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A model-reduction method for linear, parameter-varying systems based on parameter-varying balanced

realizations is proposed for a body freedom flutter vehicle. A high-order linear, parameter-varying model with

hundreds of states describes the coupling between the short period and first bendingmode with additional structural

bending and torsion modes that couple with the rigid body dynamics. However, these high-order state–space models

result in a challenging control design, and hence a reduced-order linear, parameter-varying model is desired. The

objective is to reduce the model state order across the flight envelope while retaining a common set of states in the

linear, parameter-varyingmodel. A reduced-order linear, parameter-varyingmodel with tens of states is obtained by

combining classical model reduction and parameter-varying balanced realizations reduction techniques. The

resulting reduced-order model captures the unstable dynamics of the vehicle and is well suited for the synthesis of

active flutter suppression controllers.

Nomenclature

A = state matrix
B = input matrix
C = output state matrix
D = input feedthrough matrix
G = plant model
P = controllability Gramian
Q = observability Gramian
R = set of real numbers
T = similarity transformation
u = input vector
X = control Riccati inequality solution
x = states vector
xa = aerodynamic lag states vector
Y = filtering Riccati inequality solution
y = output vector
γ = fixed value of exogenous input
δ = control surface deflection
Λ = eigenvalues matrix
λ = system eigenvalues
ξ = generalized coordinates
ρ = exogenous input vector
Σ = singular values matrix
σ = system singular values

I. Introduction

T HEneed for improved performance and reduced operating costs
has led modern aircraft designers to adopt lightweight, high-

aspect-ratio flexible wings. Reducing weight decreases aerodynamic
drag, leading to less fuel consumption. High-aspect-ratio wings
minimize drag over lift, improving the aircraft performance on
aspects such as long range and endurance. These modifications are

being applied to modern commercial airplanes, mainly by using
composite materials for both fuselage and wings. As result, the new
generation of long-range airliners developed by Boeing (787) and
Airbus (A350) show higher fuel efficiency and lower costs than
previous similar sized aircraft.
The aerodynamic advantages of high-aspect-ratio flexible wings

are also being exploited to develop autonomous aircraft for intel-
ligence, surveillance, and reconnaissance missions. These light-
weight, high-altitude, long-endurance vehicles with large wingspan
exhibit high flexibility and significant deformation in flight, leading
to increased interaction between the rigid body and structural
dynamics modes. This phenomenon, called body freedom flutter
(BFF), occurs as the aircraft rigid body frequency response increases
with airspeed and interacts with a wing vibration mode, typically the
wing bending mode. The interaction can lead to poor handling
qualities and may result in dynamic instability. Hence, an integrated
active approach to flight control, flutter suppression, and structural
mode attenuation is required to meet the desired handling quality
performance and gust load alleviation for modern flexible aircraft.
Numerous flutter-suppression control strategies have been pro-

posed to address the coupled rigid body and aeroelastic dynamics.
These include optimal control [1,2], dynamic inversion control [3],
robust multivariable control [4], model predictive control [5], and
gain scheduled control [6–9]. A majority of these strategies are
model-based and, hence, require an accurate description of the
aeroelastic behavior of the aircraft. Flutter analysis of aircraft has
been widely studied [10–13], and numerous researchers have
addressed aeroelastic modeling for highly flexible aircraft [1,3,9,14].
Currently, modeling of a flexible aircraft requires a geometric
structural model coupled with a consistent aerodynamic model. The
nonlinear aeroelastic models are derived based on structural finite
elements and lifting-surface theory, both of which are available in
general purpose commercial codes [15–17]. It is standard practice to
represent the fully coupled nonlinear aircraft model as a linear model
that varies as a function of parameters across the flight envelope, i.e.,
linear parameter-varying (LPV) systems; hence, the traditional
description of aeroservoelastic (ASE) models for control fits
naturally in the LPV framework.
The LPV system framework provides a rich, theoretical control

analysis and design framework for nonlinear systems [7,18–24].
Unfortunately, the inclusion of structural dynamics and aeroelastic
effects in modeling flexible aircraft results in linear, dynamic models
with a large number of degrees of freedom. It is unrealistic to use
these high-order models for control design because modern control
methods will result in controllers with high-state-order models. Even
more, practical implementation of high-order controllers is usually
avoided because computational issues associated with synthesizing
LPV controllers increase with the state order of the design model.
Hence, a reduced-order LPV model of the flexible aircraft will

Presented as Paper 2012-4859 at the AIAAAtmospheric Flight Mechanics
Conference,Minneapolis,MN, 13–16August 2012; received 18March 2013;
revision received 31 May 2013; accepted for publication 14 June 2013;
published online 22 January 2014. Copyright © 2013 by Claudia P. Moreno,
Peter J. Seiler and Gary J. Balas. Published by the American Institute of
Aeronautics andAstronautics, Inc., with permission. Copies of this papermay
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1542-3868/14 and $10.00 in
correspondence with the CCC.

*Graduate Research Assistant, Department of Aerospace Engineering and
Mechanics. Student Member AIAA.

†Assistant Professor, Department of Aerospace Engineering and
Mechanics. Member AIAA.

‡Professor and Department Head, Department of Aerospace Engineering
and Mechanics. Member AIAA.

280

JOURNAL OF AIRCRAFT

Vol. 51, No. 1, January–February 2014

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

A
pr

il 
16

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
23

41
 

http://dx.doi.org/


allow model-based, gain-scheduled multivariable controllers to be
synthesized and implemented on ASE flight vehicles.
Several LPV model-reduction techniques including balanced

truncation [25], projection methods based on linear matrix
inequalities (LMIs) [26], and bounded parameter variation rates
[27,28] have been proposed in the literature. However, often these
methods introduce derivative termswith respect to time that make the
reduction problem harder to solve. Additionally, ASE models are, in
general, systems with mixed stability; therefore, approaches that
require the system to be stable cannot be applied. LPV model-
reduction methods that can accomodate unstable systems are
formulated via a coprime factorization to find a balanced parameter
varying system [27–30].
This paper describes the development of a low-order, control-

oriented ASE model based on a combination of classical and LPV
model-reduction techniques. Balanced reduction methods for LPV
systems are combined with classical truncation and residualization
approaches and applied to an experimental BFF test vehicle
developed by Lockheed Martin Aeronautics for the U.S Air Force
[31,32]. The truncation and residualization methods are performed
on the full-order BFF model to obtain a reduced model with
consistent states (i.e., the same state vector is defined across the flight
envelope). Next, a balanced realization of the LPV system is obtained
based on a quadratically stable right coprime factorization [29,30].
The states with small contribution to the input/output energy of the
system, identified by the balanced realization, are eliminated by
singular perturbation approximation resulting in an LPV reduced-
order model that can be used to synthesize gain-scheduled con-
trollers. Frequency domain comparisons are performed between the
original and reduced-order BFF models.
The paper is organized as follows. Section II describes the LPV

framework for ASE models. Section III presents an overview of
model-reduction techniques reported in the literature. Section IV
describes the BFF test vehicle, and the results for the approximation
of LPV unstable systems are presented. Finally, conclusions and
future directions are presented in Sec. V.

II. Linear Parameter-Varying Aeroservoelastic Models

Parameter-dependent linear systems are systems whose state–
space descriptions are known functions of time-varying parameters.
Linear, parameter-varying systems were introduced in the context of
gain scheduling [18]. Since then, the LPV framework has been
widely used to design controllers for nonlinear systems, including
aerospace systems [19–24,33–35].
LPV systems are described by the state–space realization:�

_x�t�
y�t�

�
�
�
A�ρ�t�� B�ρ�t��
C�ρ�t�� D�ρ�t��

��
x�t�
u�t�

�
(1)

where x�t� ∈ Rn is a collection of state variables for which the
dynamic evolution is understood, ρ�t� ∈ Rs is a scheduled variable
denoting exogenous parameters, u�t� ∈ Rm is the control input, and
y�t� ∈ Rp is the output measurement. A�ρ�t�� is the state matrix,
B�ρ�t�� is the input matrix, C�ρ�t�� is the output state matrix, and
D�ρ�t�� is the input feedthroughmatrix. The state–spacematrices are
assumed to be continuous functions of the parameter vector ρ�t�. The
exogenous vector ρ�t�, contains the variables whose behavior drives
the system dynamics and is measurable by sensors in real time [7].
The time variation of each of the parameters in ρ�t� is not known in
advance but is assumed to be bounded in magnitudes and rates by the
sets ρmin�t� ≤ ρ�t� ≤ ρmax�t� and _ρmin�t� ≤ _ρ�t� ≤ _ρmax�t�, respec-
tively. These assumptions define a family of allowable trajectories
and ensure that trajectories of the nonlinear system are also
trajectories of the LPV system. For aircraft, it is often the case that the
plant model varies as a function of a system state (e.g., velocity,
altitude, dynamic pressure). An LPV system whose scheduled
variable ρ�t� is a system state is known as a quasi-LPV system [7,36].
Modeling of ASE systems requires a geometric structural model

coupled with a consistent aerodynamic model. These models are
usually derived using finite elements of the aircraft and panel

methods for the unsteady force calculation that often depends on
dynamic pressure andMach number; thus, algorithms to find a flutter
solution are required. Several methods formodal flutter analysis have
been developed and are based on the form of the motion response
assumed to solve the aeroelastic equations. TheV–gmethod assumes
sinusoidal motion of both aerodynamics and structure, while the P
and P–K method assumes damped motion [10,15,37]. However, the
structure of these equations does not changewith the flight condition,
but the coefficient values change as the flight condition changes in
time. Because the traditional description of ASE models depends on
flight condition, the LPV framework is convenient for representing
the nonlinear dependence on parameters of these systems.
The LPVASE models are generated with the structural dynamics

matrices, generalized mass, stiffness and damping, and a linear
approximation of the unsteady aerodynamicsmatrices with a rational
matrix function in the frequency domain [10,38]. This rational
approximation takes into account the delays between the dis-
placement motion and the development of lift. However, the linear
approximation results in aerodynamic lags being added as state
vector components, increasing the order of the model. Hence, the
state vector and input vector in ASE models are defined as

x�t� �

2
4 ξ�t�

_ξ�t�
xa�t�

3
5; u�t� �

2
4 δ�t�
_δ�t�
�δ�t�

3
5 (2)

where ξ�t� is the vector of generalized displacements, _ξ�t� is the
vector of generalized velocities, and xa�t� is the vector of aero-
dynamic lag states resulting from the rational function approxi-
mation. δ�t� is the vector of control-surface deflection commands
with _δ�t� and �δ�t� their velocities and accelerations accordingly. The
system output vector y�t� may include structural displacements,
velocities, and accelerations.
Because flutter is a function of the dynamic pressure and Mach

number, these variables are usually taken to be the scheduled
variables ρ�t�. However, the dynamic pressure linearly affects the
aircraft dynamics at a constantMach condition, and so computing the
dynamic pressure that causes flutter for a set of discrete Mach values
will generate an accurate description of the flutter dynamics. Note
that the time-dependency notation is dropped from the subsequent
equations.

III. Model Order Reduction for Linear Parameter-
Varying Systems

The objective of model order reduction for LPV systems is to
reduce the complexity of models while preserving their state
characteristics and input–output behavior. The main idea is to
eliminate states with small contribution to the energy transferred
from the inputs to the outputs in the frequency range of interest. A
standard linear model-reduction problem is stated as follows [39].
Given a full nth-order model G�s�, find a lower rth-order model
Gr�s� such that the L∞ norm of the difference between G and Gr is
small. L∞ defines the set of rational functions that have no poles on
the imaginary axis, with the following norm:

kGk∞ � sup
ω∈R

�σ�G�jω�� (3)

Equation (3) defines the L∞ norm as the peak of the system transfer
function magnitude. However, theL∞ norm can be also interpretated
in the time domain as the worst-case gain for sinusoidal inputs at any
frequency. If z�ω� is the linear response of the system to a sinusoidal
input v�ω�, then at a given frequency ω, the gain depends on the
direction of the input, and the worst-case direction is given by the
maximum singular value:

�σ�G�jω�� � max
v�ω�≠0

kz�ω�k2
kv�ω�k2

(4)

Note that the requirement on the approximation accuracy at one
frequency range can be drastically different from the requirement for
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another frequency range in ASE models. Because a specific fre-
quency range is often desired, the model reduction for ASE systems
can be reformulated as a frequency-weighted problem:

min
deg�Gr�≤r

kWi�s��G −Gr�Wo�s�k∞ (5)

with appropiate choice of the input weighting matrix Wi�s� and
output weighting matrixWo�s� to weight the frequency of interest.
The model-reduction problem stated in Eq. (5) has been widely

studied for linear time-invariant (LTI) systems, and several methods
have been proposed over the years. However, this paper uses an LPV
model to represent the dynamics ofASE systems. To address the LPV
model-reduction problem, traditional model-reduction techniques
for LTI systems have been extended toLPV systems [25–30].Most of
these methods use particular realizations that show interesting
properties of the system and make it convenient for model-reduction
purposes. In general, several realizations can be obtained for a
particular system. These realizations are usually found by using
similarity transformations that preserve the properties of the system.
Given the state–space system in Eq. (1), there exists a nonsigular
transformation T�ρ� such that, for fixed value of the parameter ρ,

� _�x
y

�
�
� �A�ρ� �B�ρ�
�C�ρ� �D�ρ�

��
�x

u

�

�
�
T�ρ�A�ρ�T−1�ρ� T�ρ�B�ρ�
C�ρ�T−1�ρ� D�ρ�

��
�x

u

�
(6)

Equation (6) shows the transformed realization for a fixed parameter
ρ. This means that, for each value of ρ, there exists a state
transformation matrix T�ρ�; hence, a set of different states is created
at each operation point. A consistent set of states for all the
parameters ρ is required for the reduced-order LPV model.
By allowing the parameter to be time-varying, derivatives of the

transformation matrix are introduced to find a consistent state vector
for all the parameters ρ. Thus, there exists a differentiable trans-
formation T�ρ� such that an LPV realization is computed as

"
_�x

y

#
�
"

�A�ρ� �B�ρ�
�C�ρ� �D�ρ�

#"
�x

u

#

�
"
�T�ρ�A�ρ� � ∂T

∂ρ _ρ�T−1�ρ� T�ρ�B�ρ�

C�ρ�T−1�ρ� D�ρ�

#"
�x

u

#
(7)

However, introducing a parameter-dependent transformation changes
themodel with dependence only on ρ to amodel that depends on ρ and
_ρ, increasing the complexity of the LPVmodel and the computational
limitations of the LPV model-reduction problem. Hence, a time-
invariant transformation that generates an LPV realization with
consistent states for all of the feasible parameters is desired.
Model-reduction techniques often require stability of the system.

Because ASE models have mixed stability (i.e., at some parameter
values, the LTI realization is unstable), the need to extend these
methods to deal with unstable LPV systems is evident. This paper
focuses on the LPVmodel-reduction techniques that require only LTI
transformations and can handle mixed stability problems.
Four model-reduction techniques for LPV ASE systems are

described in the following subsections. Note that the nth state–space
model in Eq. (1) is partitioned as

_x1 � A11�ρ�x1 � A12�ρ�x2 � B1�ρ�u
_x2 � A21�ρ�x1 � A22�ρ�x2 � B2�ρ�u
y � C1�ρ�x1 � C2�ρ�x2 �D�ρ�u (8)

where x1 is the vector of r states to preserve, and x2 contains the n − r
states to remove. This notation is used to describe the differentmodel-
reduction techniques presented in the following sections.

A. Truncation

Model reduction by truncation is preferred when accuracy of the
reduced-order model at high frequencies is required. The truncated
model Gr is equal to the full-order model G at infinity frequency,
G�∞� � Gr�∞� � D�ρ�, and it is obtained by eliminating the states
in the vector x2 [40]. Hence, the truncated model Gr is equivalent to

_x1 � A11�ρ�x1 � B1�ρ�u; y � C1�ρ�x1 �D�ρ�u (9)

B. Residualization

Residualization preserves the steady-state gain of the system,
G�0� � Gr�0�, by setting the state derivatives to zero. Hence,
residualization retains the accuracy of the reduced-order model at
low frequency [40]. The solution for the residualized model Gr is
given by

_x1 � �A11�ρ� − A12�ρ�A22�ρ�−1A21�ρ��x1
� �B1�ρ� − A12�ρ�A22�ρ�−1B2�ρ��u

y � �C1�ρ� − C2�ρ�A22�ρ�−1A21�ρ��x1
� �D�ρ� − C2�ρ�A22�ρ�−1B2�ρ��u (10)

C. Modal Reduction

Elimination of structural modes has been used with success on
models of flexible structures. Consider a system described as the
contribution of individual vibration modes. For a fixed value of the
parameter γ, there exists a state transformation matrix T�γ� such that
the state matrix �A�γ� in Eq. (6) is in diagonal form so that

�A�γ� �

2
666664

λ1�γ�
λ2�γ�

. .
.

λn�γ�

3
777775 (11)

and the matrices �B�γ� and �C�γ� are partioned as

�B�γ� �

2
6664

�B1�γ�
�B2�γ�
..
.

�Bn�γ�

3
7775; �C�γ� � � �C1�γ� �C2�γ� · · · �Cn�γ� �

(12)

The reduced model retains only the states in the frequency range of
interest. Partitioning the state matrix �A�γ� � diag� �Ar�γ�; �An−r�γ��,
where �Ar�γ� contains the rmodes to retain and �An−r�γ� the modes to
remove, the reduced model is such that

_�xr � �Ar�γ� �xr � �Br�γ�u; y � �Cr�γ� �xr �D�γ�u (13)

where �xr is the modal vector of r states to preserve.

D. Balanced Reduction

Balanced model reduction is based on the measure of the
controllability and observability of the state–space model. These
measures are given by the controllability and observability Gramians
defined for a fixed parameter value, respectively, as

P�γ� �
Z

∞

0

eA�γ�tB�γ�BT�γ�eAT �γ�t dt (14)

Q�γ� �
Z

∞

0

eA
T �γ�tCT�γ�C�γ�eA�γ�t dt (15)
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Solutions to these integrals are also the solutions to the following
Lyapunov equations [39]:

A�γ�P�γ� � P�γ�AT�γ� � B�γ�BT�γ� � 0 (16)

AT�γ�Q�γ� �Q�γ�A�γ� � CT�γ�C�γ� � 0 (17)

Unfortunately, the controllability and observability Gramians given
byEqs. (14) and (15) are not defined for unstable systems because the
integrals will be unbounded if the matrix A�γ� is not Hurwitz (i.e.,
stable). The standard balanced reduction approaches require the
nominal system to be stable. BecauseASEmodels aremixed stability
systems, a balanced model-reduction technique that handles stable
and unstable modes in the same framework is required. Hence, a
coprime factorization approach proposed in the literature to find the
controllability and observability Gramians and a balanced reduced
model for mixed stability systems is considered.
Defining as Gρ the realization given by Eq. (1), there is a

contractive right coprime factorizationGρ � NρM
−1
ρ such that set of

all stable input–output pairs is given by�
y
u

�
�
�
Nρ

Mρ

�
q (18)

where q is square integrable over the infinite time axis [28,29]. A
realization for this contractive right coprime factorization is defined
as 2

4 _x
y
u

3
5 �

2
4 A�ρ� � B�ρ�F�ρ� B�ρ�S−1∕2�ρ�
C�ρ� �D�ρ�F�ρ� D�ρ�S−1∕2�ρ�

F�ρ� S−1∕2�ρ�

3
5� x

q

�
(19)

where S�ρ� � I �DT�ρ�D�ρ�, F�ρ� � −S�ρ�−1�BT�ρ�X�
DT�ρ�C�ρ��, and X � XT > 0 is a constant solution of the
generalized control Ricatti inequality (GCRI):

�A�ρ� − B�ρ�S−1�ρ�DT�ρ�C�ρ��TX� X�A�ρ�
− B�ρ�S−1�ρ�DT�ρ�C�ρ��
− XB�ρ�S−1�ρ�BT�ρ�X� CT�ρ�R−1�ρ�C�ρ� < 0 (20)

with R�ρ� � I�D�ρ�DT�ρ�.
The controllability GramianP and observability GramianQ of the

contractive right coprime factorization are given by

Q � X (21)

P � �I � YX�−1Y (22)

where X solves the GCRI, and Y � YT > 0 solves the generalized
filtering Riccati inequality (GFRI) defined as

�A�ρ� − B�ρ�DT�ρ�R−1�ρ�C�ρ��Y
� Y�A�ρ� − B�ρ�DT�ρ�R−1�ρ�C�ρ��T

− YCT�ρ�R−1�ρ�C�ρ�Y � B�ρ�S−1�ρ�BT�ρ� < 0 (23)

Solutions for these Riccati Inequalities are the solutions for the linear
matrix inequalities obtained by changing the variables �X � X−1,
�Y � Y−1, and applying the Schur complement lemma:�

�XATC�ρ� � AC�ρ� �X − B�ρ�S−1�ρ�BT�ρ� �XCT�ρ�
C�ρ� �X −R�ρ�

�
< 0 (24)

�
�YAF�ρ� � ATF�ρ� �Y − CT�ρ�R−1�ρ�C�ρ� �YB�ρ�

BT�ρ� �Y −S�ρ�

�
< 0 (25)

whereAC�ρ� � A�ρ� − B�ρ�S−1�ρ�DT�ρ�C�ρ�, andAF�ρ� � A�ρ�−
B�ρ�DT�ρ�R−1�ρ�C�ρ�.
A balanced realization of a system is a realization with equal,

diagonal controllability and observability Gramians, P̂ � Q̂ � Σ.
Here, Σ is denoted as the Hankel singular values matrix. The
balancing state transformation T is constant and chosen such that
P̂ � TPTT and Q̂ � �T−1�TQT−1. Note also that P̂ Q̂ � TPQT−1;
therefore, the transformation T leads to an eigenvector decomposi-
tion PQ � T−1ΛT with Λ � diag�λ1; : : : ; λn�.
The balanced parameter-varying coprime factorization of Gρ is

2
664

_�x

y

u

3
775 �

2
664

�A�ρ� � �B�ρ� �F�ρ� �B�ρ�S−1∕2�ρ�
�C�ρ� �D�ρ� �F�ρ� D�ρ�S−1∕2�ρ�

�F�ρ� S−1∕2�ρ�

3
775
�
�x

q

�
(26)

where �A�ρ� � T−1A�ρ�T, �B�ρ� � T−1B�ρ�, �C�ρ� � C�ρ�T,
�F�ρ� � −S−1�ρ�� �BT�ρ�Σ�DT �C�ρ��, and q is the set of all stable
input signals. The realization obtained reflects the combined con-
trollability and observability of the individual states. Small singular
values of controllability and observability Gramians indicate that a
finite amount of energy in a given input do not result in significant
energy in the output; hence, those states can be deleted while
retaining the important input–output characteristics of the system.
The system in Eq. (26) is partitioned such that Σ � diag�Σ1;Σ2�,

where Σ1 is related with the most controllable and observable states,
andΣ2 is relatedwith the least controllable and observable directions.
Residualizing the states corresponding to Σ2, the reduced rth model
Gρr � NρrM

−1
ρr is expressed as follows:

�
_�xr
y

�
�
�
As�ρ� − Bs�ρ�D−1

ms�ρ�Cms�ρ� Bs�ρ�D−1
ms�ρ�

Cns�ρ� −Dns�ρ�D−1
ms�ρ�Cms�ρ� Dns�ρ�D−1

ms�ρ�

��
�xr
u

�
(27)

where

As�ρ� � �A11�ρ� � �B1�ρ� �F1�ρ� − � �A12 � �B1�ρ� �F2�ρ��
× � �A22 � �B2�ρ� �F2�ρ��−1� �A21 � �B2�ρ� �F1�ρ��

Bs�ρ� � �B1�ρ�S−1∕2�ρ� − � �A12 � �B1�ρ� �F2�ρ��
× � �A22 � �B2�ρ� �F2�ρ��−1� �B2S

−1∕2�ρ��
Cns�ρ� � �C1�ρ� �D�ρ� �F1�ρ� − � �C2 �D�ρ� �F2�ρ��

× � �A22 � �B2�ρ� �F2�ρ��−1� �A21 � �B2�ρ� �F1�ρ��
Cms�ρ� � �F1�ρ� − �F2� �A22 � �B2�ρ� �F2�ρ��−1� �A21 � �B2�ρ� �F1�ρ��
Dns�ρ� � D�ρ�S−1∕2�ρ� − � �C2 �D�ρ� �F2�ρ��

× � �A22 � �B2�ρ� �F2�ρ��−1� �B2S
−1∕2�ρ��

Dms�ρ� � S−1∕2�ρ� − �F2� �A22 � �B2�ρ� �F2�ρ��−1� �B2S
−1∕2�ρ��

with �A11 ∈ Rr×r, �A12 ∈ Rr×�n−r�, �A21 ∈ R�n−r�×r, �A22 ∈ R�n−r�×�n−r�,
�B1 ∈ Rr×m, �B2 ∈ R�n−r�×m, �C1 ∈ Rp×r, �C2 ∈ Rp×�n−r�, �F1 ∈ Rm×r,
and �F2 ∈ Rm×�n−r�.
The coprime factorization approach described is used in this paper

to find a balanced realization of LPV ASE models. Coprime
factorizations generate the set of all stable input–output pairs of
the system. Because LPVASE models are mixed stability systems,
the stable representation of the system provided by the coprime
factorization is convinient for the ASE LPV model-reduction
problem.

IV. Example: Body Freedom Flutter Aircraft

The U.S. Air Force Research Laboratory contracted with
Lockheed Martin Aeronautics Company to develop a flight test
vehicle, denoted the body freedom flutter (BFF) vehicle, for
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demonstration of active aeroelastic control technologies [31]. The
vehicle is a high-aspect-ratio flying wing with light weight airfoil.
The aircraft configuration with location of accelerometers and con-
trol surfaces for flutter suppression is presented in Fig. 1.
The ASE model of the BFF vehicle was assembled using MSC/

NASTRAN [15]. The initial structural model was created with 2556
degrees of freedom and reduced to 376 degrees of freedom via a
Guyan reduction. A ground vibration test was performed to validate
the structural model, and six critical modes were found. Table 1 lists
the mode shapes and frequency values of the structural model [32].
The unsteady aerodynamics were modeled using the double lattice
method in MSC/NASTRAN. A model with 2252 aerodynamic
degrees of freedom was used to define accurately the aerodynamic
forces of the BFF vehicle.
Linear, continuous-time, state–space models of the airframe were

created using the generalized mass, stiffness, and aerodynamic force
matrices generated by MSC/NASTRAN and the P–K method. A set
of 26 linear models obtained at constant altitude of 1000 ft from 40 to
90 KEAS (from “knots equivalent airspeed”) with increments of 2 kt
describes the LPVASE model. The full-order model has 148 states.
The state vector presented in Eq. (2) consists of 37 generalized
displacements ξ�t�, related to five rigid body modes (lateral, plunge,
roll, pitch, and yaw), eight flexiblemodes (symmetric–antisymmetric
bending and torsion), and 24 secondary discrete degrees of freedom
associated with local vibration modes of the control surfaces, its
derivatives _ξ�t�, and two aerodynamic lags for each displacement are
used to approximate the rational function that describes the unsteady
aerodynamics.
Bode plots of the BFF model with 148 states at three flight

conditions are plotted in Fig. 2. The figure shows the dependency of
the frequency response from the right outboard wing flap to the right
wing accelerometer on the airspeed. The vehicle is marginally stable
at 42 KEAS and has two unstable modes at 62 KEAS and three
unstable modes at 90 KEAS. Figure 3 shows the frequency and
damping of the critical modes of the BFF vehicle as a function of
airspeed.

The plots and table show how the model dynamics and system
stability change dramatically as function of the airspeed. Coupling of
the short period with the symmetric wing bending produces body
flutter freedom at 43 KEASwith a frequency of 24.3 rad∕s. Flutter is
present when the symmetric wing bending and torsion modes are
coupled at an airspeed of 58 KEAS with frequency of 65 rad∕s. The
antisymmetric wing bending and torsion modes come close in
proximity at 61 KEAS with frequency of 69 rad∕s, which leads to
unstability. Hence, the flight envelope of the open-loop vehicle is
limited to 42 KEAS before the vehicle becomes unstable.
The control objective is to extend the flight envelope of the BFF

vehicle by using the selected control surfaces for flutter suppression.
However, the use of an LPVASE model with 148 states for control
design is not practical; and hence a low-order LPVASE model that
captures accurately the body flutter freedom and flutter dynamics is
required. Unfortunately, the abrupt change in the dynamics exhibited
by the BFF vehicle is a challange for the LPV model reduction as
described in the following sections.

A. Linear Parameter-Varying Model Reduction

This section presents a procedure to obtain an LPV reduced-order
model that preserves the statemeaning across the flight envelope. The
LPV model reduction uses LTI transformations to keep a set of
consistent states at all the flight conditions without increasing the
complexity of the LPV model.

Fig. 1 Body freedom flutter vehicle [32].

Table 1 Ground vibration test frequencies

Mode shape Frequency, rad∕s
Symmetric wing first bending 35.37
Antisymmetric wing first bending 54.98
Symmetric wing first torsion 123.34
Antisymmetric wing first torsion 132.76
Symmetric wing second bending 147.28
Antisymmetric wing second bending 185.73
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Fig. 2 Frequency response from the right outboard wing flap to the

right wing accelerometer at 42, 62, and 90 KEAS.
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The description of ASE models in the LPV system framework
allows the design of nonlinear controllers using linear controller
synthesis procedures. The focus of control design for the BFF vehicle
is to stabilize the vehicle and actively suppress aeroelastic flutter.
Hence, the LPV reduced-order model needs to capture accurately the
dynamics of interest. Figure 3 shows flutter phenomena occurring
between 10 and 70 rad∕s across the flight envelope. However, these
unstable poles impose a limitation in the control bandwidth. For
stabilization and damping augmentation, the minimum bandwidth
requirement is about 105 rad∕s. The control surfaces actuators have a
control bandwidth of 125 rad∕s; thus, the frequency range of interest
for the BFF model reduction is 10–125 rad∕s.
The four LPV model-reduction techniques described in Sec. III

are applied sequentially to the BFF vehicle. Truncation and
residualization of the states are based on physical insight of the
system dynamics. Balanced model reduction is performed to the
coprime factor of the LPV system. Bode plots from several input/
output pairs are presented to compare the approximation between the
full-order model and the reduced-order model obtained.

1. Truncation

The goal of the model reduction by truncation is to match the
response of the system at infinity frequency. Low-frequency modes

outside the bandwidth of interest can be truncated from the model
giving preference to high-frequency accuracy. Hence, the extremely
slow dynamics of the BFF vehicle is truncated. The plunge mode,
corresponding to the second state with frequency approximately four
orders of magnitude below the bandwidth of interest, is eliminated
from the model. Figure 4 shows the frequency response of the full-
order model and the truncated model for the selected input/output
pairs at two flight conditions. The plunge mode is found around
10−3 rad∕s at all flight conditions, and it is removed in all cases
because it is out of the bandwidth of interest that corresponds
to 10–125 rad∕s.

2. Residualization

Residualization of states is preferred when fidelity of the approxi-
mation at low frequencies is of interest. Modes above 125 rad∕s,
which corresponds to the upper bound that limits the flutter band-
width, are residualized to obtain a lower-order model. Residualiza-
tion of specific BFF states is based on the physics of the vehicle. The
rigid body and flexible modes with small contribution to the vehicle
response and outside the bandwidth of interest, which is delimited by
solid vertical lines on the bode plots, are eliminated. The lateral,
directional, symmetric wing fore-aft and antisymmetric wing second
bendingmodes are eliminated from the LPVASEmodel. In addition,
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rotational modes and discrete degrees of freedom corresponding to
local vibration modes in the control surfaces are also found to be
high-frequency modes outside the flutter bandwidth and removed
from the model. In total, 92 states, two rigid body modes, three
flexible modes, 18 local modes with their corresponding rates, and
aerodynamic lag states associated to eachmode are residualized. The
resulting LPV model has 55 states. Figure 5 compares the frequency
response of the truncated model obtained in the previous subsection
and the model with 55 states obtained after residualization for two
flight conditions. The plot shows that the residualization of these
states does not affect the frequency responsewithin the bandwidth of
interest. Small changes between the reducedmodel and the full-order
model are present above 1000 rad∕s.

3. Modal Reduction

The Bode plots in Fig. 5 show that, after residualization of the
states, high-frequency content outside the bandwidth of interest is
still present in the model. These frequencies are the result of the
contribution of states for which they cannot be eliminated without
performing a state coordinate transformation. A constant linear
transformation T, computed at 52 KEAS, is used to display the states
with major contributions to the modes of the model with 55 states.
This transformation is applied to all flight conditions to show that
there exist six complex conjugate pair modes across the flight
envelope with frequency values above the bandwidth of interest. A
reduced model with 43 states is obtained by removing the 12 states

out of the frequency range of interest. Figure 6 shows the frequency
response of the model with 55 states and the new reducedmodel with
43 states for the two selected flight conditions. Notice that the
reduced LPV model does not include the modes out of the flutter
bandwidth, which is delimited by the solid vertical lines.

4. Linear Parameter-Varying Coprime Factorization Model Reduction

The objective is to find a balanced realization based on the coprime
factorization of the LPV system and eliminate the least controllable
and observable states. A coprime factorization of the 43 states LPV
model is used to find a lower-order LPV model. The generalized
controllability and observability Gramians for the LPV contractive
right coprime factorization are obtained by solving the LMIs
associated to the Riccati inequalities in Eqs. (24) and (25). LMI Lab
in the Robust Control Toolbox for MATLAB [41] is used to find a
feasible solution for this problem. The LMI problem specified for the
LPV model with 43 states requires the solution of 946 decision
variables subject to 27 feasibility constraints. These constraints result
from the parameter gridding of the LPV system, in this case the 26
flight conditions available for theBFFmodel, and the positive–definite
condition required for thevariablematrix to solve. The solutions for the
GFRI and GCRI are computed after 1 h using a standard personal
computer. The generalized controllability and observability Gramians
are used to find a balanced realization of theLPVcoprime factorization
such that the Gramians are equal and diagonal.
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Fig. 5 Residualization: Bode plot of BFF vehicle at 42 and 78 KEAS.
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The Hankel singular values associated with the combined control-
lability and observability of the system are between 1.3 × 10−3 − 1.0.
A balanced low-order LPV model of the BFF vehicle is obtained by
residualizing 17 states with the smallest Hankel singular values
corresponding to a range of 0.0013–0.0532. The resultant LPV
model has 26 states. Figure 7 compares the frequency response
between the LPV model with 43 states and the balanced LPV model
with 26 states for two flight conditions.
Figure 8 shows the pole location of the LPV system across the

flight envelope. The plot compares the poles of the full-order model
with 148 states and the balanced reduced model with 26 states
obtained by the coprime factorization approach. Notice that the
complex pair poles in the bandwidth of interest match accurately for
all the flight conditions between 40 KEAS and 90 KEAS. The
proposed approach to LPV model reduction eliminates 122 states
from the BFF full-order model with 148 states.
Figure 9 compares the singular values plots between the LPV

model with 43 states and the balanced LPVmodel with 26 states. The
plots show a good approximation using the LPV model reduction
based on balanced coprime factorizations. An analysis of the errors
for the LPV model-reduction problem is presented in the following
sections.

B. Linear Time-Invariant Model Reduction at Individual

Flight Conditions

This section shows that a lower model can be obtained by treating
themodels at individual flight conditions as LTI systems. These results
set a lower bound for the model-reduction problem for the LPV BFF
vehicle. The 43 states reduced-order BFFmodel at 62KEAS is chosen
to perform an LTI model reduction. A coprime factorization is
performed to generate the balanced reduced model of the BFF vehicle
at 62 KEAS. The generalized controllability and observability
Gramians are obtained by solving the equality form of the Riccati
equations in Eqs. (20) and (23) at the selected flight condition.
The balanced realization of the LTI coprime factorization is

obtained by computing a constant linear transformation such that the
controllability and observability Gramians are equal and diagonal. In
this case, the Hankel singular values of the system are between 0–
0.88, and the 23 smallest Hankel singular values corresponding to the
range of 0–0.0041 are eliminated from the system to obtain an LTI
model with 20 states. Figure 10 compares the frequency response at
62 KEAS between the LTI model with 20 states and the LPV model
with 26 states obtained in the previous section. The figure shows that
the LPV reduced model with state consistency produces results
comparable to the results obtained by reducing an LTI model at an
individual flight condition. Because the ultimate goal is to design
LPV controllers for flutter suppression, the LPVmodel with 26 states
is more appropriated for the control synthesis.

C. Error Analysis

The model-reduction errors are calculated using the L∞ criteria
presented in Eq. (5) at each flight condition. Input and output weights
to shape the frequency response of interest (i.e., the bandwidth of the
vibration attenuation control system) areWi�s� � �s� 10−6∕s� 1�
and Wo�s� � �200∕s� 200�, respectively. Figure 11 shows the
weighted L∞ norm for the LPV model-reduction approach at each
flight condition. These values correspond to differences inmagnitude
at flutter frequencies where the reduced model does not capture the
mode damping exactly. The average approximation error between the
original airframewith 148 states and the reducedmodelwith 26 states
is less than 10 dB. However, larger errors are found at flight
conditions where the system is highly undamped such as 42 KEAS
(see Figs. 7 and 9) and 84 KEAS. The LTI models at these flight
conditions are marginally stable, with a pair of complex poles very
close to the imaginary axis. Small changes in the real value of these
poles lead to large differences in magnitude of the frequency
response, which corresponds to the modal damping. For control
purposes, capturing the frequencies accurately is more critical than
capturing the damping of these modes. This implies that the model is
very sensitive to any shift in frequency; thus, the changes in damping
can be treated as small.
Because the L∞ norm results in large errors that might not be

significant for particular ASE LPV systems, a different metric to
evaluate the approximation of the LPV model is desired. The ν-gap
metric is useful in this case because it provides a measure of the
distance between two systems in a feedback context. Two systems are
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Fig. 7 LPV coprime factor reduction: Bode plot of BFF vehicle at 42 and 78 KEAS.

Fig. 8 Pole location of the BFF vehicle across the flight envelope.
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considered to be close in the gap metric if, given any stable input–
output pair of the first system, there is a corresponding stable input–
output pair of the second system that is close to it [27]. The ν-gap
metric δν�P1; P2� for two systems eachwithm inputs andp outputs is
given by

δν�P1;P2� �

8<
:
k ~G2G1k∞ if det�G�2G1��jω� ≠ 0 ∀ ω ∈ �−∞;∞�

and wno det�G�2G1� � 0

1 otherwise

(28)

where G1 denotes the normalized right coprime factorization of P1,
~G2 denotes the normalized left coprime factorization of P2, andwno
denotes the winding number. Equation (28) indicates that the ν-gap
metric lies within the interval �0; 1�, with 0 meaning that the two
plants are identical and 1 meaning that the plants are far apart.
The ν-gap metric is computed between the original and reduced

system at each flight condition [41]. Figure 12 shows the ν-gapmetric
distances between the original model and the LPV model with 26
states obtained by the coprime factorization approach. In addition,
the distances between the original model and a LTI model with 26
states obtained at individual flight conditions are plotted in gray.
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Notice that the ν-gap metric values for the LTI model with 26 states
are smaller than the values obtained for the LPV model across the
flight envelope, as was to be expected. However, the ν-gap metric for
the LTImodel with 20 states obtained in the previous section result in
significant higher values than the distances obtained for the LPV
model with 26 states. This implies that the LPVmodel with 26 states
obtained with the proposed approach is closer to the original model
than the lower-order 20 states LTImodel obtained by individual point
model reduction.
The ν-gap metric compares the performance between two systems

for a reasonable stabilizing controller. L∞ norm values in Fig. 11
show the differences in magnitude between the two models in an
open-loop configuration. Large errors are observed when lightly
damped systems are evaluated. Because the control design is more
sensitive to changes in frequency rather than damping, the ν-gap
metric results more appropriate to measure the approximation of the
LPV reduced model by comparing the two models in a closed-loop
configuration.

D. Numerical Issues

LPV coprime model reduction requires the solution of the two
linear matrix inequalities in Eqs. (24) and (25). The size of the LMI
problem grows as function of the state order n, the number of
parameters, and the parameter gridding of the LPV system. The
number of decision variables k to solve for symmetric matrices is
related with the state order as k � n�n� 1�∕2. In the LPV model-
reduction section, the controllability and observability Gramians are
solved with a 43-state LPV model. A feasible solution was obtained
for this LMI problem that involves 946 decision variables and 27
feasibility constraints. Using the BFF LPV model with 55 states
resulting from the residualization of states across the flight envelope,
the LMI problem involves 1540 decision variables. In this case, LMI
Lab could not find a numerical feasible solution, and it is noted that
the computational effort required to compute a solution for this
problem increases exponentially. This is an issue that is currently
being investigated.

V. Conclusions

Amodel reduction procedure for aeroservoelasticmodels based on
LPV balanced realizations has been proposed. The model order
reduction approach is a four-step procedure. The body freedom
flutter vehicle model is initially reduced by truncation and
residualization techniques. A modal transformation computed for a
fixed parameter value is applied to the LPV BFF model to eliminate
remaining high-frequency modes outside the bandwidth of interest.
Finally, a low-order, control-oriented aircraft LPV model with 26
states consistent across the flight envelope was obtained using a
coprime factorization approach. The numerical issues encountered in

solving the LMI problem with high state order motivate the use of
classical model-reduction techniques before the coprime factoriza-
tion approach. In addition, a linear model reduction at individual
points in the flight envelope indicates a lower bound for the reduced-
order BFF model of 20 states. The LPV reduced-order model results
in a slightly higher-order model due to the varying dynamics of the
vehicle across the flight envelope, though the consistency of states
across the flight envelope is useful from physical insight and it
ensures easily scheduling of controllers.
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