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This paper applies a model reduction method for linear parameter-varying (LPV) sys-
tems based on parameter-varying balanced realization techniques to a body freedom utter
(BFF) vehicle. The BFF vehicle has a coupled short period and �rst bending mode with
additional structural bending and torsion modes that couple with the rigid body dynamics.
These models describe the BFF vehicle dynamics with considerable accuracy, but result in
high-order state space models which make controller design extremely di�cult. Hence, re-
duced order models for control synthesis are generated by retaining a common set of states
across the ight envelope. Initially the full order BFF models of 148 states are reduced
to 43 states using standard truncation and residualisation techniques. The application
of balanced realization techniques at individual point designs result in 20 state models.
Unfortunately, the application of balanced realization techniques at individual operating
conditions results in di�erent states being eliminated at each operating condition. The
objective of LPV model reduction is to further reduce the model state order across the
ight envelope while retaining consistent states in the LPV model. The resulting reduced
order LPV models with 26 states capture the dynamics of interest and can be used in the
synthesis of active utter suppression controllers.

Nomenclature

A State matrix
B Input matrix
C Output state matrix
D Input feedthrough matrix
� Time varying parameter vector
x State vector
u Input vector
T Linear state transformation
WC Controllability Gramian
WO Observability Gramian
P Generalized controllability Gramian
Q Generalized observability Gramian

I. Introduction

Modern aircraft designers are adopting light-weight, high aspect ratio wings to take advantage of wing
exibility for increased maneuverability. Those modi�cations can lead to improve performance and reduce
operating cost. However, the high exibility and signi�cant deformation in ight exhibited by these aircraft
increase the interaction between the rigid body and structural dynamics modes, resulting in Body Freedom
Flutter. This phenomenon occurs as the aicraft short period mode frequency increases with airspeed and
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comes close to a wing vibration mode, typically the wing bending mode. This leads to poor handling qualities
and may even lead to dynamic instability. Hence, an integrated active approach to ight control, utter
suppression and structural mode attenuation is required to meet the desired handling quality performance
for modern exible aircraft.

Several utter suppression control strategies have been proposed to address the coupled rigid body and
aeroelastic dynamics including optimal control,1,2 dynamic inversion control,3 robust multivariable control,4

predictive control5 and gain scheduled control.6,8, 10 Almost all of these control strategies are model based
and require accurate aerodynamic and structural dynamic models of the aircraft. Numerous investigations
have addressed the aeroelastic modeling for highly exible aircraft.1,3, 9 Modeling of a exible aircraft
requires a geometric structural model coupled with a consistent aerodynamic model. Linear aeroelastic
models are based on structural �nite elements and lifting-surface theory, both of which are available in
general purpose commercial codes.11 Unsteady aerodynamics are often modeled using the doublet lattice
method, which results in a matrix of linear aerodynamic inuence coe�cients that relate the pressure change
of an aerodynamic degree-of-freedom. The fully coupled, nonlinear aircraft model is a combination of the
mass and sti�ness matrices derived from the aeroelastic model and the unsteady aerodynamics.

Unfortunately, the inclusion of structural dynamic and aeroelastic e�ects result in linear, dynamic models
with a large number of degrees-of-freedom de�ned across the ight envelope. It is unrealistic to use these
high order, complex models for control design since modern control methods will result in controllers with
very high state order. Even more, practical implementation of high order controllers is usually avoided
since numerical errors may increase and the resulting system may present undesired behavior. Hence, a
reduced-order linear model of the exible aircraft will allow model-based multivariable controllers to be
synthesized.

Several model reduction techniques for linear, parameter-varying (LPV) systems have been reported in the
literature. Balanced truncation,12 LMIs,13 bounded parameter variaton rates,14 coprime factorizations17,18

and singular perturbation15,16 are presented as an extension of the model reduction techniques for linear time
invariant (LTI) systems. We plan to investigate in this paper the LPV model reduction based on coprime
factorizations presented in Wood,18 and singular perturbation scheme proposed by Widowati.16 This paper
describes the development of a low order, control-oriented aircraft model whose states are consistent across
the ight envelope which is useful for intuition and also ensure easily schedule of the controllers. A balancing
state transformation matrix is obtained using the generalized controlability and observability Gramians.17,18

This approach is applied to an experimental body freedom utter test vehicle model developed by the U.S Air
Force described in section II. Comparison between balanced reduction methods for unstable LTI systems19,20

and the proposed method are presented in section IV.

II. Body Freedom Flutter Model

The Air Force Research Laboratory (AFRL) contracted with Lockheed Martin works to develop a ight
test vehicle, denoted Body Freedom Flutter (BFF) vehicle, to demonstrate active aeroelastic control tech-
nologies. The vehicle is a high aspect ratio ying wing with light weight airfoil. Details of the vehicle’s
design can be found in Beranek.21 The aircraft con�guration with the location of accelerometers and control
surfaces for utter suppression is presented in the Fig. 1.

The aeroservoelastic (ASE) model of the BFF vehicle was assembled using MSC/NASTRAN.11 The initial
structural model was created with 2556 degrees-of-freedom and then reduced to 376 degrees-of-freedom via a
Guyan reduction. A Ground Vibration Test was performed to validate the structural model and six critical
modes were found. Table 1 lists the mode shapes and frequency values of the structural model.22

The aerodynamics were modeled using the doublet lattice method which is a technique to model oscillating
lifting surfaces. This model produces a matrix of linear aerodynamic inuence coe�cients that describes
the pressure change of the 2252 aerodynamic degrees-of-freedom. The mass, sti�ness and aerodynamic
coe�cient matrices are combined using the P-K method which interconnects the structural and aerodynamic
grids by splinning interpolation and �nds the generalized aerodynamic matrix using the structural modal
matrix.11 The unsteady aerodynamics is approximated with a rational function to create a continuous-time
aeroservoelastic state-space model of the airframe with 148 states. The general state-space form of the model
is given by
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Figure 1. Body Freedom Flutter Vehicle22

Table 1. Ground Vibration Test Frequencies

Mode Shape Frequency (rad/s)

Symmetric Wing 1st Bending 35.37

Anti-symmetric Wing 1st Bending 54.98

Symmetric Wing 1st Torsion 123.34

Anti-symmetric Wing 1st Torsion 132.76

Symmetric Wing 2nd Bending 147.28

Anti-symmetric Wing 2nd Bending 185.73

8>>><>>>:
_xp

_xq

_x!1

_x!2

9>>>=>>>; =

26664
0 I 0 0

A21 A22 A23 A24

0 I !1I 0

0 I 0 !2I

37775
8>>><>>>:

xp

xq

x!1

x!2

9>>>=>>>; +

26664
B1

B2

0

0

37775u (1)

Eq. (1) represents a typical second order equation of motion with augmented state vector due to the
rational functions approximation. The state vector consists of modal displacements, xp, modal velocities,
xq, and two lags states, x!1, x!2, for the unsteady aerodynamic rational function approximation. Moreover,
each of the set of states is related with 5 rigid body modes (lateral, plunge, roll, pitch and yaw), 8 exible
modes (symmetric - anti-symmetric bending and torsion) and 24 secondary discrete degrees-of-freedom.

Finally, a set of state space matrices was generated in 2 knot increments from 40 to 90 KEAS (knots
equivalent airspeed) with variable Mach at constant altitude of 3000 ft.22 Transfer function magnitudes from
the right body ap (drbfc) and right wing outboard ap (drwfoc) to the pitch rate (QbDps) and vertical
accelerometer in the right wing (NzRWtipAftG) for three ight conditions are plotted in the Fig. 2. The
frequency and damping of the critical modes for the BFF vehicle are plotted at Fig. 3 as a function or
airspeed.

Plots show how the model dynamics changes dramatically as function of airspeed. Coupling of the short
period with the symmetric wing bending produces BFF at 43 KEAS with a frequency of 24.3 rad/s. Flutter
is also presented when the symmetric wing bending and torsion modes are coupled at an airspeed of 58
KEAS with frequency of 65 rad/s and when the anti-symmetric wing bending and torsion modes comes close
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Figure 2. Frequency response magnitudes of BFF model at 42, 62 and 90 KEAS

Figure 3. Velocity/frequency/damping plot for BFF vehicle

in proximity at 61 KEAS with frequency of 69 rad/s. Hence, the ight envelope of the open-loop vehicle is
limited till 42 KEAS before the vehicle becomes unstable.

III. Classical Model Reduction

The linear, coupled state-space models of the vehicle generated across the ight envelope are function of
the dynamic pressure and Mach. These state space models can be written as(

_x(t)

y(t)

)
=

"
A(�) B(�)

C(�) D(�)

#(
x(t)

u(t)

)
(2)
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Where A(�) is the state matrix, B(�) is the input matrix, C(�) is the output state matrix, D(�) is the
input feedthrough matrix and � is a vector that is function of time and corresponds to dynamic pressure
and Mach for the BFF model. This model is called a linear parameter-varying (LPV) system.

Typically, LPV ASE models result in high-order state-space models. High-order controllers can be
obtained using these complex models but, the implementation of these high-order state controllers is usually
avoided because numerical errors may generate undesirable behavior in the system. Hence, reduced-order
LPV models are required for controller synthesis. Traditional reduction techniques for linear time invariant
systems have been extended to LPV systems.12{15,17 However, Eq. (3) shows that the state transformation
used depends on �, and in general it would be time-varying. This transformation T (�) would introduce
additional terms, that depend on the derivative of T (�) with respect to time, in the state space model
making the reduction problem harder. Hence, a model reduction technique that preserves the same state
meaning across the ight envelope with an invariant state transformation is presented. This approach is
useful for retaining physical intuition and will ensure that the resulting LPV model does not increase in
complexity.

xc = T (�)x) _xc = _� _T (�) _x

_xc = _� _T (�)A(�)T�1(�)xc + _� _T (�)B(�)u (3)

y = C(�)T�1(�)xc +D(�)u

The model reduction goal is to reduce the complexity of models while preserving their input-output
behavior. The main idea is to eliminate the states with little contribution to the energy transferred from the
input to the output. Partitioning the state vector x, into [x1; x2]

T
, where x2 contains the states to remove,

the state-space equations become:

_x1 = A11x1 +A12x2 +B1u

_x2 = A21x1 +A22x2 +B2u (4)

y = C1x1 + C2x2 +Du

This notation will be used in the next subsections to indicate the di�erent model reduction techniques
applied.

A. Truncation

The focus of the control design is to actively control utter and vehicle/wing vibration. Fig. 3 shows utter
phenomena occuring in a frequency bandwith between 10-120 rad/s across the ight envelope, hence the
extremely slow dynamics can be eliminated from the model. The plunge mode of the BFF vehicle turns out
to be very slow comparing with utter frequencies. Hence, the state corresponding to the plunge mode is
truncated retaining the system behavior at in�nity frequency. The reduced model with 147 states is given
by

_x1 = A11x1 +B1u (5)

y = C1x1 +Du

B. Residualization

Residualization takes into account the interaction between slow and fast dynamics while preserving the
physical nature of the state variables. This is accomplished by having the degrees of freedom to be removed
from the model reach their steady state values instantaneously, this corresponds to setting the derivatives of
the fast states to zero. For a general system with the space state structure in Eq. (4), the solution for the
reduced model is given by

_x1 = (A11 �A12A
�1
22 A21)x1 + (B1 �A12A

�1
22 B2)u (6)

y = (C1 � C2A
�1
22 A21)x1 + (D � C2A

�1
22 B2)u
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States are residualized based on the physics of the vehicle. The lateral and yaw rigid body modes, the
symmetric wing fore and aft, anti-symmetric wing 2nd bending and rotation modes and 18 discrete degrees-
of-freedom in the actuators for all the control surfaces, are residualized. Additionally, the derivatives and
aerodynamic lags corresponding to the same states are also residualized. As result, 92 states are eliminated
from each LTI model and reduced models with 55 states are obtained across the ight envelope.

C. Modal Residualization

A modal residualization is performed in order to eliminate high frequencies outside the bandwidth of interest
that were retained after the truncation and residualization procedures. A single modal transformation is
applied to the models in order to preserve states across the ight envelope. A state coordinate transformation,
T , is used to �nd a modal realization such that

xc = Tx

_xc = TAT�1xc + TBu (7)

y = CT�1xc +Du

A single transformation for the BFF vehicle is computed using the residualized model at 84 KEAS for
which the minimum errors were found. A total of 12 high frequency modes were residualized and reduced
models with 43 states are obtained across the ight envelope. Fig. 4 and Fig. 5 show the comparison between
the original airframe model with 148 states and the reduced model with 43 states at three di�erent ight
conditions. Figures show the frequency responses from the right body ap (drbfc) and right wing outboard
ap (drwfoc) to the pitch rate (QbDps) and vertical accelerometer in the right wing (NzRWtipAftG) are
plotted to compare the reduced models and the original models.

Figure 4. Frequency response of the BFF airframe model (blue) and modal residualization model (red) from
right body ap to pitch rate and right wing accelerometer

The relative error between the 148 states model and the 43 states model obtained after applying the
classical model reduction methods is plotted in Fig. 6 for ight conditions at 42, 62 and 90 KEAS. Addi-
tionally, Fig. 7 shows the norm of these errors across the ight envelope. It is observed that in general the
di�erences between models are less than 10% for all the ight conditions except for the models at 42 and 86
KEAS where the maximum di�erence is around 50%. These signi�cant di�erence in the models at particular
frequencies are due to highly undamped modes that the reduced models cannot capture completely.

IV. Balanced Reduction for Unstable Systems

Balanced reduction is based on the measure of the controllability and observability in certain directions of
the state space model. These measures are given by the controllability and observability Gramians de�ned,
respectively, as
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Figure 5. Frequency response of the BFF airframe model (blue) and modal residualization model (red) from
right wing outboard ap to pitch rate and right wing accelerometer

Figure 6. Frequency response of the di�erence between the BFF airframe model and modal residualization
model for ight conditions at 42, 62 and 90 KEAS

WC =

Z 1
0

eAtBBT eA
T tdt (8)

WO =

Z 1
0

eA
T tCTCeAtdt (9)

Solutions to these integrals are also the solutions to the following Lyapunov equations:

AWC +WCA
T +BBT = 0 (10)

ATWO +WOA+ CTC = 0 (11)

A balanced realization of a system is a realization with equal and diagonal controllability and observability
Gramians, P̂ = Q̂ = �. Hence, the balancing state transformation, T , is chosen such that Ŵc = TWcT

� = �
and Ŵo = (T�1)�WoT

�1 = � and also, gives the eigenvector decomposition of the product of the Gramians
WCWO = T�1�T .
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Figure 7. Norm error values across the ight envelope for reduced model with 43 states

Unfortunately, the controllability and observability Gramians given by Eq. (8) and Eq. (9) are not de�ned
for unstable systems since the integrals will be unbounded when the matrix A is unstable. The standard
approaches to balanced reduction require the nominal system to be stable. Since aeroservoelastic models are
mixed stability systems, a balanced model reduction technique which handles stable and unstable modes in
the same framework would o�er an opportunity to �nd a single balancing transformation across the ight
envelope and retain a consistent set of states at each ight condition.

A. LTI Unstable Systems

Several methods have been proposed to �nd balancing transformations for unstable systems.18{20 Therapos19

shows that an unstable system can be balanced if and only if the product of the controllability, observability
Gramians is similar to a diagonal matrix. Here, the controllability and observability Gramians are calculated
as the solutions for the Lyapunov equations (10) and (11) deriving the necessary and su�cient conditions
for their existence. Using this method with the BFF models, we �nd a balancing transformation at a
particular ight condition and apply it to the models across the ight envelope. Results show that the
balancing transformation computed at 76 KEAS obtains models with 32 states across the ight envelope
with acceptable errors.

Zhou20 proposed the generalization of the controllability and observability Gramians using a frequency
domain characterization, separating the stable and unstable part of the system and balancing both parts
separately. The controllability and observability Gramians are described as

P =

Z 1
�1

1

2�
(j!I �A)�1BBT (j!I �AT )�1d! (12)

Q =

Z 1
�1

1

2�
(�j!I �AT )�1CTC(j!I �A)�1d! (13)

Using a linear transformation to separate the stable and unstable part of the system such that

"
TAT�1 TB

CT�1 D

#
=

264 A1 0 B1

0 A2 B2

C1 C2 D

375 (14)
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Where A1 is the stable part and A2 the antistable part. The generalized controllability and observability
Gramians are, respectively

P = T�1

"
P1 0

0 P2

#
(T�1)T (15)

Q = TT

"
Q1 0

0 Q2

#
T (16)

Being P1 and Q1 the controllability and observability Gramians of (A1; B1; C1) and P2 and Q2 the
Gramians of (�A2; B2; C2). The method is applied to the BFF model obtaining reduced models with 32
states across the ight envelope. Here, the balancing transformation is obtained using the Gramians for
the ight condition at 84 KEAS. Error bounds for all the models are acceptable having the tendency to
increase as the airspeed decreases. In addition, a point balanced reduction is performed for each ight
condition. Using the corresponding transformation for each ight condition, the models can be reduced until
20 states with good accuracy but di�erent states are eliminated at each ight condition across the ight
envelope. Fig. 8 and Fig. 9 show the comparison between the BFF models with 43 states and the reduced
models obtained using the LTI methods described. Frequency responses from the right body ap (drbfc)
and right wing outboard ap (drwfoc) to the pitch rate (QbDps) and vertical accelerometer in the right wing
(NzRWtipAftG) are plotted for the same three ight conditions as before.

Figure 8. Frequency response of the modal residualization model (blue), Therapo’s balanced model (green)
and Zhou’s balanced model (red) from right body ap to pitch rate and right wing accelerometer

Figure 9. Frequency response of the modal residualization model (blue), Therapo’s balanced model (green)
and Zhou’s balanced model (red) from right wing outboard ap to pitch rate and right wing accelerometer
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The relative errors between the 43 states model and the 32 states models obtained after applying the
LTI model reduction methods with a single balancing transformation are plotted in Fig. 10 for the ight
conditions at 42, 62 and 90 KEAS.

Figure 10. Frequency response of the di�erence between the 43 states model and 32 states models for ight
conditions at 42, 62 and 90 KEAS

B. LPV Unstable Systems

The LPV model reduction proposed in this paper is based on coprime factorizations and singular pertur-
bation.16,18 The coprime factorization of LTI systems is extended to LPV systems to generate a set of all
stable input-output pairs. Gramians for this coprime factorization representation are found to be related
to the solutions of two Ricatti inequalities. The Generalized Control Ricatti Inequality (GCRI) and the
Generalized Filtering Ricatti Inequality (GFRI), de�ned as

(A(�)�B(�)S�1(�)DT (�)C(�))TX +X(A(�)�B(�)S�1(�)DT (�)C(�))� (17)

XB(�)S�1(�)BT (�)X + CT (�)R�1(�)C(�) < 0

(A(�)�B(�)DT (�)R�1(�)C(�))Y + Y (A(�)�B(�)DT (�)R�1(�)C(�))T � (18)

Y CT (�)R�1(�)C(�)Y +B(�)S�1(�)BT (�) < 0

where S(�) = I + DT (�)D(�), R(�) = I + D(�)DT (�), X = XT > 0 and Y = Y T > 0. Hence, the
observability and controllability Gramians are computed, respectively

Q = X (19)

P = (I + Y X)�1Y (20)

The generalized observability and controllability Gramians are calculated for the LPV BFF model by
solving a Linear Matrix Inequality representation of the GCRI and GFRI. Using Schur complement and the
variables �X = X�1 and �Y = Y �1, the GCRI and GFRI are equilavent to the LMIs described by Eq. (21)
and Eq. (22). "

�XAT
C(�) +AC(�) �X �B(�)S�1(�)BT (�) �XCT (�)

C(�) �X �R(�)

#
< 0 (21)

"
�Y AF (�) +AT

F (�) �Y � CT (�)R�1(�)C(�) �Y B(�)

BT (�) �Y �S(�)

#
< 0 (22)
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where AC(�) = A(�)�B(�)S�1(�)DT (�)C(�) and AF (�) = A(�)�B(�)DT (�)R�1(�)C(�).
The size of the LMI problem grows as function of the state order and number of parameters of the

LPV system. The number of variables to solve for symmetric matrices is related with the state order as
k = n(n+ 1)=2. The solution for the controllability and observability Gramians using the BFF model with
43 states involves 946 decision variables and the feasibility of 27 linear matrix inequalities. LMI constraints
result from the grid models across the ight envelope and the positive de�nite condition for the solutions.
Solutions are computed using the LMI Lab in the Robust Control Toolbox for MATLAB24

Reduced models with 26 states were obtained using the coprime factorization realization described in
Wood18 and the singular perturbacion approximation proposed by Widowati.16 Fig. 11 and Fig. 12 plot the
comparison between the reduced models obtained by the LPV model reduction proposed and the individual
point reduction at 42, 62 and 90 KEAS. The relative error between the 43 states model and the 26 states
model obtained with the LPV Gramians is plotted as function of frequency at Fig. 13. Additionally, a
comparison between the 43 states model and the models resulting from the corresponding LTI balancing
transformation at each ight condition is also plotted at Fig. 13. Figures show the frequency responses from
the right body ap (drbfc) and right wing outboard ap (drwfoc) to the pitch rate (QbDps) and vertical
accelerometer in the right wing (NzRWtipAftG) for the same three ight conditions as before.

Figure 11. Frequency response of the modal residualization model (blue), Coprime Fact. balanced model
(green) and LTI balanced model (red) from right body ap to pitch rate and right wing accelerometer

Figure 12. Frequency response of the modal residualization model (blue), Coprime Fact. balanced model
(green) and LTI balanced model (red) from right wing outboard ap to pitch rate and right wing accelerometer

Error magnitudes, plotted at Fig. 14, compare the di�erent methods evaluated. Results show that LPV
reduced models with 26 states, obtained using the balancing transformation by the coprime factorization
method, have errors less than 10% for almost all the ight conditions. The largest errors are again related
with the ight conditions where the systems are marginally stable. Additionally, it is observed that the
reduced models obtained from application of the LTI balancing transformations derived at a particular
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Figure 13. Frequency response of the di�erence between the 43 states model, 26 states model and 20 states
model for ight conditions at 42, 62 and 90 KEAS

operation point, result in higher order models than the models obtained by the LPV reduction proposed.
These reduced models with 32 states result sensitive to errors as the model di�ers from the operation point
for which the transformation was computed and di�erences between 40� 80% are obtained at several ight
conditions. Even though, lower order models of 26 states were found using the LPV method proposed with
better acurracy than the models obtained by LTI methods described before, results show that LPV reduced
models are in general higher order than the reduced models obtained using the corresponding balancing
transformation which varies at each ight condition. In this case, the linear models can be reduced till 20
states with very small errors as the Fig. 13 shows. These results were expected due to the dramatic change
in the dynamics of the models and the desired of a consistent state vector across the ight envelope that
make the reduction problem harder.

Figure 14. Norm error values across the ight envelope for balanced reduction methods
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V. Numerical Issues

The LMI constraints described at Eq. (21) and Eq. (22) are parameter dependent. This means that there
is an in�nite set of LMIs, one for each parameter value, which makes the feasibility problem hard to solve.
To ensure that the inequalities are satis�ed everywhere, a dense grid covering the parameter space must
be created. Unfortunately, a dense grid of parameters would result in a large number of LMI constraints
causing computational issues. Particularly, the LPV reduction problem proposed for the BFF vehicle is
directly related with the state order of the system. Using a 43 states model to compute the generalized
controllability and observability Gramians involves 946 decision variables to check at 27 LMI constraints.
Solutions for the GFRI and GCRI are computed after 3396 seconds using a standard personal computer
and indicate that the problem has a large size. However, the solution for the GFRI is marginally feasible
which means that the feasible point computed may not satisfy the entire set of LMI constraints. Even more,
�nding the controllability and observability Gramians for higher order models will increase the size of the
LMI problem causing numerical issues. Trying to solve the GFRI and GCRI using models with 55 states
at 5 ight conditions requires 1540 decision variables for which the LMI Lab cannot �nd feasible solutions.
Additionally, the signi�cant change in the dynamics across the ight envelope may lead also to feasibility
problems. Hence, future work related with LMI feasibility for aeroservoelastic systems is required.

VI. Conclusion

A model reduction procedure for aeroservoelastic models based on LPV balanced realizations has been
proposed. The proposed procedure is applied to a body freedom utter (BFF) vehicle and consists of a
truncation of uncoupled slow dynamics and a residualization of coupled modes outside the utter frequencies
of interest. A modal transformation is applied to all the models in order to eliminate remaining high frequency
modes. The full order models with 148 states were initially reduced to 43 states using traditional order
reduction techniques while retaining the main utter dynamics and the same states characteristics across
the ight envelope. Three methods to �nd balanced models for unstable system were tested. Low order,
control-oriented aircraft models with 26 states consistent across the ight envelope were obtained using the
coprime factorization and singular perturbation approach. Linear analysis of the individual point designs
indicate that a lower bound for the reduced order LPV will be 20 states. The LPV reduced order model
results in higher order due to the varying dynamics of the vehicle across the ight envelope, though the
consistency of states across the ight envelope is useful from physical insight and it ensures easily scheduling
of controllers.
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