R

k

i (x) ≥ J̄i(x)}
J̃R

k

i (x) ∀x ∈ (Rk
i)2 � {x ∈ Rk

i |J̃R
k

i (x) ≤ J̄i(x)}
The three cases above can be distinguished by using a simple linear program.
In the third case, the region Rk

i is partitioned into two regions (Rk
i)1 and

(Rk
i)2 that are convex polyhedra since J̃R

k

i (x) and J̄i(x) are affine functions
of x.

After the mp-LP (1.59) has been solved for all i = 1, . . . , Nj (the subindex
j denotes the that we are at step j of the recursion) and the value function has
been updated, each initial region CRi has been subdivided into at most 2NRi

polyhedral regions Rk
i and possibly (Rk

i)1 and (Rk
i)2 with a corresponding

updated parametric bound on the value function J̄i(x). For each Rk
i , (Rk

i)1
and (Rk

i)2 we define the set of integer variables already explored as Zi =
Zi

⋃
z̄Nbi+1

di
, Nbi = Nbi + 1. In the sequel the polyhedra of the new partition

will be referred to as CRi.

MILP subproblem

At step j for each critical region CRi (note that this CRi are the output of
the previous phase) we solve the following MILP problem.

60 1 Multiparametric Programming: a Geometric Approach

min
{z,x}

c′z (1.61)

subj. to Gz − Sx ≤ W (1.62)
c′z ≤ J̄i(z) (1.63)
zd �= z̄k

di
, k = 1, . . . , Nbi (1.64)

x ∈ CRi (1.65)

where constraints (1.64) prohibits integer solutions that have been already
analyzed in CRi from appearing again and constraints (1.63) excludes integer
solutions with higher values than the current upper bound. If problem (1.65)
is infeasible then the region CRi is excluded from further recursion and the
current upper bound represents the final solution. If problem (1.65) is feasible,
then the discrete optimal component z∗di

is stored and represents a feasible
integer variable that is optimal at least in one point of CRi.

Recursion

For all the region CRi not excluded from the MILP’s subproblem (1.61)-
(1.65) the algorithm continues to iterate between the mp-LP (1.59) with
z̄Nbi+1

di
= z∗di

and the MILP (1.61)-(1.65). The algorithm terminates when
all the MILP’s (1.61)-(1.65) are infeasible.

Note that the algorithm generates a partition of the state space in the
broad sense. Some parameter x could belong to the boundary of several re-
gions. Differently form the LP and QP case, the value function may be dis-
continuous and therefore such case has to be treated carefully. If a point x
belong to different critical regions, the expressions of the value function as-
sociated to such the regions have to be compared in order to assign to x the
right optimizer. Such procedure can be avoided by keeping track which facet
belongs to a certain critical region and which not. Moreover, if the value func-
tion associated to the regions containing the same parameter x coincide this
implies the presence of multiple optimizers.

1.5.2 Theoretical Results

The following properties of J∗(x) and Z∗(x) easily follow form the algorithm
described above.

Theorem 1.16. Consider the mp-MILP (1.56). Then, the set K∗ is a (possi-
bly non-convex) polyhedral set and the value function J∗(·) is piecewise affine
on polyhedra. If the optimizer z∗(x) is unique for all x ∈ K∗, then the op-
timizer function z∗c : K∗ → R

sc , z∗d : K∗ → {0, 1}sd is piecewise affine on
polyhedra. Otherwise, it is always possible to define a piecewise affine opti-
mizer function z∗(x) ∈ Z∗(θ) for all x ∈ K∗.

Note that differently from the mp-LP, the set K∗ can be disconnected and
non-convex.

1.6 Multiparametric Mixed-Integer Quadratic
Programming

Consider the mp-QP

J∗(x) = min
z

J(z, x) = z′H1z + z′H2x + xH3x + c1z + c2x

subj. to Gz ≤ W + Sx,
(1.66)

When we restrict some of the optimization variables to be 0 or 1, z � [zc, zd],
where zc ∈ R

sc , zd ∈ {0, 1}sd, we refer to (1.66) as a (right-hand-side) multi-
parametric mixed-integer quadratic program (mp-MIQP). For a given polyhe-
dral set K ⊆ R

n of parameters,

K � {x ∈ R
n : Tx ≤ Z} (1.67)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the
MIQP (1.66) is feasible and the optimum J∗(x) is finite. For any given x̄ ∈ K∗,
J∗(x̄) denotes the minimum value of the objective function in problem (1.66)
for x = x̄. The function J∗ : K∗ → R will denote the function which ex-
presses the dependence on x of the minimum value of the objective func-
tion over K∗, J∗(·) will be called value function. The set-valued function
Z∗ : K∗ → 2R

sc × 2{0,1}sd will describe for any fixed x ∈ K∗ the set of
optimizers z∗(x) related to J∗(x).

We aim at determining the region K∗ ⊆ K of feasible parameters x and
at finding the expression of the value function J∗(x) and the expression an
optimizer function z∗(x) ∈ Z∗(x).

We show with a simple example that the geometric approach of this chap-
ter cannot be used for solving mp-MIQP’s. Suppose u1, u2, x1, x2 ∈ R and
δ ∈ {0, 1}, then the following mp-MIQP

J∗(x1, x2) = minu1,u2,δ u2
1 + u2

2 − 25δ + 100

subj. to

1 0 10
−1 0 10

0 1 10
0 −1 10
1 0 −10

−1 0 −10
0 1 −10
0 −1 −10
0 0 0
0 0 0
0 0 0
0 0 0

u1

u2

δ

 ≤

1 0
−1 0

0 1
0 −1
0 0
0 0
0 0
0 0
1 0

−1 0
0 1
0 −1

[
x1

x2

]
+

10
10
10
10
0
0
0
0
10
10
10
10

(1.68)

62 1 Multiparametric Programming: a Geometric Approach

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

� =0
�

� �
=1

x1

x
2

(a) Critical Regions

x1

x
2

J (x)
*

(b) Value function

Fig. 1.13. Solution to the mp-MIQP (1.68)

can be simply solved by noting that for δ = 1 u1 = x1 and u2 = x2 while for
δ = 0 u1 = u2 = 0. By comparing the value functions associated to δ = 0 and
δ = 1 we obtain two critical regions

CR1 = {x1, x2 ∈ R| x2
1 + x2

2 ≤ 75}
CR2 = {x1, x2 ∈ R| − 10 ≤ x1 ≤ 10, − 10 ≤ x2 ≤ 10, x2

1 + x2
2 > 75}

(1.69)
with the associated parametric optimizer

u∗
1(x1, x2) =

{
x1 if [x1, x2] ∈ CR1

0 if [x1, x2] ∈ CR2

u∗
2(x1, x2) =

{
x2 if [x1, x2] ∈ CR1

0 if [x1, x2] ∈ CR2

(1.70)

and parametric value function

J∗(x1, x2) =
{

x2
1 + x2

2 + 75 if [x1, x2] ∈ CR1

100 if [x1, x2] ∈ CR2
(1.71)

The two critical regions and the value function are depicted in Figure 1.13.
This example demonstrate that, in general, the critical regions of an mp-

MIQP cannot be decomposed into convex polyhedra. Therefore the way of
partitioning the rest of the space presented in Theorem 1.9 cannot be applied
here.

To the authors’ knowledge, there does not exist an efficient method for
solving general mp-MIQPs. In Chapter 8 we will present an algorithm that
efficiently solves mp-MIQPs derived from optimal control problems for discrete
time hybrid systems.

Part II

Optimal Control of Linear Systems

2

Constrained Finite Time Optimal Control

66 2 Constrained Finite Time Optimal Control

For discrete time linear systems we prove that the solution to constrained
finite time optimal control problems is a time varying piecewise affine feedback
control law. We give insight into the structure of the optimal control law and
of the value function for optimal control problems with performance criteria
based on quadratic and linear norms. We describe how the optimal control law
can be efficiently computed by means of multiparametric linear and quadratic
programming, for linear and quadratic performance criteria respectively.

2.1 Problem Formulation

Consider the linear time-invariant system{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) (2.1)

subject to the constraints

Ex(t) + Lu(t) ≤ M (2.2)

at all time instants t ≥ 0. 1

In (2.1)–(2.2), x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the state, input,

and output vector respectively. In (2.2), Ex(t)+Lu(t) ≤ M are the constraints
on input and states.

Define the following cost function

J(UN , x(0)) � ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p (2.3)

where xk denotes the state vector at time k obtained by starting from the
state x0 = x(0) and applying to system (2.1) the input sequence u0, . . . , uk−1.
Consider the constrained finite time optimal control problem (CFTOC)

J∗(x(0)) = minUN J(UN , x(0))
subj. to Exk + Luk ≤ M, k = 0, . . . , N − 1

xN ∈ Xf

xk+1 = Axk + Buk, k ≥ 0
x0 = x(0)

(2.4)

where N is the time horizon and Xf ⊆ R
n is a terminal polyhedral region.

In (2.3)–(2.4) we denote with UN � [u′
0, . . . , u

′
N−1]

′ ∈ R
s, s � mN the op-

timization vector, with ‖Qx‖p the p-norm of the vector x weighted with the

1 The results of this chapter also hold for more general form of linear constraints
E0x(0)+ · · ·+ENx(N)+L0u(0)+ · · ·+LNu(N) ≤ M , arising, for example, from
constraints on the input rate ∆u(t) � u(t) − u(t − 1).

2.1 Problem Formulation 67

matrix Q, p = 1, 2,∞. We denote with Xj the set of states xj at time j for
which (2.3)–(2.4) is feasible, i.e.,

Xj = {x ∈ R
n| ∃u (Ex + Lu ≤ M, and Ax + Bu ∈ Xj+1)},

j = 0, . . . , N − 1 (2.5)
XN = Xf . (2.6)

In the following, we will assume that Q = Q′ � 0, R = R′ � 0, P � 0, for
p = 2, and that Q, R, P are full column rank matrices for p = 1,∞. We will
also denote with X0 ⊆ R

n the set of initial states x(0) for which the optimal
control problem (2.4) is feasible.

Note that in the whole book we will distinguish between the current state
x(k) of system (2.1) at time k and the variable xk in the optimization prob-
lem (2.4), that is the predicted state of system (2.1) at time k obtained by
starting from the state x0 = x(0) and applying to system (2.1) the input
sequence u0, . . . , uk−1. Analogously, u(k) is the input applied to system (2.1)
at time k while uk is the k-th optimization variable of the optimization prob-
lem (2.4).

If we set

p = 2, {(x, u) ∈ R
n+m|Ex + Lu ≤ M} = R

n+m, Xf = R
n, (2.7)

problem (2.4) becomes the standard unconstrained finite time optimal con-
trol problem whose solution can be expressed through the time varying state
feedback control law

u∗(k) = Kkx(k) k = 0, . . . , N − 1 (2.8)

where the gain matrices Kk are given by the equation

Kk = −(B′Pk+1B + R)−1B′Pk+1A, (2.9)

and where the symmetric positive semidefinite matrices Pk are given recur-
sively by the algorithm

PN = P, (2.10)
Pk = A′(Pk+1 − Pk+1B(B′Pk+1B + R)−1BPk+1)A + Q. (2.11)

The optimal cost is given by

J∗(x(0)) = x(0)′P0x(0). (2.12)

If in addition to (2.7) we set N = +∞, and assume that the pair (A, B)
is stabilizable and the pair (D, A) is detectable (where Q = D′D), then prob-
lem (2.4)–(2.7) becomes the standard infinite time linear quadratic regulator
(LQR) problem whose solution can be expressed as the state feedback control
law

68 2 Constrained Finite Time Optimal Control

u∗(k) = Kx(k), k = 0, . . . , +∞ (2.13)

where the gain matrix K is given by

K = −(B′PB + R)−1B′P∞A (2.14)

and where P∞ is the unique solution of the algebraic matrix equation

P∞ = A′(P∞ − P∞B(B′P∞B + R)−1BP∞)A + Q (2.15)

within the class of positive semidefinite symmetric matrices.
In the following chapters we will show that the solution to problem (2.4)

can again be expressed in feedback form where u∗(k) is a continuous piecewise
affine function on polyhedra of the state x(k), i.e., u∗(k) = fk(x(k)) where

fk(x) = F i
kx + gi

k if Hi
kx ≤ Ki

k, i = 1, . . . , Nr
k . (2.16)

Hi
k and Ki

k in equation (2.16) are the matrices describing the i-th poly-
hedron CRi

k = {x ∈ R
n|Hi

kx ≤ Ki
k} inside which the feedback optimal

control law u∗(k) at time k has the affine form F i
kx + gi

k. The polyhedra
CRi

k, i = 1, . . . , N r
k are a partition in the broad sense sense of the set of

feasible states of problem (2.4) at time k. Since the functions fk(x(k)) are
continuous the use of polyhedral partition in the broad sense will not cause
any problem, on the contrary it will help keeping the exposition lighter and
more clear.

We will give insight into the structure of the value function and describe
how the optimal control law can be efficiently computed by means of multi-
parametric linear and quadratic programming. We will distinguish the cases
p = 1,∞ and p = 2.

2.2 State Feedback Solution of CFTOC, 2-Norm Case

By substituting

xk = Akx0 +
k−1∑
j=0

AjBuk−1−j (2.17)

in (2.4), it can be rewritten in the form

J∗(x(0)) = 1
2x′(0)Y x(0)+ min

UN

1
2UN

′HUN + x′(0)FUN

subj. to GUN ≤ W + Ex(0)
(2.18)

where H = H ′ � 0, H , F , Y , G, W , E are easily obtained from P , Q, R,
(2.4) and (2.17), and it follows from the previous assumptions that

[
Y F ′
F H

]
� 0.

Note that the optimizer UN is independent of the term involving Y in (2.18).

2.2 State Feedback Solution of CFTOC, 2-Norm Case 69

We view x(0) as a vector of parameters and our goal is to solve (2.18) for
all values of x(0) of interest, and to make this dependence explicit. Note that
the set X0 is a polyhedron and can be computed by projecting the poyhedron
P0 = {(UN , x(0)) ∈ R

s+n| GUN ≤ W + Ex(0)} on the x(0) space.
Before proceeding further, it is convenient to define

z � UN + H−1F ′x(0), (2.19)

z ∈ R
s, and to transform (2.18) by completing squares to obtain the equivalent

problem
J∗

z(x(0)) = min
z

1
2z′Hz

subj. to Gz ≤ W + Sx(0),
(2.20)

where S � E+GH−1F ′, and J∗
z(x(0)) = J∗(x(0))− 1

2x(0)′(Y−FH−1F ′)x(0).
In the transformed problem the parameter vector x(0) appears only on the
rhs of the constraints.

Problem (2.20) is a multiparametric quadratic program that can be solved
by using the algorithm described in Section 1.4. Once the multiparametric
problem (2.20) has been solved for a polyhedral set X ⊂ R

n, the solution
UN

∗ = UN
∗(x(0)) of CFTOC (2.4) and therefore u∗(0) = u∗(x(0)) is available

explicitly as a function of the initial state x(0).
Theorem 1.12 states that the solution z∗(x(0)) of the mp-QP prob-

lem (2.20) is a continuous and piecewise affine function on polyhedra of x.
Clearly the same properties are inherited by the controller. The following
Corollaries of Theorem 1.12 establish the analytical properties of the optimal
control law and of the value function.

Corollary 2.1. The control law u∗(0) = f0(x(0)), f0 : R
n → R

m, obtained
as a solution of the optimization problem (2.4) is continuous and piecewise
affine on polyhedra

f0(x) = F i
0x + gi

0 if x ∈ CRi
0, i = 1, . . . , Nr

0 (2.21)

where the polyhedral sets CRi
0 = {x ∈ R

n|Hi
0x ≤ Ki

0}, i = 1, . . . , Nr
0 are a

partition in the broad sense of the feasible polyhedron X0

Proof: By (2.19), UN
∗(x) = z∗(x(0)) − H−1F ′x(0) is an affine function

of x in each region CRi
0 = {x : Hi

0x ≤ Ki
0, i = 1, . . . , N r

0 }, and therefore its
first component u∗(0) is affine on CRi

0. Also, u is a combination of continuous
functions and is therefore continuous. �

Remark 2.1. Note that as discussed in Remark 1.8, the critical regions defined
in (1.37) are in general sets that are neither can be neither closed nor opened.
In Corollary 2.1 the polyhedron CRi

0 describe the closure of a critical region.
As already mentioned in the introduction of this chapter, the function f0(x)
is continuous and therefore the use of polyhedral partition in the broad sense
will help keeping the exposition lighter and more clear.

70 2 Constrained Finite Time Optimal Control

Corollary 2.2. The value function J∗(x(0)) obtained as solution of the opti-
mization problem (2.4) is convex and piecewise quadratic on polyhedra. More-
over, if the mp-QP problem (2.20) is not degenerate, then the value function
J∗(x(0)) is C(1).

Proof: By Theorem 1.12 J∗
z(x(0)) is a a convex function of x(0). As[

Y F ′
F H

]
� 0, its Schur complement Y −FH−1F ′ � 0, and therefore J∗(x(0)) =

J∗
z(x(0)) + 1

2x(0)′(Y − FH−1F ′)x(0) is a convex function, because it is the
sum of convex functions. If the mp-QP problem (2.20) is not degenerate, then
Theorem 1.15 implies that J∗

z(x(0)) is a C(1) function of x(0) and therefore
J∗(x(0)) is a C(1) function of x(0). The results of Corollary 2.1 imply that
J∗(x(0)) is piecewise quadratic. �

Remark 2.2. The relation between the design parameters of the optimal con-
trol problem (2.4) and the degeneracy of the mp-QP problem (2.20) are still
under investigation. For example, it can be easily proven that the optimal
control problem (2.4) with only input constraints leads to a non-degenerate
mp-QP problem.

The solution of the multiparametric problem (2.20) provides the state
feedback solution u∗(k) = fk(x(k)) of CFTOC (2.4) for k = 0 and it also
provides the open loop optimal control laws u∗(k) as function of the initial
state, i.e., u∗(k) = u∗(k)(x(0)). The state feedback PPWA optimal controllers
fk : x(k) �→ u∗(k) for k = 1, . . . , N are computed in the following way.
Consider the same CFTOC (2.4) over the shortened time horizon [i, N]

minUN−i ‖PxN‖p +
N−1∑
k=i

‖Qxk‖p + ‖Ruk‖p

subj. to Exk + Luk ≤ M, k = i, . . . , N − 1
xk+1 = Axk + Buk, k ≥ 0
xN ∈ Xf

xi = x(i)

(2.22)

where UN−i � [u′
i, . . . , u

′
N−1]. We denote with Xi ⊆ R

n the set of initial
states x(i) for which the optimal control problem (2.22) is feasible (as defined
in (2.5)) and with U∗

N−i its optimizer. Problem (2.22) can be translated into
the mp-QP

min
UN−i

1
2UN−i

′HUN−i + x′(i)FUN−i

subj. to GUN−i ≤ W + Ex(i).
(2.23)

The first component of the multiparametric solution of (2.23) has the form

u∗(i) = fi(x(i)), ∀x(i) ∈ Xi, (2.24)

where the control law fi : R
n → R

m, is continuous and PPWA

2.2 State Feedback Solution of CFTOC, 2-Norm Case 71

fi(x) = F j
i x + gj

i if x ∈ CRj
i , j = 1, . . . , Nr

i (2.25)

and where the polyhedral sets CRj
i = {x ∈ R

n|Hj
i x ≤ Kj

i }, j = 1, . . . , N r
i

are a partition in the broad sense of the feasible polyhedron Xi. Therefore the
feedback solution u∗(k) = fk(x(k)), k = 0, . . . , N − 1 of the CFTOC (2.4) is
obtained by solving N mp-QP problems.

2.2.1 Complexity Analysis

A bound on the number N r
i of polyhedral region of the PWA optimal control

law fi in (2.16) can be computed as explained in Section 1.4.5. The bound
given in Section 1.4.5 represents an upper-bound on the number of differ-
ent linear feedback gains which describe the controller. In practice, far fewer
combinations are usually generated as x spans Xi. Furthermore, the gains for
the future input moves u∗(i + 1)(x(i)), . . . , u∗(N − 1)(x(i)) are not relevant
for the control law. Thus, several different combinations of active constraints
may lead to the same first m components u∗(i) of the solution. On the other
hand, the number N r

i of regions of the piecewise affine solution is in general
larger than the number of feedback gains, because non-convex critical regions
may be split into several convex sets. For instance, the example reported
in Fig. 2.3(a) involves 9 feedback gains, distributed over 23 regions of the
state space. Therefore, for the characterization of the optimal controller, after
step 2 of algorithm 1.4.1 the union of regions is computed where the first m
components of the solution U∗

N−i(x(i)) are the same, by using the algorithm
developed in [21]. This reduces the total number of regions in the partition
for the optimal controller from N r

i to Noc
i.

Let qs � rankS, qs ≤ q. For the dimension of the state n > qs the
number of polyhedral regions N r

i remains constant. To see this, consider the
linear transformation x̄ = Sx, x̄ ∈ R

q. Clearly x̄ and x define the same
set of active constraints, and therefore the number of partitions in the x̄-
and x-space are the same. Therefore, the number of partitions N r

i of the
x-space defining the optimal controller is insensitive to the dimension n of
the state x for all n ≥ qs, i.e. to the number of parameters involved in the
mp-QP. In particular, the additional parameters that we will introduce in
Section 4.6 to extend optimal controller to reference tracking, disturbance
rejection, soft constraints, variable constraints, and output feedback, do not
affect significantly the number of polyhedral regions N r

i (i.e., the complexity
of the mp-QP) in the optimal controller (2.16)

The number q of constraints increases with N . For instance, q = 2mN for
control problems with input constraints only. From the analysis above, the
larger N , the larger q, and therefore N r

0 . Note that many control problems
involve input constraints only, and typically horizons N = 2, 3 or blocking of
control moves are adopted, which reduces the number of constraints q.

72 2 Constrained Finite Time Optimal Control

2.2.2 Examples

Example 2.1. Consider the second order system

y(t) =
2

s2 + 3s + 2
u(t),

sample the dynamics with T = 0.1 s, and obtain the state-space representationx(t + 1) =
[

0.7326 −0.0861
0.1722 0.9909

]
x(t) +

[
0.0609
0.0064

]
u(t)

y(t) =
[
0 1.4142

]
x(t)

(2.26)

We want to compute the state feedback optimal controller solution to
problem (2.4) with p = 2, N = 4, Q = [1 0

0 1], R = 0.01, P equal to the solution
of the Lyapunov equation P = A′PA + Q, Xf = R

2 subject to the input
constraints

−2 ≤ u(k) ≤ 2, k = 0, . . . , 3 (2.27)

This task is addressed as shown in subsection (2.3). The feedback optimal
solution u∗(0), . . . , u∗(3) was computed in less than 1 minute by solving 4 mp-
QP problems in the region of the state space X = {x ∈ R

2|
[−8
−8

]
≤ x ≤ [8

8]}.
The corresponding polyhedral partitions of the state-space are depicted in
Fig. 2.1. Only the last two optimal control moves are reported below:

u∗(3) =

[−9.597 −9.627]x(5) if

 1.000 0.000
0.000 1.000−1.000 0.000
0.000 −1.000
−0.706 −0.708
0.706 0.708

x(5) ≤

 8.000
8.000
8.000
8.000
0.147
0.147

 (Region #1)

2.000 if
[−1.000 0.000

0.000 −1.000
0.706 0.708

]
x(5) ≤

[
8.000
8.000−0.147

]
(Region #2)

− 2.000 if
[

1.000 0.000
0.000 1.000−0.706 −0.708

]
x(5) ≤

[
8.000
8.000−0.147

]
(Region #3)

u∗(2) =

[−6.837 −6.861]x(4) if

 1.000 0.000
0.000 1.000−1.000 0.000
0.000 −1.000
−0.706 −0.708
0.706 0.708

x(4) ≤

 8.000
8.000
8.000
8.000
0.206
0.206

 (Region #1)

2.000 if
[

0.706 0.708−1.000 0.000
0.000 −1.000

]
x(4) ≤

[−0.206
8.000
8.000

]
(Region #2)

− 2.000 if
[−0.706 −0.708

1.000 0.000
0.000 1.000

]
x(4) ≤

[−0.206
8.000
8.000

]
(Region #3)

Figure 2.1 shows that that state feedback solution within the region of
interests is defined over three regions at all time instants. The area of the

2.2 State Feedback Solution of CFTOC, 2-Norm Case 73

x (0)1

x
(
0
)

2

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

(a) Partition of the state space
for the affine control law u∗(0)
(Noc

0 = 3)

x (1)1x (1)1

x
(
1
)

2
x
(
1
)

2

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

(b) Partition of the state space
for the affine control law u∗(1)
(Noc

1 = 3)

x (2)1x (2)1

x
(
2
)

2
x
(
2
)

2

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

1
2

3

(c) Partition of the state space
for the affine control law u∗(2)
(Noc

2 = 3)

x (3)1

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

x
(
3
)

2 1

2

3

(d) Partition of the state space
for the affine control law u∗(3)
(Noc

3 = 3)

Fig. 2.1. Partition of the state space for optimal control law of Example 2.1

regions slightly changes from one step to another. Of course this is a special
case, in general we expect the number of regions to increase with the hori-
zon. Note that Figure 2.1 shows the resultant polyhedral partition once the
regions with the same first component of the solution u∗(i) have been joined
as explained in Section 2.2.1. The mp-QP solver provides at each time step a
number of critical region N r

i that differs from the number Noc
i obtained after

the union of the regions as explained in Section 2.2.1. For instance the polyhe-
dral partition generated at time 0 consists of N r

0 = 11 regions and is depicted
in Figure 2.2. In this example all the regions to the left and to the right of the

74 2 Constrained Finite Time Optimal Control

unconstrained region have the first component of the optimal input saturated
and can be joined in two big triangles.

x (0)1x (0)1

x
(
0
)

2
x
(
0
)

2

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-2

0

2

4

6

8

-4

Fig. 2.2. Partition of the state space for the affine control law u∗(0) of Example 2.1
before the union of the regions

Example 2.2. Consider the double integrator

y(t) =
1
s2

u(t),

and its equivalent discrete-time state-space representationx(t + 1) =
[

1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

(2.28)

obtained by setting ÿ(t) ≈ ẏ(t+T)−ẏ(t)
T , ẏ(t) ≈ y(t+T)−y(t)

T , T = 1 s.
We want to compute the state feedback optimal controller that solves

problem (2.4) with p = 2, N = 5, Q = [1 0
0 1], R = 0.1, P equal to the solution

of the Riccati equation (2.15), Xf = R
2 subject to the input constraints

−1 ≤ u(k) ≤ 1, k = 0, . . . , 5 (2.29)

and the state constraints

−15 ≤ x(k) ≤ 15, k = 0, . . . , 5 (2.30)

This task is addressed as shown in subsection (2.3). The feedback optimal
solution u∗(0), . . . , u∗(5) was computed in less than 1 minute by solving 6

2.2 State Feedback Solution of CFTOC, 2-Norm Case 75

mp-QP problems and the corresponding polyhedral partitions of the state-
space are depicted in Fig. 2.3. Only the last two optimal control moves are
reported below:

u∗(5) =

[−0.579 −1.546]x(5) if
[

1.000 0.000−1.000 0.000
−0.351 −0.936
0.351 0.936

]
x(5) ≤

[
30.000
30.000
0.606
0.606

]
(Region #1)

1.000 if
[

1.000 0.000−1.000 0.000
0.000 −1.000
0.351 0.936

]
x(5) ≤

[
30.000
30.000
30.000−0.606

]
(Region #2)

− 1.000 if
[

1.000 0.000
0.000 1.000−1.000 0.000
−0.351 −0.936

]
x(5) ≤

[
30.000
30.000
30.000−0.606

]
(Region #3)

u∗(4) =

[−0.579 −1.546] x(4) if
[−0.351 −0.936

0.351 0.936
0.767 0.641−0.767 −0.641

]
x(4) ≤

[
0.606
0.606
2.428
2.428

]
(Region #1)

1.000 if
[−0.263 −0.965

0.351 0.936
0.292 0.956−0.707 −0.707

]
x(4) ≤

[
1.156−0.606
−0.365
10.607

]
(Region #2)

− 1.000 if
[

0.263 0.965−0.351 −0.936
−0.292 −0.956
0.707 0.707

]
x(4) ≤

[
1.156−0.606
−0.365
10.607

]
(Region #3)

[−0.435 −1.425] x(4)− 0.456 if
[

0.707 0.707−0.292 −0.956
0.292 0.956−0.767 −0.641

]
x(4) ≤

[
10.607
0.977
0.365−2.428

]
(Region #4)

[−0.435 −1.425] x(4) + 0.456 if
[−0.707 −0.707
−0.292 −0.956
0.292 0.956
0.767 0.641

]
x(4) ≤

[
10.607
0.365
0.977−2.428

]
(Region #5)

1.000 if

 1.000 0.000
0.707 0.707−0.707 −0.707
0.000 −1.000
0.292 0.956
0.263 0.965

x(4) ≤

 30.000
10.607
10.607
16.000−0.977
−1.156

(Region #6)

− 1.000 if

−1.000 0.000
0.707 0.707−0.000 1.000
−0.707 −0.707
−0.292 −0.956
−0.263 −0.965

x(4) ≤

 30.000
10.607
16.000
10.607−0.977
−1.156

(Region #7)

76 2 Constrained Finite Time Optimal Control

Note that by increasing the horizon N , the control law changes only far
away from the origin, the more in the periphery the larger N . This must
be expected from the results of Section 3.1, as the set where the CFTOC
law approximates the constrained infinite-horizon linear quadratic regulator
(CLQR) problem gets larger when N increases [50, 134].

Preliminary ideas about the constrained linear quadratic regulator for the
double integrator were presented in [145], and are in full agreement with our
results.

2.3 State Feedback Solution of CFTOC, 1, ∞-Norm Case

In the following section we will concentrate on the use of ∞-norm, the results
can be extended easily to cost functions with 1-norm or mixed 1/∞ norms.

The optimal control formulation (2.4) can be rewritten as a linear pro-
gram by using the following standard approach (see e.g. [46]). The sum of
components of any vector {εx

1 , . . . , εx
N , εu

1 , . . . , εu
N} that satisfies

−1nεx
k ≤ Qxk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ −Qxk, k = 0, 1, . . . , N − 1

−1rε
x
N ≤ PxN ,

−1rε
x
N ≤ −PxN ,

−1mεu
k ≤ Ruk, k = 0, 1, . . . , N − 1

−1mεu
k ≤ −Ruk, k = 0, 1, . . . , N − 1

(2.31)

represents an upper bound on J(UN , x(0)), where 1k � [1 . . . 1︸ ︷︷ ︸
k

]′,

xk = Akx0 +
∑k−1

j=0 AjBuk−1−j , (2.32)

and the inequalities (2.31) hold componentwise. It is easy to prove that the
vector z � {εx

0 , . . . , εx
N , εu

0 , . . . , εu
N−1, u0, . . . , uN−1} ∈ R

s, s � (m + 1)N +
N + 1, that satisfies equations (2.31) and simultaneously minimizes J(z) =
εx
0 + . . . + εx

N + εu
0 + . . . + εu

N−1 also solves the original problem (2.4), i.e., the
same optimum J∗(x(0)) is achieved [160, 46]. Therefore, problem (2.4) can be
reformulated as the following LP problem

2.3 State Feedback Solution of CFTOC, 1,∞-Norm Case 77

min
z

{
J(z) = εx

0 + . . . + εx
N + εu

0 + . . . + εu
N−1

}
(2.33a)

subj. to −1nεx
k ≤ ±Q

Akx0 +
k−1∑
j=0

AjBuk−1−j

 , (2.33b)

−1rε
x
N ≤ ±P

ANx0 +
N−1∑
j=0

AjBuN−1−j

 , (2.33c)

−1mεu
k ≤ ±Ruk, (2.33d)

EAkx0 +
k−1∑
j=0

EAjBuk−1−j + Luk ≤ M, (2.33e)

Akx0 +
N−1∑
j=0

AjBuN−1−j ∈ Xf , (2.33f)

k = 0, . . . , N − 1
x0 = x(0) (2.33g)

where constraints (2.33b)–(2.33f) are componentwise, and ± means that the
constraint is duplicated for each sign, as in (2.31). Note that the 1−norm in
space requires the introduction of nN slack variables for the terms ‖Qxk‖1,
εk,i ≥ ±Qixk k = 0, 2, . . . , N − 1, i = 1, 2, . . . , n, plus r slack variables for
the terminal penalty ‖PxN‖1, εN,i ≥ ±P ixN i = 1, 2, . . . , r, plus mN slack
variables for the input terms ‖Ruk‖1, εu

k,i ≥ ±Riuk k = 0, 1, . . . , N − 1, i =
1, 2, . . . , m.

Note also that although any combination of 1- and ∞-norms leads to a
linear program, our choice is motivated by the fact that ∞-norm over time
could result in a poor closed-loop performance (only the largest state deviation
and the largest input would be penalized over the prediction horizon), while
1-norm over space leads to an LP with a larger number of variables.

Denote with r and p the number of rows of P and E, respectively. Prob-
lem (2.33) can be rewritten in the more compact form

min
z

c′z

subj. to Gz ≤ W + Sx(0)
(2.34)

where c ∈ R
s, G ∈ R

q×s, S ∈ R
q×n, W ∈ R

q, q � 2(nN + 2mN + r) + pN ,
and c and the submatrices Gε, Wε, Sε associated with the constraints (2.33b)-
(2.33d) are

78 2 Constrained Finite Time Optimal Control

c = [

N+1︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
1 . . . 1

mN︷ ︸︸ ︷
0 . . . 0]′

Gε =

N+1︷ ︸︸ ︷
−1n 0 . . . 0
−1n 0 . . . 0

0 −1n . . . 0
0 −1n . . . 0

.
0 . . . −1n 0
0 . . . −1n 0
0 . . . 0 −1r

0 . . . 0 −1r

0 0 . . . 0
0 0 . . . 0

.
0 0 . . . 0
0 0 . . . 0

N︷ ︸︸ ︷
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0

.
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0

−1m . . . 0
−1m . . . 0
.
0 . . . −1m

0 . . . −1m

mN︷ ︸︸ ︷
0 0 . . . 0
0 0 . . . 0

QB 0 . . . 0
−QB 0 . . . 0
.

QAN−2B QAN−3B . . . 0
−QAN−2B −QAN−3B . . . 0
PAN−1B PAN−2B . . . PB
−PAN−1B −PAN−2B . . . −PB

R 0 . . . 0
−R 0 . . . 0
.
0 0 . . . R
0 0 . . . −R

Wε = [

2nN+2r︷ ︸︸ ︷
0 . . . 0

2mN︷ ︸︸ ︷
0 . . . 0]′

Sε = [

2n(N+1)︷ ︸︸ ︷
−I I (−QA)′ (QA)′ (−QA2)′ . . . (QAN−1)′

2r︷ ︸︸ ︷
(−PAN)′ (PAN)′

2mN︷ ︸︸ ︷
0n . . . 0n]′.

As in the 2-norm case, by treating x(0) as a vector of parameters, the prob-
lem (2.34) becomes a multiparametric linear program (mp-LP) that can be
solved as described in Section 1.3. Once the multiparametric problem (2.33)
has been solved for a polyhedral set X ⊂ R

n of states, the explicit solution
z∗(x(0)) of (2.34) is available as a piecewise affine function of x(0), and the
optimal control law u∗(0) is also available explicitly, as the optimal input
u∗(0) consists simply of m components of z∗(x(0))

u∗(0) = [0 . . . 0 Im 0 . . . 0]z∗(x(0)). (2.35)

Theorem 1.8 states that the solution z∗(x) of the mp-LP problem (2.34)
is a continuous and piecewise affine function on polyhedra of x. Clearly the
same properties are inherited by the controller. The following Corollaries of
Theorem 1.8 summarize the analytical properties of the optimal control law
and of the value function.

Corollary 2.3. The control law u∗(0) = f0(x(0)), f0 : R
n → R

m, obtained as
a solution of the optimization problem (2.4) is continuous and PPWA

f0(x) = F i
0x + gi

0 if x ∈ CRi
0, i = 1, . . . , Nr

0 (2.36)

where the polyhedral sets CRi
0 � {Hi

0x ≤ ki
0}, i = 1, . . . , Nr

0 , are a partition
in the broad sense of the feasible set X0

Corollary 2.4. The value function J∗(x) obtained as a solution of the opti-
mization problem (2.4) is convex and piecewise linear on polyhedra.

2.3 State Feedback Solution of CFTOC, 1,∞-Norm Case 79

Remark 2.3. Note from the results of Section 1.3, that if the optimizer of
problem (2.4) is not unique for some x(0) then a continuous optimizer function
of the form (2.36) can always be chosen.

The multiparametric solution of (2.34) provides the open-loop optimal
profile u∗(0), . . . , u∗(N − 1) as an affine function of the initial state x(0). The
functions fk : x(k) �→ u∗(k) for k = 1, . . . , N can be computed as explained
in Section 2.2 by solving N mp-LP problems.

2.3.1 Complexity Analysis

A bound on the number N r
i of polyhedral region of the PWA optimal control

law fi in (2.16) can be computed as explained in Section 1.3.6. The same
discussion of Section 2.2.1 applies in this context. In particular, the bound
given in Section 1.3.6 represents an upper-bound on the number of different
linear feedback gains which describe the controller. In practice, far fewer com-
binations are usually generated as x spans Xi. Furthermore, the gains for the
future input moves u∗(i + 1)(x(i)), . . . , u∗(N − 1)(x(i)) are not relevant for
the control law. Thus, several different combinations of active constraints may
lead to the same first m components u∗(i) of the solution. On the other hand,
the number N r

i of regions of the piecewise affine solution is in general larger
than the number of feedback gains, because possible non-convex critical re-
gions may be split into several convex sets. Therefore, for the characterization
of the optimal controller, the union of regions is computed where the first m
components of the solution U∗

N−i(x(i)) are the same. This reduces the total
number of regions in the partition for the optimal controller from N r

i to Noc
i.

2.3.2 Example

Example 2.3. Consider the double integrator system (2.28). We want to com-
pute the state feedback optimal controller that minimizes the performance
measure

3∑
k=0

∥∥∥∥[1 1
0 1

]
xk+1

∥∥∥∥
∞

+ |0.8uk| (2.37)

subject to the input constraints

−1 ≤ u(k) ≤ 1, k = 0, . . . , 3 (2.38)

and the state constraints

−10 ≤ x(k) ≤ 10, k = 1, . . . , 4 (2.39)

This task is addressed as shown in subsection (2.3). The optimal feedback
solution u∗(0), . . . , u∗(3) was computed in less than 1 minute by solving 4 mp-
LP problems and the corresponding polyhedral partitions of the state-space

80 2 Constrained Finite Time Optimal Control

are depicted in Fig. 2.4. Only the last two optimal control moves are reported
below:

u∗(2) =

− 1.00 if

 0.00 0.09
0.09 0.18−0.10 −0.10
−0.25 −1.00
0.10 0.10−0.33 −1.00

x(2) ≤

 1.00
1.00
1.00−0.75
1.00−0.67

 (Region #1)

1.00 if

 0.00 −0.09
0.10 0.10−0.09 −0.18
0.25 1.00
0.33 1.00−0.10 −0.10

x(2) ≤

 1.00
1.00
1.00−0.75
−0.67
1.00

 (Region #2)

0 if
[

0.25 1.00−0.33 −1.00
0.10 0.10

]
x(2) ≤

[
0.00
0.00
1.00

]
(Region #3)

[−0.50 −1.50] x(2) if
[

0.10 0.10−1.00 −1.00
0.33 1.00−0.33 −1.00

]
x(2) ≤

[
1.00
0.00
0.00
0.67

]
(Region #4)

[−0.33 −1.33] x(2) if
[−0.25 −1.00
−1.00 −1.00
0.10 0.10
0.25 1.00

]
x(2) ≤

[
0.00
0.00
1.00
0.75

]
(Region #5)

0 if
[−0.25 −1.00

0.33 1.00−0.10 −0.10

]
x(2) ≤

[
0.00
0.00
1.00

]
(Region #6)

[−0.33 −1.33] x(2) if
[

0.25 1.00
1.00 1.00−0.10 −0.10
−0.25 −1.00

]
x(2) ≤

[
0.00
0.00
1.00
0.75

]
(Region #7)

[−0.50 −1.50] x(2) if
[−0.10 −0.10

1.00 1.00−0.33 −1.00
0.33 1.00

]
x(2) ≤

[
1.00
0.00
0.00
0.67

]
(Region #8)

u∗(3) =

1.00 if
[−0.10 −0.10

0.10 0.10
0.33 1.00
0.00 −0.09

]
x(3) ≤

[
1.00
1.00−0.67
1.00

]
(Region #1)

− 1.00 if
[

0.10 0.10−0.10 −0.10
−0.33 −1.00
0.00 0.09

]
x(3) ≤

[
1.00
1.00−0.67
1.00

]
(Region #2)

[−0.50 −1.50] x(3) if
[

0.10 0.10−0.10 −0.10
0.33 1.00−0.33 −1.00

]
x(3) ≤

[
1.00
1.00
0.67
0.67

]
(Region #3)

2.4 Time Varying Systems

The results of the previous sections can be applied to time-variant systems

2.4 Time Varying Systems 81{
x(t + 1) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t), (2.40)

subject to time-variant constraints

E(t)x(t) + L(t)u(t) ≤ M(t). (2.41)

The optimal control problem

J∗(x(0)) = minUN J(UN , x(0))
subj. to E(k)xk + L(k)uk ≤ M(k), k = 0, . . . , N − 1

xk+1 = A(k)xk + B(k)uk, k ≥ 0
xN ∈ Xf

x0 = x(0)

(2.42)

can be formulated and solved as a mp-QP or mp-LP depending on the norm
p chosen. The following result is a simple corollary of the properties of the
mp-QP and mp-LP

Corollary 2.5. The control law u∗(k) = fk(x(k)), fk : R
n → R

m, defined by
the optimization problem (2.42) is continuous and piecewise affine

fk(x) = F j
kx + gj

k if x ∈ CRj
k, j = 1, . . . , Nr

k (2.43)

where the polyhedral sets CRj
k = {x ∈ R

n|Hj
kx ≤ Kj

k}, j = 1, . . . , Nr
k are a

partition in the broad sense of the feasible polyhedron Xk.

82 2 Constrained Finite Time Optimal Control

-15 -10 -5 0 5 10 15
-8

-6

-4

-2

0

2

4

6

8

x (0)1

x
(
0
)

2

(a) Partition of the state space
for the affine control law u∗(0)
(Noc

0 = 53)

x (1)1x (1)1

x
(
1
)

2
x
(
1
)

2

-15 -10 -5 0 5 10 15
-10

-8

-6

-4

-2

0

2

4

6

8

10

(b) Partition of the state space
for the affine control law u∗(1)
(Noc

1 = 39)

x (2)1x (2)1

x
(
2
)

2
x
(
2
)

2

-15 -10 -5 0 5 10 15

-10

-5

0

5

10

(c) Partition of the state space
for the affine control law u∗(2)
(Noc

2 = 25)

x (3)1x (3)1

x
(
3
)

2
x
(
3
)

2

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

(d) Partition of the state space
for the affine control law u∗(3)
(Noc

3 = 15)

x (4)1x (4)1

x
(
4
)

2
x
(
4
)

2

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

2

3
4

5

6

7

1

(e) Partition of the state space
for the affine control law u∗(4)
(Noc

4 = 7)

x (5)1

x
(
5
)

2

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

(f) Partition of the state space
for the affine control law u∗(5)
(Noc

5 = 3)

Fig. 2.3. Partition of the state space for optimal control law of Example 2.2

2.4 Time Varying Systems 83

-20 -15 -10 -5 0 5 10 15 20
-10-10

-8

-6

-4

-2

0

2

4

6

8

10

x (0)1x (0)1

x
(0

)
2

x
(0

)
2

(a) Partition of the state space
for the affine control law u∗(0)
(Noc

0 = 30)

-25 -20 -15 -10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

x (1)1x (1)1

x
(1

)
2

x
(1

)
2

(b) Partition of the state space
for the affine control law u∗(1)
(Noc

1 = 20)

-25 -20 -15 -10-10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x (2)1x (2)1

x
(2

)
2

x
(2

)
2

1

2

3

4

5

6

7

8

(c) Partition of the state space
for the affine control law u∗(2)
(Noc

2 = 8)

-25 -20 -15 -10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

1

3

2

x (3)1x (3)1

x
(3

)
2

x
(3

)
2

(d) Partition of the state space
for the affine control law u∗(3)
(Noc

3 = 3)

Fig. 2.4. Partition of the state space for optimal control law of Example 2.3

3

Constrained Infinite Time Optimal Control

86 3 Constrained Infinite Time Optimal Control

3.1 Solution to the Infinite Time Constrained LQR
Problem

Consider the infinite-horizon linear quadratic regulation problem with con-
straints (CLQR)

J∗
∞(x(0)) = minu0,u1,...

∞∑
k=0

‖Qxk‖2 + ‖Ruk‖2

subj. to Exk + Luk ≤ M, k = 0, . . . ,∞
xk+1 = Axk + Buk, k ≥ 0
x0 = x(0)

(3.1)

and the set

X0
∞ = {x(0) ∈ R

n| Problem (3.1) is feasible and J∗
∞(x(0)) < +∞}. (3.2)

In their pioneering work [141], Sznaier and Damborg showed that the
CFTOC problem (2.4), with P = P∞, P∞ satisfying (2.15), sometimes also
provides the solution to the infinite-horizon linear quadratic regulation prob-
lem with constraints (3.1). This holds for a certain set of initial conditions
x(0), which depends on the length of the finite horizon. This idea was recon-
sidered later by Chmielewski and Manousiouthakis [50] and independently
by Scokaert and Rawlings [134], and recently also by Chisci and Zappa [49].
In [134], the authors extend the idea of [141] by showing that the CLQR is
stabilizing for all x(0) ∈ X0

∞, and that the CLQR problem can be solved
by CFTOC (2.4) for a finite N . The horizon N depends on the initial state
x(0), and they provide an algorithm that computes an upper-bound on N
for a given x(0). On the other hand, Chmielewski and Manousiouthakis [50]
describe an algorithm which provides a semi-global upper-bound for the hori-
zon N . Namely, for any given compact set X ⊆ X0

∞ of initial conditions,
the algorithm in [50] provides a sufficiently long horizon N such that the
CFTOC (2.4) solves the infinite horizon problem (3.1). The algorithm has
been revised recently in [25].

In Corollary 2.1 we have proven that the solution to (2.4) is continuous
and piecewise affine on polyhedra. Therefore, for a compact polyhedral set of
initial conditions X ⊆ X0

∞, the solution to the CLQR problem (3.1) is also
continuous and piecewise affine on polyhedra.

Corollary 3.1. The control law u∗(k) = f(x(k)), f : R
n → R

m, obtained as
a solution of the optimization problem (3.1) in a compact polyhedral set of the
initial conditions X ⊆ X0

∞ is continuous, time invariant and piecewise affine
on polyhedra

f(x) = F ix + gi if x ∈ CRi, i = 1, . . . , Nr (3.3)

where the polyhedral sets CRi = {x ∈ R
n|Hix ≤ Ki}, i = 1, . . . , Nr are a

partition in the broad sense of the polyhedron X ∩ X0
∞

3.2 Examples 87

Note that if the constraint set {(x, u) ∈ R
n+m|Ex + Lu ≤ M} is bounded

then the set X0
∞ is a compact set, and therefore the solution of the

CFTOC (2.4) for an appropriately chosen N coincides with the global so-
lution of CLQR (3.1).

One of the major drawback of the algorithm presented by Chmielewski and
Manousiouthakis in [50] is that the semi-global upper-bound resulting from
their algorithm is generally very conservative. The approach of Scokaert and
Rawlings in [134] is less conservative but provides an horizon that is dependent
on the initial state x(0) and therefore cannot be used to compute the explicit
solution (3.3) to the infinite time CLQR. In [79] Grieder et al. provide an
algorithm to compute the solution (3.3) to the infinite time constrained linear
quadratic regulator (3.1) in an efficient way. The algorithm makes use of a
multiparametric quadratic program solver and of reachability analysis. To the
author’s knowledge there is no other algorithm in the literature to compute
the solution (3.3) to the infinite time CLQR.

3.2 Examples

Example 3.1. The infinite time constrained LQR (3.1) was solved for Exam-
ple 2.1 in less than 15 seconds in the region X = {x ∈ R

2|
[−100
−100

]
≤ x ≤ [100

100]}
by using the approach presented in [79]. The state-space is divided into 3 poly-
hedral regions and is depicted in Fig. 3.1.

-100 -60 -20 20 60 100
-100

-60

-20

20

60

100

x k1()

x
k

2
(

)

Fig. 3.1. Partition of the state space for infinite time optimal control law of Exam-
ple 3.1 (Noc = 3)

Example 3.2. The infinite time constrained LQR (3.1) was solved for Exam-
ple 2.2 by using the approach presented in [79] in less the 15 seconds. The
state-space is divided into 1033 polyhedral regions and is depicted in Fig. 3.2.

88 3 Constrained Infinite Time Optimal Control

-15 -10 -5 0 5 10 15
-8

-6

-4

-2

0

2

4

6

8

x k1()

x
k

2
(

)

Fig. 3.2. Partition of the state space for infinite time optimal control law of Exam-
ple 3.2 (Noc = 1033)

4

Receding Horizon Control

90 4 Receding Horizon Control

Model predictive control is the only advanced control technology that has made
a substantial impact on industrial control problems: its success is largely due
to its almost unique ability to handle, simply and effectively, hard constraints
on control and states.

(D.Mayne, 2001 [110])

4.1 Introduction

In the previous chapter we have discussed the solution of constrained finite
time optimal control problems for linear systems. An infinite horizon controller
can be designed by repeatedly solving finite time optimal control problems in a
receding horizon fashion as described next. At each sampling time, starting at
the current state, an open-loop optimal control problem is solved over a finite
horizon. The optimal command signal is applied to the process only during the
following sampling interval. At the next time step a new optimal control prob-
lem based on new measurements of the state is solved over a shifted horizon.
The resultant controller will be referred to as Receding Horizon Controller
(RHC).

A receding horizon controller where the finite time optimal control law is
computed by solving an on-line optimization problem is usually referred to
as Model Predictive Control (MPC). For complex constrained multivariable
control problems, model predictive control has become the accepted standard
in the process industries [124]. The performance measure of the finite time
optimal control problem solved by MPC at each time step is usually expressed
as a quadratic or a linear criterion, so that the resulting optimization problem
can be cast as a quadratic program (QP) or linear program (LP), respectively,
for which a rich variety of efficient active-set and interior-point solvers are
available.

Some of the first industrial MPC algorithms like IDCOM [128] and
DMC [51] were developed for constrained MPC with quadratic performance
indices. However, in those algorithms input and output constraints were
treated in an indirect ad-hoc fashion. Only later, algorithms like QDMC [71]
overcame this limitation by employing quadratic programming to solve con-
strained MPC problems with quadratic performance indices. Later an exten-
sive theoretical effort was devoted to analyze such schemes, provide condi-
tions for guaranteeing feasibility and closed-loop stability, and highlight the
relations between MPC and linear quadratic regulation (see the recent sur-
vey [112]).

The use of linear programming was proposed in the early sixties by Zadeh
and Whalen for solving optimal control problems [160], and by Propoi [123],
who perhaps first conceived the idea of MPC. Later, only a few other authors
have investigated MPC based on linear programming [48, 46, 73, 126], where
the performance index is expressed as the sum of the ∞-norm or 1-norm of
the input command and of the deviation of the state from the desired value.

4.2 Problem Formulation 91

Since RHC requires to solve at each sampling time an open-loop con-
strained finite time optimal control problem as a function of the current state,
the results of the previous chapters lead to a different approach for RHC imple-
mentation. Precomputing off-line the explicit piecewise affine feedback policy
(that provides the optimal control for all states) reduces the on-line computa-
tion of the RHC control law to a function evaluation, therefore avoiding the
on-line solution of a quadratic or linear program.

This technique is attractive for a wide range of practical problems where
the computational complexity of on-line optimization is prohibitive. It also
provides insight into the structure underlying optimization-based controllers,
describing the behaviour of the RHC controller in different regions of the
state space. In particular, for RHC based on LP it highlights regions where
idle control occurs and regions where the LP has multiple optima. Moreover,
for applications where safety is crucial, a piecewise-affine control law is easier
to verify than a mathematical program solver.

The new technique is not intended to replace MPC, especially not in some
of the larger applications (systems with more than 50 inputs and 150 outputs
have been reported from industry). It is expected to enlarge its scope of appli-
cability to situations which cannot be covered satisfactorily with anti-windup
schemes or where the on-line computations required for MPC are prohibitive
for technical or cost reasons, such as those arising in the automotive and
aerospace industries.

In this chapter we first review the basics of RHC. We discuss the stability of
RHC and for RHC based on 1/∞-norm we provide guidelines for choosing the
terminal weight so that closed-loop stability is achieved. Then, in Sections 4.3
and 4.4 the piecewise affine feedback control structure of QP-based and LP-
based RHC is obtained as a simple corollary of the results of the previous
chapters.

4.2 Problem Formulation

Consider the problem of regulating to the origin the discrete-time linear time-
invariant system (2.1) while fulfilling the constraints (2.2).

Receding Horizon Control (RHC) solves such a constrained regulation
problem in the following way. Assume that a full measurement of the state
x(t) is available at the current time t. Then, the finite time optimal control
problem (2.4), (restated below)

J∗(x(t)) = minUt J(Ut, x(t)) � ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk,t‖p

subj. to Exk + Luk,t ≤ M, k = 0, . . . , N − 1
xN ∈ Xf

xk+1 = Axk + Buk,t, k ≥ 0
x0 = x(t)

(4.1)

92 4 Receding Horizon Control

is solved at each time t, where Ut = {u0,t, . . . , uN−1,t} and where the time
invariance of the plants permits the use of initial time 0 rather than t in the
finite time optimal control problem. The sub-index t simply denotes the fact
that the finite time optimal control problem (2.4) is solved for x0 = x(t).

Let U∗
t = {u∗

0,t, . . . , u
∗
N−1,t} be the optimal solution of (4.1) at time t and

J∗(x(t)) the corresponding value function. Then, the first sample of U∗
t is

applied to system (2.1)
u(t) = u∗

0,t. (4.2)

The optimization (4.1) is repeated at time t + 1, based on the new state
x0 = x(t + 1), yielding a moving or receding horizon control strategy.

Denote by f0(x(k)) = u∗
0,k(x(k)) the receding horizon control law when

the current state is x(k), the closed loop system obtained by controlling (2.1)
with the RHC (4.1)-(4.2) is

x(k + 1) = Ax(k) + Bf0(x(k)) � s(x(k)), k ≥ 0 (4.3)

Note that the notation used in this chapter is slightly different from the
previous chapter. Because of the receding horizon strategy, there is the need
to distinguish between the input u∗(k + l) applied to the plant at time k + l,
and optimizer u∗

k,l of the problem (4.1) at time k+ l obtained by solving (4.1)
for t = l and x0 = x(l).

To keep the exposition simpler we will assume that the constraints Ex(k)+
Lu(k) ≤ M are decoupled in x(k) and u(k) for k = 0, . . . , N − 1 and we will
denote by X and U the polyhedra of admissible states and inputs, respectively.

As in the previous chapter, Xi denotes the set of feasible states for prob-
lem (4.1) at time i

Xi = {x|∃u ∈ U such that Ax + Bu ∈ Xi+1} ∩ X, with XN = Xf . (4.4)

The main issue regarding the receding horizon control policy is the stabil-
ity of the resulting closed-loop system (4.3). In general, stability is not ensured
by the RHC law (4.1)-(4.2). Usually the terminal weight P and the terminal
constraint set Xf are chosen to ensure closed-loop stability. In the next sec-
tion we will briefly review sufficient conditions for stability, a more extensive
treatment can be found in the survey [112, 111]. Before going further we need
to recall the following definition

Definition 4.1. A set X ⊆ X is said to be controlled invariant for sys-
tem (2.1) if for every x ∈ X there exists a u ∈ U such that Ax + Bu ∈ X

Definition 4.2. A set X ⊆ X is said to be positively invariant for sys-
tem (4.3) if for every x(0) ∈ X the system evolution satisfies x(k) ∈ X, ∀k ∈
N

+.

Definition 4.3. A function φ : R
+ → R

+ is of class K if it is continuous,
strictly increasing and φ(0) = 0.

4.2 Problem Formulation 93

The following theorem provides sufficient conditions for the stability of the
equilibrium point of a discrete time system (see [154] p.267)

Theorem 4.1. The equilibrium 0 of system (4.3) is uniformly asymptotically
stable if there exist a function V : Z

+ × R
n → R, a constant r and functions

α, β, γ of class K, such that

V (k, 0) = 0 ∀k ≥ 0
α(‖x‖) ≤ V (k, x) ≤ β(‖x‖) ∀k ≥ 0 ∀x such that ‖x‖ ≤ r

V (k + 1, s(x)) − V (k, x) ≤ −γ(‖x‖) ∀k ≥ 0 ∀x such that ‖x‖ ≤ r

Theorem 4.2. The equilibrium 0 of system (4.3) is exponentially stable if
there exist a function V : Z

+ × R
n → R, constants a, b, c, r > 0 and d > 1

such that

V (k, 0) = 0 ∀k ≥ 0
a‖x‖d ≤ V (k, x) ≤ b‖x‖d ∀k ≥ 0 ∀x such that ‖x‖ ≤ r

V (k + 1, s(x))− V (k, x) ≤ −c‖x‖d ∀k ≥ 0 ∀x such that ‖x‖ ≤ r

4.2.1 Stability of RHC

In the survey papers [112, 111] the authors try to distill from the extensive
literature on RHC and present the essential principles that ensure closed loop
stability of RHC. In this section we will recall one of the main stability result
presented in [112, 111]. The stability analysis is slightly modified to fit the
structure of the book.

Theorem 4.3. Assume that

(A0) Q = Q′ � 0, R = R′ � 0, P � 0, if p = 2 and Q, R, P are full column
rank matrices if p = 1,∞.

(A1) The sets X and U contain the origin and Xf is closed.
(A2) Xf is control invariant, Xf ⊆ X.
(A3) minu∈U, Ax+Bu∈Xf

(‖P (Ax + Bu)‖p − ‖Px‖p + ‖Qx‖p + ‖Ru‖p) ≤ 0,
∀x ∈ Xf .

(A4) ‖Px‖p ≤ β(|x|), where β(·) is a function of class K.

Then,
(i) the state of the closed-loop system (4.3) converges to the origin, i.e.,
limk→∞ x(k) = 0,
(ii) the origin of the closed loop system (4.3) is asymptotically stable with
domain of attraction X0.

Proof: The proof follows from Lyapunov arguments, close in spirit to the
arguments of [96, 19] where it is established that the value function J∗(·)
of (4.1) is a Lyapunov function for the closed-loop system. Let x(0) ∈ X0

94 4 Receding Horizon Control

and let U∗
0 = {u0,0, . . . , uN−1,0} be the optimizer of problem (4.1) for t =

0 and x0 = {x0,0, . . . , xN,0} be the corresponding optimal state trajectory.
Let x(1) = x1,0 = Ax(0) + Bu0,0 and consider problem (4.1) for t = 1.
We will construct an upper bound to J∗(x(1)). Consider the sequence Ũ1 =
{u1,0, . . . , uN−1,0, v} and the corresponding state trajectory resulting from
the initial state x(1), x̃1 = {x1,0, . . . , xN,0, AxN,0 +Bv}. The input Ũ1 will be
feasible for the problem at t = 1 iff v ∈ U keeps xN,0 in Xf at step N of the
prediction, i.e., AxN,0+Bv ∈ Xf . Such v exists by hypothesis (A2). J(x(1), Ũ1)
will be an upperbound to J∗(x(1)). Since the trajectories generated by U∗

0 and
Ũ1 overlap, except for the first and last sampling intervals, it is immediate to
show that

J∗(x(1)) ≤ J(x(1), Ũ1) = J(x(0)) − ‖Qx0,0‖p − ‖Ru0,0‖p − ‖PxN,0‖p+
+(‖QxN,0‖p + ‖Rv‖p + ‖P (AxN,0 + Bv)‖p)

(4.5)
Let x = x0,0 = x(0) and u = u0,0. Under assumption (A3) equation (4.5)
becomes

J∗(Ax + Bu)− J∗(x) ≤ −‖Qx‖p − ‖Ru‖p, ∀x ∈ X0. (4.6)

Equation (4.6) and the hypothesis (A0) on the matrices P and Q ensure that
J∗(x) decreases along the state trajectories of the closed loop system (4.3)
for any x ∈ X0. Since J∗(x) is lower-bounded by zero and since the state
trajectories generated by the closed loop system (4.3) starting from any x(0) ∈
X0 lie in X0 for all k ≥ 0, equation (4.6) is sufficient to ensure that the state
of the closed loop system converges to zero as k → 0 if the initial state lies in
X0. We have proven (i).

Before proving (ii) we will first prove that J∗(x) ≤ ‖Px‖p, ∀x ∈
Xf [91]. Note that for any x ∈ X0 and for any feasible input sequence
{u0,0, . . . , uN−1,0} for problem (4.1) starting from the initial state x = x0,0

whose corresponding state trajectory is {x0,0, x1,0, . . . , xN,0} we have

J∗(x) ≤
N−1∑
i=0

(‖Qxi,0‖p + ‖Rui,0‖p) + ‖PxN,0‖p ≤ ‖Px‖p (4.7)

where the last inequality follows from assumption (A3). Then from assumption
(A4) we can state

J∗(x) ≤ β(‖x‖), ∀x ∈ Xf . (4.8)

The stability of the origin follows from the positive invariance of X0, and
from the fact that J∗(x) ≥ α(‖x‖) for some function α(·) of class K. To
conclude, we have proven that J∗(x) satisfies

α(‖x‖) ≤ J∗(x) ≤ β(‖x‖) ∀x ∈ Xf (4.9)
J∗(s(x)) − J∗(x) ≤ γ(‖x‖), ∀x ∈ X0 (4.10)

Therefore, J∗ satisfies the hypothesis of Theorem (4.1) and (ii) is proved.
�

4.2 Problem Formulation 95

Remark 4.1. Note that if the norm p = 2 is used in the optimal control prob-
lem (4.1), then from the proof of Theorem 4.3 and Theorem 4.1 we can ensure
the exponential stability of the origin of the closed loop system (4.3).

Remark 4.2. Note that if Xf is a controlled invariant, then Xi+1 ⊆ Xi, i =
0, . . . , N−1 and Xi are controlled invariant. MoreoverX0 is positively invariant
for the closed loop system (4.3) under the assumptions (A1)− (A4) [111, 97].

Next we will discuss in more detail the hypothesis (A2) and (A3) by briefly
reviewing the choices of P and Xf that appeared in the literature [111]. In
part of the literature the constraint Xf is not used. However, in this literature
the terminal region constraint Xf is implicit. In fact, if the constraint on the
terminal state xN is missing, then it is required that the horizon N is suffi-
ciently large to ensure feasibility of the RHC (4.1)–(4.2) at all time instants
t. This will automatically satisfy the constraint xN ∈ Xf in (4.1)–(4.2) for all
t ≥ 0.

Keerthi and Gilbert [96] were first to propose specific choices of P and Xf ,
namely Xf = 0 and P = 0. Under this assumption (and a few other mild ones)
Keerthi and Gilbert prove the stability for general nonlinear performance
functions and nonlinear models. The proof follows the lines of the proof of
Theorem 4.3.

The next two results were developed for RHC formulations based on the
squared Euclidean norm (p = 2). A simple choice Xf is obtained by choos-
ing Xf as the maximal output admissible set [75] for the closed-loop system
x(k + 1) = (A + BK)x(k) where K is the associated unconstrained infinite-
time optimal controller (2.14). With this choice the assumption (A3) in The-
orem 4.3 becomes

x′(A′(P − PB(B′PB + R)−1BP)A + Q− P)x ≤ 0, ∀x ∈ Xf (4.11)

which is satisfied if P is chosen as the solution P∞ of the the standard algebraic
Riccati equation (2.15) for system (2.1).

If system (2.1) is asymptotically stable, then Xf can be chosen as the
positively invariant set of the autonomous system x(k + 1) = Ax(k) subject
to the state constraints x ∈ X. Therefore in Xf the input 0 is feasible and the
assumption (A3) in Theorem 4.3 becomes

−‖Px‖2 + ‖PAx‖2 + ‖Qx‖2 ≤ 0, ∀x ∈ Xf (4.12)

which is satisfied if P solves the standard Lyapunov equation.
In the following we extend the previous result to RHC based on the infinity

norm, the extension to the one norm is an easy exercise. In particular we will
show how to solve (4.12) when p = ∞.

4.2.2 Stability, ∞-Norm case

Consider the inequality (4.12) when p = ∞:

96 4 Receding Horizon Control

−‖Px‖∞ + ‖PAx‖∞ + ‖Qx‖∞ ≤ 0, ∀x ∈ R
n. (4.13)

We assume that the matrix A is stable and we suggest a procedure for con-
structing a matrix P satisfying (4.13). Unlike the 2-norm case, the condition
that matrix A has all the eigenvalues in the open disk ‖λi(A)‖ < 1 is not
sufficient for the existence of a squared matrix P satisfying (4.13) [30].

First, we will focus on a simpler problem by removing the factor ‖Qx‖∞
from condition (4.13)

−‖P̃x‖∞ + ‖P̃Ax‖∞ ≤ 0, ∀x ∈ R
n. (4.14)

The existence and the construction of a matrix P̃ that satisfies condi-
tion (4.14), has been addressed in different forms by several authors [30, 122,
100, 80, 31, 32]. There are two equivalent ways of tackling this problem: find
a Lyapunov function for the autonomous part of system (2.1) of the form

Ψ(x) = ‖P̃ x‖∞ (4.15)

with P̃ ∈ R
r×n full column rank, r ≥ n, or equivalently compute a sym-

metrical positively invariant polyhedral set [32] for the autonomous part of
system (2.1).

The following theorem, proved in [100, 122], states necessary and suffi-
cient conditions for the existence of the Lyapunov function (4.15) satisfying
condition (4.14).

Theorem 4.4. The function Ψ(x) = ‖P̃x‖∞ is a Lyapunov function for the
autonomous part of system (2.1) if and only if there exists a matrix H ∈ Cr×r

such that

P̃A−HP̃ = 0 (4.16a)
‖H‖∞ < 1 (4.16b)

�

In [100, 122] the authors proposed an efficient way to compute Ψ(x) by con-
structing matrices P̃ and H satisfying (4.16).

In [122] the author shows how to construct matrices P̃ and H in (4.16)
with the only assumption that A is stable. The number r of rows of P̃ is
always finite for |λi| < 1, where |λi| are the moduli of the eigenvalues of A.
However this approach has the drawback that the number of rows r may go
to infinity when some |λi| approaches 1.

In [100] the authors construct a square matrix P̃ ∈ R
n×n under the as-

sumption that the matrix A in (2.1) has distinct eigenvalues λi = µi + jσi

located in the open square |µi|+ |σi| < 1.
What described so far can be used to solve the original problem (4.13).

By using the results of [100, 122], the construction of a matrix P satisfying
condition (4.13) can be performed by exploiting the following result:

4.3 State Feedback Solution of RHC, 2-Norm Case 97

Lemma 4.1. Let P̃ and H be matrices satisfying conditions (4.16), with P̃
full rank. Let σ � 1 − ‖H‖∞, ρ � ‖QP̃#‖∞, where P̃# � (P̃ ′P̃)−1P̃ ′ is the
left pseudoinverse of P̃ . The square matrix

P =
ρ

σ
P̃ (4.17)

satisfies condition (4.13).

Proof: Since P satisfies PA = HP , we obtain −‖Px‖∞ + ‖PAx‖∞ +
‖Qx‖∞ = −‖Px‖∞ + ‖HPx‖∞ + ‖Qx‖∞ ≤ (‖H‖∞ − 1)‖Px‖∞ + ‖Qx‖∞ ≤
(‖H‖∞ − 1)‖Px‖∞ + ‖QP̃#‖∞‖P̃ x‖∞ = 0. Therefore, (4.13) is satisfied. �

To conclude, we point out that if in problem (4.1) we choose P to be the
solution of (4.13) and Xf to be the positively invariant set of the autonomous
system x(k + 1) = Ax(k) subject to the state constraints x ∈ X, then by
Theorem 4.3 the RHC law stabilize the system (2.1) in X0.

Remark 4.3. If P ∈ R
n×n is given in advance rather than computed as in

Proposition 4.1, condition (4.13) can be tested numerically, either by enumer-
ation (32n LPs) or, more conveniently, through a mixed-integer linear program
with (5n + 1) continuous variables and 4n integer variables.

Remark 4.4. If the matrix A is unstable, the procedure for constructing P can
be still applied by pre-stabilizing system (2.1) via a linear controller without
taking care of the constraints. Then, the output vector can be augmented
by including the original (now state-dependent) inputs, and saturation con-
straints can be mapped into additional output constraints in (4.1).

Remark 4.5. In [126] the authors use a different approach based on Jordan
decomposition to construct a stabilizing terminal weighting function for the
RHC law (4.1)-(4.2). The resulting function leads to a matrix P with r =
2n−n0−1 + n2n0−1 rows where n0 is the algebraic multiplicity of the zero
eigenvalues of matrix A. Apparently, the result holds only for matrices A with
stable and real eigenvalues, and therefore, in general, the approach presented
in this section is preferable.

4.3 State Feedback Solution of RHC, 2-Norm Case

The state feedback receding horizon controller (4.1)-(4.2) with p = 2 for sys-
tem (2.1) can be obtained explicitly by setting

u(t) = f∗
0 (x(t)), (4.18)

where f∗
0 (x0) : R

n → R
m is the piecewise affine solution to the CFTOC (4.1)

computed as explained in Section 2.21.
We remark that the implicit form (4.1)-(4.2) and the explicit form (4.18)

are equal, and therefore the stability, feasibility, and performance properties

98 4 Receding Horizon Control

mentioned in the previous sections are automatically inherited by the piece-
wise affine control law (4.18). Clearly, the explicit form (4.18) has the advan-
tage of being easier to implement, and provides insight into the type of action
of the controller in different regions CRi of the state space.

4.3.1 Examples

Example 4.1. Consider the constrained double integrator system (2.28)–(2.30).
We want to regulate the system to the origin by using the RHC problem (4.1)–
(4.2) where p = 2, N = 2, Q = [1 0

0 1], R = 0.01, and P = P∞ where P∞
solves (2.15). We consider three cases:

1. no terminal state constraints: Xf = R
n,

2. Xf = 0,
3. Xf is the positively invariant set of the closed-loop system x(k + 1) =
(A+BL) where L is the infinite-time unconstrained optimal controller (2.14).

Case 1: Xf = R
n. The mp-QP problem associated with the RHC has the

form (2.18) with

H =

[
0.8170 0.3726
0.3726 0.2411

]
, F =

[
0.3554 0.1396
1.1644 0.5123

]
,

G =

0 0
1 0
0 0
−1 0
1 0
−1 0
0 1
0 −1

, W =

15
15
15
15
1
1
1
1

, E =

−1 −1
0 −1
1 1
0 1
0 0
0 0
0 0
0 0

The solution of the mp-QP was computed in less than one second. The

corresponding polyhedral partition of the state-space is depicted in Fig. 4.1.
The RHC law is:

4.3 State Feedback Solution of RHC, 2-Norm Case 99

u(t) =

[−0.579 −1.546] x(t) if
[−0.351 −0.936

0.351 0.936
0.767 0.641−0.767 −0.641

]
x(t) ≤

[
0.606
0.606
2.428
2.428

]
(Region #1)

1.000 if
[−0.263 −0.965

0.351 0.936
0.292 0.956−0.707 −0.707

]
x(t) ≤

[
1.156−0.606
−0.365
10.607

]
(Region #2)

− 1.000 if
[

0.263 0.965−0.351 −0.936
−0.292 −0.956
0.707 0.707

]
x(t) ≤

[
1.156−0.606
−0.365
10.607

]
(Region #3)

[−0.435 −1.425] x(t)− 0.456 if
[

0.707 0.707−0.292 −0.956
0.292 0.956−0.767 −0.641

]
x(t) ≤

[
10.607
0.977
0.365−2.428

]
(Region #4)

[−0.435 −1.425] x(t) + 0.456 if
[−0.707 −0.707
−0.292 −0.956
0.292 0.956
0.767 0.641

]
x(t) ≤

[
10.607
0.365
0.977−2.428

]
(Region #5)

1.000 if

[
0.707 0.707−0.707 −0.707
0.000 −1.000
0.292 0.956
0.263 0.965

]
x(t) ≤

[
10.607
10.607
16.000−0.977
−1.156

]
(Region #6)

− 1.000 if

[0.707 0.707−0.000 1.000
−0.707 −0.707
−0.292 −0.956
−0.263 −0.965

]
x(t) ≤

[
10.607
16.000
10.607−0.977
−1.156

]
(Region #7)

It can be noticed that the RHC law is simply the solution u∗(2) of
Example 2.2. We test the closed-loop behaviour from the initial condition
x(0) = [0, −1], which is depicted in Fig. 4.1(a) and from the initial condition
x(0) = [−1.2, 2], which is depicted in Fig. 4.1(b).

The union of the regions depicted in Fig. 4.1(c) is X0 and should not be
confused with the region of attraction of the RHC closed-loop. We did not
use any terminal constraints and therefore we cannot conclude that X0 is the
region of attraction of the RHC. For instance, by starting at x(0) = [−14, 14]
(for which a feasible solution exists), the RHC controller runs into infeasibility
at step t = 2.

Case 2: Xf = 0. The mp-QP problem associated with the RHC has the
form (2.18) with

100 4 Receding Horizon Control

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
statex(t)statex(t)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1
inputu(t)inputu(t)

(a) Closed-loop
RHC trajectories
from x(0)=(0,-1)

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2
statex(t)statex(t)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8
inputu(t)inputu(t)

(b) Closed-loop
RHC trajectories
from x(0)=(-1.2,2)

(c) Polyhedral par-
tition of the state-
space, Noc

0 = 7

Fig. 4.1. Double integrator Example (4.1), Case 1

H =

[
0.8170 0.3726
0.3726 0.2411

]
, F =

[
0.3554 0.1396
1.1644 0.5123

]

G =

0 0
1 0
0 0
−1 0
1 0
−1 0
0 1
0 −1
1 0
−1 0
1 1
−1 −1

, W =

15.0000
15.0000
15.0000
15.0000
1.0000
1.0000
1.0000
1.0000
0.0000
0.0000
0.0000
0.0000

, E =

−1 −1
0 −1
1 1
0 1
0 0
0 0
0 0
0 0
−1 −2
1 2
0 −1
0 1

The solution of the mp-QP was computed in less than one second. The

corresponding polyhedral partition of the state-space is depicted in Fig. 4.2.
The RHC law is:

u(t) =

[−0.579 −1.546] x(t) if
[

0.680 0.734−0.680 −0.734
−0.683 −0.730
0.683 0.730

]
x(t) ≤

[
0.000
0.000
0.000
0.000

]
(Region #1)

[−1.000 −2.000] x(t) if
[−0.447 −0.894

0.707 0.707
0.447 0.894−0.678 −0.735

]
x(t) ≤

[
0.447
0.707
0.447−0.000

]
(Region #2)

[−1.000 −2.000] x(t) if
[

0.447 0.894−0.707 −0.707
−0.447 −0.894
0.678 0.735

]
x(t) ≤

[
0.447
0.707
0.447−0.000

]
(Region #3)

We test the closed-loop behaviour from the initial condition x(0) =
[−1.2, 2], which is depicted in Fig. 4.2(a) (the initial condition x(0) = [0, −1]

4.3 State Feedback Solution of RHC, 2-Norm Case 101

0 1 2 3 4 5
-2

-1

0

1

2
statex(t)statex(t)

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8
inputu(t)inputu(t)

(a) Closed-loop RHC trajectories
from x(0) = [1, 1]

(b) Polyhedral partition of the
state-space, Noc

0 = 7

Fig. 4.2. Double integrator Example (4.1), Case 2

is infeasible). The union of the regions depicted in Fig. 4.2(b) is X0. From
Theorem 4.3, X0 is also the domain of attraction of the RHC law. However,
by comparing Fig. 4.2 with Fig. 4.1, it can be noticed that the end-point con-
straint has two negative effects. First, the performance is worsened. Second,
the feasibility region is extremely small.

Case 3: Xf positively invariant set. The set Xf is

Xf = {x ∈ R
2|
[−0.5792 −1.5456

0.5792 1.5456
0.3160 0.2642−0.3160 −0.2642

]
x ≤

[
1.0000
1.0000
1.0000
1.0000

]
} (4.19)

The mp-QP problem associated with the RHC has the form (2.18) with

H =

[
0.8170 0.3726
0.3726 0.2411

]
, F =

[
0.3554 0.1396
1.1644 0.5123

]
,

G =

0 0
1.0000 0

0 0
−1.0000 0
1.0000 0
−1.0000 0

0 1.0000
0 −1.0000

−2.1248 −1.5456
2.1248 1.5456
0.5802 0.2642
−0.5802 −0.2642

, W =

15
15
15
15
1
1
1
1
1
1
1
1

, E =

−1.0000 −1.0000
0 −1.0000

1.0000 1.0000
0 1.0000
0 0
0 0
0 0
0 0

0.5792 2.7040
−0.5792 −2.7040
−0.3160 −0.8962
0.3160 0.8962

102 4 Receding Horizon Control

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
statex(t)statex(t)

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1
inputu(t)inputu(t)

(a) Closed-loop
RHC trajectories
from x(0)=(1,1)

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2
statex(t)statex(t)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8
inputu(t)inputu(t)

(b) Closed-loop
RHC trajectories
from x(0)=(-1.2,2)

(c) Polyhedral par-
tition of the state-
space, Noc

0 = 7

Fig. 4.3. Double integrator Example (4.1) Case 3

The solution of the mp-QP was computed in less than one second. The
corresponding polyhedral partition of the state-space is depicted in Fig. 4.3.
The RHC law is:

4.3 State Feedback Solution of RHC, 2-Norm Case 103

u(t) =

[−0.579 −1.546]x(t) if
[−0.351 −0.936

0.351 0.936
0.767 0.641−0.767 −0.641

]
x(t) ≤

[
0.606
0.606
2.428
2.428

]
(Region #1)

1.000 if

[−0.263 −0.965
−0.478 −0.878
0.351 0.936
0.209 0.978
0.292 0.956

]
x(t) ≤

[
1.156
1.913−0.606
0.152−0.365

]
(Region #2)

− 1.000 if

[
0.263 0.965
0.478 0.878−0.351 −0.936
−0.209 −0.978
−0.292 −0.956

]
x(t) ≤

[
1.156
1.913−0.606
0.152−0.365

]
(Region #3)

[−0.435 −1.425]x(t) − 0.456 if
[−0.292 −0.956

0.292 0.956
0.729 0.685−0.767 −0.641

]
x(t) ≤

[
0.977
0.365
3.329−2.428

]
(Region #4)

[−0.435 −1.425]x(t) + 0.456 if
[−0.292 −0.956

0.292 0.956−0.729 −0.685
0.767 0.641

]
x(t) ≤

[
0.365
0.977
3.329−2.428

]
(Region #5)

1.000 if

[−0.209 −0.978
0.209 0.978−0.333 −0.943
0.292 0.956
0.263 0.965

]
x(t) ≤

[
1.689−0.966
1.941−0.977
−1.156

]
(Region #6)

1.000 if
[−0.209 −0.978

0.209 0.978−0.447 −0.894
0.478 0.878

]
x(t) ≤

[
0.966
0.152
2.860−1.913

]
(Region #7)

− 1.000 if

[−0.209 −0.978
0.209 0.978
0.333 0.943−0.292 −0.956
−0.263 −0.965

]
x(t) ≤

[−0.966
1.689
1.941−0.977
−1.156

]
(Region #8)

− 1.000 if
[−0.209 −0.978

0.209 0.978
0.447 0.894−0.478 −0.878

]
x(t) ≤

[
0.152
0.966
2.860−1.913

]
(Region #9)

[−0.273 −1.273]x(t) − 1.198 if
[−0.209 −0.978

0.209 0.978
0.707 0.707−0.729 −0.685

]
x(t) ≤

[
1.689−0.152
6.409−3.329

]
(Region #10)

[−0.273 −1.273]x(t) + 1.198 if
[−0.209 −0.978

0.209 0.978−0.707 −0.707
0.729 0.685

]
x(t) ≤

[−0.152
1.689
6.409−3.329

]
(Region #11)

104 4 Receding Horizon Control

We test the closed-loop behaviour from the initial condition x(0) = [0, −1],
which is depicted in Fig. 4.3(a). and from the initial condition x(0) =
[−1.2, 2]′, which is depicted in Fig. 4.3(b). The union of the regions depicted
in Fig. 4.3(c) is X0. Note that from Theorem 4.3 the set X0 is also the do-
main of attraction of the RHC law. The feasibility region is larger than in the
case 2 and the performance is also improved with respect to case 2. However,
since the prediction horizon is small, the feasibility region is smaller than the
domain X∞

0 of the infinite time CLQR in Figure 2.2.

4.4 State Feedback Solution of RHC, 1, ∞-Norm Case

The state feedback receding horizon controller (4.1)–(4.2) with p = 1,∞ for
system (2.1) can be obtained explicitly by setting

u(t) = f∗
0 (x(t)), (4.20)

where f∗
0 (x0) : R

n → R
m is the piecewise affine solution to the CFTOC (4.1)

computed as explained in Section 2.36. As in the 2 norm case the explicit
form (4.20) has the advantage of being easier to implement, and provides
insight into the type of action of the controller in different regions CRi of the
state space. Such insight will be discussed in detail in the following section.

4.4.1 Idle Control and Multiple Optima

There are two main issues regarding the implementation of an RHC control
law based on linear programming: idle control and multiple solutions. The first
corresponds to an optimal move u(t) which is persistently zero, the second to
the degeneracy of the LP problem. The explicit mp-LP approach of this book
allows us to easily recognize both situations.

By analyzing the explicit solution of the RHC law, one can locate imme-
diately the critical regions where the matrices F i

0 , gi
0 in (4.20) are zero, i.e.,

where the controller provides idle control. A different tuning of the controller
is required if such polyhedral regions appear and the overall performance is
not satisfactory.

The second issue is the presence of multiple solutions, that might arise from
the degeneracy of the dual problem (1.15). Multiple optima are undesirable,
as they might lead to a fast switching between the different optimal control
moves when the optimization program (2.34) is solved on-line, unless interior-
point methods are used. The mp-LP solvers [68, 37] can detect critical regions
of degeneracy and partition them into sub-regions where a unique optimum is
defined. In this case, the algorithm presented in [68] guarantees the continuity
of the resulting optimal control law u(t) = f∗

0 (x(t)), while the algorithm
proposed in [37] could lead to a non-continuous piecewise affine control law
u(t) = f∗

0 (x(t)) inside regions of dual degeneracies. Example 4.4 will illustrate
an RHC law where multiple optima and idle control occur.

4.4 State Feedback Solution of RHC, 1,∞-Norm Case 105

4.4.2 Examples

Example 4.2. We provide here the explicit solution to the unconstrained RHC
regulation example proposed in [126]. The non-minimum phase system

y(t) =
s− 1

3s2 + 4s + 2
u(t)

is sampled at a frequency of 10 Hz, to obtain the discrete-time state-space
model x(t + 1) =

[
0.87212 −0.062344
0.093516 0.99681

]
x(t) +

[
0.093516
0.0047824

]
u(t)

y(t) =
[
0.33333 −1

]
.

In [126], the authors minimize
∑N

k=0 5|yk| + |uk,t|, with the horizon length
N = 30. Such an RHC problem can be rewritten in the form (4.1), by defining
Q =

[
1.6667 −5

0 0

]
, R = 1 and P = [0 0

0 0]. Note that since Q, P are singular
matrices, the sufficient condition for convergence of the closed loop system of
Theorem 4.3 does not hold. The solution of the mp-LP problem was computed
in 20 s by running the mp-LP solver [37] in Matlab on a Pentium III-450 MHz
and the corresponding polyhedral partition of the state-space is depicted in
Fig. 4.4(a). The RHC law is

u =

0 if
[−108.78 −157.61

5.20 37.97

]
x ≤ [0.00

0.00] (Region #1)

0 if
[−5.20 −37.97

108.78 157.61

]
x ≤ [0.00

0.00] (Region #2)

[−10.07 −14.59] x if [20.14 29.19
0.09 1.86] x ≤ [0.00

0.00] (Region #3)

[−14.55 −106.21] x if
[

29.11 212.41−1.87 −38.20

]
x ≤ [0.00

0.00] (Region #4)

[−10.07 −14.59] x if
[−20.14 −29.19

−0.09 −1.86

]
x ≤ [0.00

0.00] (Region #5)

[−14.55 −106.21] x if
[−29.11 −212.41

1.87 38.20

]
x ≤ [0.00

0.00] (Region #6)

(4.21)

In Figure 4.4(b) the closed-loop system is simulated from the initial state
x0 = [1

1]. Note the idle control behaviour during the transient.
The same problem is solved by slightly perturbing Q =

[
1.6667 −5

0 0.0001

]
so

that it becomes nonsingular, and by adding the terminal weight

P =
[
−705.3939 −454.5755
33.2772 354.7107

]
(4.22)

computed as shown in Proposition 4.1 (P̃ =
[−1.934 −1.246

0.0912 0.972

]
, H =

[
0.9345 0.0441−0.0441 0.9345

]
,

ρ = 7.8262, σ = 0.021448). The explicit solution was computed in 80 s and
consists of 44 regions.

106 4 Receding Horizon Control

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x2

x1

5

1

2

3

4
6

(a) Polyhedral partition of the
state-space corresponding to the
PPWA RHC (4.21)

0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3
-25

-20

-15

-10

-5

0

5

y(t)

u(t)

t [s]

t [s]

(b) Closed-loop RHC

Fig. 4.4. Example 4.2 with terminal weight P = 0

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

x2

x1

(a) Polyhedral partition of the
state-space corresponding to the
PPWA RHC in Example 4.2

0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3
-25

-20

-15

-10

-5

0

5

y(t)

u(t)

t [s]

t [s]

(b) Closed-loop RHC

Fig. 4.5. Example 4.2 with terminal weight P as in (4.22)

In Figure 4.5(b) the closed-loop system is simulated from the initial state
x0 = [1

1].

Example 4.3. Consider the double integrator system (2.28). We want to reg-
ulate the system to the origin while minimizing at each time step t the per-
formance measure

4.4 State Feedback Solution of RHC, 1,∞-Norm Case 107

1∑
k=0

∥∥∥∥[1 1
0 1

]
xk

∥∥∥∥
∞

+ |0.8uk,t| (4.23)

subject to the input constraints

−1 ≤ uk,t ≤ 1, k = 0, 1 (4.24)

and the state constraints

−10 ≤ xk ≤ 10, k = 1, 2. (4.25)

This task is addressed by using the RHC algorithm (4.1)–(4.2) where N = 2,
Q = [1 1

0 1], R = 0.8, P = [0 0
0 0], Xf = R

2. The solution of the mp-LP problem
was computed in 13.57 s and the corresponding polyhedral partition of the
state-space is depicted in Fig. 4.6(b). The resulting RHC law is

u =

− 1.00 if

 1.00 2.00
0.00 1.00
−1.00 −1.00
−0.80 −3.20
1.00 1.00
−1.00 −3.00

 x ≤

 11.00
11.00
10.00
−2.40
10.00
−2.00

 (Region #1)

1.00 if

 0.80 3.20
−1.00 −2.00
−1.00 −1.00
1.00 1.00
0.00 −1.00
1.00 3.00

 x ≤

−2.40
11.00
10.00
10.00
11.00
−2.00

 (Region #2)

[−0.33 −1.33] x if

[
0.53 2.13
0.67 0.67
−1.00 −1.00
−0.33 −1.33

]
x ≤

[
0.00
0.00
10.00
1.00

]
(Region #3)

0 if
[−0.80 −3.20

1.00 3.00
−1.00 −1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #4)

[−0.50 −1.50] x if

[−1.00 −1.00
0.50 0.50
−0.80 −2.40
0.50 1.50

]
x ≤

[
10.00
0.00
0.00
1.00

]
(Region #5)

0 if
[

0.80 3.20
−1.00 −3.00
1.00 1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #6)

[−0.50 −1.50] x if

[
1.00 1.00
−0.50 −0.50
0.80 2.40
−0.50 −1.50

]
x ≤

[
10.00
0.00
0.00
1.00

]
(Region #7)

[−0.33 −1.33] x if

[−0.53 −2.13
−0.67 −0.67
1.00 1.00
0.33 1.33

]
x ≤

[
0.00
0.00
10.00
1.00

]
(Region #8)

Note that region #1 and #2 correspond to the saturated controller, and
regions #4 and #6 to idle control. The same example was solved for an increas-
ing number of degrees of freedom N . The corresponding polyhedral partitions
are reported in Fig. 4.7. Note that the white regions correspond to the sat-
urated controller u(t) = −1 in the upper part, and u(t) = −1 in the lower
part. The off-line computation times and number of regions Noc

0 in the RHC
control law (4.20) are reported in Table 4.1.

108 4 Receding Horizon Control

0 5 10 15 20 25 30 35 40
-5

0

5

10
state x(t)state x(t)

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1
input u(t)input u(t)

(a) Closed-loop RHC

-15

-10

-5

0

5

10

15

x 2

-25 -20 -15 -10 -5 0 5 10 15 20 25

x
1

1

2

3

8
4

6

5

7

(b) Polyhedral partition of the
state-space and closed-loop RHC
trajectories

Fig. 4.6. Double integrator Example 4.3

Free moves N Computation time (s) N. of regions Noc
0

2 13.57 8
3 28.50 16
4 48.17 28
5 92.61 37
6 147.53 44

Table 4.1. Off-line computation times and number of regions Noc
0 in the RHC

control law (4.20) for the double integrator example

Example 4.4. Consider again the double integrator of Example 4.3, with the
performance index

min
u0,t

∥∥∥∥[1 0
0 1

]
x1

∥∥∥∥
∞

+ |u0,t| (4.26)

and again subject to constraints (4.24)– (4.25). The associated mp-LP problem
is

4.4 State Feedback Solution of RHC, 1,∞-Norm Case 109

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x
1

x 2

(a) N = 3

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x
1

x 2

(b) N = 4

-20 -15 -10 -5 0 5 10 15 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

x
1

x
2

(c) N = 5

-20 -15 -10 -5 0 5 10 15 20
-8

-6

-4

-2

0

2

4

6

8

x
1

x
2

(d) N = 6

Fig. 4.7. Polyhedral partition of the state-space corresponding to the PPWA RHC
controller in Example 4.3

min
ε1,ε2,ut

ε1 + ε2

subj. to

−1 0 1
−1 0 −1

0 −1 0
0 −1 −1
0 −1 0
0 −1 1
0 0 1
0 0 0
0 0 −1
0 0 0
0 0 1
0 0 −1

 ε1

ε2

ut

 ≤

0
0
0
0
0
0
10
10
10
10
1
1

+

0 0
0 0
1 1
0 1

−1 −1
0 −1
0 −1

−1 −1
0 1
1 1
0 0
0 0

x(t)

(4.27)

110 4 Receding Horizon Control

The solution of (4.27) was computed in 0.5s and the corresponding polyhedral
partition of the state-space is depicted in Fig. 4.8. The RHC law is

u =

degenerate if

[−1.00 −2.00
1.00 0.00
1.00 1.00−1.00 −1.00
0.00 1.00

]
x ≤

[
0.00
0.00
10.00
10.00
11.00

]
(Region #1)

0 if
[

1.00 0.00
1.00 2.00−1.00 −1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #2)

degenerate if

[−1.00 0.00
1.00 2.00
1.00 1.00−1.00 −1.00
0.00 −1.00

]
x ≤

[
0.00
0.00
10.00
10.00
11.00

]
(Region #3)

0 if
[−1.00 −2.00
−1.00 0.00
1.00 1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #4)

Note the presence of idle control and multiple optima in region #2, #4 and
#1, #3, respectively. The algorithm in [37] returns two possible sub-partitions
of the degenerate regions #1, #3. Region #1 can be partitioned as

u1A =

0 if

[−1.00 0.00
1.00 2.00
0.00 −1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #1a)

[0.00 −1.00] x + 10.00 if
[

0.00 −2.00
1.00 1.00−1.00 −1.00
0.00 1.00

]
x ≤

[−20.00
10.00
10.00
11.00

]
(Region #1b)

or

u1B =

− 1.00 if
[−1.00 −2.00

1.00 0.00
0.00 1.00

]
x ≤

[−1.00
−1.00
11.00

]
(Region #1a)

0 if
[

1.00 2.00−1.00 −2.00
1.00 0.00
0.00 1.00

]
x ≤

[
1.00
0.00
0.00
10.00

]
(Region #1b)

[0.00 −1.00] x + 10.00 if
[

1.00 2.00
0.00 −2.00
−1.00 −1.00

]
x ≤

[
1.00−20.00
10.00

]
(Region #1c)

0 if
[−1.00 0.00
−1.00 −2.00
1.00 0.00
0.00 1.00

]
x ≤

[
1.00−1.00
0.00
10.00

]
(Region #1d)

[0.00 −1.00] x + 10.00 if
[−1.00 0.00

0.00 −2.00
1.00 1.00

]
x ≤

[
1.00−20.00
10.00

]
(Region #1e)

Region #3 can be partitioned symmetrically as:

4.4 State Feedback Solution of RHC, 1,∞-Norm Case 111

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

1

2 4

3
x 2

x
1

Fig. 4.8. Polyhedral partition of the state-space corresponding to the PPWA solu-
tion to problem (4.26)

u2A =

0 if

[−1.00 −2.00
1.00 0.00
0.00 1.00

]
x ≤

[
0.00
0.00
10.00

]
(Region #3a)

[0.00 −1.00] x− 10.00 if
[

0.00 2.00
1.00 1.00−1.00 −1.00
0.00 −1.00

]
x ≤

[−20.00
10.00
10.00
11.00

]
(Region #3b)

or

u2B =

1.00 if
[−1.00 0.00

1.00 2.00
0.00 −1.00

]
x ≤

[−1.00
−1.00
11.00

]
(Region #3a)

if
[

1.00 0.00−1.00 0.00
1.00 2.00
0.00 −1.00

]
x ≤

[
1.00
0.00
0.00
10.00

]
(Region #3b)

[0.00 −1.00] x− 10.00 if
[

1.00 0.00
0.00 2.00−1.00 −1.00

]
x ≤

[
1.00−20.00
10.00

]
(Region #3c)

if
[−1.00 −2.00
−1.00 0.00
1.00 2.00
0.00 −1.00

]
x ≤

[
1.00−1.00
0.00
10.00

]
(Region #3d)

[0.00 −1.00] x− 10.00 if
[−1.00 −2.00

0.00 2.00
1.00 1.00

]
x ≤

[
1.00−20.00
10.00

]
(Region #3e)

Two possible explicit solutions to problem (4.26) are depicted in Figure 4.9.
Note that controllers u1A and u2A are continuous in Regions 1 and 2, respec-
tively, while controllers u1B and u2B are discontinuous in Regions 1 and 2,
respectively.

112 4 Receding Horizon Control

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

1a

2 4

3a

1b

3b

x 2

x
1

(a) A possible solution of Exam-
ple 4.4 obtained by choosing, for
the degenerate regions 1 and 3,
the control laws u1A and u2A

-25 -20 -15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

3a

3b

3c

3d

3e

42

1a

1b

1c

1d

1e

x 2

x
1

(b) A possible solution of Exam-
ple 4.4 obtained by choosing, for
the degenerate regions 1 and 3,
the control laws u1B and u2B

Fig. 4.9. Double integrator in Example 4.3: example of degeneracy

4.5 On-Line Computation Time

The simplest way to implement the piecewise affine feedback laws (4.18)–
(4.20) is to store the polyhedral cells {Hix ≤ Ki}, perform on-line a linear
search through them to locate the one which contains x(t) and then look
up the corresponding feedback gain (F i, gi). This procedure can be easily
parallelized (while for a QP or LP solver the parallelization is less obvious).
However, more efficient on-line implementation techniques which avoid the
storage and the evaluation of the polyhedral cells have been developed and
will be presented in Chapter 5.

4.6 RHC Extensions

In order to down-sizes the optimization problem at the price of possibly re-
duced performance, the basic RHC formulation (4.1) is usually modified as
follows

min
Ut

‖Px′
Ny
‖p +

Ny−1∑
k=0

[‖Qxk‖p + ‖Ruk,t‖p]

subj. to ymin ≤ yk ≤ ymax, k = 1, . . . , Nc

umin ≤ uk,t ≤ umax, k = 0, 1, . . . , Nu

x0 = x(t)
xk+1 = Axk + Buk,t, k ≥ 0
yk = Cxk, k ≥ 0
uk,t = Kxk, Nu ≤ k < Ny

(4.28)

4.6 RHC Extensions 113

where K is some feedback gain, Ny, Nu, Nc are the output, input, and con-
straint horizons, respectively, with Nu ≤ Ny and Nc ≤ Ny − 1.

Corollary 2.1 and Corollary 2.3 also apply to the extensions of RHC to
reference tracking, disturbance rejection, soft constraints, variable constraints,
and output feedback which will be discussed in the following.

Formulation (4.28) can be extended naturally to situations where the con-
trol task is more demanding. As long as the control task can be expressed as
an mp-QP or mp-LP, a piecewise affine controller results which can be easily
implemented. In this section we will mention only a few extensions to illus-
trate the potential. To our knowledge, these types of problems are difficult
to formulate from the point of view of anti-windup or other techniques not
related to RHC.

Reference Tracking

The controller can be extended to provide offset-free tracking of asymptoti-
cally constant reference signals. Future values of the reference trajectory can
be taken into account by the controller explicitly so that the control action is
optimal for the future trajectory in the presence of constraints.

Let the goal be to have the output vector y(t) track r(t), where r(t) ∈ R
p

is the reference signal. To this aim, consider the RHC problem

min
∆Ut�{δu0,t,...,δuNu−1,t}

{∑Ny−1
k=0 ‖Q(yk − r(t))‖p + ‖Rδuk,t‖p

}
subj. to ymin ≤ yk ≤ ymax, k = 1, . . . , Nc

umin ≤ uk,t ≤ umax, k = 0, 1, . . . , Nu

δumin ≤ δuk,t ≤ δumax, k = 0, 1, . . . , Nu − 1
xk+1 = Axk + Buk,t, k ≥ 0
yk = Cxk, k ≥ 0
uk,t = uk−1,t + δuk,t, k ≥ 0
δuk,t = 0, k ≥ Nu

x0 = x(t)

(4.29)

with
u(t) = δu∗

0,t + u(t− 1). (4.30)

Note that the δu-formulation (4.29) introduces m new states in the predictive
model, namely the last input u(t− 1).

Just like the regulation problem, we can transform the tracking prob-
lem (4.29) into a multiparametric program. For example, for p = 2 the form

min
∆U

1
2∆U ′H∆U + [x′(t) u′(t− 1) r′(t)] F∆U

subj. to G∆U ≤ W + E

x(t)
u(t− 1)
r(t)

 (4.31)

114 4 Receding Horizon Control

results, where r(t) lies in a given (possibly unbounded) polyhedral set. Thus,
the same mp-QP algorithm can be used to obtain an explicit piecewise affine
solution δu(t) = F (x(t), u(t − 1), r(t)). In case the reference r(t) is known in
advance, one can replace r(t) by r(k) in (4.29) and similarly get a piecewise
affine anticipative controller δu(t) = F (x(t), u(t− 1), r(t), . . . , r(Ny − 1)).

Disturbances

We distinguish between measured and unmeasured disturbances. Measured
disturbances v(t) can be included in the prediction model

x(k + 1) = Ax(k) + Bu(k) + V v(k) (4.32)

where v(k) is the prediction of the disturbance at time k based on the
measured value v(t). Usually v(k) is a linear function of v(t), for instance
v(k) ≡ v(t) where it is assumed that the disturbance is constant over the
prediction horizon. Then v(t) appears as a vector of additional parameters
in the QP, and the piecewise affine control law becomes u(t) = F (x(t), v(t)).
Alternatively, as for reference tracking, when v(t) is known in advance one can
replace v(k) by the known v̄(k) in (4.32) and get an anticipative controller
δu(t) = F (x(t), u(t− 1), v̄(t), . . . , v̄(Ny − 1)).

Unmeasured disturbances are usually modeled as the output of a linear
system driven by white Gaussian noise. The state vector x(t) of the linear
prediction model (2.1) is augmented by including the state xn(t) of such a
linear disturbance model, and the QP provides a control law of the form
δu(t) = F (x(t), xn(t)) within a certain range of states of the plant and of
the disturbance model. Clearly, xn(t) must be estimated on line from output
measurements by a linear observer.

Soft Constraints

State and output constraints can lead to feasibility problems. For example,
a disturbance may push the output outside the feasible region where no al-
lowed control input may exist which brings the output back in at the next
time step. Therefore, in practice, the output constraints (2.2) are relaxed or
softened [161] as ymin−Mε ≤ y(t) ≤ ymax +Mε, where M ∈ R

p is a constant
vector (M i ≥ 0 is related to the “concern” for the violation of the i-th output
constraint), and the term ρε2 is added to the objective to penalize constraint
violations (ρ is a suitably large scalar). The variable ε plays the role of an in-
dependent optimization variable in the QP and is adjoined to z. The solution
u(t) = F (x(t)) is again a piecewise affine controller, which aims at keeping the
states in the constrained region without ever running into feasibility problems.

4.6 RHC Extensions 115

Variable Constraints

The bounds ymin, ymax, δumin, δumax, umin, umax may change depending
on the operating conditions, or in the case of a stuck actuator the con-
straints become δumin = δumax = 0. This possibility can again be built
into the control law. The bounds can be treated as parameters in the QP
and added to the vector x. The control law will have the form u(t) =
F (x(t), ymin, ymax, δumin, δumax, umin, umax).

5

Constrained Robust Optimal Control

118 5 Constrained Robust Optimal Control

For discrete-time uncertain linear systems with constraints on inputs and
states, we develop an approach to determine the state feedback controller
based on a min-max optimal control formulation based on a linear perfor-
mance index. Robustness is achieved against additive norm-bounded input
disturbances and/or polyhedral parametric uncertainties in the state-space
matrices. We show that the robust optimal control law over a finite horizon
is a continuous piecewise affine function of the state vector. Thus, when the
optimal control law is implemented in a moving horizon scheme, the on-line
computation of the resulting controller requires the evaluation of a piecewise
affine function only.

5.1 Introduction

A control system is robust when stability is preserved and the performance
specifications are met for a specified range of model variations and a class of
noise signals (uncertainty range). Although a rich theory has been developed
for the robust control of linear systems, very little is known about the ro-
bust control of linear systems with constraints. This type of problem has been
addressed in the context of constrained optimal control, and in particular in
the context of robust model predictive control (MPC) (see e.g. [112, 107]).
A typical robust RHC/MPC strategy consists of solving a min-max prob-
lem to optimize robust performance (the minimum over the control input
of the maximum over the disturbance) while enforcing input and state con-
straints for all possible disturbances. Min-max robust constrained optimal con-
trol was originally proposed by Witsenhausen [159]. In the context of robust
MPC, the problem was tackled by Campo and Morari [45], and further devel-
oped in [3] for SISO FIR plants. Kothare et al. [101] optimize robust perfor-
mance for polytopic/multi-model and linear fractional uncertainty, Scokaert
and Mayne [133] for additive disturbances, and Lee and Yu [104] for linear
time-varying and time-invariant state-space models depending on a vector of
parameters θ ∈ Θ, where Θ is either an ellipsoid or a polyhedron. In all cases,
the resulting min-max optimization problems turn out to be computationally
demanding, a serious drawback for on-line receding horizon implementation.

In this chapter we show how state feedback solutions to min-max robust
constrained optimal control problems based on a linear performance index
can be computed off-line for systems affected by additive norm-bounded in-
put disturbances and/or polyhedral parametric uncertainty. We show that the
resulting optimal state feedback control law is affine so that on-line computa-
tion involves a simple function evaluation. The approach of this chapter relies
on multiparametric solvers, and follows the ideas proposed in the previous
chapters for the optimal control of linear systems without uncertainty.

5.2 Problem Formulation 119

5.2 Problem Formulation

Consider the following discrete-time linear uncertain system

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ev(t) (5.1)

subject to constraints
Fx(t) + Gu(t) ≤ f, (5.2)

where x(t) ∈ R
n and u(t) ∈ R

nu are the state and input vector, respectively.
Vectors v(t) ∈ R

nv and w(t) ∈ R
nw are unknown exogenous disturbances and

parametric uncertainties, respectively, and we assume that only bounds on
v(t) and w(t) are known, namely that v(t) ∈ V , where V ⊂ R

nv is a given
polytope containing the origin , V = {v : Lv ≤ 	}, and that w(t) ∈ W = {w :
Mw ≤ m}, where W is a polytope in R

nw . We also assume that A(·), B(·)
are affine functions of w, A(w) = A0 +

∑q
i=1 Aiwi, B(w) = B0 +

∑q
i=1 Biwi,

a rather general time-domain description of uncertainty (see e.g. [31]), which
includes uncertain FIR models [45].

The following min-max optimal control problem will be referred to as
Open-Loop Constrained Robust Optimal Control (OL-CROC) problem:

J∗
N (x0) � min

u0,...,uN−1
J(x0, U) (5.3)

subj. to

Fxk + Guk ≤ f
xk+1 = A(wk)xk + B(wk)uk + Evk

xN ∈ Xf

k = 0, . . . , N − 1

 ∀vk ∈ V , wk ∈ W
∀k = 0, . . . , N − 1

(5.4)

J(x0, U) � max
v0, . . . , vN−1
w0, . . . , wN−1

{
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p + ‖PxN‖p

}
(5.5)

subj. to

xk+1 = A(wk)xk + B(wk)uk + Evk

vk ∈ V
wk ∈ W ,
k = 0, . . . , N − 1

(5.6)

where xk denotes the state vector at time k, obtained by starting from
the state x0 � x(0) and applying to model (5.1) the input sequence U �
{u0, . . . , uN−1} and the sequences V � {v0, . . . , vN−1}, W � {w0, . . . , wN−1};
p = 1 or p = +∞, ‖x‖∞ and ‖x‖1 are the standard ∞-norm and 1-norm in
R

n, Q ∈ R
n×n, R ∈ R

nu×nu are non-singular matrices, P ∈ R
m×n, and the

constraint xN ∈ Xf forces the final state xN to belong to the polyhedral set

Xf � {x ∈ R
n : FNx ≤ fN}. (5.7)

The choice of Xf is typically dictated by stability and feasibility require-
ments when (5.3)–(5.6) is implemented in a receding horizon fashion, as will be

120 5 Constrained Robust Optimal Control

discussed later in Section 5.4. Problem (5.5)–(5.6) looks for the worst value
J(x0, U) of the performance index and the corresponding worst sequences
V , W as a function of x0 and U , while problem (5.3)–(5.4) minimizes the
worst performance subject to the constraint that the input sequence must be
feasible for all possible disturbance realizations. In other words, worst-case
performance is minimized under constraint fulfillment against all possible re-
alizations of V , W .

In the sequel, we denote by U∗ = {u∗
0, . . . , u

∗
N−1} the optimal solution

to (5.3)–(5.6) where u∗
j : R

n �→ R
nu , j = 0, . . . , N − 1, and by X0 the set of

initial states x0 for which (5.3)–(5.6) is feasible.
The min-max formulation (5.3)–(5.6) is based on an open-loop prediction,

in contrast to the closed-loop prediction schemes of [133, 104, 101, 102, 14].
In [102, 14] uk = Fxk + ūk, where F is a constant linear feedback law, and
ūk are new degrees of freedom optimized on-line. In [101] uk = Fxk, and F is
optimized on-line via linear matrix inequalities. In [14] uk = Fxk + ūk, where
ūk and F are optimized on line (for implementation, F is restricted to belong
to a finite set of LQR gains). In [133, 104] the optimization is over general
feedback laws.

The benefits of closed-loop prediction can be understood by viewing the
optimal control problem as a dynamic game between the disturbance and the
input. In open-loop prediction the whole disturbance sequence plays first, then
the input sequence is left with the duty of counteracting the worst disturbance
realization. By letting the whole disturbance sequence play first, the effect of
the uncertainty may grow over the prediction horizon and may easily lead to
infeasibility of the min problem (5.3)–(5.4). On the contrary, in closed-loop
prediction schemes the disturbance and the input play one move at a time,
which makes the effect of the disturbance more easily mitigable [14].

In order not to impose any predefined structure on the closed-loop con-
troller, we define the following Closed-Loop Constrained Robust Optimal Con-
trol (CL-CROC) problem [159, 111, 29, 104]:

J∗
j (xj) � min

uj

Jj(xj , uj) (5.8)

subj. to
{

Fxj + Guj ≤ f
A(wj)xj + B(wj)uj + Evj ∈ Xi+1

}
∀vj ∈ V , wj ∈ W

(5.9)

Jj(xj , uj) � max
vj∈V, wj∈W

{
‖Qxj‖p + ‖Ruj‖p + J∗

j+1(A(wj)xj + B(wj)uj + Evj)
}

(5.10)

for j = 0, . . . , N − 1 and with boundary conditions

J∗
N (xN) = ‖PxN‖p (5.11)

XN = Xf , (5.12)

5.3 State Feedback Solution to CROC Problems 121

where Xj denotes the set of states x for which (5.8)–(5.10) is feasible

Xj = {x ∈ R
n| ∃u, (Fx + Gu ≤ f, and

and A(w)x + B(w)u + Ev ∈ Xj+1 ∀v ∈ V , w ∈ W)}. (5.13)

The reason for including constraints (5.9) in the minimization problem and
not in the maximization problem is that in (5.10) vj is free to act regardless of
the state constraints. On the other hand, the input uj has the duty of keeping
the state within the constraints (5.9) for all possible disturbance realization.

We will consider different ways of solving OL-CROC and CL-CROC prob-
lems in the following sections. First we will briefly review other algorithms
that were proposed in the literature.

For models affected by additive norm-bounded disturbances and paramet-
ric uncertainties on the impulse response coefficients, Campo and Morari [45]
show how to solve the OL-CROC problem via linear programming. The idea
can be summarized as follows. First, the minimization of the objective func-
tion (5.3) is replaced by the minimization of an upper-bound µ on the objective
function subject to the constraint that µ is indeed an upper bound for all se-
quences V ∈ ΩV (although µ is an upper bound, at the optimum it coincides
with the optimal value of the original problem). Then, by exploiting the con-
vexity of the objective function (5.3) with respect to V , such a continuum of
constraints is replaced by a finite number, namely one for each vertex of the
set ΩV . As a result, for a given value of the initial state x(0), the OL-CROC
problem is recast as a linear program (LP).

A solution to the CL-CROC problem was given in [133] using a similar
convexity and vertex enumeration argument. The idea there is to augment
the number of free inputs by allowing one free sequence Ui for each vertex i
of the set V × V × . . . × V , i.e. N · NN

V free control moves, where NV is the
number of vertices of the set V . By using a causality argument, the number
of such free control moves is decreased to (NN

V − 1)/(NV − 1). Again, using
the minimization of an upper-bound for all the vertices of V ×V × . . .×V , the
problem is recast as a finite dimensional convex optimization problem, which
in the case of ∞-norms or 1-norms, can be handled via linear programming as
in [45] (see [98] for details). By reducing the number of degrees of freedom in
the choice of the optimal input moves, other suboptimal CL-CROC strategies
have been proposed, e.g., in [101, 14, 102].

5.3 State Feedback Solution to CROC Problems

In Section 5.2 we reviewed different approaches to compute the optimal input
sequence solving the CROC problems for a given value of the initial state x0.
For a very general parameterization of the uncertainty description, in [104] the
authors propose to solve CL-CROC in state feedback form via dynamic pro-
gramming by discretizing the state-space. Therefore the technique is limited

122 5 Constrained Robust Optimal Control

to simple low-dimensional prediction models. In this chapter we want to find a
state feedback solution to CROC problems, namely an explicit function u∗

k(xk)
mapping the state xk to its corresponding optimal input u∗

k, ∀k = 0, . . . , N−1.
We aim at finding the exact solution to CROC problems via multiparametric
programming [68, 57, 25, 37], and in addition, for the CL-CROC problem, by
using dynamic programming.

5.3.1 Preliminaries on Multiparametric Programming

Consider the multiparametric mixed-integer linear program (mp-MILP)

J∗(x) = minz g′z
s.t. Cz ≤ c + Sx,

(5.14)

where z � [zc, zd], zc ∈ R
nc , zd ∈ {0, 1}nd, nz � nc + nd is the optimization

vector, x ∈ R
n is the vector of parameters, and g ∈ R

nz , C ∈ R
q×nz , c ∈ R

q,
S ∈ R

q×n are constant matrices. If in problem (5.14) there are no integer
variables, i..e. nd = 0, then (5.14) is a multiparametric linear program (mp-
LP) (see Chapter 1) .

For a given polyhedral set X ⊆ R
n of parameters, solving (5.14) amounts

to determining the set Xf ⊆ X of parameters for which (5.14) is feasible, the
value function J : Xf → R, and the optimizer function1 z∗ : Xf → R

nz .
The properties of J∗(·) and z∗(·) have been analyzed in Chapter 1 and

summarized in Theorems 1.8 and 1.16. Below we give some results based on
these theorems.

Lemma 5.1. Let J : R
nz ×R

n → R be a continuous piecewise affine (possibly
nonconvex) function of (z, x),

J(z, x) = Liz + Hix + Ki for [z
x] ∈ Ri, (5.15)

where {Ri}s
i=1 are polyhedral sets with disjoint interiors, R �

⋃s
i=1Ri is a

(possibly non-convex) polyhedral set and Li, Hi and Ki are matrices of suitable
dimensions. Then the multiparametric optimization problem

J∗(x) � minz J(z, x)
subj. to Cz ≤ c + Sx.

(5.16)

is an mp-MILP.

Proof: By following the approach of [23] to transform piecewise affine
functions into a set of mixed-integer linear inequalities, introduce the auxiliary
binary optimization variables δi ∈ {0, 1}, defined as

[δi = 1] ↔
[
[z
x] ∈ Ri

]
, (5.17)

1 In case of multiple solutions, we define z∗(x) as one of the optimizers.

5.3 State Feedback Solution to CROC Problems 123

where δi, i = 1, . . . , s, satisfy the exclusive-or condition
∑s

i=1 δi = 1, and set

J(z, x) =
s∑

i=1

qi (5.18)

qi � [Liz + Hix + Ki]δi (5.19)

where qi are auxiliary continuous optimization vectors. By transforming (5.17)–
(5.19) into mixed-integer linear inequalities [23], it is easy to rewrite (5.16) as
a multiparametric MILP. �

The following lemma deals with the special case where J is a convex func-
tion of z and x (i.e., R � ∪s

i=1Ri is a convex set and J is convex over R).

Lemma 5.2. Let J : R
nz × R

n → R be a convex piecewise affine function of
(z, x). Then the multiparametric optimization problem (5.16) is an mp-LP.

Proof: As J is a convex piecewise affine function, it follows that J(z, x) =
maxi=1,...,s {Liz + Hix + Ki} [132]. Then, it is easy to show that (5.16) is
equivalent to the following mp-LP: minz,ε ε subject to Cz ≤ c + Sx, Liz +
Hix + Ki ≤ ε, i = 1, . . . , s. �

Lemma 5.3. Let f : R
nz × R

n × R
nd → R and g : R

nz × R
n × R

nd →
R

ng be functions of (z, x, d) convex in d for each (z, x). Assume that the
variable d belongs to the polyhedron D with vertices {d̄i}ND

i=1. Then, the min-
max multiparametric problem

J∗(x) = minz maxd∈D f(z, x, d)
subj. to g(z, x, d) ≤ 0 ∀d ∈ D (5.20)

is equivalent to the multiparametric optimization problem

J∗(x) = minµ,z µ
subj. to µ ≥ f(z, x, d̄i), i = 1, . . . , ND

g(z, x, d̄i) ≤ 0, i = 1, . . . , ND.
(5.21)

Proof: Easily follows by the fact that the maximum of a convex function
over a convex set is attained at an extreme point of the set, cf. also [133]. �

�

Corollary 5.1. If f is also convex and piecewise affine in (z, x), i.e. f(z, x, d) =
maxi=1,...,s {Li(d)z + Hi(d)x + Ki(d)} and g is linear in (z, x) for all d ∈ D,
g(z, x, d) = Kg(d) + Lg(d)x + Hg(d)z (with Kg(·), Lg(·), Hg(·), Li(·), Hi(·),
Ki(·), i = 1, . . . , s, convex functions), then the min-max multiparametric prob-
lem (5.20) is equivalent to the mp-LP problem

J∗(x) = minµ,z µ
subj. to µ ≥ Kj(d̄i) + Lj(d̄i)z + Hj(d̄i)x, i = 1, . . . , ND, j = 1, . . . , s

Lg(d̄i)x + Hg(d̄i)z ≤ −Kg(d̄i), i = 1, . . . , ND
(5.22)

124 5 Constrained Robust Optimal Control

Remark 5.1. In case g(x, z, d) = g1(x, z)+g2(d), the second constraint in (5.21)
can be replaced by g(z, x) ≤ −ḡ, where ḡ �

[
ḡ1, . . . , ḡng

]′ is a vector whose
i-th component is

ḡi = max
d∈D

gi
2(d), (5.23)

and gi
2(d) denotes the i-th component of g2(d). Similarly, if f(x, z, d) =

f1(x, z)+f2(d), the first constraint in (5.21) can be replaced by f(z, x) ≤ −f̄ ,
where

f̄i = max
d∈D

f i
2(d). (5.24)

Clearly, this has the advantage of reducing the number of constraints in the
multiparametric program from NDng to ng for the second constraint in (5.21)
and from NDs to s for the first constraint in (5.21).

In the following subsections we propose two different approaches to solve
CROC problems in state feedback form, the first one is based on multipara-
metric linear programming and the second one based on multiparametric
mixed-integer linear programming.

5.3.2 Closed Loop CROC

Theorem 5.1. By solving N mp-LPs, the solution of CL-CROC (5.8)–(5.12)
is obtained in state feedback piecewise affine form

u∗
k(x(k)) = F i

kx(k) + gi
k, if x(k) ∈ CRi

k, i = 1, . . . , Nr
k (5.25)

where the sets CRi
k i = 1, . . . , N r

k are a polyhedral partition of the set of
feasible states Xk at time k.

Proof: Consider the first step j = N−1 of dynamic programming applied
to the CL-CROC problem (5.8)–(5.10)

J∗
N−1(xN−1) � min

uN−1
JN−1(xN−1, uN−1) (5.26)

subj. to

FxN−1 + GuN−1 ≤ f
A(wN−1)xN−1 + B(wN−1)uN−1 + EvN−1 ∈ Xf

∀vN−1 ∈ V , wN−1 ∈ W
(5.27)

JN−1(xN−1, uN−1) � max
vN−1∈V, wN−1∈W

‖QxN−1‖p + ‖RuN−1‖p+
+‖P (A(wN−1)xN−1+
+B(wN−1)uN−1 + EvN−1)‖p

.

(5.28)

The cost function in the maximization problem (5.28) is piecewise affine and
convex with respect to the optimization vector vN−1, wN−1 and the param-
eters uN−1, xN−1. Moreover, the constraints in the minimization problem

5.3 State Feedback Solution to CROC Problems 125

(5.27) are linear in (uN−1, xN−1) for all vectors vN−1, wN−1. Therefore, by
Corollary 5.1, J∗

N−1(xN−1), u∗
N−1(xN−1) and XN−1 are computable via the

mp-LP:

J∗
N−1(xN−1) � min

µ,uN−1
µ (5.29a)

s.t. µ ≥ ‖QxN−1‖p + ‖RuN−1‖p +
+ ‖P (A(w̄h)xN−1 + B(w̄h)uN−1 + Ev̄i)‖p(5.29b)
FxN−1 + GuN−1 ≤ f (5.29c)
A(w̄h)xN−1 + B(w̄h)uN−1 + Ev̄i ∈ XN (5.29d)
∀i = 1, . . . , NV , ∀h = 1, . . . , NW .

where {v̄i}NV
i=1 and {w̄h}NW

h=1 are the vertices of the disturbance sets V and W ,
respectively. By Theorem 1.8, J∗

N−1 is a convex and piecewise affine function
of xN−1, the corresponding optimizer u∗

N−1 is piecewise affine and continuous,
and the feasible set XN−1 is a convex polyhedron. Therefore, the convexity
and linearity arguments still hold for j = N − 2, . . . , 0 and the procedure can
be iterated backwards in time j, proving the theorem. �

Remark 5.2. Let na and nb be the number of inequalities in (5.29b) and (5.29d),
respectively, for any i and h. In case of additive disturbances only (w(t) = 0)
the total number of constraints in (5.29b) and (5.29d) for all i and h can be
reduced from (na + nb)NVNW to na + nb as shown in Remark 5.1.

The following corollary is an immediately consequence of the continuity
properties of the mp-LP recalled in Theorem 1.8, and from Theorem 5.1:

Corollary 5.2. The piecewise affine solution u∗
k : R

n → R
nu to the CL-

CROC problem is a continuous function of xk, ∀k = 0, . . . , N − 1.

5.3.3 Open Loop CROC

Theorem 5.2. The solution U∗ : X0 → R
Nnu to OL-CROC with parametric

uncertainties in the B matrix only (A(w) ≡ A), is a piecewise affine function
of x0 ∈ X0, where X0 is the set of initial states for which a solution to (5.3)–
(5.6) exists. It can be found by solving an mp-LP.

Proof: Since xk = Akx0 +
∑k−1

k=0 Ai[B(w)uk−1−i + Evk−1−i] is a linear
function of the disturbances W , V for any given U and x0, the cost function
in the maximization problem (5.5) is convex and piecewise affine with respect
to the optimization vectors V , W and the parameters U , x0. The constraints
in (5.3) are linear in U and x0, for any V and W . Therefore, by Lemma 5.3,
problem (5.3)–(5.6) can be solved by solving an mp-LP through the enumer-
ation of all the vertices of the sets V × V × . . . × V and W ×W × . . . ×W .
�

We remark that Theorem 5.2 covers a rather broad class of uncertainty
descriptions, including uncertainty on the coefficients of the impulse and step

126 5 Constrained Robust Optimal Control

response [45]. In case of OL-CROC with additive disturbances only (w(t) = 0)
the number of constraints in (5.4) can be reduced as explained in Remark 5.1.

Remark 5.3. While in the mp-LP problem for OL-CROC given by Theo-
rem 5.2 the number of optimization variables is proportional to N , in the
mp-LP problem resulting from the CL-CROC approach of [133, 98] it is pro-
portional to NV · max{N, nN

v }. The larger number of degrees of freedom in
CL-CROC is another way of explaining its superior performance with respect
to OL-CROC.

The following is a corollary of the continuity properties of mp-LP recalled
in Theorem 1.8 and of Theorem 5.2:

Corollary 5.3. The piecewise affine solution U∗ : X0 → R
Nnu to the OL-

CROC problem with additive disturbances and uncertainty in the B matrix
only (A(w) ≡ A) is a continuous function of x0.

5.3.4 Solution to CL-CROC and OL-CROC via mp-MILP

Theorem 5.3. By solving 2N mp-MILPs, the solution of the CL-CROC (5.8)–
(5.12) problem with additive disturbances only (w(t) = 0) can be obtained in
state feedback piecewise affine form (5.25)

Proof: Consider the first step j = N − 1 of the dynamic programming
solution (5.8)–(5.10) to CL-CROC. From the terminal conditions (5.12) it
follows that the cost function in the maximization problem is piecewise affine
with respect to both the optimization vector vN−1 and the parameters uN−1,
xN−1. By Lemma 5.1, (5.8)-(5.10) can be computed via mp-MILP, and, by
Theorem 1.16, it turns out that JN−1(uN−1, xN−1) is a piecewise affine and
continuous function. Then, since constraints (5.27) are linear with respect to
vN−1 for each uN−1, xN−1, we can apply Lemma 5.3 by solving LPs of the
form (5.23). Then, by Lemma 5.1, J∗

N−1(xN−1) is again computable via mp-
MILP, and by Theorem 1.16 it is a piecewise affine and continuous function of
xN−1. By virtue of Theorem 1.16, XN−1 is a (possible non-convex) polyhedral
set and therefore the above maximization and minimization procedures can
be iterated to compute the solution (5.25) to the CL-CROC problem. �

Theorem 5.4. By solving two mp-MILPs, the solution U∗(x0) : X0 → R
Nnu

to OL-CROC with additive disturbances only (w(t) = 0) can be computed in
explicit piecewise affine form, where X0 is the set of states for which a solution
to (5.3)–(5.6) exists.

Proof: The objective function in the maximization problem (5.5) is
convex and piecewise affine with respect to the optimization vector V =
{v0, . . . , vN−1} and the parameters U = {u0, . . . , uN−1}, x0. By Lemma 5.1,
it can be solved via mp-MILP. By Theorem 1.16, the value function J is a
piecewise affine function of U and x0 and the constraints in (5.3) are a linear

5.5 Examples 127

function of the disturbance V for any given U and x0. Then, by Lemma 5.1
and Lemma 5.3 the minimization problem is again solvable via mp-MILP, and
the optimizer U∗ = {u∗

0,. . . ,u
∗
N−1} is a piecewise affine function of x0. �

Remark 5.4. Theorems 5.3, 5.4 and Theorems 5.1, 5.2 propose two different
ways of finding the PPWA solution to constrained robust optimal control by
using dynamic programming. The solution approach of Theorems 5.3, 5.4 is
more general than the one of Theorems 5.1, 5.2 as it does not exploit convexity,
so that it may be also used in other contexts, for instance in CL-CROC of
hybrid systems.

5.4 Robust Receding Horizon Control

A robust receding horizon controller for system (5.1) which enforces the con-
straints (5.2) at each time t in spite of additive and parametric uncertainties
can be obtained immediately by setting

u(t) = u∗
0(x(t)), (5.30)

where u∗
0(x0) : R

n → R
nu is the piecewise affine solution to the OL-CROC

or CL-CROC problems developed in the previous sections. In this way we
obtain a state feedback strategy defined at all time steps t = 0, 1, . . ., from
the associated finite time CROC problem.

For stability and feasibility of the closed-loop system (5.1), (5.30) we refer
the reader to previously published results on robust MPC, see e.g. [24, 107,
112], although general stability criteria for the case of parametric uncertainties
are still an open problem.

When the optimal control law is implemented in a moving horizon scheme,
the on-line computation consists of a simple function evaluation. However,
when the number of constraints involved in the optimization problem in-
creases, the number of regions associated with the piecewise affine control
mapping may increase exponentially. In [35, 149] efficient algorithms for the
on-line evaluation of the piecewise affine optimal control law were presented,
where efficiency is in terms of storage demand and computational complexity.

5.5 Examples

In [17] we compared the state feedback solutions to nominal MPC [18], open-
loop robust MPC, and closed-loop robust MPC for the example considered
in [133], using infinity norms instead of quadratic norms in the objective
function. For closed-loop robust MPC, the off-line computation time in Matlab
5.3 on a Pentium III 800 was about 55 s by using the approach of Theorem 5.3
(mp-MILP), and 1.27 s by using Theorem 5.1 (mp-LP). Below we consider
another example.

128 5 Constrained Robust Optimal Control

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x 2

x
1

(a) Nominal Opti-
mal Control

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

x 2

x
1

(b) OL-CROC

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x 2

x
1

(c) CL-CROC

Fig. 5.1. Polyhedral partition of the state-space corresponding to the explicit solu-
tion of nominal optimal control, OL-CROC and CL-CROC

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

Time

D
is

tu
rb

a
n

c
e

S
e

q
u

e
n

c
e

D
is

tu
rb

a
n

c
e

S
e

q
u

e
n

c
e

(a) Disturbance profile #1

D
is

tu
rb

a
n

c
e

S
e

q
u

e
n

c
e

D
is

tu
rb

a
n

c
e

S
e

q
u

e
n

c
e

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

Time

(b) Disturbance profile #2

Fig. 5.2. Disturbances profiles

Example 5.1. Consider the problem of robustly regulating to the origin the
system x(t+1) = [1 1

0 1] x(t)+[0
1] u(t)+[1 0

0 1] v(t). We consider the performance
measure ‖PxN‖∞ +

∑N−1
k=0 (‖Qxk‖∞ + |Ruk|), where N = 4, P = Q = [1 1

0 1],
R = 1.8, and U = {u0, . . . , u3}, subject to the input constraints −3 ≤ uk ≤ 3,
k = 0, . . . , 3, and the state constraints−10 ≤ xk ≤ 10, k = 0, . . . , 3 (Xf = R

2).
The two-dimensional disturbance v is restricted to the set V = {v : ‖v‖∞ ≤
1.5}.

We compare the control law (5.30) for the nominal case, OL-CROC, and
CL-CROC.

Nominal case. We ignore the disturbance v(t), and solve the resulting
multiparametric linear program by using the approach of [18]. The state feed-
back piecewise affine control law is computed in 23 s, and the corresponding
polyhedral partition is depicted in Figure 5.1(a) (for lack of space, we do
not report here the different affine gains for each region). The closed-loop sys-
tem is simulated from the initial state x(0) = [−8, 0] by applying two different
disturbances profiles shown in Figure 5.2. Figures 5.3(a)-5.3(b) report the cor-
responding evolutions of the state vector. Note that the second disturbance
profile leads to infeasibility at step 3.

5.5 Examples 129

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

Time

S
ta

te
s

S
ta

te
s

(a) nominal MPC, disturbance
profile #1

-15

-10

-5

0

5

S
ta

te
s

S
ta

te
s

0 2 4 6 8 10 12 14 16 18 20
Time

(b) nominal MPC, disturbance
profile #2

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

Time

S
ta

te
s

S
ta

te
s

(c) Open-Loop Robust MPC,
disturbance profile #1

-15

-10

-5

0

5

S
ta

te
s

0 2 4 6 8 10 12 14 16 18 20
Time

(d) Open-Loop Robust MPC,
disturbance profile #2

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

Time

S
ta

te
s

(e) Closed-Loop Robust MPC,
disturbance profile #1

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

Time

S
ta

te
s

S
ta

te
s

(f) Closed-Loop Robust MPC,
disturbance profile #2

Fig. 5.3. Closed-loop simulations of nominal optimal control, open-loop robust
MPC and closed-loop robust MPC

OL-CROC. The min-max problem is formulated as in (5.3)–(5.6) and
solved off-line in 582 s. The resulting polyhedral partition is depicted in Fig-
ure 5.1(b). In Figures 5.3(c)- 5.3(d) the closed-loop system is simulated from
the initial state x(0) = [−8, 0] by applying the disturbances profiles in Fig-
ure 5.2.

CL-CROC. The min-max problem is formulated as in (5.8)–(5.10) and
solved in 53 s using the approach of Theorem 5.1. The resulting polyhedral
partition is depicted in Figure 5.1(c). In Figures 5.3(e)-5.3(f) the closed-loop
system is again simulated from the initial state x(0) = [−8, 0] by applying the
disturbances profiles in Figure 5.2.

Remark 5.5. As shown in [98], the approach of [133] to solve CL-CROC, re-
quires the solution of one mp-LP where the number of constraints is propor-
tional to the number NN

V of extreme points of the set V ×V × . . .×V ⊂ R
Nnv

130 5 Constrained Robust Optimal Control

of disturbance sequences, and the number of optimization variables is propor-
tional to NV ·max{N, nN

v }, where NV is the number of vertices of V .
Let nJ∗

i
and nXi be the number of the affine gains of the cost-to-go func-

tion J∗
i and the number of constraints defining Xi, respectively. The dynamic

programming approach of Theorem 5.1 requires N mp-LPs where at step i
the number of optimization variables is nu + 1 and the number of constraints
is equal to a quantity proportional to (nJ∗

i
+ nXi). Usually nJ∗

i
and nXi do

not increase exponentially during the recursion i = N − 1, . . . , 0 (even if, in
the worst case, they could). For instance in Example 5.1, we have at step 0
nJ∗

0
= 34 and nX0 = 4 while NV = 4 and NN

V = 256. As the complexity
of an mp-LP depends mostly (in general combinatorially) on the number of
constraints, one can expect that the approach presented here is numerically
more efficient than the approach of [133, 98].

We remark that the off-line computational time of CL-CROC is about
ten times smaller than the one of OL-CROC, where the vertex enumeration
would lead to a problem with 12288 constraints, reduced to 38 after removing
redundant inequalities in the extended space of variables and parameters. We
finally remark that by enlarging the disturbance v to the set Ṽ = {v : ‖v‖∞ ≤
2} the OL-RMPC problem becomes infeasible for all the initial states, while
the CL-RMPC problem is still feasible for a certain set of initial states.

Example 5.2. We consider here the problem of robustly regulating to the ori-

gin the active suspension system [89] x(t + 1) =
[

0.809 0.009 0 0−36.93 0.80 0 0
0.191 −0.009 1 0.01

0 0 0 1

]
x(t) +[

0.0005
0.0935−0.005
−0.0100

]
u(t) +

[−0.009
0.191−0.0006

0

]
v(t) where the input disturbance v(t) represents

the vertical ground velocity of the road profile and u(t) the vertical ac-
celeration. We solved the CL-CROC (5.8)–(5.10) with N = 4, P = Q =
diag{5000, 0.1, 400, 0.1}, X f = R

4, and R = 1.8, with input constraints

−5 ≤ u ≤ 5, and the state constraints
[−0.02

−∞
−0.05
−∞

]
≤ x ≤

[
0.02
+∞
0.05
+∞

]
. The dis-

turbance v is restricted to the set −0.4 ≤ v ≤ 0.4. The problem was solved in

less then 5 minutes for the subset X =
{

x ∈ R
4|
[−0.02

−1
−0.05
−0.5

]
≤ x ≤

[
0.02
1

0.50
0.5

]}
of

states, and the resulting piecewise-affine robust optimal control law is defined
over 390 polyhedral regions.

6

Reducing On-line Complexity

132 6 Reducing On-line Complexity

By exploiting the properties of the value function and the piecewise affine
optimal control law of constrained finite time optimal control (CFTOC) prob-
lem, we propose two new algorithms that avoid storing the polyhedral regions.
The new algorithms significantly reduce the on-line storage demands and com-
putational complexity during evaluation of the PPWA feedback control law
resulting from the CFTOC problem.

6.1 Introduction

In Chapter 2 we have shown how to compute the solution to the constrained
finite-time optimal control (CFTOC) problem as an explicit piecewise affine
function of the initial state. Such a function is computed off-line by using a
multiparametric program solver [25, 37], which divides the state space into
polyhedral regions, and for each region determines the linear gain and offset
which produces the optimal control action.

This method reveals its effectiveness when applied to Receding Horizon
Control (RHC). Having a precomputed solution as an explicit piecewise affine
on polyhedra (PPWA) function of the state vector reduces the on-line com-
putation of the MPC control law to a function evaluation, therefore avoiding
the on-line solution of a quadratic or linear program.

The only drawback of such explicit optimal control law is that the number
of polyhedral regions could grow dramatically with the number of constraints
in the optimal control problem. In this chapter we focus on efficient on-line
methods for the evaluation of such a piecewise affine control law. The simplest
algorithm would require: (i) the storage of the list of polyhedral regions and
of the corresponding affine control laws, (ii) a sequential search through the
list of polyhedra for the i-th polyhedron that contains the current state in
order to implement the i-th control law.

By exploiting the properties of the value function and the optimal control
law for CFTOC problem with 1,∞-norm and 2-norm we propose two new
algorithms that avoid storing the polyhedral regions. The new algorithms sig-
nificantly reduce the on-line storage demands and computational complexity
during evaluation of the explicit solution of CFTOC problem.

6.2 Efficient On-Line Algorithms

Let the explicit optimal control law be:

u∗(x) = F ix + gi, ∀x ∈ Pi, i = 1, . . . , Nr (6.1)

where F i ∈ R
m×n, gi ∈ R

m, and
Pi =

{
x ∈ R

n | Hix ≤ Ki, Hi ∈ R
Ni

c×n, Ki ∈ R
Ni

c

}
, i = 1, . . . , Nr is a

polyhedral partition of X . In the following Hi
j denotes the j-row of the matrix

6.2 Efficient On-Line Algorithms 133

Hi and N i
c is the numbers of constraints defining the i-th polyhedron. The

on-line implementation of the control law (6.1) is simply executed according
to the following steps:

Algorithm 6.2.1

1 Measure the current state x

2 Search for the j-th polyhedron that contains x, (Hjx ≤ Kj)

3 Implement the j-th control law (u(t) = F jx + gj)

In Algorithm 6.2.1, step (2) is critical and it is the only step whose efficiency
can be improved. A simple implementation of step (2) would consist of search-
ing for the polyhedral region that contains the state x as in the following
algorithm:

Algorithm 6.2.2

Input: Current state x and polyhedral partion {Pi}Nr

i=1 of the control

law (6.1)

Output: Index j of the polyhedron Pj in the control law (6.1) containing

the current state x

1 i = 0, notfound=1;

2 while i ≤ N r and notfound

3 j = 0, stillfeasible=1

4 while j ≤ N i
c and stillfeasible

5 if Hi
jx > Ki

j then stillfeasible=0

6 else j = j + 1
7 end
8 if stillfeasible=1 then notfound=0

9 end
In Algorithm 6.2.2 Hi

j denotes the j-row of the matrix Hi, Ki
j denotes the

j-th element of the vector Ki and N i
c is the number of constraints defining the

i-th polyhedron Pi. Algorithm 6.2.2 requires the storage of all polyhedra Pi,
i.e., (n + 1)NC real numbers (n numbers for each row of the matrix Hi plus
one number for the corresponding element in the matrix Ki), NC �

∑Nr

i=1 N i
c ,

and in the worst case (the state is contained in the last region of the list)
it will give a solution after nNC multiplications, (n − 1)NC sums and NC

comparisons.

Remark 6.1. Note that Algorithm 6.2.2 can also deduce if the point x is not
inside of the feasible set X0 = ∪Nr

i=1Pi. In the following sections we implicitly
assume that x belongs to X0. If this (reasonable) assumptions does not hold,
it is always possible to include set of boundaries of feasible parameter space

134 6 Reducing On-line Complexity

X0. Then, before using any of proposed algorithms, we should first check if
the point x is inside the boundaries of X0.

By using the properties of the value function, we will show how Al-
gorithm 6.2.2 can be replaced by more efficient algorithms that have a
smaller computational complexity and that avoid storing the polyhedral re-
gions Pi, i = 1, . . . , Nr, therefore reducing significantly the storage demand.

In the following we will distinguish between optimal control based on LP
and optimal control based on QP.

6.2.1 Efficient Implementation, 1, ∞-Norm Case

From Theorem 2.4, the value function J∗(x) corresponding to the solution of
the CFTOC problem (4.28) with 1,∞-norm is convex and PWA:

J∗(x) = T i′x + V i, ∀x ∈ Pi, i = 1, . . . , Nr. (6.2)

By exploiting the convexity of the value function the storage of the poly-
hedral regions Pi can be avoided. From the equivalence of the representations
of PWA convex functions [132], the function J∗(x) in equation (6.2) can be
represented alternatively as

J∗(x) = max
{
T i′x + V i, i = 1, . . . , Nr

}
for x ∈ X0 = ∪Nr

i=1Pi. (6.3)

Thus, the polyhedral region Pj containing x can be simply identified by
searching for the maximum number in the list {T i′x + V i}Nr

i=1:

x ∈ Pj ⇔ T j ′x + V j = max
{
T i′x + V i, i = 1, . . . , Nr

}
. (6.4)

Therefore, instead of searching for the polyhedron j that contains the point
x via Algorithm 6.2.2, we can just store the value function and identify region
j by searching for the maximum in the list of numbers composed of the single
affine function T i′x + V i evaluated at x (see Figure 6.1):

Algorithm 6.2.3

Input: Current state x and value function 6.2

Output: Index j of the polyhedron Pj containing the current state x in

the control law (6.1)

1 Compute the list L = {ni � T i′x + V i, i = 1, . . . , Nr}
2 Find j such that nj = maxni∈L ni

Algorithm 6.2.3 requires the storage of (n + 1)N r real numbers and will
give a solution after nN r multiplications, (n − 1)N r sums, and N r − 1 com-
parisons. In Table 6.1 we compare the complexity of Algorithm 6.2.3 against
Algorithm 6.2.2 in terms of storage demand and number of flops.

6.2 Efficient On-Line Algorithms 135

0 1 2 3 4 5 6 7
0

1

2

3

4

5

x

P
1

f
x(
) f

1
()x

f
2
()x

f
3
()x

f
4
()x

P
2

P
3

P
4

Fig. 6.1. Example for Algorithm 6.2.3 in one dimension: For a given point x ∈ P3

(x = 5) we have f3(x) = max(f1(x), f2(x), f3(x), f4(x)).

Table 6.1. Complexity comparison of Algorithm 6.2.2 and Algorithm 6.2.3

Algorithm 6.2.2 Algorithm 6.2.3
Storage demand (real numbers) (n + 1)NC (n + 1)Nr

Number of flops (worst case) 2nNC 2nNr

Remark 6.2. Algorithm 6.2.3 will outperform Algorithm 6.2.2 since typically
NC � N r.

6.2.2 Efficient Implementation, 2-Norm Case

Consider the state feedback solution (2.16) of the CFTOC problem (2.4) with
p = 2. Theorem 2.2 states that the value function J∗(x) is convex and piece-
wise quadratic on polyhedra and the simple Algorithm 6.2.3 described in the
previous subsection cannot be used here. Instead, a different approach is de-
scribed below. It uses a surrogate of the value function to uniquely characterize
the polyhedral partition of the optimal control law.

We will first establish the following general result: given a general poly-
hedral partition of the state space, we can locate where the state lies (i.e.,
in which polyhedron) by using a search procedure based on the information
provided by an “appropriate” PWA continuous function defined over the same
polyhedral partition. We will refer to such an “appropriate” PWA function
as a PWA descriptor function. First we outline the properties of the PWA
descriptor function and then we describe the search procedure itself.

136 6 Reducing On-line Complexity

Let {Pi}Nr

i=1 be the polyhedral partition obtained by solving the mp-
QP (2.18) and denote by Ci = {j | Pj is a neighbor of Pi, j = 1, . . . , Nr, j �= i}
the list of all neighboring polyhedra of Pi. The list Ci has N i

c elements and
we denote by Ci(k) its k-th element. We give the following definition of PWA
descriptor function.

Definition 6.1 (PWA descriptor function). A scalar continuous real-
valued PWA function

f(x) = fi(x) � Ai′x + Bi, if x ∈ Pi, (6.5)

is called descriptor function if

Ai �= Aj , ∀j ∈ Ci, i = 1, . . . , Nr. (6.6)

Theorem 6.1. Let f(x) be a PWA descriptor function on the polyhedral par-
tition {Pi}Nr

i=1.
Let Oi(x) ∈ R

Ni
c be a vector associated with region Pi, and let the j-th

element of Oi(x) be defined as

Oi
j(x) =

{
+1 fi(x) � fCi(j)(x)
−1 fi(x) < fCi(j)(x) (6.7)

Then Oi(x) has the following properties:

(i) Oi(x) = Si = const, ∀x ∈ Pi,
(ii)Oi(x) �= Si, ∀x /∈ Pi.

Proof: Let F = Pi ∩PCi(j) be the common facet of Pi and PCi(j). Define
the linear function

zi
j(x) = fi(x) − fCi(j)(x). (6.8)

From the continuity of f(x) it follows that zi
j(x) = 0, ∀x ∈ F . As Pi and PCi(j)

are disjoint convex polyhedra and Ai �= ACi(j) it follows that zi
j(ξi) > 0 (or

zi
j(ξi) < 0, but not both) for any interior point ξi of Pi. Similarly for any

interior point ξCi(j) of PCi(j) we have zi
j(ξCi(j)) < 0 (or zj

i (ξi) > 0, but not
both). Consequently, zi

j(x) = 0 is the separating hyperplane between Pi and
PCi(j).

(i) Because zi
j(x) = 0 is a separating hyperplane, the function zi

j(x) does
not change its sign for all x ∈ Pi, i.e., Oi

j(x) = si
j , ∀x ∈ Pi with si

j = +1 or
si

j = −1. The same reasoning can be applied to all neighbors of Pi to get the
vector Si = {si

j} ∈ R
Ni

c .
(ii) ∀x /∈ Pi, ∃j ∈ Ci such that Hi

jx > Ki
j . Since zi

j(x) = 0 is a separating
hyperplane then Oi

j(x) = −si
j .

6.2 Efficient On-Line Algorithms 137

Equivalently, Theorem 6.1 states that

x ∈ Pi ⇔ Oi(x) = Si, (6.9)

which means that the function Oi(x) and the vector Si uniquely characterize
Pi. Therefore, to check on-line if the polyhedral region i contains the state
x it is sufficient to compute the binary vector Oi(x) and compare it with
Si. Vectors Si are calculated off-line for all i = 1, . . . , N r, by comparing the
values of fi(x) and fCi(j)(x) for j = 1, . . . , N i

c, for a point x belonging to Pi,
for instance, the Chebychev center of Pi.

In Figure 6.2 a one dimensional example illustrates the procedure with
N r = 4 regions. The list of neighboring regions Ci and the vector Si can be
constructed by simply looking at the figure: C1 = {2}, C2 = {1, 3}, C3 =
{2, 4}, C4 = {3}, S1 = −1, S2 = [−1 1]′, S3 = [1 − 1]′, S4 = −1.
The point x = 4 is in region 2 and we have O2(x) = [−1 1]′ = S2, while
O3(x) = [−1 − 1]′ �= S3, O1(x) = 1 �= S1, O4(x) = 1 �= S4. The failure
of a match Oi(x) = Si provides information on a good search direction(s).
The solution can be found by searching in the direction where a constraint is
violated, i.e., one should check the neighboring region Pj for which Oi

j(x) �= si
j .

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

x

f
x(
)

f
1
()x

f
2
()x

f
3
()x

f
4
()x

P
1

P
2

P
3

P
4

Fig. 6.2. Example for Algorithm 6.2.4 in one dimension: For a given point x ∈ P2

(x = 4) we have O2(x) = [−1 1]′ = S2, while O1(x) = 1 �= S1 = −1, O3(x) =
[−1 − 1]′ �= S3 = [1 − 1]′, O4(x) = 1 �= S4 = −1.

The overall procedure is composed of two parts:

1. (off-line) Construction of the PWA function f(x) in (6.5) satisfying (6.6)
and computation of the list of neighbors Ci and the vector Si,

2. (on-line) Execution of the following algorithm

138 6 Reducing On-line Complexity

Algorithm 6.2.4

Input: Current state x, the list of neighboring regions Ci and the vectors

Si

Output: Index i of the polyhedron Pj containing the current state x in

the control law (6.1)

1 i = 1, notfound=1;

2 while notfound

3 compute Oi(x)
4 if Oi(x) = Si then notfound=0

5 else i = Ci(q), where Oi
q(x) �= si

q.

6 end
Algorithm 6.2.4 does not require the storage of the polyhedra Pi, but only

the storage of one linear function fi(x) per polyhedron, i.e., N r(n + 1) real
numbers and the list of neighbors Ci which requires NC integers. In the worst
case, Algorithm 6.2.4 terminates after N rn multiplications, N r(n − 1) sums
and NC comparisons.

In Table 6.2 we compare the complexity of Algorithm 6.2.4 against the
standard Algorithm 6.2.2 in terms of storage demand and number of flops.

Remark 6.3. Note that the computation of Oi(x) in Algorithm 6.2.4 requires
the evaluation of N i

c linear functions, but the overall computation never ex-
ceeds N r linear function evaluations. Consequently, Algorithm 6.2.4 will out-
perform Algorithm 6.2.2, since typically NC � N r.

Table 6.2. Complexity comparison of Algorithm 6.2.2 and Algorithm 6.2.4

Algorithm 6.2.2 Algorithm 6.2.4
Storage demand (real numbers) (n + 1)NC (n + 1)Nr

Number of flops (worst case) 2nNC (2n − 1)Nr + NC

Now that we have shown how to locate the polyhedron in which the state
lies by using a PWA descriptor function, we need a procedure for the con-
struction of such a function.

The image of the descriptor function is the set of real numbers R. In the
following we will show how a descriptor function can be generated from a
vector valued function m : R

n → R
s. This general result will be used in the

next subsections.

Definition 6.2 (Vector valued PWA descriptor function). A continu-
ous vector valued PWA function

6.2 Efficient On-Line Algorithms 139

m(x) = Āix + B̄i, if x ∈ Pi, (6.10)

is called a vector valued PWA descriptor function if

Āi �= Āj , ∀j ∈ Ci, i = 1, . . . , Nr. (6.11)

where Āi ∈ R
s×n, B̄i ∈ R

s.

Theorem 6.2. Given a vector valued PWA descriptor function m(x) defined
over a polyhedral partition {Pi}Nr

i=1 it is possible to construct a PWA descriptor
function f(x) over the same polyhedral partition.

Proof: Let Ni,j be the null-space of (Āi − Āj)′. Since by definition
Āi− Āj �= 0 it follows that Ni,j is not full dimensional, i.e., Ni,j ⊆ R

s−1. Con-
sequently, it is always possible to find a vector w ∈ R

s such that w′(Āi−Āj) �=
0 holds for all i = 1, . . . , Nr and ∀j ∈ Ci. Clearly, f(x) = w′m(x) is then a
valid PWA descriptor function.

As shown in the proof of Theorem 6.2, once we have vector valued PWA
descriptor function, practically any randomly chosen vector w ∈ R

s is likely
to be satisfactory for the construction of a PWA descriptor function. From
a numerical point of view however, we would like to obtain w that is as far
away as possible from the null-spaces Ni,j . We show one algorithm for finding
such a vector w.

For a given vector valued PWA descriptor function we form set of vectors
ak ∈ R

s, ‖ak‖ = 1, k = 1, . . . , NC/2, by taking and normalizing one (and only
one) nonzero column from each matrix (Āi− Āj), ∀j ∈ Ci, i = 1, . . . , Nr. The
vector w ∈ R

s satisfying the set of equations w′ak �= 0, k = 1, . . . , NC/2, can
then be constructed by using the following algorithm1

Algorithm 6.2.5

Input: Vectors ai ∈ R
s, i = 1, . . . , N .

Output: The vector w ∈ R
s satisfying the set of equations w′ai �=

0, i = 1, . . . , N

1 w ← [1, . . . , 1]′, R ← 1
2 while k ≤ NC/2
3 d ← w′ak

4 if 0 ≤ d ≤ R then w ← w + 1
2 (R− d)ak, R ← 1

2 (R + d)
5 if −R ≤ d < 0 then w ← w − 1

2 (R + d)ak, R ← 1
2 (R− d)

6 end
Algorithm 6.2.5 is based on the construction of a sequence of balls B =

{x | x = w + r, ‖r‖2 ≤ R}. As depicted in Figure 6.3, Algorithm 6.2.5 starts

1 Index k goes to NC/2 since the term (Āj − Āi) is the same as (Āi − Āj) and thus
there is no need to consider it twice.

140 6 Reducing On-line Complexity

with the initial ball of radius R = 1, centered at w = [1, . . . , 1]′. Iteratively
one hyperplane a′

kx = 0 at a time is introduced and the largest ball B′ ⊆ B
that does not intersect this hyperplane is designed. The center w of the final
ball is the vector w we want to construct, while R provides an information
about the degree of non-orthogonality: |w′ak| ≥ R, ∀k.

ia

1x

2x

0

R
w

d

R d−

2 i

R d
a

−
'w'R

0T
ia x ≤

0T
ia x ≥

B

'B

Fig. 6.3. Illustration for Algorithm 6.2.5 in two dimensions.

In the following subsections we will show that the gradient of the value
function, and the optimizer, are vector valued PWA descriptor functions and
thus we can use Algorithm 6.2.5 for the construction of the PWA descriptor
function.

Generating a PWA descriptor function from the value function

Let J∗(x) be the convex and piecewise quadratic (CPWQ) value function
obtained as a solution of the CFTOC (2.4) problem for p = 2:

J∗(x) = qi(x) � x′Qix + T i′x + V i, if x ∈ Pi, i = 1, . . . , Nr. (6.12)

In Section 1.4.4 we have proven that for non-degenerate problems the
value function J∗(x) is a C(1) function. We can obtain a vector valued PWA
descriptor function by differentiating J∗(x).

Theorem 6.3. Consider the value function J∗(x) in (6.12) and assume that
the CFTOC (2.4) problem leads to a non-degenerate mp-QP (2.20). Then the
gradient m(x) � ∇J∗(x), is a vector valued PWA descriptor function.

6.2 Efficient On-Line Algorithms 141

Proof: From Theorem 1.15 we see that m(x) is continuous vector valued
PWA function, while from equation (1.46) we get

m(x) � ∇J∗(x) = 2Qix + Ti (6.13)

Since from Theorem 1.13 we know that Qi �= Qj for all neighboring polyhedra,
it follows that m(x) satisfies all conditions for a vector valued PWA descriptor
function.

Combining results of Theorem 6.3 and Theorem 6.2 it follows that by
using Algorithm 6.2.5 we can construct a PWA descriptor function from the
gradient of the value function J∗(x).

Generating a PWA descriptor function from the optimizer

Another way to construct descriptor function f(x) emerges naturally if we look
at the properties of the optimizer U∗

N (x) corresponding to the state feedback
solution of the CFTOC problem (2.4). From Theorem 1.12 it follows that the
optimizer U∗

N (x) is continuous in x and piecewise affine on polyhedra:

U∗
N (x) = li(x) � F ix + gi, if x ∈ Pi, i = 1, . . . , Nr, (6.14)

where F i ∈ R
s×n and gi ∈ R

s. We will assume that Pi are critical regions in
the sense of Definition 1.37. All we need to show is the following lemma.

Lemma 6.1. Consider the state feedback solution (6.14) of the CFTOC prob-
lem (2.4) and assume that the CFTOC (2.4) leads to a non-degenerate mp-
QP (2.20). Let Pi, Pj be two neighboring polyhedra, then F i �= F j.

Proof: The proof is a simple consequence of Theorem 1.13. As in The-
orem 1.13, without loss of generality we can assume that the set of active
constraints Ai associated with the critical region Pi is empty, i.e., Ai = ∅. As-
sume that the optimizer is the same for both polyhedra, i.e., [F i gi] = [F j gj].
Then, the cost functions qi(x) and qj(x) are also equal. From the proof of The-
orem 1.13 this implies that Pi = Pj , which is a contradiction. Thus we have
[F i gi] �= [F j gj]. Note that F i = F j cannot happen since, from the continuity
of U∗

N(x), this would imply gi = gj. Consequently we have F i �= F j . �

From Lemma 6.1 and Theorem 6.2 it follows that an appropriate PWA
descriptor function f(x) can be calculated from the optimizer U∗(x) by using
Algorithm 6.2.5.

Remark 6.4. Note that even if we are implementing a receding horizon control
strategy, the construction of the PWA descriptor function is based on the full
optimization vector U∗(x) and the corresponding matrices F̄ i and ḡi.

Remark 6.5. In some cases the use of the optimal control profile U∗(x) for the
construction of a descriptor function f(x) can be extremely simple. If there
is a row r, r ≤ m (m is the dimension of u) for which (F i)r �= (F j)r, ∀i =

142 6 Reducing On-line Complexity

1 . . . , N r, ∀j ∈ Ci, it is enough to set Ai′ = (F i)r and Bi = (gi)r, where
(F i)r and (gi)r denote the r-th row of the matrices F i and gi, respectively.
In this way we avoid the storage of the descriptor function altogether, since
it is equal to one component of the control law, which is stored anyway.

6.3 Example

As an example, we compare the performance of Algorithms 6.2.2, 6.2.3
and 6.2.4 on CFTOC problem for the discrete-time system

x(t + 1) =

4 −1.5 0.5 −0.25
4 0 0 0
0 2 0 0
0 0 0.5 0

x(t) +

0.5
0
0
0

u(t)

y(t) =
[
0.083 0.22 0.11 0.02

]
x(t)

(6.15)

resulting from the linear system

y =
1
s4

u (6.16)

sampled at Ts = 1, subject to the input constraint

−1 ≤ u(t) ≤ 1 (6.17)

and the output constraint

−10 ≤ y(t) ≤ 10. (6.18)

6.3.1 CFTOC based on LP

To regulate (6.15), we design a receding horizon controller based on the op-
timization problem (4.28) where p = ∞, N = 2, Q = diag{5, 10, 10, 10},
R = 0.8, P = 0. The PPWA solution of the mp-LP problem was computed
in 240 s on a Pentium III 900 MHz machine running Matlab 6.0. The cor-
responding polyhedral partition of the state-space consists of 136 regions. In
Table 6.3 we report the comparison between the complexity of Algorithm 6.2.2
and Algorithm 6.2.3 for this example.

The average on-line evaluation of the PPWA solution for a set of 1000
random points in the state space is 2259 flops (Algorithm 6.2.2), and 1088
flops (Algorithm 6.2.3). We point out that the solution using Matlab’s LP
solver (function linprog.m with interior point algorithm and LargeScale set to
’off’) takes 25459 flops on average.

6.3 Example 143

Table 6.3. Complexity comparison of Algorithm 6.2.2 and Algorithm 6.2.3 for the
example in Section 6.3.1

Algorithm 6.2.2 Algorithm 6.2.3
Storage demand (real numbers) 5690 680
Number of flops (worst case) 9104 1088
Number of flops (average for 1000 random points) 2259 1088

6.3.2 CFTOC based on QP

To regulate (6.15), we design a receding horizon controller based on the opti-
mization problem (4.28) where p = 2, N = 7, Q = I, R = 0.01, P = 0. The
PPWA solution of the mp-QP problem was computed in 560 s on a Pentium
III 900 MHz machine running Matlab 6.0. The corresponding polyhedral par-
tition of the state-space consists of 213 regions. For this example the choice
of w = [1 0 0 0]′ is satisfactory to obtain a descriptor function from the value
function. In Table 6.4 we report the comparison between the complexity of
Algorithm 6.2.2 and Algorithm 6.2.4 for this example.

The average computation of the PPWA solution for a set of 1000 ran-
dom points in the state space is 2114 flops (Algorithm 6.2.2), and 175 flops
(Algorithm 6.2.4). The solution of the corresponding quadratic program with
Matlab’s QP solver (function quadprog.m and LargeScale set to ’off’) takes
25221 flops on average.

Table 6.4. Complexity comparison of Algorithm 6.2.2 and Algorithm 6.2.4 for the
example in Section 6.3.2

Algorithm 6.2.2 Algorithm 6.2.4
Storage demand (real numbers) 9740 1065
Number of flops (worst case) 15584 3439
Number of flops (average for 1000 random points) 2114 175

Part III

Optimal Control of Hybrid Systems

7

Hybrid Systems

148 7 Hybrid Systems

In this chapter we give a short overview of discrete time linear hybrid sys-
tems, i.e., the class of systems that explicitly takes into account continuous
valued and discrete valued variables as well as their interaction in one common
framework. A more detailed and comprehensive review of the topic following
the same structure and argumentation can be found in [115].

7.1 Introduction

The mathematical model of a system is traditionally associated with differ-
ential or difference equations, typically derived from physical laws governing
the dynamics of the system under consideration. Consequently, most of the
control theory and tools have been developed for such systems, in particular,
for systems whose evolution is described by smooth linear or nonlinear state
transition functions. On the other hand, in many applications the system to
be controlled comprises also parts described by logic, such as for instance
on/off switches or valves, gears or speed selectors, and evolutions dependent
on if-then-else rules. Often, the control of these systems is left to schemes
based on heuristic rules inferred from practical plant operation.

Recently, researchers started dealing with hybrid systems, namely pro-
cesses which evolve according to dynamic equations and logic rules. There are
many examples of hybrid systems [6]. Hierarchical systems constituted by dy-
namical components at the lower level, governed by upper level logical/discrete
components [6, 130, 41, 103, 39] are hybrid systems. Sometimes, in the control
field a continuous time linear plant described by linear differential equations
and controlled by a discrete-time system described by difference equations,
is also considered a hybrid system. This class is usually referred to as hybrid
control systems [5, 7, 23, 105, 106] (Fig. 7.1(a)) and it is not considered in this
book. Another familiar example of hybrid system is a switching systems where
the dynamic behaviour of the system is described by a finite number of dy-
namical models, that are typically sets of differential or difference equations,
together with a set of rules for switching among these models. The switching
rules are described by logic expressions or a discrete event system with a finite
automaton or a Petri net representation. Switched systems [40, 92, 136] belong
to this class of systems (Fig. 7.1(b)).

The interest in hybrid systems has grown over the last few years not only
because of the theoretical challenges, but also because of their impact on
applications. Hybrid systems arise in a large number of application areas and
are attracting increasing attention in both academic theory-oriented circles as
well as in industry, for instance the automotive industry [9, 93].

In this chapter we briefly discuss a framework for modeling, analyzing and
controlling hybrid systems. We will focus exclusively on discrete time mod-
els. We note, however, that interesting mathematical phenomena occurring in
hybrid systems, such as Zeno behaviors [94] do not exist in discrete-time. On

7.1 Introduction 149

Logic

Dynamics
continuous
variables

command
inputs

Interface

exogenous
inputs

discrete
inputs

discrete
outputs

exogenous
inputs

A/D

D/A

(a) Hybrid control systems.
Finite state machines and
continuous dynamics interact
through analog-to-digital (A/D)
and D/A interfaces

(b) Switched systems

Fig. 7.1. Hybrid models

the other hand, most of these phenomena are usually a consequence of the
continuous time switching model, rather than the real natural behaviour.

Among various modeling frameworks used for discrete-time hybrid sys-
tems, piecewise affine (PWA) systems [136] are the most studied. PWA sys-
tems are defined by partitioning the state and input space into polyhedral
regions, and associating with each region a different affine state-update equa-
tion

x(t + 1) = Aix(t) + Biu(t) + f i if
[

x(t)
u(t)

]
∈ Ci (7.1)

where x ∈ R
nc×{0, 1}n�, u ∈ R

mc×{0, 1}m�, {Ci}s−1
i=0 is a polyhedral partition

of the sets of state and input space R
n+m, n � nc + n�, m � mc + m�, the

matrices Ai, Bi, f i are constant and have suitable dimensions. We will give
the following definition of continuous PWA system:

Definition 7.1. We say that the PWA system (7.1) is continuous if the map-
ping (xc(t), uc(t)) �→ xc(t + 1) is continuous and n� = m� = 0.

Definition 7.2. We say that a PWA system (7.1) is continuous in the input
space if the mapping (xc(t), uc(t)) �→ xc(t + 1) is continuous in the uc space
and n� = m� = 0.

Definition 7.3. We say that a PWA system (7.1) is continuous in the real
input space if the mapping (xc(t), uc(t)) �→ xc(t + 1) is continuous in the uc

space.

150 7 Hybrid Systems

PWA systems are equivalent to interconnections of linear systems and fi-
nite automata, as pointed out by Sontag [139]. Discrete-time linear PWA sys-
tems can model exactly a large number of physical processes, such as discrete-
time linear systems with static piecewise-linearities or switching systems where
the dynamic behaviour is described by a finite number of discrete-time linear
models, together with a set of logic rules for switching among these models.
Moreover, PWA systems can approximate nonlinear discrete-time dynamics
via multiple linearizations at different operating points and also the more
general class of continuous time nonlinear hybrid systems by sampling the
continuous dynamics and substituting the nonlinearity with piecewise-linear
approximations.

In [85, 20] the authors have proven the equivalence of discrete-time PWA
systems and other classes of discrete-time hybrid systems such as linear com-
plementarity (LC) systems [83, 153, 84] and extended linear complementarity
(ELC) systems [54], max-min-plus-scaling (MMPS) systems [55], and mixed
logic dynamical (MLD) systems [23]. Each modeling framework has its ad-
vantages and the equivalence of discrete-time PWA, LC, ELC, MMPS, and
MLD hybrid dynamical systems allows one to easily transfer the theoretical
properties and tools from one class to another.

Our main motivation for concentrating on discrete-time models stems from
the need to analyze these systems and to solve optimization problems, such
as optimal control or scheduling problems, for which the continuous time
counterpart would not be easily computable. For this reason we need a way
to describe discrete-time PWA systems in a form that is suitable for recasting
analysis/synthesis problems into a more compact optimization problem. The
MLD framework described in the following section has been developed for such
a purpose. In particular, it will be proven that MLD models are successful in
recasting hybrid dynamical optimization problems into mixed-integer linear
and quadratic programs, solvable via branch and bound techniques [120].

7.2 Mixed Logic Dynamical (MLD) Systems

MLD systems [23] allow specifying the evolution of continuous variables
through linear dynamic equations, of discrete variables through proposi-
tional logic statements and automata, and the mutual interaction between
the two. The key idea of the approach consists of embedding the logic
part in the state equations by transforming Boolean variables into 0-1 in-
tegers, and by expressing the relations as mixed-integer linear inequali-
ties [23, 47, 125, 151, 157, 158, 120]. The MLD modeling framework relies
on the idea of translating logic relations into mixed-integer linear inequali-
ties [23, 125, 158]. The following correspondence between a Boolean variable
X and its associated binary variable δ will be used:

X = true ⇔ δ = 1
X = false ⇔ δ = 0 (7.2)

7.2 Mixed Logic Dynamical (MLD) Systems 151

Linear dynamics are represented by difference equations x(t+1) = Ax(t)+
Bu(t), x ∈ R

n, u ∈ R
m. Boolean variables can be defined from linear-threshold

conditions over the continuous variables: [X = true] ↔ [a′x ≤ b], x, a ∈ R
n,

b ∈ R, with (a′x− b) ∈ [m, M]. This condition can be equivalently expressed
by the two mixed-integer linear inequalities:

a′x− b ≤ M(1− δ)
a′x− b > mδ.

(7.3)

Similarly, a relation defining a continuous variable z depending on the logic
value of a Boolean variable X

IF X THEN z = a′
1x− b1 ELSE z = a′

2x− b2,

can be expressed as

(m2 −M1)δ + z ≤ a′
2x− b2

(m1 −M2)δ − z ≤ −a′
2x + b2

(m1 −M2)(1 − δ) + z ≤ a′
1x− b1

(m2 −M1)(1 − δ)− z ≤ −a′
1x + b1.

(7.4)

where, assuming that x ∈ X ⊂ R
n and X is a given bounded set,

Mi ≥ sup
x∈X

(a′
ix− bi), mi ≤ inf

x∈X
(a′

ix− bi), i = 1, 2.

are upper and lower bounds, respectively, on (a′x − b). Note that (7.4) also
represents the hybrid product z = δ(a′

1x − b1) + (1 − δ)(a′
2x − b2) between

binary and continuous variables.
A Boolean variable Xn can be defined as a Boolean function of Boolean

variables f : {true, false}n−1 → {true, fase}, namely

Xn ↔ f(X1, X2, . . . , Xn−1) (7.5)

where f is a combination of “not” (∼), “and” (∧), “or” (∨), “exclusive or”
(⊕), “implies” (←), and “iff” (↔) operators. The logic expression (7.5) is
equivalent to its conjunctive normal form (CNF) [158]

k∧
j=1

 ∨
i∈Pj

Xi

∨ ∨
i∈Nj

∼ Xi

 , Nj, Pj ⊆ {1, . . . , n}

Subsequently, the CNF can be translated into the set of integer linear inequal-
ities

1 ≤
∑

i∈P1
δi +

∑
i∈N1

(1− δi)
...
1 ≤

∑
i∈Pk

δi +
∑

i∈Nk
(1 − δi)

(7.6)

152 7 Hybrid Systems

Alternative methods for translating any logical relation between Boolean
variables into a set of linear integer inequalities can be found in chapter 2
of [115]. In [115] the reader can also find a more comprehensive and complete
treatment of the topic.

The state update law of finite state machines can be described by logic
propositions involving binary states, their time updates and binary signals,
under the assumptions that the transitions are clocked and synchronous with
the sampling time of the continuous dynamical equations, and that the au-
tomaton is well-posed (i.e., at each time step a transition exists and is unique)

x�(t + 1) = F (x�(t), u�(t)) (7.7)

where ul is the vector of Boolean signals triggering the transitions of the
automaton. Therefore, the automaton is equivalent to a nonlinear discrete
time system where F is a purely Boolean function. The translation technique
mentioned above can be applied directly to translate the automaton (7.7) into
a set of linear integer equalities and inequalities.

By collecting the equalities and inequalities derived from the represen-
tation of the hybrid system we obtain the Mixed Logic Dynamical (MLD)
system [23]

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) (7.8a)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (7.8b)

E2δ(t)+E3z(t) ≤ E1u(t) + E4x(t) + E5 (7.8c)

where x ∈ R
nc × {0, 1}n� is a vector of continuous and binary states, u ∈

R
mc × {0, 1}m� are the inputs, y ∈ R

pc × {0, 1}p� the outputs, δ ∈ {0, 1}r�,
z ∈ R

rc represent auxiliary binary and continuous variables respectively, which
are introduced when transforming logic relations into mixed-integer linear
inequalities, and A, B1−3, C, D1−3, E1−5 are matrices of suitable dimensions.

We assume that system (7.8) is completely well-posed [23], which means
that for all x, u within a bounded set the variables δ, z are uniquely deter-
mined, i.e., there exist functions F , G such that, at each time t, δ(t) =
F (x(t), u(t)), z(t) = G(x(t), u(t)). The functions F and G are implicitly de-
fined through the inequalities (7.8c). Then it follows that x(t + 1) and y(t)
are uniquely defined once x(t), u(t) are given, and therefore that x- and y-
trajectories exist and are uniquely determined by the initial state x(0) and
input signal u(t). It is clear that the well-posedness assumption stated above
is usually guaranteed by the procedure used to generate the linear inequali-
ties (7.8c), and therefore this hypothesis is typically fulfilled by MLD relations
derived from modeling real-world plants. Nevertheless, a numerical test for
well-posedness is reported in [23, Appendix 1].

Note that the constraints (7.8c) allow us to specify additional linear con-
straints on continuous variables (e.g., constraints over physical variables of

7.4 Theoretical Properties of PWA Systems 153

the system), and logic constraints of the type “f(δ1, . . . , δn) = 1”, where f is
a Boolean expression. The ability to include constraints, constraint prioriti-
zation, and heuristics adds to the expressiveness and generality of the MLD
framework. Note also that the description (7.8) appears to be linear, with the
nonlinearity concentrated in the integrality constraints over binary variables.

Remark 7.1. In (7.8c), we only allowed nonstrict inequalities, as we are inter-
ested in using numerical solvers with MLD models. Therefore, strict inequal-
ities (as in (7.3)) of the form a′x > b must be approximated by a′x ≥ b + ε
for some ε > 0 (e.g., the machine precision), with the assumption that
0 < a′x − b < ε cannot occur due to the finite precision of the computer.
After such approximation some regions of the state space will be considered
unfeasible for the MLD model (7.8) even if they were feasible for the original
PWA model (7.1). However, the measure of this regions tends to zero as ε goes
to 0. Note that this issue arises only in case of discontinuous PWA systems.

7.3 HYSDEL

The translation procedure of a description of a hybrid dynamical system into
mixed integer inequalities is the core of the tool HYSDEL (Hybrid Systems
Description Language), which automatically generates an MLD model from a
high-level textual description of the system [150]. Given a textual description
of the logic and dynamic parts of the hybrid system, HYSDEL returns the
matrices A, B1−3, C, D1−3, E1−5 of the corresponding MLD form (7.8). A full
description of HYSDEL is given in [150].
The compiler is available at http://control.ethz.ch/ hybrid/hysdel.

7.4 Theoretical Properties of PWA Systems

Despite the fact that PWA models are just a composition of linear time-
invariant dynamical systems, their structural properties such as observability,
controllability, and stability are complex and articulated, as typical of nonlin-
ear systems. In this section we want to discuss in a sketchy manner, stability,
controllability and observability of discrete time PWA systems.

Stability

Besides simple but very conservative results such as finding one common
quadratic Lyapunov function for all the components, researchers have started
developing analysis and synthesis tools for PWA systems only very re-
cently [92, 116, 59]. By adopting piecewise quadratic Lyapunov functions,
a computational approach based on Linear Matrix Inequalities has been pro-
posed in [81] and [92] for stability analysis and control synthesis. Construction

154 7 Hybrid Systems

of Lyapunov functions for switched systems has also been tackled in [156]. For
the general class of switched systems of the form ẋ = fi(x), i = 1, . . . , s, an
extension of the Lyapunov criterion based on multiple Lyapunov functions
was introduced in [38] and [40]. In their recent paper, Blondel and Tsitsik-
lis [34] showed that the stability of autonomous PWA systems is NP -hard
to verify (i.e. in general the stability of a PWA systems cannot be assessed
by a polynomial-time algorithm, unless P = NP), even in the simple case of
two component subsystems. Several global properties (such as global conver-
gence and asymptotic stability) of PWA systems have been recently shown
undecidable in [33].

The research on stability criteria for PWA systems has been motivated by
the fact that the stability of each component subsystem is not sufficient to
guarantee stability of a PWA system (and vice versa). Branicky [40], gives
an example where stable subsystems are suitably combined to generate an
unstable PWA system. Stable systems constructed from unstable ones have
been reported in [152]. These examples point out that restrictions on the
switching have to be imposed in order to guarantee that a PWA composition
of stable components remains stable.

Observability and Controllability

Very little research has focused on observability and controllability properties
of hybrid systems, apart from contributions limited to the field of timed au-
tomata [5, 86, 99] and the pioneering work of Sontag [136] for PWA systems.
Needless to say, these concepts are fundamental for understanding if a state
observer and a controller for a hybrid system can be designed and how well
it performs. For instance, observability properties were directly exploited for
designing convergent state estimation schemes for hybrid systems in [62].

Controllability and observability properties have been investigated in [58,
78] for linear time-varying systems, and in particular for the so-called class
of piecewise constant systems (where the matrices in the state-space rep-
resentation are piecewise constant functions of time). Although in principle
applicable, these results do not allow to capture the peculiarities of PWA
systems.

General questions of NP -hardness of controllability assessment of non-
linear systems were addressed by Sontag [138]. Following his earlier re-
sults [136, 137], Sontag [139] analyzes the computational complexity of ob-
servability and controllability of PWA systems through arguments based on
the language of piecewise linear algebra. The author proves that observabil-
ity/controllability is NP -complete over finite time, and is undecidable over
infinite time (i.e. in general cannot be solved in finite time by means of any
algorithm). Using a different rationale, the same result was derived in [34].

In [20] the authors provide two main contributions to the analysis of con-
trollability and observability of hybrid and PWA systems: (i) they show the
reader that observability and controllability properties can be very complex;

7.4 Theoretical Properties of PWA Systems 155

they present a number of counterexamples that rule out obvious conjectures
about inheriting observability/controllability properties from the composing
linear subsystems; (ii) they provide observability and controllability tests
based on Linear and Mixed-Integer Linear Programs (MILPs).

8

Constrained Optimal Control for Hybrid
Systems

158 8 Constrained Optimal Control for Hybrid Systems

In this chapter we study the solution to optimal control problems for discrete
time linear hybrid systems. First, we show that the closed form of the state
feedback solution to finite time optimal control based on quadratic or linear
norms performance criteria is a time-varying piecewise affine state feedback
control law. Then, we give insight into the structure of the optimal state
feedback solution and of the value function. Finally, we describe how the op-
timal control law can be efficiently computed by means of multiparametric
programming, for linear and quadratic performance criteria. For the linear
performance criteria the piecewise affine feedback control law can be com-
puted by means of multiparametric mixed integer linear programming. For
quadratic performance criteria we present an algorithm to solve multipara-
metric mixed integer quadratic programs by means of dynamic programming
and multiparametric quadratic programs.

8.1 Introduction

Different methods for the analysis and design of controllers for hybrid systems
have emerged over the last few years [136, 146, 43, 81, 106, 23]. Among them,
the class of optimal controllers is one of the most studied. Most of the literature
deals with optimal control of continuous time hybrid systems and is focused on
the study of necessary conditions for a trajectory to be optimal [140, 121], and
on the computation of optimal or sub-optimal solutions by means of Dynamic
Programming or the Maximum Principle [76, 82, 42, 129, 44]. Although some
techniques for determining feedback control laws seem to be very promising,
many of them suffer from the “curse of dimensionality” arising from the dis-
cretization of the state space necessary in order to solve the corresponding
Hamilton-Jacobi-Bellman or Euler-Lagrange differential equations.

Our hybrid modeling framework is completely general, in particular the
control switches can be both internal, i.e., caused by the state reaching a
particular boundary, and controllable, i.e., one can decide when to switch
to some other operating mode. Note however that interesting mathematical
phenomena occurring in hybrid systems such as Zeno behaviors [94] do not
exist in discrete time. We will show that for the class of linear discrete time
hybrid systems we can characterize and compute the optimal control law
without gridding the state space.

The solution to optimal control problems for discrete time hybrid systems
was first outlined by Sontag in [136]. In his plenary presentation [110] at the
2001 European Control Conference Mayne presented an intuitively appealing
characterization of the state feedback solution to optimal control problems
for linear hybrid systems with performance criteria based on quadratic and
linear norms. The detailed exposition presented in the first part of this chap-
ter follows a similar line of argumentation and shows that the state feedback
solution to the finite time optimal control problem is a time-varying piecewise
affine feedback control law, possibly defined over non-convex regions. More-

8.2 Problem Formulation 159

over, we give insight into the structure of the optimal state feedback solution
and of the value function.

An infinite horizon controller can be obtained by implementing in a re-
ceding horizon fashion a finite-time optimal control law. If one imposes an
end-point constraint, then the resulting state feedback controller is stabilizing
and respects all input and output constraints. The implementation, as a con-
sequence of the results presented here on finite-time optimal control, requires
only the evaluation of a piecewise affine function. This opens up the use of
receding horizon techniques to control hybrid systems characterized by fast
sampling and relatively small size. In collaboration with different companies
we have applied this type of optimal control design to a range of hybrid control
problems, for instance traction control described in Chapter 10.

In the next section we use the PWA modeling framework to derive the main
properties of the state feedback solution to finite time optimal control prob-
lems for hybrid systems. Thanks to the aforementioned equivalence between
PWA and MLD systems, the latter will be used in Section 8.5 to compute the
optimal control law.

8.2 Problem Formulation

Consider the PWA system (7.1) subject to hard input and state constraints

Ex(t) + Lu(t) ≤ M (8.1)

for t ≥ 0, and denote by constrained PWA system (CPWA) the restriction of
the PWA system (7.1) over the set of states and inputs defined by (8.1),

x(t + 1) = Aix(t) + Biu(t) + f i if
[

x(t)
u(t)

]
∈ C̃i (8.2)

where {C̃i}s−1
i=0 is the new polyhedral partition of the sets of state+input space

R
n+m obtained by intersecting the sets Ci in (7.1) with the polyhedron de-

scribed by (8.1).
Define the following cost function

J(UN , x(0)) � ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p (8.3)

and consider the constrained finite-time optimal control problem (CFTOC)

J∗(x(0)) � inf
{UN}

J(UN , x(0)) (8.4)

subj. to

xk+1 = Aixk + Biuk + f i if [xk
uk

] ∈ C̃i

xN ∈ Xf

x0 = x(0)
(8.5)

160 8 Constrained Optimal Control for Hybrid Systems

where the column vector UN � [u′
0, . . . , u

′
N−1]

′ ∈ R
mcN × {0, 1}m�N , is the

optimization vector, N is the time horizon and Xf is the terminal region.
In (8.3), ‖Qx‖p denotes the p-norm of the vector x weighted with the matrix
Q, p = 1, 2,∞. In the following, we will assume that Q = Q′ � 0, R = R′ � 0,
P � 0, for p = 2, and that Q, R, P are full column rank matrices for p = 1,∞.
We will also denote with Xi ⊆ R

nc × {0, 1}n� the set of initial states x(i) at
time i for which the optimal control problem (8.3)-(8.5) is feasible:

Xi = {x ∈ R
nc × {0, 1}n� | ∃u ∈ R

mc × {0, 1}m� and i ∈ {0, . . . , s− 1}|
[xk
uk

] ∈ C̃i and Aix + Biu + f i ∈ Xi+1
},

i = 0, . . . , N − 1,
XN = Xf .

(8.6)
In general, the optimal control problem (8.3)-(8.5) may not have a min-

imum for some feasible x(0). This is caused by discontinuity of the PWA
system in the input space. We will consider problem (8.3)-(8.5) assuming that
a minimizer UN

∗(x(0)) exists for all feasible x(0). In this case, the optimal
control problem (8.3)-(8.5) becomes

J∗(x(0)) � min
{UN}

J(UN , x(0)) (8.7)

subj. to

xk+1 = Aixk + Biuk + f i if [xk
uk

] ∈ C̃i

xN ∈ Xf

x0 = x(0)
(8.8)

The optimizer UN
∗(x(0)) of problem (8.3)-(8.5) does not exist for some

x(0) if the PWA systems (8.2) is discontinuous in the real input space and the
infimizer of problem (8.3)-(8.5) lies on a the boundary of a polyhedron be-
longing to the polyhedral partition of the PWA system (8.2). Such a situation
is of doubtful practical interest, in the sense that a small discrepancy between
the “real” system and its model could lead to an arbitrarily large deviation
between the performance of the closed loop system and its infimum.

In the following we need to distinguish between optimal control based on
the 2-norm and optimal control based on the 1-norm or ∞-norm. Note that
the results of this chapter also hold when the switching is weighted in the cost
function (8.3), if this is meaningful in a particular situation.

8.3 State Feedback Solution of CFTOC, 2-Norm Case

Theorem 8.1. The solution to the optimal control problem (8.3)-(8.8) is a
PWA state feedback control law of the form u∗(k) = fk(x(k)), where

fk(x(k)) = F i
kx(k) + gi

k if x(k) ∈ Ri
k, (8.9)

8.3 State Feedback Solution of CFTOC, 2-Norm Case 161

where Ri
k, i = 1, . . . , N r

k is a partition of the set Xk of feasible states x(k)
and the closure R̄i

k of the sets Ri
k has the following form:

R̄i
k �

{
x : x(k)′L(j)i

kx(k) + M(j)i
kx(k) ≤ N(j)i

k, j = 1, . . . , ni
k

}
,

k = 0, . . . , N − 1.

Proof: The piecewise linearity of the solution was first mentioned by Son-
tag in [136]. In [110] Mayne sketched a proof. In the following we will give the
proof for u∗(x(0)), the same arguments can be repeated for u∗(x(1)), . . . , u∗(x(N−
1)). We will denote u∗

0(x(0)) by u∗(x(0)).
Depending on the initial state x(0) and on the input sequence U = [u′

0,. . .,
u′

k−1] the state xk is either infeasible or it belongs to a certain polyhedron
C̃i. Suppose for the moment that there are no binary inputs, m� = 0. The
number of all possible locations of the state sequence x0, . . . , xN−1 is equal
to sN . Denote by {vi}sN

i=1 the set of all possible switching sequences over the
horizon N , and by vk

i the k-th element of the sequence vi, i.e., vk
i = j if

xk ∈ C̃j.
Fix a certain vi and constrain the state to switch according to the sequence

vi. Problem (8.3)-(8.8) becomes

J∗
vi

(x(0)) � min
{UN}

J(UN , x(0)) (8.10)

subj. to

xk+1 = Aixk + Biuk + f i

if [xk
uk

] ∈ C̃i

[xk
uk

] ∈ C̃vk
i k = 0, . . . , N − 1

xN ∈ Xf

x0 = x(0)

(8.11)

Assume for the moment that the sets C̃vk
i , k = 0, . . . , N − 1 are closed.

Problem (8.10)-(8.11) is equivalent to a finite time optimal control problem
for a linear time-varying system with time-varying constraints and can be
solved by using the approach outlined in Chapter 2. Its solution is the PPWA
feedback control law

ui(x(0)) = F̃ i,jx(0) + g̃i,j , ∀x(0) ∈ T i,j , j = 1, . . . , N ri (8.12)

where Di =
⋃Nri

j=1 T i,j is a polyhedral partition of the convex set Di of fea-
sible states x(0) for problem (8.10)-(8.11). N ri is the number of regions of
the polyhedral partition of the solution and is a function of the number of
constraints in problem (8.10)-(8.11). The upperindex i in (8.12) denotes that
the input ui(x(0)) is optimal when the switching sequence vi is fixed.

The optimal solution u∗(x(0)) to the original problem (8.3)-(8.8) can be
found by solving problem (8.10)-(8.11) for all vi. The set X0 of all feasible
states at time 0 is X0 =

⋃sN

i=1Di and, in general, it is not convex.
As some initial states can be feasible for different switching sequences, the

sets Di, i = 1, . . . , sN , in general, can overlap. The solution u∗(x(0)) can be
computed in the following way. For every polyhedron T i,j in (8.12),

162 8 Constrained Optimal Control for Hybrid Systems

1. If T i,j ∩ T l,m = ∅ for all l �= i, l = 1, . . . , sN , m = 1, . . . , Nrl, then the
switching sequence vi is the only feasible one for all the states belonging
to T i,j and therefore the optimal solution is given by (8.12), i.e.

u∗(x(0)) = F̃ i,jx(0) + g̃i,j , ∀x ∈ T i,j . (8.13)

2. If T i,j intersects one or more polyhedra T l1,m1 ,T l2,m2 ,. . ., the states be-
longing to the intersection are feasible for more than one switching se-
quence vi, vl1 , vl2 , . . . and therefore the corresponding value functions
J∗

vi
(x(0)), J∗

vl1
(x(0)),J∗

vl2
(x(0)), . . . in (8.10) have to be compared in or-

der to compute the optimal control law.
Consider the simple case when only two polyhedra overlap, i.e. T i,j ∩
T l,m � T (i,j),(l,m) �= ∅. We will refer to T (i,j),(l,m) as a polyhedron of
multiple feasibility. For all states belonging to T (i,j),(l,m) the optimal so-
lution is:

u∗(x(0)) =

F̃ i,jx(0) + g̃i,j , ∀x(0) ∈ T (i,j),(l,m) : J∗

vi
(x(0)) < J∗

vl
(x(0))

F̃ l,mx(0) + g̃l,m, ∀x(0) ∈ T (i,j),(l,m) : J∗
vi

(x(0)) > J∗
vl

(x(0)){
F̃ i,jx(0) + g̃i,j or

F̃ l,mx(0) + g̃l,m ∀x(0) ∈ T (i,j),(l,m) : J∗
vi

(x(0)) = J∗
vl

(x(0))

(8.14)

Because J∗
vi

(x(0)) and J∗
vl

(x(0)) are quadratic functions on T i,j and T l,m

respectively, the theorem is proved. In general, a polyhedron of multiple
feasibility where n value functions intersect is partitioned into n subsets
where in each one of them a certain value function is greater than all the
others.

Assume now that there exists k̄ such that C̃vk̄
i is not closed. Then we will

proceed in the following way. In problem (8.10)-(8.11) we substitute its closure

C̃vk̄
i . After having computed the PPWA solution (8.12), we exclude from the

sets Di all the initial states x(0) belonging to C̃vk̄
i but not to the set C̃vk̄

i . The
proof follows as outlined above, except that the sets T i,j may be neither open
nor closed polyhedra.

The proof can be repeated in the presence of binary inputs, m� �= 0. In this
case the switching sequences vi are given by all combinations of region indices
and binary inputs , i.e., i = 1, . . . , (s ∗ m�)N . The continuous component of
the optimal input is given by (8.13) or (8.14). Such an optimal continuous
component of the input has an associated optimal sequence vi which provides
the remaining binary components of the optimal input.

�

Remark 8.1. Let T (i,j),(l,m) be a polyhedron of multiple feasibility and let
F = {x ∈ T (i,j),(l,m) : J∗

vi
(x) = J∗

vl
(x)} be the set where the quadratic

functions J∗
vi

(x) and J∗
vl

(x) intersect (for the sake of simplicity we consider
the case where only two polyhedra intersect). We distinguish four cases (sub-
cases of case 2 in Theorem 8.1):

8.3 State Feedback Solution of CFTOC, 2-Norm Case 163

J¤

vi
(x(0)) < J¤

vl
(x(0))

J¤

vi
(x(0)) > J¤

vl
(x(0))

(a)

J¤

vi
(x(0)) > J¤

vl
(x(0))

J¤

vi
(x(0)) < J¤

vl
(x(0))

J
¤

v
i
(x

(0
))

<
J

¤

v
l
(x

(0
))

(b)

Fig. 8.1. Possible partitions corresponding to the optimal control law in case 2.d
of Remark 8.1

2.a F = ∅, i.e., J∗
vi

(x) and J∗
vl

(x) do not intersect over T̃ (i,j),(l,m).
2.bF = {x : Ux = P} and J∗

vi
(x) and J∗

vl
(x) are tangent on F .

2.c F = {x : Ux = P} and J∗
vi

(x) and J∗
vl

(x) are not tangent on F .
2.dF = {x : x′Y x + Ux = P} with Y �= 0.

In the first case T (i,j),(l,m) is not further partitioned, the optimal solution in
T (i,j),(l,m) is either F̃ i,jx(0)+ g̃i,j or F̃ l,mx(0)+ g̃l,m. In case 2.b, T (i,j),(l,m) is
not further partitioned but there are multiple optimizers on the set Ux = P .
In case 2.c, T (i,j),(l,m) is partitioned into two polyhedra. In case 2.d T (i,j),(l,m)

is partitioned into two sets (not necessarily connected) as shown in Figure 8.1.
In the special situation where case 2.c or 2.d occur but the control laws

are identical, i.e., F i,j = F l,m and g̃i,j = g̃l,m, we will assume that the set
T (i,j),(l,m) is not further partitioned.

Example 8.1. Consider the following simple system
x(t + 1) =

[
−1 2
2 3

]
x(t) +

[
0
1

]
u(t) if x(t) ∈ C1 = {x : [0 1]x ≥ 0}[

1 2
0 1

]
x(t) +

[
1
0

]
u(t) if x(t) ∈ C2 = {x : [0 1]x < 0}

x(t) ∈ [−1,−0.5]× [1, 1]
u(t) ∈ [−1, 1]

(8.15)

and the optimal control problem (8.3)-(8.8), with N = 2, Q =
[

1 0
0 1

]
, R = 10,

P = Q, Xf = {x ∈ R
2|
[
−1
−0.5

]
≤ x ≤

[
1
1

]
}.

The possible switching sequences are v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1},
v4 = {2, 2}. The solution to problem (8.10)-(8.11) is depicted in Figure (8.2)

164 8 Constrained Optimal Control for Hybrid Systems

(note that the switch v3 is infeasible for all x(0)). In Figure 8.3(a) the four so-
lutions are intersected, the white region corresponds to polyhedra of multiple
feasibility. The state-space partition of the optimal control law is depicted in
Figure 8.3(b) (for lack of space, we do not report here the analytic expressions
of the regions and the corresponding affine gains).

-0.8 -0.4 0 0.4
0

0.1

0.2

0.3

0.4

X (0)1

X
(0

)
2

(a) States-space partition
corresponding to the solution
to problem (8.3)-(8.11) for
v1 = {1, 1}

X (0)1

X
(0

)
2

-1 -0.5 0 0.5
0

0.1

0.2

0.3

0.4

(b) States-space partition
corresponding to the solution
to problem (8.3)-(8.11) for
v2 = {1, 2}

-1 -0.6 -0.2 0.2 0.6 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

X (0)1

X
(0

)
2

(c) Problem (8.3)-(8.11) for
v3 = {2, 1} is infeasible.

-1 -0.6 -0.2 0.2 0.6 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

X (0)1

X
(0

)
2

(d) States-space partition
corresponding to the solution
to problem (8.3)-(8.11) for
v4 = {2, 2}

Fig. 8.2. First step for the solution of Example 8.1. Problem (8.3)-(8.11) is solved
for different vi, i = 1, . . . , 4

Theorem 8.2. Assume that the PWA system (8.2) is continuous and uncon-
strained. Then, the value function J∗(x(0)) in (8.8) is continuous.

8.3 State Feedback Solution of CFTOC, 2-Norm Case 165

-1 -0.6 -0.2 0.2 0.6 1
-0.5

-0.3

-0.1

0.1

0.3

0.5

v1

v1

v4

X (0)1

X
(0

)
2

(a) Feasibility domain cor-
responding to the solution
of Example 8.1 obtained by
joining the solutions plotted
in Figure 8.2. The white re-
gion corresponds to polyhe-
dra of multiple feasibility.

-1 -0.6 -0.2 0.2 0.6 1
-0.5

-0.3

-0.1

0.1

0.3

0.5

v1

v1

v4

X (0)1

X
(0

)
2

v2

(b) State-space partition
corresponding to the opti-
mal control law of Exam-
ple 8.1

Fig. 8.3. State-space partition corresponding to the optimal control law of Exam-
ple 8.1

Proof: The proof follows from the continuity of J(UN , x(0)) and Theo-
rem 1.1.

�

In general, for constrained PWA system it is difficult to find weak as-
sumptions ensuring the continuity of the value function J∗(x(0)). Ensuring
the continuity of the optimal control law u∗(x(k)) is even more difficult. The-
orem 1.1 provides a sufficient condition for U∗

N (x(0)) to be continuous: it
requires the cost J(UN , x(0)) to be continuous and convex in UN for each
x(0) and the constraints in (8.8) to be continuous and convex in UN for each
x(0). Such conditions are clearly too restrictive since the cost and the con-
straints in problem (8.8) are a composition of quadratic and linear functions,
respectively, with the piecewise linear dynamics of the system.

The next theorem provides a condition under which the solution u∗(x(k))
of the optimal control problem (8.3)-(8.8) is a PPWA state feedback control
law.

Theorem 8.3. Assume that the optimizer UN
∗(x(0)) of (8.3)-(8.8) is unique

for all x(0). Then the solution to the optimal control problem (8.3)-(8.8) is a
PPWA state feedback control law of the form

u∗(x(k)) = F i
kx(k) + gi

k if x(k) ∈ P i
k k = 0, . . . , N − 1 (8.16)

where P i
k, i = 1, . . . , N r

k is a polyhedral partition of the set Xk of feasible
states x(k).

166 8 Constrained Optimal Control for Hybrid Systems

Proof: : We will show that case 2.d in Remark 8.1 cannot occur by contra-
diction. Suppose case 2.d occurs. From the hypothesis the optimizer u∗(x(0))
is unique and from Theorem 8.1 the value function J∗(x(0)) is continuous on
F , this implies that F̃ i,jx(0)+ g̃i,j = F̃ l,mx(0)+ g̃l,m, ∀x(0) ∈ F . That contra-
dicts the hypothesis since the set F is not a hyperplane. The same arguments
can be repeated for u∗(x(k)), k = 1, . . . , N − 1. �

Remark 8.2. Theorem 8.3 relies on a rather weak uniqueness assumption. As
the proof indicates, the key point is to exclude case 2d in Remark 8.1. There-
fore, it is reasonable to believe that there are other conditions or problem
classes which satisfy this structural property without claiming uniqueness.
We are also currently trying to identify and classify situations where the state
transition structure guarantees the absence of disconnected sets as shown in
Figure 8.1(b).

The following Corollary summarizes the properties enjoyed by the solution
to problem (8.3)-(8.8) as a direct consequence of Theorems 8.1-8.3

Corollary 8.1.
1. u∗(x(k)) and J∗(x(k)) are, in general, discontinuous and Xk may be non-

convex.
2. J∗(x(k)) can be discontinuous only on a facet of a polyhedron of multiple

feasibility.
3. If there exists a polyhedron of multiple feasibility with F = {x : x′Y x +

Ux = P}, Y �= 0, then on F u∗(x(k)) is not unique, except possibly at
isolated points.

8.4 State Feedback Solution of CFTOC, 1, ∞-Norm Case

The results of the previous section can be extended to piecewise linear cost
functions, i.e., cost functions based on the 1-norm or the ∞-norm.

Theorem 8.4. The solution to the optimal control problem (8.3)-(8.8) with
p = 1, ∞ is a PPWA state feedback control law of the form u∗(k) = fk(x(k))

fk(x(k)) = F i
kx(k) + gi

k if x(k) ∈ P i
k (8.17)

where P i
k, i = 1, . . . , N r

k is a polyhedral partition of the set Xk of feasible
states x(k).

Proof: The proof is similar to the proof of Theorem 8.1. Fix a certain
switching sequence vi, consider the problem (8.3)-(8.8) and constrain the state
to switch according to the sequence vi to obtain problem (8.10)-(8.11). Prob-
lem (8.10)-(8.11) can be viewed as a finite time optimal control problem with
performance index based on 1-norm or ∞-norm for a linear time varying sys-
tem with time varying constraints and can be solved by using the multipara-
metric linear program as described in [18]. Its solution is a PPWA feedback
control law

8.5 Efficient Computation of the Optimal Control Input 167

ui(x(0)) = F̃ i,jx(0) + g̃i,j , ∀x ∈ T i,j , j = 1, . . . , N ri (8.18)

and the value function J∗
vi

is piecewise affine on polyhedra and convex. The
rest of the proof follows the proof of Theorem 8.1. Note that in this case
the value functions to be compared are piecewise affine and not piecewise
quadratic. �

8.5 Efficient Computation of the Optimal Control Input

In the previous section the properties enjoyed by the solution to hybrid op-
timal control problems were investigated. Despite the fact that the proof is
constructive (as shown in the figures), it is based on the enumeration of all the
possible switching sequences of the hybrid system, the number of which grows
exponentially with the time horizon. Although the computation is performed
off-line (the on-line complexity is the one associated with the evaluation of the
PWA control law (8.16)), more efficient methods than enumeration are desir-
able. Here we show that the MLD framework can be used in order to avoid
enumeration. In fact, when the model of the system is an MLD model and
the performance index is quadratic, the optimization problem can be cast as
a Mixed-Integer Quadratic Program (MIQP). Similarly, 1-norm and ∞-norm
performance indices lead to Mixed-Integer Linear Programs (MILPs) prob-
lems. In the following we detail the translation of problem (8.3)-(8.8) into
a mixed integer linear or quadratic program for which efficient branch and
bound algorithms exist.

Consider the equivalent MLD representation (7.8) of the PWA system (8.2).
Problem (8.3)-(8.8) is rewritten as:

J∗(x(0)) = minUN ‖PxN‖p +
N−1∑
k=0

‖Q1uk‖p + ‖Q2δk‖p

+‖Q3zk‖p + ‖Q4xk‖p (8.19)

subj. to

xk+1 = Axk + B1uk + B2δk + B3zk

E2δk + E3zk ≤ E1uk + E4xk + E5

xN ∈ Xf

x0 = x(0)

(8.20)

Note that the cost function (8.19) is more general than (8.3), and includes
also the weight on the switching sequence.

The optimal control problem in (8.19)-(8.20) can be formulated as a Mixed
Integer Quadratic Program (MIQP) when the squared Euclidean norm is used
(p = 2) [23], or as a Mixed Integer Linear Program (MILP), when p = ∞ or
p = 1 [16],

168 8 Constrained Optimal Control for Hybrid Systems

min
ε

ε′H1ε + ε′H2x(0) + x(0)′H3x(0) + c′1ε + c′2x(0) + c

subj. to Gε ≤ W + Sx(0)
(8.21)

where H1, H2, H3, c1, c2, G, W , S are matrices of suitable dimensions, ε =
[ε′c, ε′d] where εc, εd represent continuous and discrete variables, respectively
and H1, H2, H3, are null matrices if problem (8.21) is an MILP.

The translation of (8.19)-(8.20) into (8.21) for p = 2 is simply obtained by
substituting the state update equation

xk = Akx0 +
k−1∑
j=0

Aj(B1uk−1−j + B2δk−1−j + B3zk−1−j) (8.22)

and the optimization vector ε = {u0, . . . , uN−1, δ0, . . . , δN−1, z0, . . . , zN−1}
in (8.21).

For p = 1,∞, the translation requires the introductions of slack variables.
In particular, for p = ∞ the sum of the components of any vector
{εu

0 , . . . , εu
N−1, ε

δ
0, . . . , ε

δ
N−1, ε

z
0, . . . , ε

z
N−1, ε

x
0 , . . . , εx

N} that satisfies

−1mεu
k ≤ Q1uk, k = 0, 1, . . . , N − 1

−1mεu
k ≤ −Q1uk, k = 0, 1, . . . , N − 1

−1r�
εδ

k ≤ Q2δk, k = 0, 1, . . . , N − 1
−1r�

εδ
k ≤ −Q2δk, k = 0, 1, . . . , N − 1

−1rcε
z
k ≤ Q3zk, k = 0, 1, . . . , N − 1

−1rcε
z
k ≤ −Q3zk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ Q4xk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ −Q4xk, k = 0, 1, . . . , N − 1

−1nεx
N ≤ PxN ,

−1nεx
N ≤ PxN ,

(8.23)

represents an upper bound on J∗(x(0)), where 1k is a column vector of ones of
length k, and where x(k) is expressed as in (8.22). Similarly to what was shown
in [45], it is easy to prove that the vector ε � {εu

0 , . . . , εu
N−1, ε

δ
0, . . . , ε

δ
N−1, ε

z
0, . . . , ε

z
N−1, ε

x
0 , . . . , εx

N ,
u(0), . . . , u(N − 1)} that satisfies equations (8.23) and simultaneously mini-
mizes

J(ε) = εu
0 + . . . + εu

N−1 + εδ
0 + . . . + εδ

N−1 + εz
0 + . . . + εz

N−1 + εx
0 + . . . + εx

N(8.24)

also solves the original problem, i.e., the same optimum J∗(x(0)) is achieved.
Therefore, problem (8.19)-(8.20) can be reformulated as the following MILP
problem

8.6 Efficient Computation of the State Feedback Solution 169

min
ε

J(ε)

subj. to −1mεu
k ≤ ±Q1uk, k = 0, 1, . . . , N − 1

−1mεδ
k ≤ ±Q2δk, k = 0, 1, . . . , N − 1

−1mεz
k ≤ ±Q3zk, k = 0, 1, . . . , N − 1

−1nεx
k ≤ ±Q4(Akx0 +

∑k−1
j=0 Aj(B1uk−1−j+

B2δk−1−j + B3zk−1−j)) k = 0, . . . , N − 1
−1nεx

N ≤ ±P (ANx0 +
∑N−1

j=0 Aj(B1uk−1−j+
B2δk−1−j + B3zk−1−j))

xk+1 = Axk + B1uk + B2δk + B3zk, k ≥ 0
E2δk + E3zk ≤ E1uk + E4xk + E5, k ≥ 0

xN ∈ Xf

x0 = x(0)

(8.25)

where the variable x(0) appears only in the constraints in (8.25) as a parameter
vector.

Given a value of the initial state x(0), the MIQP (or MILP) (8.21) can be
solved to get the optimizer ε∗(x(0)) and therefore the optimal input U∗

N(0).
In Section 8.6 we will show how multiparametric programming can be used to
efficiently compute the piecewise affine state feedback optimal control law (8.9)
or (8.17).

8.6 Efficient Computation of the State Feedback Solution

Multiparametric programming [68, 57, 25, 37] can be used to efficiently com-
pute the PWA form of the optimal state feedback control law u∗(x(k)). By
generalizing the results for linear systems of previous chapters to hybrid sys-
tems, the state vector x(0), which appears in the objective function and in the
linear part of the right-hand-side of the constraints (8.21), can be handled as a
vector of parameters. Then, for performance indices based on the ∞-norm or
1-norm, the optimization problem can be treated as a multiparametric MILP
(mp-MILP), while for performance indices based on the 2-norm, the optimiza-
tion problem can be treated as a multiparametric MIQP (mp-MIQP). Solving
an mp-MILP (mp-MIQP) amounts to expressing the solution of the MILP
(MIQP) (8.21) as a function of the parameters x(0) .

In Section 1.5 we have presented an algorithm for solving mp-MILP prob-
lems, while, to the authors’ knowledge, there does not exist an efficient method
for solving mp-MIQPs. In Section 8.7 we will present an algorithm that effi-
ciently solves mp-MIQPs derived from optimal control problems for discrete
time hybrid systems.

170 8 Constrained Optimal Control for Hybrid Systems

8.7 Computation of the State Feedback Solution,
1, ∞-Norm Case

As mentioned before the solution of the mp-MILP (8.21) provides the state
feedback solution u∗(k) = fk(x(k)) (8.17) of CFTOC (8.3)-(8.8) for k = 0.
A similar approach used for linear systems in Section 2.2, can be use here to
compute the state feedback piecewise-affine optimal control law fk : x(k) �→
u∗(k) for k = 1, . . . , N , by solving N mp-MILP over a shorter horizon.

8.7.1 Example

Consider the problem of steering to a small region around the origin in three
steps the simple piecewise affine system [23]

x(t + 1) = 0.8
[

cosα(t) − sinα(t)
sin α(t) cosα(t)

]
x(t) +

[
0
1

]
u(t)

α(t) =
{

π
3 if [1 0]x(t) ≥ 0

−π
3 if [1 0]x(t) < 0

x(t) ∈ [−10, 10]× [−10, 10]
u(t) ∈ [−1, 1]

(8.26)

while minimizing the cost function (8.3) with p = ∞. By using auxiliary
variables z(t) ∈ R

4 and δ(t) ∈ {0, 1} such that [δ(t) = 1] ↔ [[1 0]x(t) ≥ 0],
Eq. (8.26) can be rewritten in the form (7.8) as in [23].

x(t + 1) =
[

I I
]

z(t)

5
−5 − ε
−M
−M
M
M
M
M

−M
−M
0
0
0
0

δ(t) +

0 0
0 0
I 0

−I 0
0 I
0 −I
I 0

−I 0
0 I
0 −I
0 0
0 0
0 0
0 0

z(t) ≤

0
0
0
0
0
0
B

−B
B

−B
0
0
1

−1

u(t) +

1 0
−1 0

0
0
0
0

A1
−A1
A2

−A2
I

−I
0
0

x(t) +

5
−ε
0
0

M
M
M
M
0
0
N
N
1
1

where B = [0 1]′, A1, A2 are obtained by (8.26) by setting respectively α =
π
3 ,−π

3 , M = 4(1+
√

3)[1 1]′ +B, N � 5[1 1]′, and ε is a properly chosen small
positive scalar.

The finite-time constrained optimal control problem (8.3)-(8.8) is solved
with N = 3, P = Q = [700 0

0 700], R = 1, and Xf = [−0.01 0.01]× [−0.01 0.01],
by solving the associate mp-MILP problem (8.21). The polyhedral regions
corresponding to the state feedback solution u∗(x(k)), k = 0, . . . , 2 in (8.17)
are depicted in Fig. 8.4. The resulting optimal trajectories for the initial state
x(0) = [−1 1]′ are shown in Fig. 8.5.

8.8 Computation of the State Feedback Solution, 2-Norm Case 171

Fig. 8.4. State space partition corresponding to the state feedback finite time op-
timal control law u∗(x(k)) of system (8.26).

Fig. 8.5. Finite time optimal control of system (8.26).

8.8 Computation of the State Feedback Solution,
2-Norm Case

Often the use of linear norms has practical disadvantages. A satisfactory per-
formance may be only achieved with long time-horizons with a consequent in-
crease of complexity. Also closed-loop performance may not depend smoothly
on the weights used in the performance index, i.e., slight changes of the weights
could lead to very different closed-loop trajectories, so that the tuning of the
controller becomes difficult. Here we propose an efficient algorithm for com-
puting the solution to the finite time optimal control problem for discrete

172 8 Constrained Optimal Control for Hybrid Systems

time linear hybrid systems with a quadratic performance criterion. The algo-
rithm is based on a dynamic programming recursion and a multiparametric
quadratic programming solver.

8.8.1 Preliminaries and Basic Steps

Denote with fPPWA(x) and fPPWQ(x) a generic PPWA and PPWQ function
of x, respectively.

Definition 8.1. A function q : Θ → R, where Θ ⊆ R
s is a multiple quadratic

function of multiplicity d ∈ N
+ if q(θ) = min{q1(θ) � θ′Q1θ + l1θ +

c1, . . . , qd(θ) � θ′Qdθ + ldθ + cd} and Θ is a convex polyhedron.

Definition 8.2. A function q : Θ → R, where Θ ⊆ R
s, is a multiple PWQ on

polyhedra (multiple PPWQ) if there exists a polyhedral partition R1,. . . ,RN

of Θ and q(θ) = min{q1
i θ � θ′Q1

i θ + l1i θ + c1
i , . . . , q

di

i � θ′Qdi

i θ + ldi

i θ + cdi

i },
∀θ ∈ Ri, i = 1, . . . , N . We define di to be the multiplicity of the function q
in the polyhedron Ri and d =

∑N
i=1 di to be the multiplicity of the function q.

(Note that Θ is not necessarily convex.)

Multiparametric Quadratic Programming

The following quadratic program

V (x) = min
u

1
2u′Hu + x′Fu

subj. to Gu ≤ W + Ex

(8.27)

can be solved for all x by using an Multiparametric Quadratic Program
solver (mp-QP) described in Section 1.4. The solution to the parametric pro-
gram (8.27) is a PPWA law u∗(x) = fPPWA(x) and the value function is
PPWQ, V (x) = fPPWQ(x).

Procedure Intersect and Compare

Consider the PWA map ζ(x)

ζ : x �→ F ix + gi if x ∈ Ri i = 1, . . . , NR (8.28)

where Ri, i = 1, . . . , NR are sets of the x−space. If there exist l, m ∈
{1, . . . , NR} such that for x ∈ Rl ∩ Rm, F lx + gl �= Fmx + gm the map
ζ(x) (8.28) is not single valued.

Definition 8.3. Given a PWA map (8.28) we define the function fPWA(x) =
ζo(x) as the ordered region single-valued function associated with (8.28)
when ζo(x) = F jx + gj, j ∈ {1, . . . , NR}|x ∈ Rj and ∀i < j x /∈ Ri.

8.8 Computation of the State Feedback Solution, 2-Norm Case 173

Note that given a PWA map (8.28) the corresponding ordered region single-
valued function changes if the order used to store the regions Ri and the
corresponding affine gains changes.

In the following we assume that the sets Ri
k in the optimal solution (8.9)

can overlap. When we refer to the PWA function u∗(x(k)) in (8.9) we will
implicitly mean the ordered region single-valued function associated with the
mapping (8.9).

Theorem 8.5. Let J∗
1 : P1 → R and J∗

2 : P2 → R be two quadratic func-
tions, J∗

1 (x) � x′L1x + M1x + N1 and J∗
2 (x) � x′L2x + M2x + N2, where

P1 and P2 are convex polyhedra and J∗
i (x) = +∞ if x /∈ P i. Consider the

nontrivial case P1 ∩ P2 � P3 �= ∅ and the expressions

J∗(x) = min{J∗
1 (x), J∗

2 (x)} (8.29)

u∗(x) =
{

u1∗(x) if J∗
1 (x) ≤ J∗

2 (x)
u2∗(x) if J∗

1 (x) > J∗
2 (x)

(8.30)

Define L3 = L2 −L1, M3 = M2 −M1, N3 = N2 −N1. Then, corresponding
to the three following cases

1. J∗
1 (x) ≤ J∗

2 (x) ∀x ∈ P3

2. J∗
1 (x) ≥ J∗

2 (x) ∀x ∈ P3

3. ∃ x1, x2 ∈ P3|J∗
1 (x1) < J∗

2 (x1) and J∗
1 (x2) > J∗

2 (x2)

the expressions (8.29) and (8.30) can be written equivalently as:

1.

J∗(x) =
{

J∗
1 (x) if x ∈ P1

J∗
2 (x) if x ∈ P2 (8.31)

u∗(x) =
{

u1∗(x) if x ∈ P1

u2∗(x) if x ∈ P2 (8.32)

2. as in (8.31) and (8.32) but switching the index 1 with 2
3.

J∗(x) =

min{J∗
1 (x), J∗

2 (x)} if x ∈ P3

J∗
1 (x) if x ∈ P1

J∗
2 (x) if x ∈ P2

(8.33)

u∗(x) =

u1∗(x) if x ∈ P3 and x′L3x + M3x + N3 ≥ 0
u2∗(x) if x ∈ P3 and x′L3x + M3x + N3 ≤ 0
u1∗(x) if x ∈ P1

u2∗(x) if x ∈ P2

(8.34)

where (8.31)–(8.34) have to be considered as PWA and PPWQ functions in
the ordered region sense.

174 8 Constrained Optimal Control for Hybrid Systems

Proof: The proof is very simple and is omitted here. �

The results of Theorem 8.5 allow one

• to avoid the storage of the intersections of two polyhedra in case 1. and 2.
of Theorem 8.5

• to avoid the storage of possibly non-convex regions P3 \ P1 and P3 \ P2

• to work with multiple quadratic functions instead of quadratic functions
defined over non-convex and non-polyhedral regions.

The three point listed above will be the three basic ingredients for storing and
simplifying the optimal control law (8.9). Next we will show how to compute
it.

Remark 8.3. To distinguish between cases 1, 2 and 3 of Theorem 8.5 one needs
to solve an indefinite quadratic program. In our approach if one fails to dis-
tinguish between the three cases (e.g. if one solves a relaxed problem instead
of the indefinite quadratic program) then the form (8.34) corresponding to
the third case, will be used. The only drawback is that the form (8.34) could
be a non-minimal representation of the value function and could therefore
increase the computational complexity of the on-line algorithm for computing
the optimal control action (8.9).

Parametric Programming

Consider the multiparametric program

J∗(x) � min{u} l(x, u) + q(f(x, u)) (8.35)
subj. to f(x, u) ∈ P (8.36)

where P ⊆ R
n, f : R

n × R
m → R

n, q : P → R, and l : R
n × R

m → R

is a quadratic function of x and u. We aim at determining the region X of
variables x such that the program (8.35)–(8.36) is feasible and the optimum
J∗(x) is finite, and at finding the expression of the optimizer u∗(x).

In the following we will assume that f(x, u) linear in x and u and we will
show how to solve the following problems

1. one to one problem: q(x) is quadratic in x, and P is a convex polyhedron.
2. one to one problem of multiplicity d : q(x) is a multiple quadratic function

of x of multiplicity d and P is a convex polyhedron.
3. one to r problem: q(x) is a PPWQ function of x defined over r polyhedral

regions.
4. one to r problem of multiplicity d: q(x) is a multiple PPWQ function of x

of multiplicity d, defined over r polyhedral regions.

If the function f is PPWA defined over s regions then we have an s to X
problem where X can belong to any combination listed above. For example we
have an s to r problem of multiplicity d if f(x, u) is PPWA in x and u defined
over s regions and q(x) is a multiple PPWQ function of x of multiplicity d,
defined over r polyhedral regions.

8.8 Computation of the State Feedback Solution, 2-Norm Case 175

Theorem 8.6. A one to one problem is solved with one mp-QP

Proof: See Section 1.4

Theorem 8.7. A one to one problem of multiplicity d is solved by solving d
mp-QPs.

Proof: The multiparametric program to be solved is

J∗(x) = min{u} l(x, u) + min{q1(f(x, u)), . . . , qd(f(x, u))}(8.37)
subj. to f(x, u) ∈ P (8.38)

and it is equivalent to

J∗(x) = min
{

min{u} l(x, u) + q1(f(x, u)), . . . , min{u} l(x, u) + qd(f(x, u))}
subj. to f(x, u) ∈ P subj. to f(x, u) ∈ P

}
(8.39)

The i-th sub-problems in (8.39)

J∗
i (x) � min

{u}
l(x, u) + qi(f(x, u)) (8.40)

subj. to f(x, u) ∈ P (8.41)

is a one to one problem and therefore it is solvable with an mp-QP. Let the
solution of the i-th mp-QPs be

ui(x) = F̃ i,jx + g̃i,j , ∀x ∈ T i,j , j = 1, . . . , N ri (8.42)

where T i =
⋃Nri

j=1 T i,j is a polyhedral partition of the convex set T i of feasible
states x for the i-th sub-problem and N ri is the number of polyhedral regions.
The feasible set X satisfies X = T 1 = . . . = T d since the constraints of the d
sub-problems are identical.

The solution u∗(x) to the original problem (8.38) is obtained by compar-
ing and storing the solution of d mp-QPs subproblems (8.41) as explained
in Theorem 8.5. Consider the case d = 2, and consider the intersection of
the polyhedra T 1,i and T 2,l for i = 1, . . . , Nr1, l = 1, . . . , Nr2. For all
T 1,i ∩ T 2,l � T (1,i),(2,l) �= ∅ the optimal solution is stored in an ordered
way as described in Theorem 8.5, while paying attention that a region could
be already stored. Moreover while storing a new polyhedron with the corre-
sponding value function and optimal controller the relative order of the regions
already stored must not be changed. The result of this Intersect and Compare
procedure is

u∗(x) = F ix + gi if x ∈ Ri � {x : x′Li(j)x + M i(j)x ≤ N i(j), j = 1, . . . , ni}
(8.43)

where R =
⋃NR

j=1Rj is a convex polyhedron and the value function

J∗(x) = J̃∗
j (x) if x ∈ Dj , j = 1, . . . , ND (8.44)

176 8 Constrained Optimal Control for Hybrid Systems

where J̃∗
j (x) are multiple quadratic functions defined over the convex polyhe-

dra Dj . The polyhedra Dj can contain more regions Ri’s or can coincide with
one of them. Note that (8.43) and (8.44) have to be considered as PWA and
PPWQ function in the ordered region sense.

If d > 2 then the value function in (8.44) is intersected with the solution
of the third mp-QP sub-problem and the procedure is iterated making sure
not to change the relative order of polyhedra and corresponding gain of the
solution constructed at the previous steps. The solution will still have the
same form of (8.43)– (8.44). �

Theorem 8.8. A one to r problem is solved with r mp-QPs

Proof: Let q(x) � qi if x ∈ P i be a PWQ function where P i are convex
polyhedra and qi quadratic functions. The multiparametric program to solve
is

J∗(x) = min
{

min{u} l(x, u) + q1(f(x, u)), . . . , min{u} l(x, u) + qr(f(x, u))}
subj. to f(x, u) ∈ P1 subj. to f(x, u) ∈ Pr

}
(8.45)

The proof is similar to the proof of the previous theorem with the only differ-
ence that the constraints of the i-th mp-QP subproblem differ from the one
of the j-th mp-QP subproblem, i �= j. Therefore the procedure based on solv-
ing mp-QPs and storing as in Theorem 8.5 will be the same but the domain
R =

⋃NR

j=1Rj of the solution

u∗(x) = F ix + gi if x ∈ Ri � {x : x′Lix + M ix ≤ N i} (8.46)

J∗(x) = J̃∗
i (x) if x ∈ P i (8.47)

can be a non-convex polyhedron and even disconnected if the domain of the
PWA function f(x, u) is not connected. �

The following Lemmas can be proven along the same lines of the proofs
given before.

Lemma 8.1. An one to r problem of multiplicity d is solved with rd mp-QPs

Lemma 8.2. An s to one problem can be decomposed into s one to one prob-
lem.

Lemma 8.3. An s to r problem can be decomposed into s one to r problems.

Lemma 8.4. An s to r problem of multiplicity d can be decomposed into s
one to r problem of multiplicity d.

8.8 Computation of the State Feedback Solution, 2-Norm Case 177

8.8.2 Efficient Dynamic Program for the Computation of the
Solution

In the following we will substitute the CPWA system equations (8.2) with the
shorter form

x(k + 1) = f̃PWA(x(k), u(k)) (8.48)

where f̃PWA : C̃ → R
n and f̃PWA(x, u) = Aix + Biu + f i if [x

u] ∈ C̃i, i =
1, . . . , s.

The PWA solution (8.9) to the CFTOC (8.3)-(8.8) can be computed effi-
ciently in the following way.

Consider the dynamic programming solution to the CFTOC (8.3)-(8.8)

J∗
j (x(j)) � min{uj} ‖Qxj‖2 + ‖Ruj‖2 + J∗

j+1(f̃PWA(x(j), uj) (8.49)

subj. to f̃PWA(x(j), uj) ∈ Xj+1 (8.50)

for j = N − 1, . . . , 0, with terminal conditions

XN = Xf (8.51)
J∗

N (x) = ‖Px‖2 (8.52)

where Xj is the set of all initial states for which problem (8.49)–(8.50) is
feasible:

Xj = {x ∈ R
n| ∃u, f̃PWA(x, u) ∈ Xj+1} (8.53)

The dynamic program (8.49)–(8.52) can be solved backwards in time by
using a multiparametric quadratic programming solver and the results of the
previous section.

Assume for the moment that there are no binary inputs and logic states,
m� = n� = 0. Consider the first step of the dynamic program (8.49)–(8.52)

J∗
N−1(x(N − 1)) � min{uN−1} ‖Qx(N − 1)‖2 + ‖Ru(N − 1)‖2 +

+J∗
N (f̃PWA(x(N − 1), uN−1)) (8.54)

subj. to f̃PWA(x(N − 1), uN−1) ∈ Xf (8.55)

The cost to go function J∗
N (x) in (8.54) is quadratic, the terminal region Xf is

a polyhedron and the constraints are piecewise affine. Problem (8.54)–(8.55)
is an s to one problem that can be solved by solving s mp-QPs (Lemma 8.2).

From the second step j = N−2 to the last one j = 0 the cost to go function
J∗

j+1(x) is a PPWQ with a certain multiplicity dj+1, the terminal region Xj+1

is a polyhedron (not necessary convex) and the constraints are piecewise affine.
Therefore, problem (8.49)–(8.52) is a s to N r

j+1 problem with multiplicity dj+1

(where N r
j+1 is the number of polyhedra of the cost to go function J∗

j+1), that
can be solved by solving sN r

j+1dj+1 mp-QPs (Lemma 8.4). The resulting
optimal solution will have the form (8.9) considered in the ordered region
sense.

178 8 Constrained Optimal Control for Hybrid Systems

In the presence of binary inputs the procedure can be repeated, with the
difference that all the possible combinations of binary inputs have to be enu-
merated. Therefore a one to one problem becomes a 2m� to one problem and so
on. Clearly the procedure become prohibitive for a system with a high number
of binary inputs. In this case a multiparametric mixed integer programming
(or a combination of the two techniques) is preferable. In the presence of logic
states the procedure can be repeated either by relaxing the n� logic states to
assume continuous values between 0 and 1 or by enumerating them all.

8.8.3 Example

Consider the problem of steering the piecewise affine system (8.26) to a
small region around the origin in three steps while minimizing the cost func-
tion (8.3). The finite-time constrained optimal control problem (8.3)-(8.8) is
solved with N = 3, Q = I, R = 1, P = I, and Xf = [−0.01 0.01]×[−0.01 0.01].
The solution was computed in less than 1 minute by using Matlab 5.3 on a Pen-
tium II-500 MH. The polyhedral regions corresponding to the state feedback
solution u∗(x(k)), k = 0, 1, 2 in (8.9) are depicted in Fig. 8.6. The resulting
optimal trajectories for the initial state x(0) = [−1 1]′ are shown in Fig. 8.7.

Fig. 8.6. State space partition corresponding to the state feedback finite time op-
timal control law u∗(x(k)) of system (8.26).

As explained in Section 8.8.1 the optimal control law is stored in a special
data structure where:

1. The ordering of the regions is important.
2. The polyhedra can overlap.
3. The polyhedra can have an associated value function of multiplicity s >

1. Thus, s quadratic functions have to be compared on-line in order to
compute the optimal control action.

8.9 Receding Horizon Control 179

Fig. 8.7. Finite time optimal control of system (8.26).

8.9 Receding Horizon Control

Consider the problem of regulating to the origin the PWA system system (8.2).
Receding Horizon Control (RHC) can be used to solve such a constrained
regulation problem. The control algorithm is identical to the one outlined in
Chapter 4 for linear systems. Assume that a full measurement of the state
x(t) is available at the current time t. Then, the finite time optimal control
problem (8.3)-(8.8) (restated here)

J∗(x(t)) � min{Ut} ‖PxN‖p +
∑N−1

k=0 ‖Q1uk,t‖p + ‖Q2δk‖p

+‖Q3zk‖p + ‖Q4xk‖p

subj. to

xk+1 = Axk + B1uk + B2δk + B3zk

E2δk + E3zk ≤ E1uk + E4xk + E5

xN ∈ Xf

x0 = x(t)

(8.56)

is solved at each time t, where Ut = {u0,t, . . . , uN−1,t} and where the time
invariance of the plants permits the use of initial time 0 rather than t in the
finite time optimal control problem. The sub-index t is used only to stress
the fact that that finite time optimal control problem (8.56) is solved for
x0 = x(t). Let U∗

t = {u∗
0,t, . . . , u

∗
N−1,t} be the optimal solution of (8.56) at

time t. Then, the first sample of U∗
t is applied to system (8.2):

u(t) = u∗
0,t. (8.57)

The optimization (8.56) is repeated at time t + 1, based on the new state
x0 = x(t + 1), yielding a moving or receding horizon control strategy.

180 8 Constrained Optimal Control for Hybrid Systems

Based on the results of previous sections the state feedback receding hori-
zon controller (8.56)–(8.57) can be immediately obtained in two ways: (i) solve
the MIQP (MILP) (8.21) for x0 = x(t) or (ii) by setting

u(t) = f∗
0 (x(t)), (8.58)

where f∗
0 (x(0)) : R

n → R
nu is the piecewise affine solution to the CFTOC (8.56)

computed as explained in Section 8.8 (Section 8.7). Clearly, the explicit
form (8.58) has the advantage of being easier to implement, and provides
insight on the type of action of the controller in different regions of the state
space.

8.9.1 Convergence

We remark that an infinite horizon formulation [96, 127, 19] would be in-
appropriate in the present hybrid context for both practical and theoretical
reasons. In fact, approximating the infinite horizon with a large N is computa-
tionally prohibitive, as the number of possible switches (i.e., the combinations
of 0-1 variables involved in the MIQP (MILP) (8.21)) depends exponentially
on N . Moreover, the quadratic term in δ might oscillate, and hence “good”
(i.e. asymptotically stabilizing) input sequences might be ruled out by a cor-
responding infinite value of the performance index. From a theoretical point
of view, without any further restriction, an infinite dimensional problem is not
meaningful. An oscillation of the quadratic term in δ could easily lead to an
infinite cost associated to all possible input sequences. Even for meaningful
problems it is not clear how to reformulate an infinite dimensional problem as
a finite dimensional one for a PWA system, as can be done for linear systems
through Lyapunov or Riccati algebraic equations.

In order to synthesize RHC controllers which inherently possess conver-
gence guarantees, in [23] the authors adopted the standard stability constraint
on the final state Xf = 0.

Theorem 8.9. Let xe = 0, ue = 0 be an equilibrium pair and assume that
δe = 0, ze = 0 are the corresponding equilibrium points of the auxiliary vari-
ables. Assume that the initial state x(0) is such that a feasible solution of
problem (8.56) with Xf = 0 exists at time t = 0. Then for all Q1 = Q′

1 > 0,
Q2 = Q′

2 ≥ 0, Q3 = Q′
3 ≥ 0 and Q4 = Q′

4 > 0 if p = 2 (for all
Q1andQ4 full column rank if p = 1,∞), the PWA system (8.2) controlled
by the RHC (8.56)–(8.57) converges to the equilibrium, i.e.

lim
t→∞x(t) = 0

lim
t→∞u(t) = 0

lim
t→∞ ‖Q2δ(t)‖p = 0

lim
t→∞ ‖Q3z(t)‖p = 0

8.9 Receding Horizon Control 181

Note that if Q2 > 0 and Q3 > 0 in the case p = 2 or if Q2 and Q3 are
full column rank matrices in the case p = 1,∞, convergence of δ(t) and z(t)
follows as well.

Proof: The proof is omitted here. It easily follows from standard Lyapunov
arguments along the same lines of Theorem 4.3

�

The end-point constraint of Theorem 8.9 typically deteriorates the overall
performance, especially for short prediction horizons. In order to avoid such
a constraint, we can compute a controlled invariant set for the hybrid sys-
tem (8.2) and force the final state x(N) to belong to such a set while using as
terminal weight a piecewise-linear or a piecewise-quadratic Lyapunov function
for the system. We have discussed piecewise-quadratic and piecewise-linear
Lyapunov functions for hybrid systems in Section 7.4. The computation of in-
variant sets for hybrid systems has been investigated in [97], and is a subject
of current research in the hybrid systems community.

8.9.2 Extensions

All the formulations of predictive controllers for linear systems presented in
Section 4.6 can be stated for hybrid systems. For example, in Chapter 10.3
a reference tracking predictive controller for a hybrid system is formulated.
Also, the number of control degrees of freedom can be reduced to Nu < N ,
by setting uk ≡ uNu−1, ∀k = Nu, . . . , N . However, while in Section 4.6 this
can reduce the size of the optimization problem dramatically at the price of
a reduced performance, here the computational gain is only partial, since all
the N δ(k) and z(k) variables remain in the optimization.

8.9.3 Examples

Example 8.2. Consider the problem of regulating the piecewise affine sys-
tem (8.26) to the origin. The finite-time constrained optimal control (8.3)-
(8.8) is solved for p = 2 with N = 3, Q = I, R = 1, P = I, Xf = R

2. Its
state feedback solution (8.9) at time 0 u∗(x(0)) = f∗

0 (x(0)) is implemented in
a receding horizon fashion, i.e. u(x(k)) = f∗

0 (x(k)). The state feedback con-
trol law consists of 48 polyhedral regions, and none of them has multiplicity
higher than 1 (note that the enumeration of all possible switching sequences
could lead to a multiplicity of 23 in all regions). The polyhedral regions are de-
picted in Figure 8.8 and in Figure 8.9 we show the corresponding closed-loop
trajectories starting from the initial state x(0) = [−1 1]′.

Example 8.3. Consider the problem of regulating to the origin the piecewise
affine system (8.26). The finite-time constrained optimal control (8.3)-(8.8) is
solved for p = ∞ with N = 3, P = Q = [50 0

0 50], R = 0.001, Xf = R
2. Its state

feedback solution (8.17) at time 0 u∗(x(0)) = f∗
0 (x(0)) is implemented in a

receding horizon fashion, i.e. u(x(k)) = f∗
0 (x(k)). The state feedback control

182 8 Constrained Optimal Control for Hybrid Systems

Fig. 8.8. State space partition corresponding to the state feedback receding horizon
control law u(x) of system (8.26).

Fig. 8.9. Receding horizon control of system (8.26)

law consists of 35 polyhedral regions depicted in Figure 8.10. In Figure 8.11
we show the corresponding closed-loop trajectories starting from the initial
state x(0) = [−1 1]′.

Example 8.4. Consider the following hybrid control problem for the heat ex-
change example proposed by Hedlund and Rantzer [82]. The temperature of
two furnaces should be controlled to a given set-point by alternate heating.
Only three operational modes are allowed: heat only the first furnace, heat
only the second one, do not heat. The amount of power u0 to be fed to the
furnaces at each time instant is fixed. The system is described by the following
equations:

8.9 Receding Horizon Control 183

Fig. 8.10. State space partition corresponding to the state feedback receding hori-
zon control law u(x) of system (8.26).

Fig. 8.11. Receding horizon control of system (8.26)

184 8 Constrained Optimal Control for Hybrid Systems

-1 0 1
-1

0

1

Heat 1

Heat 2

No Heat
T
2

T1

(a) State space partition for
u0 = 0.4

T1

T
2

Heat 1

Heat 2

No Heat

-1 0 1
-1

0

1

(b) State space partition for
u0 = 0.8

Fig. 8.12. State space partition corresponding to the control law u∗(x), solution of
the optimal control problem (8.59)–(8.60).

Ṫ =

[
−1 0
0 −2

]
T + u0u

u =

[
1
0

]
if heating the first furnace[

0
1

]
if heating the second furnace[

0
0

]
if no heating

(8.59)

System (8.59) is discretized with a sampling time Ts = 0.08s, and its equiv-
alent MLD form (7.8) is computed as described in [23] by introducing an
auxiliary vector z(t) ∈ R

9.
In order to optimally control the two temperatures to the desired values

T 1
e = 1/4 and T 2

e = 1/8, the following performance index is minimized at each
time step t:

min
Ut

J(Ut, x(t)) �
2∑

k=0

‖R(uk+1,t − uk,t)‖∞ + ‖Q(Tk+1 − Te)‖∞ (8.60)

subject to the MLD system dynamics, along with the weights Q = 1, R =
700. The cost function penalizes the tracking error and trades it off with the
number of input switches occurring along the prediction horizon. By solving
the mp-MILP associated with the optimal control problem we obtain the state
feedback controller for the range T ∈ [−1, 1]× [−1, 1], u0 ∈ [0, 1]. In Fig. 8.12
two slices of the three-dimensional state-space partition for different constant
power levels u0 are depicted. Note that around the equilibrium the solution
is more finely partitioned. The resulting optimal trajectories are shown in
Fig. 8.13. For a low power u0 = 0.4 the set point is never reached.

8.9 Receding Horizon Control 185

0 0.05 0.10.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T1

T
2

(a) Receding horizon control
of system (8.59) for u0 = 0.4

T
2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T1

(b) Receding horizon control
of system (8.59) for u0 = 0.8

Fig. 8.13. Receding horizon control of system (8.59)

Part IV

Applications

Introduction

In collaboration with different companies and institutes, the results described
in the previous chapters have been applied to a wide range of problems.

Constrained optimal control for linear system was implemented for the
control of blood pressure in anesthesia [74], of a mechanical system avail-
able at our laboratory named “Ball and Plate” [118, 114, 4, 53], of the gear
shift/clutch operation on automotive vehicles [15] and of active automotive
suspension [155].

Constrained optimal control for hybrid systems was used for the control of
Co-generation Power Plants [61, 60], of a benchmark multi-tank system [115],
of a gas supply system [23], of a gear shift operation on automotive vehi-
cles [150], of the direct injection stratified charge engine [22], of the integrated
management of the power-train [108] and of a traction control problem [36].

All the investigated theoretical problems are “hard” in the mathematical
sense, which implies - loosely speaking - that in the worst case the compu-
tational effort grows exponentially with the problem size. Thus the future
challenge will be to develop approximate methods which provide good, if not
optimal answers for problems with specific structures and where the compu-
tational effort grows only in a polynomial fashion. Otherwise the applicability
of the developed tools will be remain limited to small problems.

In the next two chapters we will describe into details two practical exper-
iment: a“Ball and Plate” system available at our Laboratory [118, 114, 4, 53]
and a traction control problem currently under investigation at Ford Research
Laboratories.

9

Ball and Plate

192 9 Ball and Plate

(a) Photo 1 (b) Photo2

Fig. 9.1. “Ball and Plate” Photos

The “Ball & Plate” is a mechanical system available at the Automatic Con-
trol Laboratory of ETH-Zurich. Two pictures of the system can be seen in
Figure 9.1(a) and Figure 9.1(b).

The experiment consists of a ball rolling over a gimbal-suspended plate
actuated by two independent motors. The plate is equipped with four laser
sensors that measure the position of the ball. The control objective is to
control the ball position and to let it follow given trajectories on the plate.

The presence of several constraints and the fast sampling time required
for the control task make the experiment a good benchmark test for the con-
strained optimal control theory presented in the previous chapters.

The design, modeling, identification and control of the system was carried
out throughout several students projects [118, 114, 4, 53] at the Automatic
Control Laboratory. In the following we will presents only a brief summary of
the results.

9.1 Ball and Plate Dynamic Model

The nonlinear model of the “Ball and Plate” system is rather complex and was
first studied in [87]. The system in sketched in Figure 9.2. X and Y represent
the plate fixed Cartesian axes. The plate is actuated by two independent

9.1 Ball and Plate Dynamic Model 193

Fig. 9.2. Ball and Plate System

motors that rotate it of an angle α around the X axis and β around the Y
axis. The position x, y of the ball is indirectly measured through four rotating
laser beams positioned in the four corners of the plate and four corresponding
sensors. The angles δ, σ, φ and γ are measured by measuring the time interval
between the initial time of a laser rotation and the instant when the laser light
is reflected by the ball. The relation between δ, σ, φ and γ and x, y is algebraic.
The system is also equipped with two potentiometers that measure the angles
α and β of the plate.

A good approximate linear model of the system is given by the following
linear time invariant systems for the x-axis and y-axis

ẋβ =

0 1 0 0
0 0 −700 0
0 0 0 1
0 0 0 33.18

xβ +

0
0
0

3.7921

uβ

yβ =
[

1 0 0 0
0 0 1 0

]
xβ

(9.1)

ẋα =

0 1 0 0
0 0 700 0
0 0 0 1
0 0 0 −34.69

xα +

0
0
0

3.1119

uα

yα =
[

1 0 0 0
0 0 1 0

]
xα

(9.2)

where xβ = [x, ẋ, β, β̇] and xα = [y, ẏ, α, α̇], where x [cm] and ẋ [cm/s] are
the position and the velocity of the ball with respect to the x-coordinate, β

194 9 Ball and Plate

[rad] and β̇ [rad/s] are the angular position and the angular velocity of the
plate around the y-axis, y [cm] and ẏ [cm/s] are the position and the velocity
of the ball with respect to the y-coordinate, α [rad] and α̇ [rad/s] are the
angular position and the angular velocity of the plate around the x-axis.

The input uα and uβ are the voltage to the actuators that make the plate
rotate around the X and Y axis. The zero state of models (9.2)-(9.2) represents
the system standing still with a ball stable in the center position of the plate.
Note that in the linearized models (9.2)-(9.2) of the “Ball and Plate”, the
dynamics of the ball along the X-axis are decoupled from the dynamics along
the Y -axis.

The system is subject to the following design constraints:

umax = −umin = 10 V
xmax = −xmin = 30 cm
ymax = −ymin = 30 cm
αmax = −αmin = 0.26 rad
βmax = −βmin = 0.26 rad

(9.3)

9.2 Constrained Optimal Control

Models (9.1)-(9.2) are discretized by exact sampling (sampling period Ts = 30
ms), to obtain

xα(t + 1) = Aαxα(t) + Bαuα(t) (9.4)
yα(t) = Cαxα(t) (9.5)

and

xβ(t + 1) = Aβxβ(t) + Bβuβ(t) (9.6)
yβ(t) = Cβxβ(t) (9.7)

To control the position of the ball on the plate, a reference tracking reced-
ing horizon optimal control controller is designed for the X-axis

min
∆U�{δuβ,0,...,δuβ,Nu−1}

{∑Ny−1
k=0 ‖Q(yβ,k − rβ)‖2 + ‖Rδuβ,k‖2

}
subj. to yminβ ≤ yβ,k ≤ ymaxβ , k = 1, . . . , Nc

umin ≤ uβ,k ≤ umax, k = 0, 1, . . . , Nc

xβ,k+1 = Aβxβ,k + Bβuβ,k, k ≥ 0
yβ,k = Cβxβ,k, k ≥ 0
uβ,k = uβ,k−1 + δuβk

, k ≥ 0
δuβ,k = 0, k ≥ Nu

(9.8)

and an identically tuned optimal controller controller for the Y -axis

9.3 Experimental Setup 195

min
∆U�{δuα,0,...,δuα,Nu−1}

{∑Ny−1
k=0 ‖Q(yα,k − rα)‖2 + ‖Rδuα,k‖2

}
subj. to yminα ≤ yα,k ≤ ymaxα, k = 1, . . . , Nc

umin ≤ uα,k ≤ umax, k = 0, 1, . . . , Nc

xα,k+1 = Aαxα,k + Bαuα,k, k ≥ 0
yα,k = Cαxα,k, k ≥ 0
uα,k = uα,k−1 + δuα,k, k ≥ 0
δuα,k = 0, k ≥ Nu

(9.9)

A Kalman filter is designed in order to estimate ẋ, ẏ, α̇, β̇ and filter the
noise from the measurements.

9.2.1 Tuning

In the first phase the parameters are tuned in simulation until the desired
performance is achieved by using Simulink and the MPC Toolbox [26].

The parameters to be tuned are the prediction horizons Ny, the number
of free moves Nu, the constraint horizon Nc and the weights Q and R. The
trade-off between fast tracking of the ball and smooth plate dynamics is easily
adjustable by appropriately choosing the weights Q and R. Ny, Nu, Nc are
the result of a trade off between controller performance and its complexity in
terms of number of regions resulting from the PPWA solution.

The state feedback PPWA solutions of optimal control problems (9.8)-(9.9)
are computed for the following sets of parameters

Ny = 10, Nu = 1, Nc = 2, R = 1, Q = 2, (9.10)

and consist of 22/23 regions (x-axis/y-axis).
Note that the number of states of the state feedback PPWA control law is

seven for each axis. In fact, we have to add the two reference signals rα (rβ)
and the previous input uα(t− 1) (uβ(t− 1)) to the four states of model (9.1)
(model 9.2).

9.3 Experimental Setup

The control software for the “Ball and Plate” system was implemented in
the Matlab/Simulink environment. The algorithm to compute the polyhedral
regions and the corresponding affine gains of the state feedback optimal con-
trol law was coded in Matlab, while the algorithm to implement the optimal
control law (a simple look-up table) was coded in C as Simulink S-Functions.
The Real-Time-Workshop and xPC packages were then used to translate and
compile the Simulink model with S-Functions into a real-time executable pro-
gram. This program was downloaded via a TCP/IP link from the host PC
(used for software development) to the target PC, which executed the real-
time program. The target PC also contained the A/D cards necessary to read

196 9 Ball and Plate

0 2 4 6 8 10 12 14 16 18 20 22

−20

0

20

x−position [cm], reference

0 2 4 6 8 10 12 14 16 18 20 22

−0.2

0

0.2

β −angle [rad]

0 2 4 6 8 10 12 14 16 18 20 22
−10

0

10
Input voltage to β−motor [V]

0 2 4 6 8 10 12 14 16 18 20 22

5

10

15

20

time [s]

PWA controler’s region

Fig. 9.3. Closed-loop simulation of the “Ball and Plate” system controlled with the
PPWA solution of the MPC law (9.8)–(9.10)

the position of the ball and angles of the plate, and the D/A cards that con-
trolled the DC motor. The real-time program executed at the sampling time
of 30 ms.

We tested the system with a variety of ramp, step and sinusoidal reference
signals. Experiments were carried on with different PPWA optimal controllers
ranging from small number of polyhedral regions (22 regions for each axis) to
high number of polyhedral regions (up to 500 regions for each axis). Figures 9.3
and 9.4 illustrate the results of an experiment were the “Ball and Plate” was
controlled with optimal control laws (9.8)–(9.9) with the tuning (9.10). The
upper plots represent the x and y positions of the ball and the corresponding
references. The second plots from the top represent the angular positions α
and β of the plate. The third plots from the top represent the commands
to the motors and the plots at the bottom represent the polyhedral regions
active at different time instants. One can observe that when the region zero
is active when the system is at steady state. Region zero corresponds to the
unconstrained LQR.

9.3 Experimental Setup 197

0 2 4 6 8 10 12 14 16 18 20 22

−20

0

20

y−position [cm], reference

0 2 4 6 8 10 12 14 16 18 20 22

−0.2

0

0.2

α −angle [rad]

0 2 4 6 8 10 12 14 16 18 20 22
−10

0

10
Input voltage to α−motor [V]

0 2 4 6 8 10 12 14 16 18 20 22

5

10

15

20

time [s]

PWA controler’s region

Fig. 9.4. Closed-loop simulation of the “Ball and Plate” system controlled with the
PPWA solution of the MPC law (9.9)–(9.10

10

Traction Control

200 10 Traction Control

In this chapter we describe a hybrid model and an optimization-based control
strategy for solving a traction control problem. The problem is tackled in a
systematic way from modeling to control synthesis and implementation by
using the results and tools developed at the Automatic Control Laboratory
of Zurich over the last two years and largely described in the previous chap-
ters. The model is described first in the language HYSDEL (HYbrid Systems
DEscription Language) to obtain a mixed-logical dynamical (MLD) hybrid
model of the open-loop system. For the resulting MLD model we design a re-
ceding horizon finite-time optimal controller. The resulting optimal controller
is converted to its equivalent piecewise affine form by employing multiparamet-
ric mixed-integer linear programming techniques, and finally experimentally
tested on a car prototype. Experiments show that good and robust perfor-
mance is achieved in a limited development time, by avoiding the design of
ad-hoc supervisory and logical constructs usually required by controllers de-
veloped according to standard techniques.

10.1 Introduction

For more than a decade advanced mechatronic systems controlling some as-
pects of vehicle dynamics have been investigated and implemented in pro-
duction [90, 66]. Among them, the class of traction control problems is one
of the most studied. Traction controllers are used to improve a driver’s abil-
ity to control a vehicle under adverse external conditions such as wet or icy
roads. By maximizing the tractive force between the vehicle’s tire and the
road, a traction controller prevents the wheel from slipping and at the same
time improves vehicle stability and steerability. In most control schemes the
wheel slip, i.e., the difference between the vehicle speed and the speed of the
wheel is chosen as the controlled variable. The objective of the controller is
to maximize the tractive torque while preserving the stability of the system.
The relation between the tractive force and the wheel slip is nonlinear and
is a function of the road condition [8]. Therefore, the overall control scheme
is composed of two parts: a device that estimates the road surface condition,
and a traction controller that regulates the wheel slip at the desired value. Re-
garding the second part, several control strategies have been proposed in the
literature mainly based on sliding-mode controllers, fuzzy logic and adaptive
schemes [13, 95, 11, 143, 144, 109, 8, 142]. Such control schemes are motivated
by the fact that the system is nonlinear and uncertain.

The presence of nonlinearities and constraints on one hand, and the sim-
plicity needed for real-time implementation on the other, have discouraged
the design of optimal control strategies for this kind of problem. In Chapter 7
we have described a new framework for modeling hybrid systems proposed
in [23] and in Chapter 8 an algorithm to synthesize piecewise linear optimal
controllers for such systems. In this chapter we describe how the hybrid frame-
work and the optimization-based control strategy can be successfully applied

10.2 Vehicle Model 201

Fig. 10.1. Simple vehicle model

for solving the traction control problem in a systematic way. The language
HYSDEL is first used to describe a linear hybrid model of the open-loop sys-
tem suitable for control design. Such a model is based on a simplified model
and a set of parameters provided by Ford Research Laboratories, and involves
piecewise linearization techniques of the nonlinear torque function that are
based on hybrid system identification tools [63]. Then, an optimal control law
is designed and transformed to an equivalent piecewise affine function of the
measurements, that is easily implemented on a car prototype. Experimental
results show that good and robust performance is achieved.

A mathematical model of the vehicle/tire system is introduced in Sec-
tion 10.2. The hybrid modeling and the optimal control strategy are discussed
in Section 10.3. In Section 10.4 we derive the piecewise affine optimal control
law for traction control and in Section 10.6 we present the experimental setup
and the results obtained.

10.2 Vehicle Model

The model of the vehicle used for the design of the traction controller is
depicted in Figure 10.1, and consists of the equations(

ω̇e

v̇v

)
=

(
− be

J′
e

0
0 0

)(
ωe

vv

)
+

(1
J′

e

0

)
τc +

(
− 1

J′
egr

− 1
mvrt

)
τt (10.1)

with
τc(t) = τd(t− τf) (10.2)

where the involved physical quantities and parameters are described in Ta-
ble 10.1.

Model (10.1) contains two states for the mechanical system downstream
of the manifold/fueling dynamics. The first equation represents the wheel dy-
namics under the effect of the combustion torque and of the traction torque,

202 10 Traction Control

ωe Engine speed rt Tire radius
vv Vehicle speed τc Actual combustion torque
J′

e Combined engine/wheel inertia τd Desired combustion torque
be Engine damping τt Frictional torque on the tire
gr Total driveline gear ratio between ωe and vv µ Road coefficient of friction
mv Vehicle mass τf Fueling to combustion pure delay period
∆ω Wheel slip

Table 10.1. Physical quantities and parameters of the vehicle model

while the second one describes the longitudinal motion dynamics of the vehi-
cle. In addition to the mechanical equations (10.1) the air intake and fueling
model (10.2) also contributes to the dynamic behaviour of the overall system.
For simplicity, since the actuator will use just the spark advance, the intake
manifold dynamics is neglected and the fueling combustion delay is modeled
as a pure delay. Both states are indirectly measured through measurements of
front and rear wheel speeds: assuming we are modeling a front wheel driven
vehicle, ωe is estimated from the speed of the front wheel, while vv is esti-
mated from the speed of the rear wheel. The slip ∆ω of the car is defined as
the difference between the normalized vehicle and engine speeds:

∆ω =
vv

rt
− ωe

gr
. (10.3)

The frictional torque τt is a nonlinear function of the slip ∆ω and of the
road coefficient of friction µ

τt = fτ (∆ω, µ). (10.4)

The road coefficient of friction µ depends on the road-tire conditions, while
the function fτ depends on vehicle parameters such as the mass of the vehicle,
the location of the center of gravity and the steering and suspension dynam-
ics [142]. Figure 10.2(a) shows a typical curves τt = f(∆ω) for three different
road conditions (ice, snow and pavement).

10.2.1 Discrete-Time Hybrid Model of the Vehicle

The model obtained in Section 10.2 is transformed into an equivalent discrete-
time MLD model through the following steps:

1. The frictional torque τt is approximated as a piecewise linear function of
the slip ∆ω and of the road coefficient of friction µ by using the approach
described in [63]. The algorithm proposed in [63] generates a polyhedral
partition of the (∆ω, µ)-space and the corresponding affine approximation
of the torque τt in each region.
If the number of regions is limited to two we get:

10.2 Vehicle Model 203

(a) Measured tire torque τt for
three different road conditions

(b) Piecewise linear model of the
tire torque τt

Fig. 10.2. Nonlinear behaviour and its piecewise-linear approximation of the trac-
tion torque τt as a function of the slip ∆ω and road adhesion coefficient µ

τt(∆ω, µ) =
{

67.53∆ω + 102.26µ− 31.59 if 0.21∆ω − 5.37µ ≤ −0.61
−1.85∆ω + 1858.3µ− 232.51 if 0.21∆ω − 5.37µ > −0.61

(10.5)
as depicted in Figure 10.2(b).

2. Model (10.1) is discretized with sampling time Ts = 20 ms and the PWA
model (10.5) of the frictional torque is used to obtain the following discrete
time PWA model of the vehicle:

x̃(t + 1) =

[
0.98 0.78
2e−4 0.98

]
x̃(t) + [0.04

5e-6] τc(t) +
[−0.35

4e−3

]
µ(t) +

[
0.10

−1e−3

]
if [0.21∆ω−5.37µ≤−0.61][

1.00 −0.02
−6e-6 1.00

]
x̃(t) +

[
0.04
−1e-7

]
τc(t) + [−6.52

0.08] µ(t) +
[

0.81
−0.01

]
if [0.21∆ω−5.37µ>−0.61]

(10.6)

where x̃ = [ωe
vv

]. At this stage τc is considered as the control input to the
system. The time delay between τc and τd will be taken into account in
the controller design phase detailed in Subsection 10.4.2.

3. The following constraints on the torque, on its variation, and on the slip
need to be satisfied:

τc ≤ 176 Nm (10.7)
τc ≥ −20 Nm (10.8)

τ̇c ≈
τc(k)− τc(k − 1)

Ts
≤ 2000 Nm/s (10.9)

∆ω ≥ 0. (10.10)

In order to constrain the derivative of the input, the state vector is augmented
by including the previous torque τc(t − 1). The variation of the combustion
torque ∆τc(t) = τc(t)− τc(t− 1) will be the new input variable.

204 10 Traction Control

The resulting hybrid discrete-time model has three states (x1 = previous
τc, x2 = ωe, x3 = vv), one control input (u1 = ∆τc), one uncontrollable
input (u2 = µ), one regulated output (y = ∆ω), one auxiliary binary vari-
able δ ∈ {0, 1} indicating the affine region where the system is operating,
[δ = 0] ⇐⇒ [0.21∆ω − 5.37µ ≤ −0.61], and two auxiliary continuous vari-
ables z ∈ R

2 describing the dynamics in (10.6), i.e.,

z =
{

A1x̃ + B12µ + f1 if δ = 0
A2x̃ + B22µ + f2 otherwise,

where A1, A2, B11, B12, B21, B22, f1, f2 are the matrices in (10.6). The
resulting MLD model is obtained by processing the description list reported
in Section 10.7 through the HYSDEL compiler:

x(t + 1) =
[

0 0 0
0.0484 0 0
0.0897 0 0

]
x(t) +

[
1.0000 0
0.0484 0
0.0897 0

] [
∆τc(t)
µ(t)

]
+

[
0
0
0

]
δ(t)+

[
0 0
1 0
0 1

]
z(t)

(10.11a)

E2δ(t) + E3z(t) ≤ E1

[
∆τc(t)
µ(t)

]
+ E4x(t) + E5 (10.11b)

where

E2 = 103

1.1
1.1−1.1
−1.1
0.18
0.18−0.18
−0.18
−0.40
0.40
0
0
0
0

E3 =

−1 0
1 0−1 0
1 0
0 −1
0 1
0 −1
0 1
0 0
0 0
0 0
0 0
0 0
0 0

E1 =

0 0.35
0 −0.35
0 6.52
0 −6.52
0 −0.004
0 0.004
0 −0.08
0 0.08
0 0.21
0 −0.21
−1 0
0 0
0 0
0 0

E4 =

0 −0.98 −0.78
0 0.98 0.78
0 −1.00 0.02
0 1.00 −0.02
0 −0.00 −0.98
0 0.00 0.98
0 0.00 −1.00
0 −0.00 1.00
0 −0.38 18.04
0 0.38 −18.04
0 0 0−1 0 0
1 0 0
0 0.07 −3.35

E5 = 103

1.10
1.10−0.00
0.00
0.18
0.18
0.00−0.00
0.00
0.39
2.00
0.17
0.02

(10.11c)

Note that the constraints in (10.10) are included in the system matri-
ces (10.11c).

10.3 Constrained Optimal Control

Figure 10.3 depicts the lateral and longitudinal traction torque as a function of
the wheel slip. It is clear that if the wheel slip increases beyond a certain value,

10.3 Constrained Optimal Control 205

Lat
er

al
For

ce

T
ir

e
F

o
rc

es

Tire SlipMaximum

Acceleration

Longitudinal Force

Slip Target

Zone

Maximum

Cornering

Maximum

Braking

Lateral

Force

Longitudinal
Force

Steer Angle

Fig. 10.3. Typical behaviour of lateral and longitudinal tire forces

Tire Slip

Target

Generator

Desired Driven

Wheel Speeds

Driver

Controls
Powertrain

Torque

Hybrid MPC

Controller

Engine/

Vehicle

Dynamics

Vehicle State Information

Wheel Speeds

Fig. 10.4. Overall traction control scheme. In this paper we focus on the design of
the hybrid MPC controller

the longitudinal and lateral driving forces on the tire decrease considerably
and the vehicle cannot speed up and steer as desired.

By maximizing the tractive force between the vehicle’s tire and the road,
a traction controller prevents the wheel from slipping and at the same time
improves vehicle stability and steerability. The overall control scheme is de-
picted in Figure 10.4 and is composed of two parts: a device that estimates
the road surface condition µ and consequently generates a desired wheel slip
∆ωd, and a traction controller that regulates the wheel slip at the desired
value ∆ωd. In this paper we only focus on the second part, as the first one is
already available from previous projects at Ford Research Laboratories.

The control system receives the desired wheel slip ∆ωd, the estimated road
coefficient adhesion µ, the measured front and rear wheel speeds as input and
generates the desired engine torque τc (the time delay between τc and τd

will be compensated a posteriori as described in Section 10.4.2). A receding
horizon controller can be designed for the posed traction control problem. At
each time step t the following finite horizon optimal control problem is solved:

206 10 Traction Control

min
V

N−1∑
k=0

|Q(∆ωk −∆ωd(t))|+ |R∆τc,k| (10.12)

subj. to

xk+1 = Axk + B1

[
∆τc,k

µ(t)

]
+ B2δk + B3zk

E2δk + E3zk ≤ E1

[
∆τc,k

µ(t)

]
+ E4xk + E5

x0 = x(t)
∆τc,k = τc,k − τc,k−1, k = 0, . . . , N − 1, τc,−1 � τc(t− 1)

(10.13)

where matrices A, B1, B2, B3, E2, E3, E1, E4, E5 are given in (10.11), and V �
[∆τc,0, . . . , ∆τc,N−1]′ is the optimization vector. Note that the optimization
variables are the torque variations ∆τc,k = τc,k − τc,k−1, and that the set
point ∆ωd(t) and the current road coefficient of adhesion µ(t) are considered
constant over the horizon N .

As explained in Section 8.5, problem (10.12)-(10.13) is translated into a
mixed integer linear program of the form:

min
E,V,Z,δ

N−1∑
k=0

εw
k + εu

k (10.14a)

subj. to GεE + GuV + GZz + Gδδ ≤ S + F

ωe(t)
vv(t)

τc(t− 1)
µ(t)

∆ωd(t)

 , (10.14b)

where Z = [z′0, . . . , z
′
N−1]

′ ∈ R
2N , δ = [δ0, . . . , δN−1]′ ∈ {0, 1}N and

E = [εw
0 , . . . , εw

N−1, ε
u
0 , . . . , εu

N−1]
′ ∈ R

2N is a vector of additional slack vari-
ables introduced in order to translate the cost function (10.12) into the linear
cost function (10.14a). Matrices Gε, Gu, Gz, Gδ, S, F are matrices of suitable
dimension that can be constructed from Q, R, N and A, B1, B2, B3, E2, E3,
E1, E4, E5. The resulting control law is

τc(t) = τc(t− 1) + ∆τ∗
c,0, (10.15)

where V ∗ � [∆τ∗
c,0, . . . , ∆τ∗

c,N−1]
′ denotes the sequence of optimal input in-

crements computed at time t by solving (10.14) for the current measurements
ωe(t), vv(t), set point ∆ωd(t), and estimate of the road coefficient µ(t).

10.4 Controller Design

The design of the controller is performed in two steps. First, the optimal con-
trol law (10.12)-(10.13) is tuned in simulation until the desired performance
is achieved. The receding horizon controller is not directly implementable, as
it would require the MILP (10.14) to be solved on-line, which is clearly pro-
hibitive on standard automotive control hardware. Therefore, for implemen-
tation, in the second phase the PPWA solution of problem (10.12)-(10.13) is

10.4 Controller Design 207

computed off-line by using the multiparametric mixed integer program solver
described in Section 1.5. The resulting control law has the piecewise affine
form

τc(t) = F iθ(t) + gi if Hiθ(t) ≤ Ki, i = 1, . . . , Nr, (10.16)

where θ(t) = [ωe(t) vv(t) τc(t − 1) µ(t) ∆ωd(t)]′. Therefore, the set of states
+ references is partitioned into Nr polyhedral cells, and an affine control
law is defined in each one of them. The control law can be implemented on-
line in the following simple way: (i) determine the i-th region that contains
the current vector θ(t) (current measurements and references); (ii) compute
u(t) = F iθ(t) + gi according to the corresponding i-th control law.

10.4.1 Tuning

The parameters of the controller (10.12)-(10.13) to be tuned are the hori-
zon length N and the weights Q and R. By increasing the prediction horizon
N the controller performance improves, but at the same time the number of
constraints in (10.13) increases. As in general the complexity of the final piece-
wise affine controller increases dramatically with the number of constraints
in (10.13), tuning N amounts to finding the smallest N which leads to a
satisfactory closed-loop behaviour. Simulations were carried out to test the
controller against changes to model parameters. A satisfactory performance
was achieved with N = 5, Q = 50, R = 1 which corresponds to a PPWA
controller consisting of 137 regions.

10.4.2 Combustion Torque Delay

The vehicle model in Section 10.2 is affected by a time delay of σ = τf

Ts
= 12

sampling intervals between the desired commanded torque τd and the com-
bustion torque τc. To avoid the introduction of σ auxiliary states in the hybrid
model (7.8), we take such a delay into account only during implementation of
the control law.

Let the current time be t ≥ σ and let the explicit optimal control law
in (10.16) be denoted as τc(t) = fPWA(θ(t)). Then, we compensate for the
delay by setting

τd(t) = τc(t + σ) = fPWA(θ̂(t + σ)), (10.17)

where θ̂(t+σ) is the σ-step ahead predictor of θ(t). Since at time t, the inputs
τd(t − i), i = 1, . . . , σ and therefore τc(t − i + σ), i = 1, . . . , σ are available,
θ̂(t+σ) can be computed from ωe(t), vv(t) by iterating the PWA model (10.6),
by assuming µ(t + σ) = µ(t) and ∆ωd(t + σ) = ∆ωd(t).

208 10 Traction Control

10.5 Motivation for Hybrid Control

There are several reasons that led us to solve the traction control problem
by using a hybrid approach. First of all the nonlinear frictional torque τt

in (10.4) has a clear piecewise-linear behaviour [143]: The traction torque
increases almost linearly for low values of the slip, until it reaches a certain
peak after which it start decreasing. For various road conditions the curves
have different peaks and slopes. By including such a piecewise linearity in the
model we obtained a single control law that is able to achieve the control task
for a wide range of road conditions. Moreover, the design flow has the following
advantages: (i) From the definition of the control objective to its solution, the
problem is tackled in a systematic way by using the HYSDEL compiler and
multiparametric programming algorithms; (ii) Constraints are embedded in
the control problem in a natural and effective way; (iii) The resulting control
law is piecewise affine and requires much less supervision by logical constructs
than controllers developed with traditional techniques (e.g. PID control); (iv)
It is easy to extend the design to handle more accurate models and include
additional constraints without changing the design flow. For example, one
can use a better piecewise-linear approximation of the traction torque, a more
detailed model of the dynamics and include logic constructs in the model such
as an hysteresis for the controller activation as a function of the slip.

10.6 Experimental Setup and Results

The hybrid traction controller was tested in a small (1390 kg) front-wheel-
drive passenger vehicle with manual transmission. The explicit controller was
run with a 20 ms timebase in a 266 MHz Pentium II-based laptop. Vehicle
wheel speeds were measured directly by the laptop computer, and the calcu-
lated engine torque command was passed to the powertrain control module
through a serial bus. Torque control in the engine was accomplished through
spark retard, cylinder air/fuel ratio adjustment, and cylinder fuel shutoff
where needed. The overall system latency from issuance of the torque com-
mand to production of the actual torque by the engine was 0.25 seconds. The
vehicle was tested on a polished ice surface (indoor ice arena, µ $ 0.2) with
a variety of ramp, step, and sinusoidal tracking reference signals. Control in-
tervention was initiated when the average driven wheel speed exceeded the
reference wheel speed for the first time. Several hybrid models (up to 7-th
order) and several PPWA controllers of different complexity (up to 1500 re-
gions) have been tested. Figures 10.5 illustrate two test results with a PPWA
optimal controller based on the simplest model described in Section 10.3 and
consisting of 40 regions.

10.7 HYSDEL Hybrid Model 209

0

5

10

15

20

s
lip

(r
a
d
/s

)
s
lip

(r
a

d
/s

)
E

n
g
in

e
to

rq
u
e

c
o
m

m
a
n
d

E
n
g
in

e
to

rq
u
e

c
o
m

m
a
n
d

R
e
g
io

n
E

n
te

re
d

R
e
g
io

n
E

n
te

re
d

-100

0

100

200

300

0

1010

2020

3030

0 2 4 6 8 10 12 14 16 18

time(s)

(a) Ramp and step slip reference

0

5

10

15

20

25

s
lip

(r
a

d
/s

)
s
lip

(r
a

d
/s

)

-100

0

100

200

300

E
n
g
in

e
to

rq
u
e

c
o
m

m
a
n
d

E
n
g
in

e
to

rq
u

e
c
o
m

m
a
n
d

0

10

20

30

R
e
g
io

n
E

n
te

re
d

R
e

g
io

n
E

n
te

re
d

0 2 4 6 8 10 12 14 16 18

time(s)

(b) Sinusoidal slip reference

Fig. 10.5. Controller 1

10.7 HYSDEL Hybrid Model

Below we report the description list in HYSDEL of the traction control model
described in Section 10.2.1.

SYSTEM FordCar {

INTERFACE {
/* Description of variables and constants */

STATE {
REAL taotold ;
REAL we ;
REAL vv ;

}
INPUT { REAL deltataot; REAL mu;
}
PARAMETER {

/* Region of the PWA linearization */
/* ar * mu + br * deltaw <= cr */
REAL ar = -5.3781;
REAL br = 53.127/250;
REAL cr = -0.61532;
/* Other parameters */
REAL deltawmax = 400;
REAL deltawmin = -400;
REAL zwemax = 1000;
REAL zwemin = -100;
REAL zvvmax = 80;
REAL zvvmin = -100;
REAL gr = 13.89;
REAL rt = 0.298;
REAL e = 1e-6;
/* Dynamic behaviour of the model (Matlab generated) */
REAL a11a = 0.98316 ;
REAL a12a = 0.78486 ;
REAL a21a = 0.00023134 ;
REAL a22a = 0.989220 ;
REAL b11a = 0.048368 ;
REAL b12a = -0.35415 ;
REAL b21a = 0.089695 ;
REAL b22a = 0.0048655 ;

210 10 Traction Control

REAL f1a = 0.048792 ;
REAL f2a = -1.5695e-007 ;
REAL a11b = 1.0005 ;
REAL a12b = -0.021835 ;
REAL a21b = -6.4359e-006 ;
REAL a22b = 1.00030 ;
REAL b11b = 0.048792 ;
REAL b12b = -6.5287 ;
REAL b21b = -1.5695e-007 ;
REAL b22b = 0.089695 ;
REAL f1b = 0.81687 ;
REAL f2b = -0.011223 ;
}

}
IMPLEMENTATION {

AUX {
REAL zwe, zvv;
BOOL region;

}
AD {

/* PWA Domain */
region = ar * ((we / gr) - (vv / rt)) + br * mu - cr <= 0
/* region= ((we / gr) - (vv / rt))-1.6 <= 0 */
[deltawmax,deltawmin,e];

}
DA {

zwe = { IF region THEN a11a * we + a12a * vv + b12a* mu+f1a [zwemax, zwemin, e]
ELSE a11b * we + a12b * vv + b12b* mu+f1b [zwemax, zwemin, e]

};
zvv = { IF region THEN a21a * we + a22a * vv + b22a* mu +f2a [zvvmax, zvvmin, e]

ELSE a21b * we + a22b * vv + b22b* mu+f2b [zvvmax, zvvmin, e]
};

}
CONTINUOUS {

taotold = deltataot;
we = zwe+b11a* taotold+b11a* deltataot ;
vv = zvv+b21a* taotold+b21a* deltataot;

}
MUST { deltataot <= 2000;

taotold <=176;
-taotold <=20;
(we/gr)-(vv/rt)>=0;

}
}
}

References

1. J. Acevedo and E.N. Pistikopoulos. A multiparametric programming approach
for linear process engineering problems under uncertainty. Ind. Eng. Chem.
Res., 36:717–728, 1997.

2. I. Adler and R.D.C. Monteiro. A geometric view of parametric linear program-
ming. Algorithmica, 8(2):161–176, 1992.

3. J.C. Allwright and G.C. Papavasiliou. On linear programming and robust
model-predictive control using impulse-responses. Systems & Control Letters,
18:159–164, 1992.

4. S. Alther and A. Kaufman. Regulation and trajectory tracking of a ball on a
plate by using MPC. Technical report, Automatic Control Laboratory, ETH
Zurich, 2001. Semester Thesis.

5. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
A.P. Ravn R.L. Grossman, A. Nerode and H. Rischel, editors, Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 209–229. Springer
Verlag, 1993.

6. P.J. Antsaklis. A brief introduction to the theory and applications of hybrid sys-
tems. Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications,
88(7):879–886, July 2000.

7. A. Asarin, O. Maler, and A. Pnueli. On the analysis of dynamical systems
having piecewise-constant derivatives. Theoretical Computer Science, 138:35–
65, 1995.

8. R. Balakrishna and A. Ghosal. Modeling of slip for wheeled mobile robots.
IEEE Trans. Robotics and automation, 11(1):349–370, February 1995.

9. A. Balluchi, L. Benvenuti, M. Di Benedetto, C. Pinello, and A. Sangiovanni-
Vincentelli. Automotive engine control and hybrid systems: Challenges and
opportunities. Proc. IEEE, 88(7):888–912, 2000.

10. M. Baotic. An efficient algorithm for multi-parametric quadratic programming.
Technical Report AUT02-04, Automatic Control Laboratory, ETH Zurich,
Switzerland, February 2002.

11. M. Bauer and M. Tomizuka. Fuzzy logic traction controllers and their effect on
longitudinal vehicle platoon. Vehicle System Dynamics, 25(4):277–303, April
1996.

212 References

12. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming — The-
ory and Algorithms. John Wiley & Sons, Inc., New York, second edition, 1993.

13. A. Bellini, A. Bemporad, E. Franchi, N. Manaresi, R. Rovatti, and G. Tor-
rini. Analog fuzzy implementation of a vehicle traction sliding-mode control.
In Proc. ISATA 29th International Symposium on Automotive Technology and
Automation. Automotive Autom, Croydon, UK, pages 275–282, 1996.

14. A. Bemporad. Reducing conservativeness in predictive control of constrained
systems with disturbances. In Proc. 37th IEEE Conf. on Decision and Control,
pages 1384–1391, Tampa, FL, 1998.

15. A. Bemporad, F. Borrelli, L. Glielmo, and F. Vasca. Optimal piecewise-linear
control of dry clutch engagement. In IFAC Workshop Advances in Automotive
Control, Karlsruhe, Germany, March 2001.

16. A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear optimal controllers
for hybrid systems. In Proc. American Contr. Conf., pages 1190–1194, Chicago,
IL, June 2000.

17. A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear robust model pre-
dictive control. In Proc. European Control Conf., Porto, Portugal, October
2001.

18. A. Bemporad, F. Borrelli, and M. Morari. Model predictive control based on
linear programming - the explicit solution. IEEE Trans. Automatic Control,
47(12):1974–1985, December 2002.

19. A. Bemporad, L. Chisci, and E. Mosca. On the stabilizing property of SIORHC.
Automatica, 30(12):2013–2015, 1994.

20. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controlla-
bility of piecewise affine and hybrid systems. IEEE Trans. Automatic Control,
45(10):1864–1876, 2000.

21. A. Bemporad, K. Fukuda, and F.D. Torrisi. Convexity recognition of the union
of polyhedra. Computational Geometry, 18:141–154, 2001.

22. A. Bemporad, N. Giorgetti, I.V. Kolmanovsky, and D. Hrovat. Hybrid modeling
and control of a direct injection stratified charge engine. In Symposium on Ad-
vanced Automotive Technologies, ASME International Mechanical Engineering
Congress and Exposition, New Orleans, Louisiana, November 2002.

23. A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427, March 1999.

24. A. Bemporad and M. Morari. Robust model predictive control: A survey. In
A. Garulli, A. Tesi, and A. Vicino, editors, Robustness in Identification and
Control, number 245 in Lecture Notes in Control and Information Sciences,
pages 207–226. Springer-Verlag, 1999.

25. A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, 2002.

26. A. Bemporad, M. Morari, and N.L. Ricker. MPC Simulink Block. Technical
Report and software available upon request from the authors, ETH Zurich,
Switzerland, 2000.

27. Claude Berge. Topological Spaces. Dover Publications, inc., Mineola, New York,
1997.

28. A.B. Berkelaar, K. Roos, and T. Terlaky. The optimal set and optimal partition
approach to linear and quadratic programming. In T. Gal and H.J. Greenberg,
editors, Advances in Sensitivity Analysis and Parametric Programming, vol-
ume 6 of International Series in Operations Research & Management Science,
chapter 6. Kluwer Academic Publishers, 1997.

References 213

29. D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts, 1995.

30. G. Bitsoris. On the positive invariance of polyhedral sets for discrete-time
systems. Systems & Control Letters, 11:243–248, 1988.

31. F. Blanchini. Ultimate boundedness control for uncertain discrete-time sys-
tems via set-induced Lyapunov functions. IEEE Trans. Automatic Control,
39(2):428–433, February 1994.

32. F. Blanchini. Set invariance in control — a survey. Automatica, 35(11):1747–
1768, November 1999.

33. V.D. Blondel, O. Bournez, P. Koiran, and J.N. Tsitsiklis. The stability of
saturated linear systems is undecidable. Journal of Computer Systems Science,
submitted, July 1999. http://truth.mit.edu/~jnt/sat.ps.

34. V.D. Blondel and J.N. Tsitsiklis. Complexity of stability and controllability of
elementary hybrid systems. Automatica, 35:479–489, March 1999.

35. F. Borrelli, M. Baotic, A. Bemporad, and M. Morari. Efficient on-line compu-
tation of constrained optimal control. In Proc. 40th IEEE Conf. on Decision
and Control, December 2001.

36. F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat. A hybrid approach to
traction control. In A. Sangiovanni-Vincentelli and M.D. Di Benedetto, editors,
Hybrid Systems: Computation and Control, Lecture Notes in Computer Science.
Springer Verlag, 2001.

37. F. Borrelli, A. Bemporad, and M. Morari. A geometric algorithm for multi-
parametric linear programming. J. Opt. Theory and Applications, 118(3),
September 2003.

38. M. Branicky. Stability of switched and hybrid systems. In Proc. Conf. Dec.
Contr., pages 3498–3503, 1994.

39. M.S. Branicky. Studies in hybrid systems: modeling, analysis, and control. PhD
thesis, LIDS-TH 2304, Massachusetts Institute of Technology, Cambridge, MA,
1995.

40. M.S. Branicky. Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Trans. Automatic Control, 43(4):475–482,
April 1998.

41. M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid
control: model and optimal control theory. IEEE Trans. Automatic Control,
43(1):31–45, 1998.

42. M.S. Branicky and S.K. Mitter. Algorithms for optimal hybrid control. In Proc.
34th IEEE Conf. on Decision and Control, New Orleans, USA, December 1995.

43. M.S. Branicky and G. Zhang. Solving hybrid control problems: Level sets and
behavioral programming. In Proc. American Contr. Conf., Chicago, Illinois
USA, June 2000.

44. M. Buss, O. von Stryk, R. Bulirsch, and G. Schmidt. Towards hybrid optimal
control. AT - Automatisierungstechnik, 48:448–459, 2000.

45. P.J. Campo and M. Morari. Robust model predictive control. In Proc. American
Contr. Conf., volume 2, pages 1021–1026, 1987.

46. P.J. Campo and M. Morari. Model predictive optimal averaging level control.
AIChE Journal, 35(4):579–591, 1989.

47. T.M. Cavalier, P.M. Pardalos, and A.L. Soyster. Modeling and integer pro-
gramming techniques applied to propositional calculus. Computers Opns Res.,
17(6):561–570, 1990.

214 References

48. T. S. Chang and D. E. Seborg. A linear programming approach for multivariable
feedback control with inequality constraints. Int. J. Control, 37(3):583–597,
1983.

49. L. Chisci and G. Zappa. Fast algorithm for a constrained infinite horizon LQ
problem. Int. J. Control, 72(11):1020–1026, 1999.

50. D. Chmielewski and V. Manousiouthakis. On constrained infinite-time linear
quadratic optimal control. Systems & Control Letters, 29(3):121–130, November
1996.

51. C.R. Cuttler and B.C. Ramaker. Dynamic matrix control—a computer control
algorithm. In Proc. American Contr. Conf., volume WP5-B, San Francisco,
USA, 1980.

52. G. B. Dantzig, J. Folkman, and N. Shapiro. On the continuity of the minimum
set of a continuous function. Journal of Mathematical Analysis and Applica-
tions, 17:519–548, 1967.

53. A. Dario and T. Kueng. Graphical user interface for the ball and plate system.
Technical report, Automatic Control Laboratory, ETH Zurich, 2001. Semester
Thesis.

54. B. De Schutter and B. De Moor. The extended linear complementarity problem
and the modeling and analysis of hybrid systems. In P. Antsaklis, W. Kohn,
M. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid Systems V, volume 1567
of Lecture Notes in Computer Science, pages 70–85. Springer, 1999.

55. B. De Schutter and T. van den Boom. Model predictive control for max-plus-
linear systems. In Proc. American Contr. Conf., pages 4046–4050, 2000.

56. J. A. De Doná. Input Constrained Linear Control. PhD thesis, Control Group,
Department of Engineering, University of Cambridge, Cambridge, 2000.

57. V. Dua and E.N. Pistikopoulos. An algorithm for the solution of multiparamet-
ric mixed integer linear programming problems. Annals of Operations Research,
to appear.

58. J. Ezzine and A.H. Haddad. On the controllability and observability of hybrid
systems. Int. J. Control, 49:2045–2055, 1989.

59. G. Ferrari-Trecate, F.A. Cuzzola, and M. Morari. Analysis of piecewise affine
systems with logic states. In C. J. Tomlin and M. R. Greenstreet, editors, Proc.
5th International Workshop on Hybrid Systems: Computation and Control,
volume 2289 of Lecture Notes in Computer Science, pages 194–208. Springer-
Verlag, 2002.

60. G. Ferrari-Trecate, E. Gallestey, P. Letizia, M. Spedicato, M. Morari, and
M. Antoine. Modeling and control of co-generation power plants: A hybrid
system approach. Technical Report AUT02-01, Automatic Control Laboratory,
ETH Zurich, 2002.

61. G. Ferrari-Trecate, E. Gallestey, A. Stothert, P. Letizia, M. Spedicato,
M. Morari, and M. Antoine. Modeling and control of co-generation power
plants: A hybrid system approach. In C. J. Tomlin and M. R. Greenstreet, ed-
itors, Proc. 5th International Workshop on Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science. Springer-Verlag, 2002.

62. G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving horizon estimation for
hybrid systems. In Proc. American Contr. Conf., 2000.

63. G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering tech-
nique for the identification of piecewise affine systems. In M. Di Benedetto
and A. Sangiovanni-Vincentelli, editors, Proc. 4th International Workshop on

References 215

Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes in
Computer Science, pages 218–231. Springer-Verlag, 2001.

64. A V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear
programming. Academic Press, London, U.K., 1983.

65. C. Filippi. On the geometry of optimal partition sets in multiparametric linear
programming. Technical Report 12, Department of Pure and Applied Mathe-
matics, University of Padova, Italy, June 1997.

66. M. Fodor, J. Yester, and D. Hrovat. Active control of vehicle dynamics. In Pro-
ceedings of the 17th Digital Avionics Systems Conference, Seattle, Washington,
November 1999.

67. K. Fukuda. cdd/cdd+ Reference Manual. Institute for operations Research
ETH-Zentrum, ETH-Zentrum, CH-8092 Zurich, Switzerland, 0.61 (cdd) 0.75
(cdd+) edition, December 1997.

68. T. Gal. Postoptimal Analyses, Parametric Programming, and Related Topics.
de Gruyter, Berlin, 2nd edition, 1995.

69. T. Gal and H.J. Greenberg (Eds.). Advances in Sensitivity Analysis and Para-
metric Programming, volume 6 of International Series in Operations Research
& Management Science. Kluwer Academic Publishers, 1997.

70. T. Gal and J. Nedoma. Multiparametric linear programming. Management
Science, 18:406–442, 1972.

71. C.E. Garćıa and A.M. Morshedi. Quadratic programming solution of dynamic
matrix control (QDMC). Chem. Eng. Communications, 46:73–87, 1986.

72. S.I. Gass and T.L. Saaty. The computational algorithm for the parametric
objective function. Naval Research Logistics Quarterly, 2:39–45, 1955.

73. H. Genceli and M. Nikolaou. Robust stability analysis of constrained �1-norm
model predictive control. AIChE J., 39(12):1954–1965, 1993.

74. A. Gentilini, C. Schaniel, M. Morari, C. Bieniok, R. Wymann, and T. Schnider.
A new paradigm for the closed-loop intraoperative administration of analgesics
in humans. Technical Report AUT01-01, Automatic Control Lab, ETH Zurich,
2001.

75. E.G. Gilbert and K. Tin Tan. Linear systems with state and control constraints:
the theory and applications of maximal output admissible sets. IEEE Trans.
Automatic Control, 36(9):1008–1020, 1991.

76. K. Gokbayrak and C.G. Cassandras. A hierarchical decomposition method for
optimal control of hybrid systems. In Proc. 38th IEEE Conf. on Decision and
Control, pages 1816–1821, Phoenix, AZ, December 1999.

77. J.E. Goodman and Joseph O’Rourke (Eds.). Handbook of Discrete and Com-
putational Geometry. Discrete Mathematics and Its Applications. CRC Press,
New York, 1997.

78. D. Goshen-Meskin and I. Y. Bar-Itzhack. Observability analysis of piece-
wise constant systems—part I: Theory. IEEE Trans. Aerosp. Electr. Syst.,
28(4):1056–1067, October 1992.

79. P. Grieder, F. Borrelli, F. Torrisi, and M. Morari. Constrained in-
finite horizon linear quadratic regulator. Technical Report AUT02-
66, Automatic Control Laboratory, ETH Zurich, Switzerland, July 2002.
http://control.ee.ethz.ch.

80. P.O. Gutman and M. Cwikel. Admissible sets and feedback control for discrete-
time linear dynamical systems with bounded control and states. IEEE Trans.
Automatic Control, AC-31(4):373–376, 1986.

216 References

81. A Hassibi and S. Boyd. Quadratic stabilization and control of piecewise-linear
systems. In Proc. American Contr. Conf., Philadelphia, Pennsylvania USA,
June 1998.

82. S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In Proc. 38th
IEEE Conf. on Decision and Control, pages 3972–3976, Phoenix, AZ, December
1999.

83. W.P.M.H. Heemels. Linear complementarity systems: a study in hybrid dy-
namics. PhD thesis, Dept. of Electrical Engineering, Eindhoven University of
Technology, The Netherlands, 1999.

84. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity
systems. SIAM Journal on Applied Mathematics, 60(4):1234–1269, 2000.

85. W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37(7):1085–1091, July 2001.

86. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata ? In Proc. 27th ACM Symposium on the Theory of Computing,
pages 373–381, 1995.

87. O. Hermann. Regelung eines ball and plate systems. Technical report, Auto-
matic Control Laboratory, ETH Zurich, 1996. Diploma Thesis.

88. W. M. Hogan. Point-to-set maps in mathematical programming. SIAM Review,
15(3):591–603, July 1973.

89. D. Hrovat. Survey of advanced suspension developments and related optimal
control applications. Automatica, 33:1781–1817, 1997.

90. D. Hrovat, J. Asgari, and M. Fodor. Automotive mechatronic systems. In
Cornelius T. Leondes, editor, Chapter 1 of “Mechatronic Systems Techniques
and Applications Volume 2 - Transportation and Vehicular Systems”. Gordon
and Breach Science Publishers, 2000.

91. A. Jadbabaie, J. Yu, and J. Hauser. Stabilizing receding horizon control of
nonlinear systems: a control lyapunov function approach. In Proc. American
Contr. Conf., June 1999.

92. M. Johannson and A. Rantzer. Computation of piece-wise quadratic Lyapunov
functions for hybrid systems. IEEE Trans. Automatic Control, 43(4):555–559,
1998.

93. T.A. Johansen, J. Kalkkuhl, J. Lüdemann, and I. Petersen. Hybrid control
strategies in ABS. In Proc. American Contr. Conf., Arlington, Virginia, June
2001.

94. K H Johansson, M Egerstedt, J Lygeros, and S Sastry. On the regularization
of Zeno hybrid automata. System & Control Letters, 38:141–150, 1999.

95. P. Kachroo and M. Tomizuka. An adaptive sliding mode vehicle traction con-
troller design. In Proc. IEEE International Conference on Systems, Man and
Cybernetics. Intelligent Systems for the 21st Century, volume 1, pages 777–782,
1995.

96. S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedback control laws
for a general class of constrained discrete-time systems: stability and moving-
horizon approximations. J. Opt. Theory and Applications, 57:265–293, 1988.

97. E. C. Kerrigan. Robust Constraints Satisfaction: Invariant Sets and Predictive
Control. PhD thesis, Department of Engineering, University of Cambridge,
Cambridge, England, 2000.

98. E.C. Kerrigan and J.M. Maciejowski. Towards the explicit solution of a class
of constrained min-max problems with non-quadratic costs. Technical report,
Dept. of Engineering, University of Cambridge, June 2001.

References 217

99. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class
of decidable hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and
H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in Computer
Science, pages 179–208. Springer Verlag, 1993.

100. H. Kiendl, J. Adamy, and P. Stelzner. Vector norms as Lyapunov functions for
linear systems. IEEE Trans. Automatic Control, 37(6):839–842, 1992.

101. M.V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model
predictive control using linear matrix inequalities. Automatica, 32(10):1361–
1379, 1996.

102. B. Kouvaritakis, J.A. Rossiter, and J. Schuurmans. Efficient robust predictive
control. IEEE Trans. Automatic Control, 45(8):1545–1549, 2000.

103. G. Labinaz, M.M. Bayoumi, and K. Rudie. A survey of modeling and control
of hybrid systems. Annual Reviews of Control, 21:79–92, 1997.

104. J. H. Lee and Z. Yu. Worst-case formulations of model predictive control for
systems with bounded parameters. Automatica, 33(5):763–781, 1997.

105. J. Lygeros, D.N. Godbole, and S. Sastry. A game theoretic approach to hybrid
system design. In R. Alur and T. Henzinger, editors, Hybrid Systems III, volume
1066 of Lecture Notes in Computer Science, pages 1–12. Springer Verlag, 1996.

106. J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications
for hybrid systems. Automatica, 35(3):349–370, 1999.

107. J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.
108. M. Mannelli. Gestione integrata del cambio robotizzato per la riduzione di

consumi ed emissioni mediante tecniche di controllo ibrido. Technical report,
Universita’ degli Studi di Firenze, Facolta’ di Ingegneria, Firenze, April 2002.
Diploma Thesis.

109. G. F. Mauer. A fuzzy logic controller for an ABS braking system. IEEE
Transaction on Fuzzy Systems, November 1995.

110. D.Q. Mayne. Constrained optimal control. European Control Conference, Ple-
nary Lecture, September 2001.

111. D.Q. Mayne. Control of constrained dynamic systems. European Jornal of
Control, 7:87–99, 2001.

112. D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–814,
June 2000.

113. S. Mehrotra and R.D.C. Monteiro. Parametric and range analysis for interior
point methods. Technical report, Dept. of Systems and Industrial Engineering,
University of Arizona, Tucson, USA, 1992.

114. W. Michael and F. Philipp. Regulation and trajectory tracking of a ball on
a plate by using mpc. Technical report, Automatic Control Laboratory, ETH
Zurich, 2000. Semester Thesis.

115. D. Mignone. Control and Estimation of Hybrid systems via Mathematical Op-
timization. PhD thesis, Automatic Control Labotatory - ETH, Zurich, 2002.

116. D. Mignone, G. Ferrari-Trecate, and M. Morari. Stability and stabilization of
piecewise affine and hybrid systems: An LMI approach. In Proc. 39th IEEE
Conf. on Decision and Control, December 2000.

117. M. Morari and J.H. Lee. Model predictive control: past, present and future.
Computers & Chemical Engineering, 23(4–5):667–682, 1999.

118. U. Muntwyler and S. Moscibroda. Regulation and trajectory tracking of a ball
on a plate. Technical report, Automatic Control Laboratory, ETH Zurich, 2000.
Semester Thesis.

218 References

119. K. G. Murty. Computational complexity of parametric linear programming.
Mathematical Programming, 19:213–219, 1980.

120. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1988.

121. B. Piccoli. Necessary conditions for hybrid optimization. In Proc. 38th IEEE
Conf. on Decision and Control, Phoenix, Arizona USA, December 1999.

122. A. Polański. On infinity norms as Lyapunov functions for linear systems. IEEE
Trans. Automatic Control, 40(7):1270–1273, 1995.

123. A.I. Propoi. Use of linear programming methods for synthesizing sampled-data
automatic systems. Automation and Remote Control, 24(7):837–844, 1963.

124. S.J. Qin and T.A. Badgwell. An overview of industrial model predictive control
technology. In Chemical Process Control - V, volume 93, no. 316, pages 232–256.
AIChe Symposium Series - American Institute of Chemical Engineers, 1997.

125. R. Raman and I.E. Grossmann. Relation between MILP modeling and logical
inference for chemical process synthesis. Computers & Chemical Engineering,
15(2):73–84, 1991.

126. C.V. Rao and J.B. Rawlings. Linear programming and model predictive control.
J. Process Control, 10:283–289, 2000.

127. J.B. Rawlings and K.R. Muske. The stability of constrained receding-horizon
control. IEEE Trans. Automatic Control, 38:1512–1516, 1993.

128. J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic
control-application to industrial processes. Automatica, 14:413–428, 1978.

129. P. Riedinger, F.Kratz, C. Iung, and C.Zanne. Linear quadratic optimization for
hybrid systems. In Proc. 38th IEEE Conf. on Decision and Control, Phoenix,
Arizona USA, December 1999.

130. R.L.Grossmann, A. Nerode, A.P.Ravn, and H. Rischel (Eds.). Hybrid Systems.
Springer Verlag, New York, 1993. no. 736 in LCNS.

131. S. M. Robinson and R.H. Day. A sufficient condition for continuity of optimal
sets in mathematical programming. Journal of Mathematical Analysis and
Applications, 45:506–511, 1974.

132. M. Schechter. Polyhedral functions and multiparametric linear programming.
J. Opt. Theory and Applications, 53(2):269–280, May 1987.

133. P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive control
for constrained linear systems. IEEE Trans. Automatic Control, 43(8):1136–
1142, 1998.

134. P.O.M. Scokaert and J.B. Rawlings. Constrained linear quadratic regulation.
IEEE Trans. Automatic Control, 43(8):1163–1169, 1998.

135. M.M. Seron, J.A. DeDoná, and G.C. Goodwin. Global analytical model pre-
dictive control with input constraints. In Proc. 39th IEEE Conf. on Decision
and Control, pages 154–159, 2000.

136. E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans.
Automatic Control, 26(2):346–358, April 1981.

137. E.D. Sontag. Real addition and the polynomial hierarchy. Inform. Proc. Letters,
20:115–120, 1985.

138. E.D. Sontag. Controllability is harder to decide than accessibility. SIAM J.
Control and Opt., 26:1106–1118, 1988.

139. E.D. Sontag. Interconnected automata and linear systems: A theoretical frame-
work in discrete-time. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors,
Hybrid Systems III - Verification and Control, number 1066 in Lecture Notes
in Computer Science, pages 436–448. Springer-Verlag, 1996.

References 219

140. H.J. Sussmann. A maximum principle for hybrid optimal control problems.
In Proc. 38th IEEE Conf. on Decision and Control, Phoenix, Arizona USA,
December 1999.

141. M. Sznaier and M.J. Damborg. Suboptimal control of linear systems with state
and control inequality constraints. In Proc. 26th IEEE Conf. on Decision and
Control, volume 1, pages 761–762, 1987.

142. H. S. Tan. Adaptive and Robust Controls with Application to Vehicle Traction
Control. PhD thesis, Univ. of California, Berkeley, 1988.

143. H. S. Tan and M. Tomizuka. Discrete time controller design for robust vehicle
traction. IEEE Control System Magazine, 10(3):107–113, April 1990.

144. H.S. Tan and M. Tomizuka. An adaptive sliding mode vehicle traction controller
design. In Proc. American Contr. Conf., volume 2, pages 1856–1861, 1990.

145. K.T. Tan. Maximal output admisible sets and the nonlinear control of linear
discrete-time systems with state and control constraints. PhD thesis, University
of Michigan, 1991.

146. C.J. Tomlin, J. Lygeros, and S.S. Sastry. A game theoretic approach to con-
troller design for hybrid systems. Proceeding of IEEE, 88, July 2000.

147. P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-
parametric quadratic programming and explicit MPC solutions. In Proc. 40th
IEEE Conf. on Decision and Control, December 2001.

148. P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-
parametric quadratic programming and explicit MPC solutions. In Proc. 40th
IEEE Conf. on Decision and Control, Orlando, Florida, 2001.

149. P. Tøndel, T.A. Johansen, and A. Bemporad. Computation and approximation
of piecewise affine control via binary search trees. In Proc. 40th IEEE Conf.
on Decision and Control, pages 3144–3149, 2002.

150. F.D. Torrisi and A. Bemporad. HYSDEL — a tool for generating computational
hybrid models. IEEE Trans. Control Systems Technology, 2003. to appear.

151. M.L. Tyler and M. Morari. Propositional logic in control and monitoring prob-
lems. Automatica, 35(4):565–582, 1999.

152. V.I. Utkin. Variable structure systems with sliding modes. IEEE Trans. Auto-
matic Control, 22(2):212–222, April 1977.

153. A.J. van der Schaft and J.M. Schumacher. Complementarity modelling of hy-
brid systems. IEEE Trans. Automatic Control, 43:483–490, 1998.

154. M. Vidyasagar. Nonlinear Systems Analysis - Second Edition. Prentice-Hall,
Englewood Cliffs, New Jersey 07632, 1993.

155. L. Wenger and F. Borrelli. The application of constrained optimal control to
active automotive suspensions. In Proc. 41th IEEE Conf. on Decision and
Control, 2002.

156. M. A. Wicks and P. Peleties. Construction of piecewise lyapunov functions
for stabilizing switched systems. In Proc. Conf. Dec. Contr., pages 3492–3497,
1994.

157. H.P. Williams. Logical problems and integer programming. Bulletin of the
Institute of Mathematics and Its Applications, 13:18–20, 1977.

158. H.P. Williams. Model Building in Mathematical Programming. John Wiley &
Sons, Third Edition, 1993.

159. H.S. Witsenhausen. A min-max control problem for sampled linear systems.
IEEE Trans. Automatic Control, 13(1):5–21, 1968.

160. L.A. Zadeh and L.H. Whalen. On optimal control and linear programming.
IRE Trans. Automatic Control, 7:45–46, 1962.

220 References

161. A. Zheng and M. Morari. Stability of model predictive control with mixed
constraints. IEEE Trans. Automatic Control, 40:1818–1823, 1995.

