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Abstract

Modern aircraft designers are adopting light-weight, high-aspect ratio flexible wings

to improve performance and reduce operation costs. A technical challenge associated with

these designs is that the large deformations in flight of the wings lead to adverse interactions

between the aircraft aerodynamic forces and structural forces. These adverse interactions

produce excessive vibrations that can degrade flying qualities and may result in severe

structural damages or catastrophic failure. This dissertation is focused on the application

of multivariable robust control techniques for suppression of these adverse interactions in

flexible aircraft. Here, the aircraft coupled nonlinear equations of motion are represented in

the linear, parameter-varying framework. These equations account for the coupled aerody-

namics, rigid body dynamics, and deformable body dynamics of the aircraft. Unfortunately,

the inclusion of this coupled dynamics results in high-order models that increase the com-

putational complexity of linear, parameter-varying control techniques. This dissertation

addresses three key technologies for linear, parameter-varying control of flexible aircraft:

(i) linear, parameter-varying model reduction; (ii) selection of actuators and sensors for

vibration suppression; and (iii) design of linear, parameter-varying controllers for vibration

suppression. All of these three technologies are applied to an experimental research plat-

form located at the University of Minnesota. The objective of this dissertation is to provide

to the flight control community with a set of design methodologies to safely exploit the

benefits of light-weight flexible aircraft.
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Chapter 1

Introduction

The need for improved performance and reduced operating costs has led modern aircraft

designers to adopt light-weight, high aspect ratio flexible wings. Reducing weight decreases

aerodynamic drag, leading to less fuel consumption. High aspect ratio wings minimize drag

over lift, improving the aircraft performance on aspects such as long range and endurance.

These modifications are being applied to modern commercial airplanes, mainly by using

composite materials for both fuselage and wings. As result, the new generation of long

range airliners developed by Boeing (787) and Airbus (A350) show higher fuel efficiency

and lower costs than previous similar sized aircraft.

The aerodynamic advantages of high aspect ratio flexible wings are also being exploited

to develop autonomous aircraft for intelligence, surveillance and reconnaissance missions.

These light-weight, high-altitude, long-endurance vehicles with large wing span exhibit high

flexibility and significant deformation in flight leading to increased interaction between the

rigid body and structural dynamics modes. This phenomenon, called Body Freedom Flutter,

occurs as the aircraft rigid body frequency response increases with airspeed and interacts

with a wing vibration mode, typically the wing bending mode. The interaction can lead to

poor handling qualities and may result in dynamic instability. Hence, an integrated active

approach to flight control, flutter suppression and structural mode attenuation is required to

meet the desired handling quality performance and gust load alleviation for modern flexible

aircraft.

Numerous flutter suppression control strategies have been proposed to address the cou-

pled rigid body and aeroelastic dynamics. These include optimal control [6, 7], dynamic

inversion control [8], robust multivariable control [9], model predictive control [10] and gain

scheduled control [11–14]. A majority of these strategies are model based, hence require an

1



accurate description of the aeroelastic behavior of the aircraft. Flutter analysis of aircraft

has been widely studied [15–18] and numerous researchers have addressed aeroelastic model-

ing for highly flexible aircraft [6,8,14,19]. Currently, modeling of a flexible aircraft requires

a geometric structural model coupled with a consistent aerodynamic model. The nonlinear

aeroelastic models are derived based on structural finite elements and lifting-surface theory,

both of which are available in general purpose commercial codes [20–22]. It is standard

practice to represent the fully coupled nonlinear aircraft model as a linear model which

varies as a function of parameters across the flight envelope, i.e. linear parameter varying

(LPV) systems, hence the traditional description of aeroservoelastic models for control fits

naturally in the LPV framework.

The LPV system framework provides a rich, theoretical control analysis and design

framework for nonlinear systems [11, 23–30]. This framework allows gain-scheduled, multi-

variable controllers to be treated as a single entity, with the gain-scheduling achieved via

the parameter-dependent controller. The main advantages of these controllers are the guar-

antees in adaptability, global stability, robust performance, and real-time implementation

while using linear system theory for their design. Unfortunately, LPV control synthesis

techniques scale badly with the number of scheduling variables and dynamic order of the

system. This rapid increase in the synthesis problem size has limited the applications of

LPV controllers in industry. Hence, complementary research is required to make the LPV

framework suitable for aeroservoelastic systems.

The main contribution of this dissertation is to expand the applications of the LPV

framework to aeroservoelastic systems. It is largely based on the application of LPV tech-

niques to an aeroservoelastic research platform at the University of Minnesota. This ex-

perimental vehicle is described by a set of linear, continuous-time, state-space models that

includes rigid-body dynamics and aeroelastic effects. However, the inclusion of such effects

increases the order of the models significantly. Hence, a LPV model reduction procedure is

proposed in this dissertation to make the aeroservoelastic model of the aircraft suitable for

control. Once the vehicle is described with an appropriate number of states, the following

task is to design controllers to suppress the unstable aeroelastic interactions and provide

additional damping to flexible modes. A previous step for control design is the selection

of actuators and sensors that will achieve the desired performance. This dissertation also

proposes an actuator and sensor selection method for control design. Finally, the reduced

order aeroservoelastic model together with the the subset of actuators and sensors selected

are used to design robust multivariable controllers that effectively suppress aeroservoelastic

interactions and provides additional damping to structural modes.

2



This dissertation is organized as follows. Chapter 2 presents a brief overview of aeroser-

voelastic modeling approaches available in the literature. Details about the modeling ap-

proach that describes the aeroservoelastic experimental research vehicle are presented. Here,

the parameter-varying nature of the system is exploited to represent the models in the LPV

framework. The chapter concludes with an introduction to LPV systems and an overview of

the relevant theoretical background for this dissertation. Chapter 3 introduces the Univer-

sity of Minnesota aeroservoelastic research platform used to develop active flutter suppres-

sion technologies. A thorough description of the vehicle is presented with a characterization

of its structural and aeroelastic properties. Chapter 4 presents a model order reduction ap-

proach for aeroservoelastic systems and its application to the experimental vehicle. This

reduced order model is then used in the following chapters for control purposes. Chapter 5

describes the actuator and sensor selection method for aeroservoelastic systems previous to

the control design task. The results of applying this method to the experimental vehicle

available are also presented in this chapter. Chapter 6 presents the multivariable robust

controller designs and results for the experimental flexible aircraft. Finally, concluding

remarks are provided in Chapter 7.
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Chapter 2

Aeroservoelastic Modeling

Aeroservoelastic modeling includes the interaction of the aircraft flexible structure, steady

and unsteady aerodynamic forces resulting from the aircraft motion, and the flight control

system. The integration of these three disciplines has been approached by the literature in

several manners [31–35]. This chapter describes the modeling approach based on the rigid-

body dynamics augmented with linear structural modeling. Here, the coupled nonlinear

equations are simplified by the mean axes assumptions, resulting in independent equations

for the rigid body dynamics and elastic deformations [31]. These decoupled equations can be

then linearized to obtain a linear, parameter-varying (LPV) system where the scheduling

parameters are typically airspeed and altitude. The following sections present the mean

axes modeling approach and introduce the fundamentals of LPV systems.

2.1 Aeroservoelastic Model (Mean Axes Assumptions)

The equations governing the aeroservoelastic dynamics of an unrestrained aircraft are [36]:

[
mb(V̇b + Ωb × Vb − TbEgE)

IbΩ̇b + Ωb × (IbΩb)

]
= ΦT

b P
c

M̂f η̈f + Ξ̂f η̇f + K̂fηf = ΦT
f P

c

(2.1)

where mb is the total body mass, Ib is the mass inertia, gE is the gravitational vector, and Φb

is the rigid body modal matrix about the center of gravity with directions customary in flight

mechanics. Vb and Ωb are the velocity and angular velocity in the mean axis body frame of

reference, TbE transforms the gravitational vector from an earth fixed coordinate frame E

to the body fixed coordinate frame b. Here, ηf is the vector of elastic modal displacements,
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M̂f is the generalized modal mass matrix, K̂f is the generalized modal stiffness matrix, Ξ̂f

is the generalized damping matrix, Φf is the flexible modal matrix, and P c is the vector of

aerodynamic forces and moments applied to the airframe.

Currently, the available commercial software (e.g. NASTRAN and ZAERO) creates

ASE models using the mean axes formulation in (2.1) [20, 22]. Here, the generalized mass

and stiffness matrices are usually obtained from structural finite element methods. This

structural modeling is detailed in Chapter 3. In addition, the aerodynamic forces and

moments in the airframe are derived from unsteady aerodynamic panel methods. These

methods are often formulated in the frequency domain by assuming simple harmonic motion.

The objective is to compute a frequency domain aerodynamic influence coefficient (AIC)

matrix that relates the resultant aerodynamic forces to the panels deformations such that

Pa = q∞ [AIC(jk)] a (2.2)

where Pa is the vector of resultant aerodynamic forces, a is the vector of aerodynamic

deformations, q∞ is the dynamic pressure, and k is the reduced frequency parameter defined

as

k =
ωac

2V
(2.3)

with ωa representing the assumed harmonic oscillatory frequency, c representing the refer-

ence chord, and V representing the velocity of undisturbed flow. Details about the genera-

tion of this AIC matrix can be found in [5].

A common problem encountered in this software is that displacements in the structural

finite element model do not match with the aerodynamic panel displacements. Hence,

the standard practice is to transfer the data from the aerodynamic panel model to the

structural finite element model using an interpolation method called splining [20]. This

splining method relates the aerodynamic panel forces to the structural forces such that

Pa = TasP
c (2.4)

where Tas is the interpolation matrix converting structural deflections to aerodynamic panel

deflections. Similarly, the aerodynamic panel deflections can be related to the modal de-

flections η as

a = TasΦη (2.5)

where Φ = [Φb, Φf ] and ηT =
[
ηTb , η

T
f

]
. Here, ηb represents the rigid modal displacements.

Combining (2.2), (2.4), and (2.5) results in the vector of aerodynamic forces and mo-

ments P c described as

P c = q∞T
T
as [AIC(jk)]TasΦη (2.6)
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Here, the vector ΦTP c is called the generalized aerodynamic forces and moments where

F (jk) = ΦTT Tas [AIC(jk)]TasΦ (2.7)

represents the generalized aerodynamic matrices in the frequency domain. Now, in order

to make the frequency domain unsteady aerodynamics usable for time domain calculations,

the generalized matrix F (jk) needs to be approximated as a rational function. Typically,

this approximation is in the form [37,38]

F (jk) = F0 + F1jk + F2j
2k2 +

nL∑
l=1

Fl+2
jk

jk + bl
(2.8)

where jk = c
2V s and s is the Laplace variable. Here, bl represents the aerodynamic lags

necessary to obtain a linear fit.

The approximation in (2.8) can be re-written in terms of s as

F (s) = F0 +
c

2V
F1s+

( c

2V

)2
F2s

2 +

nL∑
l=1

Fl+2
s

s+ b̄l
(2.9)

with b̄l = 2V
c bl. Then, the vector of generalized forces and moments expressed in the time

domain is

ΦTP c = q∞

[
F0η +

c

2V
F1η̇ +

( c

2V

)2
F2η̈ + xa

]
(2.10)

where xa represents the aerodynamic lag states defined by

ẋa = −b̄lxa + Fl+2η̇ (2.11)

Notice that (2.10) is a function of dynamic pressure and airspeed. Hence, the ASE equations

of motion in (2.1) can be represented as a linear, parameter-varying (LPV) system where

altitude and airspeed are the scheduling parameters. Next, the fundamental theory of LPV

system is presented.

2.2 Linear, Parameter-Varying Systems [1]

Consider the following nonlinear system:

ẋ(t) = f(x(t), d(t), ρ(t))

e(t) = h(x(t), d(t), ρ(t))
(2.12)

where f and h are differentiable, input d(t) ∈ Rm, output e(t) ∈ Rp, state variable x(t) ∈
Rn and ρ(t) ∈ Rnρ is a measurable exogenous parameter vector, called the scheduling
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parameter. The parameter vector ρ is assumed to be a continuously differentiable function

of time and the admissible trajectories are restricted based on physical considerations to a

known compact subset P ⊂ Rnρ . The rates of the parameter variation ρ̇ are assumed to be

bounded in some applications, i.e. ρ̇ ∈ Ṗ, where Ṗ ⊂ Rnρ is a compact subset. In addition,

the set of admissible trajectories is defined as

A :=
{
ρ : R+ → Rnρ : ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥ 0

}
(2.13)

where Ṗ is defined by

Ṗ := {ρ̇ ∈ Rnρ | |ρ̇i| ≤ νi, i = 1, . . . , nρ} (2.14)

From now on, the explicit dependence on time t is suppressed throughout the remainder of

this dissertation to shorten the notation.

Assumption 2.2.1 There is a family of equilibrium points (x̄(ρ), d̄(ρ)) such that

f(x̄(ρ), d̄(ρ), ρ) = 0

ē(ρ) = h(x̄(ρ), d̄(ρ), ρ)
∀ρ ∈ A (2.15)

Then, the nonlinear system given by (2.12) can be linearized about the equilibrium points

via Jacobian linearization based on Taylor series expansion. Define the deviation variables

as

δx := x− x̄(ρ), δd := d− d̄(ρ), δe := e− ē(ρ) (2.16)

Differentiating the δx term of (2.16) results in

δ̇x = ẋ− ˙̄x(ρ) = f(x, d, ρ)− ˙̄x(ρ) (2.17)

The Taylor series expansion of f and h about the equilibrium point yields

δ̇x = ∇xf |o δx + ∇vf |o δd + εf (δx, δd, ρ)− ˙̄x(ρ)

δe = ∇xh|o δx + ∇dh|o δd + εh(δx, δd, ρ)
(2.18)

where the |o denotes the evaluation at the equilibrium point (x̄(ρ), d̄(ρ), ρ), and εf , εh

represent the higher order terms of the Taylor series expansion. The term ˙̄x(ρ) arises due

to the time variation in ρ. The linearization is performed with respect to (x, d) but the

nonlinear dependence on ρ is retained. Define L(ρ) := −∇x̄(ρ). Then the linearization

about the family of trim points (2.15) takes the form

δ̇x =A(ρ)δx +B(ρ)δd + L(ρ)ρ̇+ εf (δx, δd, ρ)

δe =C(ρ)δx +D(ρ)δd + εh(δx, δd, ρ)
(2.19)
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The LPV system is commonly obtained by assuming that the higher order terms of the

Taylor series are negligible, i.e. εf ,εh ≈ 0. In addition, it is typically assumed that the

parameter variation is sufficiently slow so that L(ρ)ρ̇ ≈ 0. Under these assumptions, an

LPV system Gρ is defined using x, d, e instead of the deviation variables as

ẋ = A(ρ)x+B(ρ)d

e = C(ρ)x+D(ρ)d
(2.20)

Note that other approaches exist in literature to obtain LPV models from a nonlinear

system, e.g., function substitution [39]. However, the most prevalent approach is based

on the Jacobian linearization presented in this section. The LPV models of ASE systems

in this dissertation were obtained by this approach. Following, the experimental research

platform at the University of Minnesota and its LPV ASE model is introduced in the next

chapter.
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Chapter 3

Body Freedom Flutter

Test Vehicle

The Air Force Research Laboratory (AFRL) contracted with Lockheed Martin Aeronautics

Company to develop a flight test vehicle for demonstration of active aeroservoelastic (ASE)

control technologies [4, 6]. This research program successfully predicted the rigid/flexible

coupling of the aircraft with refined models validated through flight tests. Five BFF aircraft

were built during the execution of the program. After the conclusion of the program, the

University of Minnesota received one of the BFF vehicles in order to demonstrate ASE

stability and performance with robust control design techniques. Fig. 3.1 shows a picture of

the test vehicle at its time of arrival to the University of Minnesota. Much of the research

presented in this dissertation is based on this experimental vehicle. The first sections of this

chapter present a general description of the BFF aircraft. Here, the particular geometry

and structural design are key to understand the ASE phenomena in the aircraft. Finally,

the chapter concludes with a discussion of these ASE characteristics for the BFF aircraft.

3.1 Body Freedom Flutter Aircraft

The BFF aircraft is a light-weight, high-aspect ratio flying wing with an anti-symmetric

airfoil section. Fig. 3.2 shows the detailed drawings of the vehicle’s important components

and sections with corresponding dimensions in the international system of units. These

drawings show that the aircraft has a 22◦ swept-back wing planform, spanning 3.05 m, and

chord length of 29.7 cm. In addition, winglet panels of 27.9 cm height, are located at the

tip of each wing to provide directional stability.
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Figure 3.1: Body freedom flutter (BFF) aircraft at uninhabited aerial vehicle research

laboratory in the University of Minnesota

The structure of the aircraft consists of two flexible wings fixed to a rigid center body.

These flexible wings are built with light-weight foam and covered with a fiberglass skin.

Each wing is supported by a single layer carbon fiber over foam core spar with rectangular

cross-section of 7.7 cm width and 6 mm height. Notice that Fig. 3.2 shows cross-sectional

cuts in the the wings. These cuts are made in order to guarantee that the spars are the

only structural elements contributing to the strength of the wings. On the other hand, the

center section is fabricated of carbon fiber and contains the majority of the vehicle’s flight

systems. These include the flight controls, air data, propulsion and batteries. The center

body is a rugged construction that protects the most expensive components of the aircraft

in case of flutter [40]. Some of these details can be observed in the transparent view showed

in Fig. 3.3. In addition, the details about the dynamic behavior of the vehicle’s structure

are presented in the following section.

Furthermore, the flight control instrumentation of the BFF aircraft is depicted in Fig. 3.4.

Here, it is observed that the entire trailing edge of the flying wing consists of eight control

surfaces. The sensor suite of the aircraft consist of gyros to measure the vehicle’s rates,
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Figure 3.3: Body freedom flutter (BFF) aircraft structure: transparent view [4]

accelerometers located at the wing tips and center body of the vehicle, and hot-film sensors

located at the leading-edge stagnation point (LESP) to estimate the lift distribution. The

dynamics of these sensors and control surface actuators are incorporated in the ASE models

of the vehicle. These models are described in the last section of the chapter.

3.2 Structural Dynamics

As described in the last chapter, modeling of ASE behavior requires the development of a

structural model coupled with a consistent aerodynamic model. The BFF nonlinear ASE

models are derived based on structural finite elements and lifting-surface theory, both of

which are available in general purpose commercial codes [20–22]. This section describes

a finite element model developed at the University of Minnesota to predict the structural

dynamic response of the BFF aircraft. Following, the identification of modal parameters is

presented. Here, a ground vibration test is performed in order to obtain experimental modal

data that allows to identify the natural frequencies, damping factors and mode shapes of the

structure. These data are then used to validate and improve the accuracy of the structural

finite element model.
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Figure 3.4: Body freedom flutter (BFF) aircraft configuration: control surfaces and sensors

suite [5]

3.2.1 Finite Element Model [2]

The finite element method has become in a powerful tool to numerically solve a wide variety

of engineering problems. Its popularity among the structural engineering community is the

ability to physically model complex geometries and incorporate different materials obtaining

accurate solutions in a computational efficient manner. For these reasons, the structural

dynamics of the BFF aircraft is modeled using finite elements.

The structure of the BFF vehicle is modeled using one-dimensional elements with axial,

bending and torsional properties. These properties correspond to the main load case of the

aircraft in flight. A very common element used in these applications is the Euler-Bernoulli

beam with added torsional effects. This typical element is shown in Fig. 3.5 where each end

i and j, represents a structural node. Observe that the element has three degrees-of-freedom

(DOF) at each node. These DOF represent the nodal displacements caused by the bending

and torsional load conditions in the aircraft.

The BFF structure, consisting of the wing spars and center body, is discretized based on

the vehicle’s physical characteristics. These characteristics include the location of control

surface actuators, winglets and major electronic components. The discretization results
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Figure 3.5: Euler-Bernoulli beam element with torsional effects

in a set of 14 nodes connected by 15 beam elements shown in Fig. 3.6. Here, the center

body is modeled with equivalent beams between nodes 10-5 and 3-4. Node 2 represents

the center of gravity of the aircraft, node 3 the propulsion motor, and node 4 the flight

computer location. On the other hand, the wing spar is divided in four elements. These

nodes correspond to equivalent locations of actuators for the inboard flaps (6,11), mid-

board flaps (7,12), and outboard flaps (8,13). Here, point masses are added in order to

represent these electronic components. Actuators for the body and outboard flaps weigh

approximately 65 g, actuators for the inboard and middle flaps weigh 50 g, winglets are 50 g,

batteries 2.25 kg, propulsion motor 200 g and flight computer 150 g. Finally, nodes 9 and 14

represent the winglets of the aircraft. With this, the total length of each swept wing (5-9

or 10-14) is measured as 1.27 m.
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x

z

Figure 3.6: Finite element discretization of body freedom flutter (BFF) structure

As mentioned before, the great advantage of the finite element method is the ability to

create accurate models of complex structures by assembling the corresponding equations of

motion of each element. In this case, the equations of motion of the Euler-Bernoulli beam

14



element are derived for linear elastic materials and small deflection assumptions. These

equations correspond to

meq̈ + keq = pce + pnce (3.1)

where q = [δi, θi, φi, δj , θj , φj ]
T is the vector of the nodal displacements, me is the mass

matrix of the element, ke is the stiffness matrix of the element, pee is a vector of nodal forces

and moments, and pnce is the vector of non-conservative forces in the element. Here, the

mass and stiffness matrices are given by [41]

me =



156µL
420

22µL2

420 0 54µL
420

−13µL2

420 0

22µL2

420
4µL3

420 0 13µL2

420
3µL3

420 0

0 0 χL
3 0 0 χL

6

54µL
420

13µL2

420 0 156µL
420

−22µL2

420 0

−13µL2

420
−3µL3

420 0 −22µL2

420
4µL3

420 0

0 0 χL
6 0 0 χL

3


(3.2)

ke =



12EIz
L3

6EIz
L2 0 −12EIz

L3
6EIz
L2 0

6EIz
L2

4EIz
L 0 −6EIz

L2
2EIz
L 0

0 0 GJx
L 0 0 −GJx

L

−12EIz
L3

−6EIz
L2 0 12EIz

L3
−6EIz
L2 0

6EIz
L2

2EIz
L 0 −6EIz

L2
4EIz
L 0

0 0 −GJx
L 0 0 GJx

L


(3.3)

where EIz represents the bending stiffness around the z-axis, GJx the torsional stiffness,

and L the length of the element. The elastic and material properties of the elements are

represented by the Young modulus E, shear modulus G, section mass per unit length µ,

and inertia per unit length χ. The cross section properties of the element correspond to

the second area moment around the z-axis, Iz, and the polar moment of inertia around the

x-axis, Jx. Notice that each entry of these matrices is associated to a DOF in the vector

q. In other words, the entries of the mass matrix can be interpreted as the inertial force

resulting from applying an unitary acceleration in a particular DOF direction. Similarly,

the entries of the stiffness matrix are interpreted as the static force resulting from an unitary

deformation in a particular DOF direction.
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Equations (3.2) and (3.3) indicate that the structural dynamics of these beam elements

are completely dependent on their geometric and material properties. However, these prop-

erties were not provided by the developers of the BFF aircraft. Hence, additional exper-

iments are required to obtain the equivalent static and dynamic properties of the center

body and wings. These experimental results, used to build the BFF structural model, are

presented in the following subsections.

Wing Static Tests

Static tests are conducted on the aircraft wings to obtain initial estimates of their stiffness

properties. This experimental setup is shown in Fig. 3.7. The BFF aircraft wing is fixed

with clamps at 1.15 m from the tip of the wing. An inclinometer that measures the angular

deflection in two directions is located at 1 m from the fixed end. Three weights were applied

at two different locations along the wing, l1 = 0.9 m and l2 = 0.6 m from the fixed end.

Measurements for bending and torsion deflections are taken by applying eccentric loads at

10 cm forward the spar axis of the wing. The data analysis resulted in a bending stiffness

EIz = 70 N-m2 and torsion stiffness GJx = 40 N-m2.

Figure 3.7: Static test setup

16



Wing Dynamic Tests

An estimation of the mass properties of the wings is obtained from dynamic tests. As

in the static test, the aircraft wing is fixed with clamps at 1.15 m from the tip of the

wing. Accelerometers are located at the free end of the wing. One accelerometer is located

on the spar axis and another accelerometer is located at 10 cm forward the spar axis. The

experiment consists of applying an initial displacement to the tip of the wing, and recording

the time histories of the free vibration measured by the accelerometers. The recorded data is

analyzed in the frequency domain in order to identify the fundamental vibration frequencies

of the wing. These frequencies are identified from the power spectra of the recorded wing

accelerations in free vibration shown in Fig. 3.8. From here, two bending frequencies are

identified at ω1 = 21.2 rad/s, ω3 = 150.8 rad/s and one torsion frequency is identified at

ω2 = 116.9 rad/s. Next, the corresponding mass properties of the wing are computed.
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Figure 3.8: Power spectrum of the BFF wing free vibration for eccentric accelerometer

The mass and inertial distribution of the wing can be obtained from the cantilever

beam vibration solutions. Here, the fundamental bending frequency is equivalent to ωb =

(0.597π/L)2
√
EIz/µ where EIz is the bending stiffness, µ is the mass distribution per unit

length, and L is the total length of the cantilever wing. Similarly, the fundamental torsional
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frequency is ωt = (π/2L)
√
GJx/χ where GJx is the torsional stiffness and χ is the inertial

distribution per unit length. Using the stiffness values previously obtained from the static

tests, the mass and inertia properties of the wing are found to be µ = 1.0797 kg/m and

χ = 0.0054 kg-m2/m.

Center of Gravity

An estimation of the center of gravity location for the BFF aircraft was obtained using three

scales. Fig. 3.9 shows the experimental setup with one scale located under each winglet and

the other scale located under the center body axis. The aft scales were placed 60 cm from

the center body scale. Each scale measurement was recorded to find that the total mass of

the aircraft is mb = 5.42 kg. The center of gravity location was obtained using the three

readings and distances between scales such that z̄ = (m1z1 + m2z2)/mb, where m1 is the

sum of the scale measurements under the winglets, m2 is the scale measurement under the

center body axis, z1 is the distance of the aft scales with respect to the nose, z2 is the

distance of the center body scale with respect to the nose, and mb is the total mass of the

aircraft. From this, the location of the center of gravity is estimated at z̄ = 59 cm measured

with respect to the nose of the vehicle [42].

Aircraft Inertia [42]

The principal moments of inertia of the aircraft were determined via swing tests. The

pitch moment of inertia was determined using a compound pendulum approximation while

the roll moment of inertia was determined using a bifilar pendulum approach shown in

Fig. 3.10. Assuming small deflections during these swing tests, the pitch inertia is equivalent

to Iq = mbgd/ω
2
q where mb is the total mass of the aircraft, g is the acceleration due to

gravity, d is the distance between the pivot point and the center of gravity, and ωq is the

frequency of the pitching oscillations. On the other hand, the roll inertia is equivalent to

Ip = mbgd
2/4L2ω2

p, where d represents the horizontal distance between the two bifilar, L is

the length of the bifilar, and ωp is the frequency of the rolling oscillations. From these tests,

the estimated values for the pitching and rolling moments of inertia are Iq = 0.36 kg-m2

and Ip = 2.50 kg/m2, respectively.
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Figure 3.9: Center of gravity test setup. Source: Uninhabited aerial vehicle research labo-

ratory at the University of Minnesota

Figure 3.10: Inertia swings test setup. Source: Uninhabited aerial vehicle research labora-

tory at the University of Minnesota

19



Aircraft Vibration Analysis

The vibration analysis of the entire aircraft structure is performed by assembling the dy-

namic equations of all the elements in Fig. 3.6. These equations have the form

MQ̈+KQ = P c + Pnc (3.4)

where M =
∑
me is the global mass matrix, K =

∑
ke is the global stiffness matrix, Q

is the vector of all DOF in the structure, and P c and Pnc are the total nodal conservative

and non-conservative forces and moments in the structure. Eq. (3.4) represents N coupled

differential equations where N is the number of degrees-of-freedom [43]. Here, the dynamic

properties of the structure are represented by its natural frequencies and natural modes of

vibration. These concepts are introduced next.

The concepts of natural frequency and vibration mode are derived from the free vibration

condition in structures. A structure is said to be undergoing free vibration when it is

disturbed from its static equilibrium position and then allowed to vibrate without any

external dynamic excitation. This condition is governed by the differential equations [44]

MQ̈+KQ = 0 (3.5)

Here, the solution Q(t) satisfies the initial conditions Q(0) = Q0 and Q̇(0) = Q̇0. This

solution can also be described mathematically by

Q(t) =

N∑
n=1

φnηn(t) (3.6)

where φn is the deflected shape, called also the vibration mode, and ηn(t) is the harmonic

function

ηn(t) = An cosωnt+Bn sinωnt (3.7)

with natural frequency vibration ωn.

By substituting (3.6) in (3.5), the following eigenvalue problem is generated[
−Ω2MΦ +KΦ

]
η(t) = 0 (3.8)

where Ω2 is a diagonal matrix with N natural frequencies ω2
n as

Ω2 =


ω2

1

ω2
2

. . .

ω2
N

 (3.9)
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and Φ is the modal matrix of the system assembled with the eigenvectors associated to each

natural frequency ωn. That is

Φ =
[
φ1 φ2 · · · φN

]
(3.10)

This solution also implies that the following matrices are diagonal

K̂ = ΦTKΦ

M̂ = ΦTMΦ
(3.11)

with diagonal elements corresponding to

Kn = φTnKφn

Mn = φTnMφn
(3.12)

Here, Kn is called the modal stiffness and Mn is called the modal mass associated to the

natural frequency ωn. Next, the modal properties of the BFF aircraft are presented.

The natural frequencies and modal shapes of the BFF aircraft are summarized in Ta-

ble 3.1. These results are computed by solving the eigenvalue problem in (3.8) with the finite

element global mass and stiffness matrices of the structure. Here, the first six fundamental

structural modes are presented.

Table 3.1: Natural frequencies and modal masses from finite element model of BFF aircraft

Mode Shape
Frequency Modal Mass

[rad/s] [kg-m2]

1st Symmetric Bending 34.89 0.297

1st Anti-Symmetric Bending 53.26 0.348

1st Symmetric Torsion 108.84 0.008

1st Anti-Symmetric Torsion 106.57 0.008

2nd Symmetric Bending 163.19 0.052

2nd Anti-Symmetric Bending 183.62 0.057

The mode shapes corresponding to the natural frequencies listed in Table 3.1 are depicted

in Fig. 3.11, Fig. 3.12, and Fig. 3.13. Here, the blue lines denote vertical displacements in

the y-axis and the green lines denote torsional angles around the x-axis. Notice that the

bending vibration modes exhibit both vertical and torsional deflections. This behavior is

observed because the swept wings cause eccentric loading in the xz-plane. On the other

hand, it is observed that the torsional vibration modes exhibit pure torsional deflections.

In this case, the sweep angle does not cause any vertical displacement.
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Figure 3.11: First symmetrical (ω1) and anti-symmetrical (ω2) bending modes. Vertical

displacements y-(m) are represented by ( ) and torsional angle deflections φ-(rad) are

represented by ( ).
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Figure 3.12: First symmetrical (ω3) and anti-symmetrical (ω4) torsion modes. Vertical

displacements y-(m) are represented by ( ) and torsional angle deflections φ-(rad) are

represented by ( ).

In general, the natural frequencies and modal shapes presented in Table 3.1 are known

as the structure’s undamped modal properties. This means that the structure oscillates
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Figure 3.13: Second symmetrical (ω5) and anti-symmetrical (ω6) bending modes. Vertical

displacements y-(m) are represented by ( ) and torsional angle deflections φ-(rad) are

represented by ( ).

indefinitely at the frequency ωn if no external force is applied. However, real structures

dissipate this oscillation energy through several mechanisms. Then, these non-conservative

forces Pnc can be included in the system as damping forces by re-writing the equations of

motion in (3.4) as

MQ̈+ ΞQ̇+KQ = P c (3.13)

where C is the damping matrix of the structure. This damping matrix can also be diago-

nalized using the eigenvectors of the system as

Ξ̂ = ΦTΞΦ (3.14)

where the diagonal elements correspond to

Ξn = φTnΞφn = 2Mnζnωn (3.15)

where ζn is defined as the damping ratio associated to ωn. Damping ratios are a measure

of how modal oscillations decay in time and are usually estimated from ground vibration

tests. This test is explained in the following subsection.

3.2.2 Ground Vibration Test [3]

A ground vibration test is performed in order to determine the aircraft structural response

to a sweep sine force excitation. The goal is to use this input-output data to identify the
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modal parameters of the flexible structure. Identifying these parameters is key for updating

and validating the finite element structural model. The following subsections present the

experimental procedure and data analysis for the modal identification of the BFF aircraft.

Boundary Conditions

A vibration test would ideally occur with the vehicle freely suspended in space. In practice,

however, a truly free support is not feasible because the structure needs to be held in some

way. This condition can be approximated by supporting the test structure on very flexible

springs such that the rigid body modes do not interfere with the flexible modes [45].

The BFF free condition is reproduced using a very flexible spring such that the highest

rigid body mode frequency is less than 20% of the fundamental frequency of the aircraft.

Because the fundamental frequency of the structure ωn is approximately 30 rad/s, the fre-

quency of the mass-spring system ωr must not exceed 6 rad/s. Recall that the mass of the

aircraft is mb =5.42 kg. Hence, the maximum stiffness of the spring required to achieve an

almost free condition is k = mbω
2
r = 195 N/m. Here, a commercial spring that can support

the structure with the specified or less stiffness will achieve the desired boundary condition.

Then, a stainless steel spring with a maximum load resistance of 11.2 kg and stiffness of

130 N/m is selected to suspend the aircraft from a rigid frame as shown in Fig. 3.14.

Data Acquisition Equipment

All the equipment used for this experiment is available at the Aeromechanics Laboratory of

the University of Minnesota. An Unholtz-Dickie Model 20 electrodynamic shaker is used to

provide a known excitation to the structure. This shaker can apply forces up to 1103 N at

frequencies between 1-5000 Hz. The shaker is connected to the aircraft through an excitation

stinger. This stinger transmits the excitation force axially and reduces lateral forces applied

to the structure. In addition, a PCB 208C01 force sensor is mounted between the stinger

and the structure to measure the excitation force. This sensor can measure forces of ±44.5 N

between a frequency range of 0.01-36000 Hz with a sensitivity of 112.41 mV/N.

The structural response of the aircraft is measured using two PCB 353B16 miniature

accelerometers located at several points along the aircraft. The measurement range of these

accelerometers is ±500 g between the frequencies 1-10000 Hz. These sensors have a sensitiv-

ity of 10 mV/g. The acceleration signals are then amplified using two PCB 480E09 signal

conditioners. The voltage amplification gains of these conditioners correspond to factors of

1 and 10. Finally, the excitation signals and experimental transfer functions between the

24



Figure 3.14: Test setup: suspended aircraft with vibration exciter shaker

force applied by the shaker and the acceleration at the different points are calculated using

a HP35670A Dynamic Signal Analyzer with 400-data point frequency resolution [46,47].

Experimental Procedure

Fig. 3.15 shows the experimental procedure to obtain the structural dynamic response of

the BFF aircraft. Here, the aircraft is excited with a sine sweep wave from 3 to 35 Hz

(20-220 rad/s). A sampling rate of 74 Hz (465 rad/s) is chosen by the analyzer to perform

the test. This sampling rate allows to determine the structure natural frequencies below

220 rad/s. Acceleration responses are measured at 34 points distributed along the wing and

center body of the vehicle (3.16). Point 12 was selected as the excitation location. It is

expected that vibrations applied in this asymmetric point will excite the symmetric and

anti-symmetric modes of the structure.

Single input, single output (SISO) frequency responses from applied force to acceleration

response are obtained at each location using the dynamic analyzer. The frequency responses

contain 400 data points and are computed in the swept-sine analyzer mode. Force and

acceleration signals are measured at a constant frequency to calculate each point of the

frequency response.
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Figure 3.15: Experimental procedure to obtain vibration data
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Figure 3.16: Accelerometers location ( ) and input excitation location ( ) [4]

An experimental frequency response obtained from the anti-symmetric input to the

acceleration response at the tip of the wing is shown in Fig. 3.17. Peaks in the magnitude

response and 180◦ phase changes denote the identification of several modes. In particular

the structure has two closely spaced modes between 110 and 130 rad/s. These experimental

data are used to obtain the modal parameters of the aircraft structure as described in the

following section.

26



−40

−20

0

20

M
ag
n
it
u
d
e
(d
B
)

20 40 60 80 100 120 140 160 180 200 220
−540

−360

−180

0

180

Frequency (rad/s)

P
h
as
e
(d
eg
)

Figure 3.17: Experimental frequency response: From force [N] at point 12 to acceleration

[g] at point 18

3.2.3 Modal Identification

The modal identification of the BFF aircraft is formulated as a system identification prob-

lem where the objective is to build mathematical models of dynamic systems based on

data observations. The construction of these models involves three entities: (i) recorded

experimental input-output data, (ii) selection of a mathematical modeling framework, and

(iii) choice of system identification algorithms that will yield the best model fitting of the

observed data [48].

In this work, state-space models are selected to describe the structural dynamic system.

These mathematical models can accurately describe the linear dynamics and can provide

physical insight regarding the system. Because the measurement data is usually sampled for

computational applications, discrete-time state-space models are better suited for system

identification purposes. Moreover, state-space models form the basis for many modern

control design methods. The versatility of state-space models is the reason to select them

to describe the structural dynamics of the aircraft.

A discrete-time, state-space models for identification and control is generally described
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by

x(k + 1) = Ăx(k) + B̆u(k) + w(k),

y(k) = C̆x(k) + D̆u(k) + v(k)
(3.16)

where u(k) and y(k) are the input and output vector measurements at time instant k, x(k)

is the state vector and w(k), v(k) unmeasurable signals representing the noise in the system.

Ă is the dynamic system matrix, B̆ the input matrix, C̆ the output matrix and D̆ the direct

feed-through term.

The state-space representation described by (3.16) has been the subject for the de-

velopment of several system identification methods [48, 49]. In this case, the state-space

identification method selected for modal parameter estimation of the BFF aircraft is based

on subspace identification algorithms. These algorithms use system theory and linear alge-

bra concepts to reveal important characteristics of the system. Because these concepts also

provide an understanding of the aircraft as a control system, they fit better for state-space

model identification.

One particular subspace algorithm proposed in the literature is the eigensystem re-

alization algorithm (ERA) [49]. The ERA was originally developed for identification of

lightly damped systems. Hence, this algorithm is very adequate for the identification of

the structural modal parameters of the BFF aircraft. The following subsection presents the

modal identification results for the BFF aircraft using the ERA subspace algorithm. The

mathematical aspects of the algorithm are discussed below.

The ERA assumes deterministic models to directly compute a state-space model from

the measured input-output data. A deterministic system is a system in which process noise

wk and measurement noise vk are zero. Hence, the state-state model in (3.16) is simply

x(k + 1) = Ăx(k) + B̆u(k),

y(k) = C̆x(k) + D̆u(k)
(3.17)

Here, the identification problem consists on determining the system matrices Ă ∈ Rn×n,

B̆ ∈ Rn×m, C̆ ∈ Rl×n, and D̆ ∈ Rl×m with a given set of input measurements u(k) and

output measurements y(k). The solution to this problem is obtained by exploiting the

relationship between the impulse response of the structure and its system dynamics. This

relationship is revealed by constructing the Hankel matrix of the experimental impulse

response. In linear algebra, a Hankel matrix is a matrix with constant skew-diagonals such
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that

H(k − 1) =


y(k) y(k + 1) · · · y(k + p)

y(k + 1)
. . .

...
...

. . .
...

y(k + r) · · · · · · y(k + p+ r)

 (3.18)

where p and r are the number of columns and rows of the Hankel matrix, respectively. Next,

the impulse response y(k) is analyzed.

The output y(k) of the deterministic system in (3.17), with initial condition x(0) = 0,

to an impulse input u(0) = 1 is given by

y(0) = D̆,

y(k) = C̆Ăk−1B̆
(3.19)

Consequently, the Hankel matrix of this impulse response evaluated at H(0) has the form

H(0) =


C̆

C̆Ă
...

C̆Ăk+r


[
B̆ ĂB̆ . . . Ăk+pB̆

]
(3.20)

where

Cr =


C̆

C̆Ă
...

C̆Ăk+r

 (3.21)

is the controllability matrix of the system and

Op =
[
B̆ ĂB̆ . . . Ăk+pB̆

]
(3.22)

is the observability matrix of the system.

Now, the system matrices can be obtained by performing a singular value decomposition

of the Hankel matrix such that H(0) = UΣV T . Here, U and V are the left and right singular

vectors and Σ is a diagonal matrix containing the singular values. The order n of the system

to identify is obtained by eliminating relatively small singular values from Σ. Hence, the

condensed matrices Σn, Un, Vn are used to find a discrete-time, state-space realization

Ă = Σ−1/2
n UnH(1)VnΣ−1/2

n

B̆ = Σ−1/2
n V T

n [I 0]

C̆ = [I 0]T UnΣ−1/2
n

D̆ = y(0)

(3.23)
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where the natural frequencies and modal damping factors are the solution for the eigenvalues

of the state matrix Ă in its continuous time representation. That is, λci = ln(λi)/dt where

λi are the discrete-time system eigenvalues, λci are the continuous time system eigenvalues,

and dt is the time step. Then, the modal frequencies ωi and damping ratios ζi correspond

to

ωi = |λci |

ζi =
<(λci)

|λci |
(3.24)

For good results, the columns of the Hankel matrix p should be selected to be at least ten

times the number of modes to be identified, and the rows r should be selected to be 3-5

times p [49, 50].

On the other hand, the realization of the system obtained in (3.23) is not unique because

the system matrices depend on the size of the Hankel matrix H(0). Therefore, the system

identification can be refined by minimizing the model prediction error. This optimization

problem is formulated as

IN (G) =
N∑
k=1

[y(k)−G(z)u(k)]2 (3.25)

where N is the number of samples and G(z) is the complex frequency response of the

discrete system

G(z) = C̆
(
zI − Ă

)−1
B̆ + D̆ (3.26)

with z as the discrete Laplace variable. Hence, the optimized discrete system G∗(z) is used

to compute the corresponding modal frequencies and damping ratios in (3.24). Following,

the results for the BFF aircraft structural identification are presented.

Results

The natural frequencies of the vehicle are determined using the described eigensystem re-

alization algorithm (ERA). Here, the impulse response functions y(k) are computed as the

inverse Fourier transform of each collected experimental frequency response. The Hankel

matrix is assembled using 601 samples of the impulse response, corresponding to 500 rows

and 150 columns of the matrix.

Individual SISO state-space models with 12 states are estimated for each sensor mea-

surement, leading to 34 models. The order of the systems is selected based on the number of

modes to identify. The natural frequencies are determined, and are presented in the scatter
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plot in Fig. 3.18. Six flexible modes, visualized by the vertical patterns, are identified with

these set of measurements. Note that not all of the six modes are identified in each SISO

system. These results probably correspond to measurements located at or very close to the

nodes of some modes, where their contribution is very small and as consequence, they are

not seen in the response.
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Figure 3.18: Identified natural frequencies (vertical patterns / ) for identified transfer

functions from the force sensor at point 12 to acceleration response at 34 points in the

aircraft

An initial estimate of the natural frequencies of the structure is obtained by averaging the

values corresponding to each identified vertical pattern. The natural frequencies obtained

are 35.51, 52.66, 115.42, 124.30, 144.81 and 179.57 rad/s as depicted by the dashed line in

Fig. 3.18. Having estimated the modal frequencies, the next step is to find a structural model

that reproduces the dynamic behavior of the aircraft at all 34 locations upon excitation at

the location 12. This model will be used for tuning and updating the finite element model

described in the previous subsection.

A single input, multiple output structural model is estimated using the MATLAB Sys-

tem Identification Toolbox [51]. A non-iterative subspace approach, combined with numer-

ical optimization of the prediction error, is performed to estimate the model. A state-space
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model with 20 states was found suitable to capture the six flexible modes initially estimated

by ERA. The order of the multiple output model is higher than the order required for the

SISO state-space models. This result shows that modeling of multiple output systems is

more challenging because input-output couplings involve more complex models and require

additional parameters to obtain a good fit [52].

Fig. 3.19 and Fig. 3.20 compare the frequency response of the measured experimental

data and the estimated state-space system from the force inputs to two acceleration outputs.

It is observed that the estimated model successfully captures the major modal contributions

to the system response.
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Figure 3.19: Frequency response of experimental data ( ) and identified system ( )

from force [N] at point 12 to acceleration response [g] measured at point 16

Mode shapes of the structure are determined using the quadrature picking technique

[53, 54]. In lightly damped structures, the response at a particular natural frequency is

completely dominated by the corresponding mode. This implies that the response of the

structure is governed by its imaginary part. The relative modal displacement at each point

is obtained by evaluating the frequency response function at a particular natural frequency

and examining the magnitude and direction of its imaginary part.

Fig. 3.21 sketches the identified mode shapes and associated natural frequencies of the

aircraft. In addition, Table 3.2 lists the frequency values and damping factors corresponding
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Figure 3.20: Frequency response of experimental data ( ) and identified system ( )

from force [N] at point 12 to acceleration response [g] measured at point 20

to each mode shape identified by the state-space model.

Table 3.2: Natural frequencies, damping factors and modal shapes

Modal Shape Frequency [rad/s] Damping [%]

1st Symmetric Bending 35.60 1.55

1st Anti-Symmetric Bending 52.61 1.06

1st Symmetric Torsion 115.27 2.06

1st Anti-Symmetric Torsion 124.56 2.33

2nd Symmetric Bending 145.59 2.85

2nd Anti-Symmetric Bending 179.70 2.55

Validation

Model validation is performed using two techniques, the normalized root mean square error

(NRMSE) and the ν-gap metric. The evaluation criteria to determine if the estimated model

is a good representation of the real system is based on comparing the frequency response

predicted by the model and the measured data.
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1st Sym Bending 35.60 rad/s 1st A/S Bending 52.61 rad/s

1st Sym Torsion 115.27 rad/s 1st A/S Torsion 124.56 rad/s

2nd Sym Bending 145.59 rad/s 2nd A/S Bending 179.70 rad/s

Figure 3.21: Identified mode shapes

The accuracy of the estimated model using the NRMSE is calculated as

%fit = 100

(
1− ‖y − ŷ‖2
‖y −mean(y)‖2

)
(3.27)

where y is the measured frequency response data and ŷ is the predicted frequency response

of the model. Here, a value of 100% indicates a perfect fit [52].

Fig. 3.22 shows the percentage of the input-output frequency response that the estimated

34



model represents. Literature reports five evaluation criteria to categorize the goodness of an

estimated model. Fit values > 70% are excellent models, > 40% good models and > 20%

poor models [55]. A 70% fit value is chosen to accept the model as a good representation

of the aircraft structural dynamics.
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Figure 3.22: Percentage of the input-output frequency response represented by the estimated

model. A fit of 70% ( ) means that the input-output behavior is reproduced with good

accuracy.

It is observed that the estimated model has four input-output frequency responses below

the 70% threshold value. This means that the dynamic behavior for those input-output

responses is hard to reproduce by the model. This situation can be a consequence of input-

output couplings and poor measured data.

Because the model validation using NRMSE is based on the accuracy of each input-

output pair, i.e. SISO system, a different metric that evaluates the accuracy of the estimated

model in a multiple input, multiple output (MIMO) framework is proposed.

The ν-gap metric is proposed to validate the model in a MIMO framework. This metric

provides a measure of the distance between two linear systems in a feedback context. Two

systems are considered to be close in the gap metric if, given any stable input-output pair of

the first system, there is a corresponding stable input-output pair of the second system that
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is close to it. The ν-gap metric between two linear systems G1(jω), G2(jω) is calculated in

the frequency domain as

δ(G1, G2)(jω) = (1 +G2G
∗
2)−

1
2 (G2 −G1) (1 +G1G

∗
1)−

1
2 (3.28)

where δ(G1, G2)(jω) lies within the interval [0, 1]. Values close to zero indicate the two

systems are identical and values close to 1 that the systems are far apart [56]. More details

about this metric will be given in following chapters.

Fig. 3.23 shows the distance between the estimated model and the experimental data

over the frequency range of interest, i.e. 35-185 rad/s. A ν-gap metric of 0.3 is selected as

threshold to determine the goodness of the estimated model. It is observed that the ν-gap

metric is below the 0.3 threshold across the frequency range identified. This means that

the multiple output estimated model with 20 states is a good representation of the aircraft

structural dynamics in the bandwidth of interest.

35 55 75 95 115 135 155 175 195
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (rad/s)

ν
-g

ap
m

et
ri

c
va

lu
e

Figure 3.23: ν-gap metric distance between estimated model and experimental data across

frequency. A ν-gap metric of 0.3 ( ) means that the closed-loop input-output behavior

is reproduced with good accuracy.
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Updating

The modal vibration parameters obtained with the finite element model are compared to

the experimental modal parameters identified from the ground vibration test. Here, it is

observed that the two torsion modes, symmetric and anti-symmetric, do not match with

the experimental results. Hence, parameter updating is required to obtain a more accurate

finite element model that represents the BFF structure.

The model updating problem of the BFF finite element model is formulated as [2]

min
α

m∑
i=1

[1−MAC(φid,i, φfe,i(α))] + ‖eω(α)‖ (3.29)

with

MAC(φid,i, φfe,i) =
|φTid,iφfe,i|2

φTid,iφid,iφ
T
fe,iφfe,i

− (3.30)

eω =
[

ωid,1−ωfe,1
ωid,1

. . .
ωid,m−ωfe,m

ωid,m

]T
, (3.31)

where ωid,i and φid,i are the natural frequencies and mode shapes identified from the ground

vibration test, ωfe,i and φfe,i are the natural frequencies and modal shapes computed by

the finite element model, m is the number of modes to match and α is the set of parameters

to optimize in the finite element model. Here, the modal assurance criteria (MAC) can take

values between 0 and 1, where 1 means the modal vectors are consistent and 0 means that

the modal vectors are orthogonal.

The stiffness parameters EIz, GJx and the mass parameters m, χ of the different BFF

aircraft elements are optimized to minimize the error between the identified and modeled

natural frequencies and mode shapes. These optimal parameters are obtained by running

an evolutionary algorithm called differential evolution. Finally, the finite element model

is updated with this set of optimal parameters and the comparison between the updated

model and the experimental data is presented in Table 3.3.

As mentioned earlier, the updated finite element structural model can be used to create

an aeroservoelastic (ASE) model of the BFF aircraft. However, the integration of this

structural model with an aerodynamic model is still an ongoing research topic in the UAV

laboratories. Hence, the ASE model developed by Lockheed Martin is presented in the next

section.
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Table 3.3: Natural frequencies and mode shapes comparison between updated finite element

model and experimental data

Modal Shape
Frequency (rad/s)

MAC
Updated Model Experiments

1st Symmetric Bending 34.75 35.60 0.83

1st Anti-Symmetric Bending 53.91 52.61 0.92

1st Symmetric Torsion 120.70 115.27 0.84

1st Anti-Symmetric Torsion 124.91 124.56 0.93

2nd Symmetric Bending 144.70 145.59 0.93

2nd Anti-Symmetric Bending 173.04 179.70 0.92

3.3 Aeroservoelastic Model

This section presents the ASE model of the BFF aircraft developed by Lockheed Martin.

The model was created using a structural model with 376 DOF and an unsteady aerody-

namic model with 2252 DOF. Both of these models were generated in MSC/NASTRAN

using finite elements and double lattice panels for the structural model and unsteady aero-

dynamic model, respectively [20]. From here, it is possible to obtain a set of generalized

matrices that describe the structural and aerodynamic properties as described in Chapter 2.

Next, linear, continuous-time, state-space ASE models in the form (2.20) are created [4].

The set of linear, continuous-time, state-space ASE models is created using the gen-

eralized mass matrix and generalized stiffness matrix provided by the structural model

together with the generalized aerodynamic force matrix provided by the unsteady aerody-

namic model. Because at a given Mach number the aerodynamic force matrix is a complex

value matrix depending on the oscillation frequency, the matrix is approximated by the

second order rational function in 2.9. With this, linear models are constructed by holding

altitude constant and varying the airspeed of the aircraft. In total, 26 state-space models

are obtained at constant altitude of 1000 ft from 40 to 90 KEAS (knots equivalent airspeed)

with increments of 2 knots. In the remaining of the document, this set of models is referred

as the LPV ASE model.

The LPV model has 148 states where the state vector consists of 37 generalized dis-

placements with corresponding time derivatives and 74 unsteady aerodynamic states. The

generalized displacements represent 5 rigid body modes corresponding to the lateral, plunge,

roll, pitch and yaw modes of the aircraft, 8 flexible modes corresponding to symmetric and
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anti-symmetric bending and torsion modes, and 24 secondary discrete DOF associated with

local vibration modes in the structure. In addition, the 74 unsteady aerodynamic states pro-

duced by the rational function approximation correspond to two aerodynamic lags for each

generalized displacement. With this approximation, the ASE model of the BFF aircraft is

in the LPV state-space form given by (2.20).

Once the ASE model is in the LPV state-space form, a flutter analysis can be performed

by evaluating the eigenvalues of the state matrix at each airspeed. Fig. 3.24 shows the

evolution of six aeroelastic modal shapes across the flight envelope. Here, the frequency

values and damping ratios at a particular airspeed are shown for this six vibration modes.

In the ASE community, this plot is often called the V-f-g diagram of the aircraft. Notice

that positive damping denotes system instabilities in this plot.
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Figure 3.24: Velocity-frequency-damping (V-f-g) diagram of the BFF aircraft. Short period

( ), 1st symmetric bending ( ), 1st anti-symmetric bending ( ), 1st symmetric

torsion ( ), 1st anti-symmetric torsion ( ), and 2nd symmetric bending ( ).

Fig. 3.24 shows coupling of the short period mode with the first symmetric wing bending.

This coupling produces the body flutter freedom phenomena at 42 KEAS with a frequency of
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24.3 rad/s. Traditional flutter is also observed when the symmetric wing bending and sym-

metric wing torsion modes are coupled at a frequency of 65 rad/s. This phenomena occurs

at an airspeed of 58 KEAS. Similarly, the anti-symmetric wing bending and anti-symmetric

wing torsion modes come close in proximity at 61 KEAS with frequency of 69 rad/s. This

leads to a third instability in the system. Hence, the flutter analysis performed concludes

that the flight envelope of the vehicle is limited to 42 KEAS, airspeed at which the vehicle

is marginally stable.

In addition, a frequency response of the vehicle for all flight conditions is plotted in

Fig. 3.25. This plot shows the dependency on airspeed of the frequency response from the

right outboard wing flap to the pitch rate sensor. Here, the lowest airspeed of 40 KEAS

correspond to the dark blue curve, transitioning to green around 60 KEAS, and dark red at

the highest velocities. Notice that the model dynamics change dramatically as a function of

the airspeed. Looking at the phase plot, it is observed that the vehicle is marginally stable

at 42 KEAS (dark blue) as inferred from the V-f-g diagram. Furthermore, a phase change is

also observed around 60 KEAS (bright green) and 90 KEAS (dark red). The phase change

corresponding to the bright green curves correspond to a change in stability of the system

due to the traditional wing flutter phenomena. On the other hand, the dark red curve at

90 KEAS indicates that one of these wing modes is no longer unstable. This is also observed

in the V-f-g diagram where the first symmetric torsion mode has a negative damping ratio.

Recall that the ASE convention for stable systems is denoted by negative damping ratios.

3.4 Summary

This chapter described the aeroservoelastic experimental platform used in this dissertation

to investigate the design of robust controllers. This research platform was developed by

Lockheed Martin and is referred as the body freedom flutter (BFF) aircraft in the remaining

chapters. The first part of the chapter presented a general description of the aircraft.

Here, it was highlighted that the University of Minnesota was not provided with detailed

information of the building process neither modeling process. Hence, a great effort has

been put in understanding the modeling process of the BFF aircraft. These particular

circumstances motivated the development of in-house structural and aerodynamic models.

The second part of the chapter focused on the development of a finite element model

for the BFF aircraft. This model is intended to be integrated with an aerodynamic model

in order to create an ASE model of the aircraft. However, this is still an ongoing research

topic at the University of Minnesota and hence, the remaining chapters utilize an ASE
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Figure 3.25: Frequency response of the BFF aircraft from the right outboard flap to the

pitch rate sensor for all velocities (40-90 KEAS) in the flight envelope.

model created by Lockheed Martin. This ASE model is the focus of the last section of the

chapter.

The ASE model of the BFF aircraft developed by Lockheed Martin consists on a set of

linear, continuous-time, state-space models with varying airspeed. This model is represented

by 148 states that are common across the flight envelope. This means that the ASE model

is represented by an LPV system. Following, a description of the ASE dynamics together

with a flutter analysis are presented. The results identified three flutter modes across the

flight envelope, including the coupling of the short period mode and symmetric bending

vibration (BFF) occurring at 42 KEAS. The objective of this research is to extend the flight

envelope of the BFF aircraft by using the existing control surfaces for flutter suppression.

However, the use of an LPV model with 148 states for control design is not practical; and

hence a low-order LPV ASE model is required for control design. The next chapter will

discuss this LPV model reduction topic in detail.
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Chapter 4

Model Reduction for

Aeroservoelastic Systems

This chapter presents a model reduction approach for LPV models of aeroservoelastic (ASE)

systems. ASE models, as described in Chapter 2, usually result in LPV models with a large

number of states. Using these high-order models for control design is unrealistic due to

computational limitations associated with modern control synthesis techniques. Moreover,

the controllers synthesized using these modern techniques result in equal or greater number

of states as the plant. High-order controllers are hard to implement in practical applications

and may even run into software or hardware problems. Hence, model order reduction of

ASE systems is a necessary task previous to control design. The general model reduction

problem is described in Section 4.1. Section 4.2 presents an overview of model reduction

techniques for LPV systems. Finally, Section 4.3 describes the model reduction procedure

for the body freedom flutter (BFF) vehicle.

4.1 Model Order Reduction

The model order reduction problem is in general stated as [57]: Given a full n-th order

model G1(s) with m inputs and p outputs, find a lower r-th order model G2(s) with the

same number of inputs, m, and outputs, p, such that the distance between G1 and G2 is

small. Typically, the distance between G1 and G2 is measured by the L∞-norm. L∞ defines

the set of all rational transfer matrices with no poles on the imaginary axis, and its norm

is given by

‖G‖∞ = sup
ω∈<

σ̄ [G(jω)] (4.1)
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Using this L∞-norm as a measure of approximation between G1 and G2, the model reduction

problem is formulated as

min
deg(G2)≤r

‖(G1 −G2)‖∞ (4.2)

For stable systems, i.e. the set of all rational functions with all poles in the left-half

plane and no poles on the imaginary axis, the L∞-norm is interpreted as the maximum

achievable gain for sinusoidal inputs over all frequencies. As t → ∞, let e(ω) denote the

linear response of the system to a sinusoidal input d(ω), then e(ω) = G(jω)d(jω). At a

given frequency ω, the gain ‖e(ω)‖2/‖d(ω)‖2 depends on the direction of d(jω), and the

gain in the worst-case direction is given by the maximum singular value

σ̄ [G(jω)] = max
d(ω) 6=0

‖e(ω)‖2
‖d(ω)‖2

(4.3)

Note that the model reduction problem in (4.2) can be interpreted as the induced gain

from the input v(t) to the matching error e(t), shown in Fig. 4.1. Here, the full n-th order

model G1 is represented as the sum of the r-th lower order model G2 and an uncertain

system ∆a = G1−G2. This type of uncertainty is often called additive uncertainty and the

distance metric between models is defined by

δn(G1, G2) := ‖(G1 −G2)‖∞ = ‖∆a‖∞ (4.4)

G2

G1d e−

∆a

Figure 4.1: Model reduction problem: additive uncertainty

Alternatively, the distance between G1 and G2 can also be measured in the closed-loop

feedback structure. In this context, the closed-loop behavior of the two systems is analyzed

under the same feedback controller as shown in Fig. 4.2. A useful metric to compare G1

and G2 in this closed-loop structure is the ν-gap metric [56]. This metric is defined as

δν(G1, G2) =


‖Ψ(G1, G1)‖∞ if det(1 +G∗2G1)(jω) 6= 0 ∀ω ∈ (−∞,∞) and

wno det(1 +G∗2G1)− η(G1)− η(G2) = 0

1 otherwise

(4.5)
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Figure 4.2: Closed-loop comparison

where η(G) denotes the number of right-half plane poles of G(s), wno(G) = η(G−1)− η(G)

and

Ψ(G1, G2) = (I +G2G
∗
2)−1/2(G2 −G1)(I +G∗1G1)−1/2 (4.6)

As indicated in (4.5), the ν-gap metric lies within the interval [0, 1], where 0 is at-

tained for two identical systems. Moreover, this metric exhibits important duality prop-

erties with stability margins. Any system G1 at a distance less than β from the system

G2, i.e. δν(G1, G2) < β, will be stabilized by any feedback controller stabilizing G2 with

a stability margin of at least β. Furthermore, any system G1 at a distance greater than

β from G2 will be destabilized by the same feedback controller with a stability margin of

at least β. These duality properties and the ability to compute the metric frequency by

frequency will be of great benefit to analyze the distance between two systems in a robust

manner [58].

Although the ν-gap metric is a great tool for measuring the difference between two

systems in terms of closed-loop behavior, the model reduction problem using this approx-

imation error is highly computational complex [59, 60]. On the other hand, the model

reduction problem using the L∞ approximation error, see (4.2), has been widely studied

and successfully implemented for LTI systems. Moreover, several of these model reduction

methods have been extended to deal with LPV systems [61–66]. In addition, this problem

can be reformulated as a frequency weighted problem

min
deg(Gr)≤r

‖Wo(s)(G−Gr)Wi(s)‖∞ (4.7)
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with appropriate choice of the input weighting matrix Wi(s) and output weighting matrix

Wo(s) to weight the frequency range of interest. Frequency weighting is of particular interest

for model reduction of ASE systems because control requirements at one frequency range

can be drastically different from requirements at another frequency range.

In conclusion, model reduction techniques based on additive errors are easier to im-

plement in ASE systems. However, a better measure to evaluate the approximation of

full and reduced order models is provided by the ν−gap metric. Hence, the model reduc-

tion approach proposed in this chapter focuses on techniques that minimize the distance

δn(G1, G2) while evaluating the closeness between models with the ν-gap metric. The next

section presents an overview of LPV model reduction techniques, following by their appli-

cation to an ASE test vehicle.

4.2 Linear, Parameter-Varying Model Reduction

The objective of the LPV model reduction problem is to reduce the complexity of the models

while preserving the state characteristics and input-output behavior for all parameters ρ ∈
A. The main idea is to eliminate states with small energy contribution transferred from

inputs to outputs.

This section describes four LPV methods used to address the model reduction problem of

ASE systems. These methods are: (1) truncation, (2) residualization, (3) modal truncation,

and (4) balanced residualization. The methods are described using a partitioned n-th state-

space realization of (2.20) such that

ẋ1 = A11(ρ)x1 +A12(ρ)x2 +B1(ρ)d

ẋ2 = A21(ρ)x1 +A22(ρ)x2 +B2(ρ)d

e = C1(ρ)x1 + C2(ρ)x2 +D(ρ)d

(4.8)

where x1 is a vector of r states to preserve and x2 contains the n − r states to remove.

This notation is used to describe the different model reduction techniques presented in the

following subsections.

4.2.1 Truncation

Model reduction by truncation consists of eliminating the states and dynamics associated

with the vector x2. The truncated model Ḡρ is then [67]

ẋ1 = A11(ρ)x1 +B1(ρ)d

e = C1(ρ)x1 +D(ρ)d
(4.9)
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In general, very little can be said about the relationship between the transfer function

matrices Gρ and Ḡρ. Particularly, the truncated system may be unstable even if the full-

order system is stable; or the truncated system realization may be non-minimal even if the

full-order realization is minimal [68]. However, the truncation error can be analyzed for

special cases.

Let Gκ(s) be the transfer function of a linear time-invariant system for a fixed parameter

ρ = κ

Gκ(s) = D(κ) + C(κ) [sI −A(κ)]−1B(κ) (4.10)

with A(κ) nonsingular, then

Gκ(∞) = Ḡκ(∞) = D(κ) (4.11)

This means that all reduced models obtained by truncation have perfect matching at infinite

frequency. Hence, truncation is preferred when accuracy of the reduced order model at high

frequencies is required.

On the other hand, the truncation error at low frequencies is given by

Gκ(0)− Ḡκ(0) = C1(κ)A−1
11 (κ)B1(κ)− C(κ)A−1(κ)B(κ) (4.12)

This difference can be unacceptably large for applications requiring good low-frequency

models. In these cases, truncation is not the appropriate model reduction method. In

contrast, the following subsection describes a model reduction method that greatly improves

the model reduction errors at low frequencies.

4.2.2 Residualization

Model reduction by residualization approximates the low-frequency behavior by setting

ẋ2 = 0, where the vector x2 represents the fast dynamics of the system [67]. This gives the

quasi-steady solution for x2

0 = A21(ρ)x1 +A22(ρ)x2 +B2(ρ)d

x2 = −A−1
22 (ρ) [A21(ρ)x1 +B2(ρ)d]

(4.13)

where A22(ρ) is nonsingular. Eliminating x2 from the remaining equations in (4.8) using

(4.13) yields the residualized model Gr

ẋ1 = Ā11(ρ)x1 + B̄1(ρ)d

e = C̄1(ρ)x1 + D̄(ρ)d
(4.14)
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where

Ā11(ρ) = A11(ρ)−A12(ρ)A22(ρ)−1A21(ρ), B̄1(ρ) = B1(ρ)−A12(ρ)A22(ρ)−1B2(ρ)

C̄1(ρ) = C1(ρ)− C2(ρ)A22(ρ)−1A21(ρ), D̄(ρ) = D(ρ)− C2(ρ)A22(ρ)−1B2(ρ)

Notice that A(ρ) can be written as

A(ρ) =

[
I A12(ρ)A−1

22 (ρ)

0 I

][
Ā11(ρ) 0

0 A22(ρ)

][
I 0

A−1
22 (ρ)A21(ρ) I

]
(4.15)

which gives

A−1(ρ) =

[
I 0

−A−1
22 (ρ)A21(ρ) I

][
Ā−1

11 (ρ) 0

0 A−1
22 (ρ)

][
I −A12(ρ)A−1

22 (ρ)

0 I

]
(4.16)

Equation (4.16) is used to obtain Gκ(0) for a fixed parameter ρ = κ as

Gκ(0) = D(κ)
[
C̄1(κ) C2(κ)

] [ Ā−1
11 (κ) 0

0 A−1
22 (κ)

][
B̄1(κ)

B2(κ)

]
(4.17)

which is equivalent to

Gκ(0) = Ḡκ(0) = D̄(κ)− C̄1(κ)Ā−1
11 (κ)B̄1(κ) (4.18)

This means that residualization retains the accuracy of the reduced order model at low-

frequency. Consequently, the residualization technique is related to the direct truncation

technique by the bilinear transform s −→ 1/s [69].

As seen, truncation and residualization methods require a state-space realization of the

system. However, the dynamics of a system can be represented by many state-space models

and, in principle, truncation and residualization techniques can be applied to all of them.

Hence, an important task in model order reduction is to select the appropriate state-space

realization for which truncation or residualization bounded errors are guaranteed. Examples

of these realizations are the modal and balanced state-space realizations.

Modal and balanced state-space realizations are commonly used in engineering practice

due to their particular structure and control properties. These realizations are usually

obtained by choosing alternative state coordinates to describe the dynamics of the system.

The relation between a new set of state coordinates and the original set of state coordinates

is called a similarity transformation. The main advantage of using similarity transformations

is that the dynamic characteristics of the system are not affected by this coordinate change

in the state-space.
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Particularly, LPV state-space systems in the form (2.20) are transformed into another

set of equations if there exists a differentiable transformation, T (ρ), such that x̂ = T (ρ)x

and

˙̂x =

[
T (ρ)A(ρ) +

∂T

∂ρ
ρ̇

]
T−1(ρ)x̂+ T (ρ)B(ρ)d

e = C(ρ)T−1(ρ)x̂+D(ρ)d

(4.19)

Using these parameter-dependent transformations introduces an explicit dependence on

the parameter variation, ρ̇, into the state-space realization (4.19). These variations increase

the complexity of the LPV model, making the model reduction problem computational

challenging. Hence, a time invariant transformation, T , that generates an LPV realization

with consistent states for all the feasible parameters, ρ, is used for model reduction purposes.

The desired LPV state-space transformation is then

˙̂x = TA(ρ)T−1x̂+ TB(ρ)d

e = C(ρ)T−1x̂+D(ρ)d
(4.20)

The following subsections present the details of the modal and balanced state-space

realizations and their model reduction techniques for LPV models. The objective is to obtain

a time invariant similarity transformation, T , that transforms the LPV model in a modal

and balanced state-space realization. Truncation is the technique chosen to reduce the LPV

modal realization and residualization is chosen to reduce the LPV balanced realization.

4.2.3 Modal Truncation

For a fixed value of the parameter, ρ = κ, there exist a state transformation matrix T such

that the transformed state matrix Â(κ) = TA(κ)T−1 is in the diagonal form [63,67]

Â(κ) =


λ1(κ)

λ2(κ)
. . .

λn(κ)

 (4.21)

and the transformed matrices B̂(κ) = TB(κ) and Ĉ(κ) = C(κ)T−1 are partioned as

B̂(κ) =


B̂1(κ)

B̂2(κ)
...

B̂n(κ)

 , Ĉ(κ) =
[
Ĉ1(κ) C̄2(κ) · · · Ĉn(κ)

]
(4.22)
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The similarity transformation that induces the diagonal structure in (4.21) is built

around the eigenvectors of A(κ). Let λi(κ) be the i-th eigenvalue of A(κ) and v(κ) the

associated eigenvector, then the transformation T is

T−1 =
[
v1(κ) v2(κ) · · · vn(κ)

]
(4.23)

Such transformation brings the system to what are known as modal coordinates, where

λi(κ) is the corresponding modal frequency and vi(κ) is the corresponding modal shape.

Then, this modal realization will retain only the modes in the frequency range of interest.

Partitioning the state matrix, Â(κ) =diag
(
Âr(κ), Ân−r(κ)

)
, where Âr(κ) contains the

r modes to retain and Ân−r(κ) the modes to remove, gives the reduced model Ĝr

˙̂xr = Âr(κ)x̂r + B̂r(κ)d

e = Ĉr(κ)x̂r +D(κ)d
(4.24)

where x̂r is the modal vector of r states to preserve. Here the truncation error between the

original modal realization Ĝ and reduced model Ĝr is given by

Ĝ(s)− Ĝr(s) =

n∑
i=r+1

C(κ)iBi(κ)

s− λi
(4.25)

and therefore ∥∥∥Ĝ(s)− Ĝr(s)
∥∥∥
∞

=
n∑

i=r+1

σ̄ [C(κ)iBi(κ)]

|Re(λi)|
(4.26)

An advantage of modal truncation is that the poles of the truncated model are a subset

of the poles of the original model and therefore retain any physical interpretation they

might have, e.g. the phugoid mode in aircraft dynamics [67]. However, the physical insight

gained from decoupling the LTI differential equations is lost when extended to LPV systems.

Using a parameter-varying transformation T (ρ), as in (4.19), introduces derivative terms

that can generate large off-diagonal elements into the transformed state matrix. Hence, a

constant transformation T that yields the modal form at a fixed point ρ = κ is used to

approximate a modal state-space basis of the LPV system. Here, modal couplings at the

other parameters ρ 6= κ are neglected while removing modes from the LPV system that are

outside the frequency range of interest.

4.2.4 Balanced Residualization

Balanced realizations are based on the measure of the controllability and observability of

the system. For an LPV system [65], these measures are given by the controllability and
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observability Gramians defined as

P >

∫ ∞
0

eA(ρ)tB(ρ)BT (ρ)eA
T (ρ)tdt (4.27)

Q >

∫ ∞
0

eA
T (ρ)tCT (ρ)C(ρ)eA(ρ)tdt (4.28)

Solutions to these integrals are also the solutions to the Lyapunov inequalities [57]

A(ρ)P + PAT (ρ) +B(ρ)BT (ρ) < 0 (4.29)

ATQ(ρ) +QA(ρ) + CT (ρ)C(ρ) < 0 (4.30)

if and only if P = P T > 0 and Q = QT > 0.

Note that the integrals given by Eq. (4.27) and Eq. (4.28) will be unbounded if the

matrix A(ρ) is not stable (i.e. there exist at least one eigenvalue on the imaginary axis

or the right-half plane). Unfortunately, ASE systems are naturally mixed stability systems

and this standard balanced reduction approach is not suitable. An alternative to computing

controllability and observability Gramians for unstable systems is to use coprime factoriza-

tions [65,66]. The objective is to find the reduced balanced coprime factors of the unstable

system and use these to construct the LPV reduced order model. A detailed description of

this approach is provided next.

Coprime Factorization Approach

If Gρ is an LPV realization of the form (2.20), there is a contractive right-coprime factor-

ization Gρ = NρM
−1
ρ such that the set of all stable input-output pairs is given by[

e

d

]
=

[
Nρ

Mρ

]
q (4.31)

where q is square integrable over the infinite time axis [64, 65]. A realization for this

contractive right-coprime factorization is defined as
ẋ

e

d

 =


A(ρ) +B(ρ)F (ρ) B(ρ)S−1/2(ρ)

C(ρ) +D(ρ)F (ρ) D(ρ)S−1/2(ρ)

F (ρ) S−1/2(ρ)


[
x

q

]
(4.32)

where

S(ρ) = I +DT (ρ)D(ρ),

F (ρ) = −S(ρ)−1
[
BT (ρ)X +DT (ρ)C(ρ)

]
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and X = XT > 0 is a constant solution of the Generalized Control Ricatti Inequality

(GCRI)

[
A(ρ)−B(ρ)S−1(ρ)DT (ρ)C(ρ)

]T
X +X

[
A(ρ)−B(ρ)S−1(ρ)DT (ρ)C(ρ)

]
−

XB(ρ)S−1(ρ)BT (ρ)X + CT (ρ)R−1(ρ)C(ρ) < 0 (4.33)

with R(ρ) = I +D(ρ)DT (ρ).

The controllability Gramian P and observability Gramian Q of the contractive right-

coprime factorization are given by

Q = X

P = (I + Y X)−1Y
(4.34)

where X solves the GCRI and Y = Y T > 0 solves the Generalized Filtering Ricatti In-

equality (GFRI)

[
A(ρ)−B(ρ)DT (ρ)R−1(ρ)C(ρ)

]
Y + Y

[
A(ρ)−B(ρ)DT (ρ)R−1(ρ)C(ρ)

]T −
Y CT (ρ)R−1(ρ)C(ρ)Y +B(ρ)S−1(ρ)BT (ρ) < 0 (4.35)

Note that linear matrix inequalities (LMIs) can be obtained from the Schur complement

of (4.33) and (4.35) with change of variables X̄ = X−1, Ȳ = Y −1. Then the solutions for

these Riccati inequalities are given by [66][
X̄ATC(ρ) +AC(ρ)X̄ −B(ρ)S−1(ρ)BT (ρ) X̄CT (ρ)

C(ρ)X̄ −R(ρ)

]
< 0 (4.36)

[
Ȳ AF (ρ) +ATF (ρ)Ȳ − CT (ρ)R−1(ρ)C(ρ) Ȳ B(ρ)

BT (ρ)Ȳ −S(ρ)

]
< 0 (4.37)

with

AC(ρ) = A(ρ)−B(ρ)S−1(ρ)DT (ρ)C(ρ),

AF (ρ) = A(ρ)−B(ρ)DT (ρ)R−1(ρ)C(ρ)

A balanced realization of the system is then a realization with equal, diagonal con-

trollability and observability Gramians, P̂ = Q̂ = Σ. Here, Σ is denoted as the Hankel

singular values matrix. The constant balancing state transformation, T , is chosen such that

P̂ = TPT T and Q̂ = (T−1)TQT−1. These expressions can be rewritten as

PT T = JΣ, QJ = T TΣ, J = T−1 (4.38)
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where J , T and Σ are unknown matrices.

One method to solve (4.38) is to use the singular value decomposition of the symmetric

positive Gramians P and Q [70, 71]. Given P = P T > 0 and Q = QT > 0, the following

holds

P = UpΣpU
T
p = LpL

T
p

Q = UqΣqU
T
q = LqL

T
q

(4.39)

where Lp = UpΣ
−1/2
p and Lq = UqΣ

−1/2
q . Substituting (4.39) in (4.38) yields

LpL
T
p T

T = SΣ, LqL
T
q J = T TΣ, J = T−1 (4.40)

Then the solution for S and Σ follows from the eigenvalue problem

Lp(L
T
p Lq)L

T
q J = SΣ2

Lp(UeΣeV
T
e )LTq = JΣ2J−1

(4.41)

where LTp Lq = UeΣeV
T
e and

S = LpUeΣ
−1/2
e

T = (LqVeΣ
−1/2
e )T

Σ = Σe

(4.42)

Note also that P̂ Q̂ = TPQT−1 = Σ2, and therefore the eigenvalues of the product of the

Gramians are invariant under transformation [57].

Using the balanced transformation T in (4.42), the balanced parameter varying right-

coprime factorization of Gρ is
˙̂x

e

d

 =


Â(ρ) + B̂(ρ)F̂ (ρ) B̂(ρ)S−1/2(ρ)

Ĉ(ρ) +D(ρ)F̂ (ρ) D(ρ)S−1/2(ρ)

F̂ (ρ) S−1/2(ρ)


[
x̂

q

]
(4.43)

where q represents the set of all stable input signals and

Â(ρ) = T−1A(ρ)T

B̂(ρ) = T−1B(ρ)

Ĉ(ρ) = C(ρ)T

F̂ (ρ) = −S−1(ρ)
[
B̂T (ρ)Σ +DT (ρ)Ĉ(ρ)

]
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This realization reflects the combined controllability and observability of the individual

states. Partitioning the system in Eq. (4.43) such that Σ =diag(Σ1,Σ2), the balanced

right-coprime factor is
˙̂x1

˙̂x2

e

d

 =


Â11(ρ) + B̂1(ρ)F̂1(ρ) Â12(ρ) + B̂1(ρ)F̂2(ρ) B̂1(ρ)S−1/2(ρ)

Â21(ρ) + B̂2(ρ)F̂1(ρ) Â22(ρ) + B̂2(ρ)F̂2(ρ) B̂2(ρ)S−1/2(ρ)

Ĉ1(ρ) +D(ρ)F̂1(ρ) Ĉ2(ρ) +D(ρ)F̂2(ρ) D(ρ)S−1/2(ρ)

F̂1(ρ) F̂2(ρ) S−1/2(ρ)



x̂1

x̂2

q


(4.44)

with

Â11(ρ) ∈ Rr×r, Â12(ρ) ∈ Rr×(n−r), B̂1(ρ) ∈ Rr×m, Ĉ1(ρ) ∈ Rp×r,

Â21(ρ) ∈ R(n−r)×r, Â22(ρ) ∈ R(n−r)×(n−r), B̂2(ρ) ∈ R(n−r)×m, Ĉ2(ρ) ∈ Rp×(n−r),

F̂1(ρ) ∈ Rm×r, F̂2(ρ) ∈ Rm×(n−r), D(ρ) ∈ Rp×m, S(ρ) ∈ Rm×m.

Here, Σ1 is related to the most controllable and observable states and Σ2 is related to

the least controllable and observable directions. The small Hankel singular values in Σ2

indicate that a finite amount of energy in a given input do not result in significant energy

in the output. Eliminating these states will not affect the input/output characteristics of

the system. Hence, the reduced right-coprime factor obtained by residualizing the states

related to Σ2 is [66] 
˙̂xr

e

d

 =


As(ρ) Bs(ρ)

Cns(ρ) Dns(ρ)

Cms(ρ) Dms(ρ)


[
x̂r

q

]
(4.45)

where

As(ρ) =Â11(ρ) + B̂1(ρ)F̂1(ρ)−[
Â12(ρ) + B̂1(ρ)F̂2(ρ)

] [
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]−1 [
Â21(ρ) + B̂2(ρ)F̂1(ρ)

]
,

Bs(ρ) =B̂1(ρ)S−1/2(ρ)−[
Â12(ρ) + B̂1(ρ)F̂2(ρ)

] [
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]−1 [
B̂2(ρ)S−1/2(ρ)

]
,

Cns(ρ) =Ĉ1(ρ) +D(ρ)F̂1(ρ)−[
Ĉ2(ρ) +D(ρ)F̂2(ρ)

] [
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]−1 [
Â21(ρ) + B̂2(ρ)F̂1(ρ)

]
,

Cms(ρ) =F̂1(ρ)− F̂2

[
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]−1 [
Â21(ρ) + B̂2(ρ)F̂1(ρ)

]
,
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Dns(ρ) =D(ρ)S−1/2(ρ)−
[
Ĉ2(ρ) +D(ρ)F̂2(ρ)

] [
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]−1
B̂2(ρ)S−1/2(ρ),

Dms(ρ) =S−1/2(ρ)− F̂2(ρ)
[
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]−1
B̂2(ρ)S−1/2(ρ)

assuming
[
Â22(ρ) + B̂2(ρ)F̂2(ρ)

]
invertible ∀ρ ∈ A.

Finally, the reduced r−th model Ĝρr = N̂ρrM̂
−1
ρr is given by[

˙̂xr

e

]
=

[
As(ρ)−Bs(ρ)D−1

ms(ρ)Cms(ρ) Bs(ρ)D−1
ms(ρ)

Cns(ρ)−Dns(ρ)D−1
ms(ρ)Cms(ρ) Dns(ρ)D−1

ms(ρ)

][
x̂r

d

]
(4.46)

This coprime factorization approach is used for balanced reduction of LPV ASE models.

The following section presents a procedure to obtain a reduced LPV model for the BFF

test vehicle.

4.3 Model Reduction of Body Freedom Flutter Vehicle

This section presents a procedure to obtain an LPV reduced order model of the BFF vehicle

that preserves the state meaning at all flight conditions. As described in Chapter 3, the

LPV model of the aircraft consists of 148 states, 8 inputs and 11 outputs. Fig. 3.24 and

Fig. 3.25 show that the modes participating in the flutter phenomena vary between 10-160

rad/s across the flight envelope. Consequently, the frequency range of interest for the BFF

model reduction is defined to be 10-160 rad/s.

The four LPV model reduction techniques described in Section 4.2 are applied sequen-

tially to the BFF vehicle. Elimination of states is based on the ν-gap metric, preservation

of unstable dynamics, and input/output frequency responses between the full order model

and the reduced order model. The approach starts by truncating states directly related

to very low-frequency modes of the aircraft. Next, the LPV system is transformed to a

quasi-modal form in order to remove high-frequency modes outside the bandwidth of in-

terest. Here, quasi-modal means that the time-invariant transformation does not decouple

the LPV system at all flight conditions. A third step in the model reduction approach

is to residualize the remaining states related to multiple modes. Finally, the LPV system

is balanced based on its coprime factors and the states with the smallest Hankel singular

values are residualized.

In addition, a LTI model reduction of the BFF is performed by treating the models

at individual flight conditions as LTI systems. In this case, a similarity transformation is

computed for each LTI model meaning that the state consistency of the system is lost across

the flight envelope. The objective is to set a lower bound for the BFF model reduction
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problem by comparing the results between the LTI and LPV procedures. The following

subsections present the details of both procedures.

4.3.1 Truncation

The goal of the model reduction by truncation is to match the response of the system at

infinite frequency. Low-frequency modes outside the bandwidth of interest can be truncated

from the model giving preference to high-frequency accuracy. The BFF plunge displacement

and roll angle modes, corresponding to the second and third states respectively, have a

frequency approximately four orders of magnitude below the bandwidth of interest at all

flight conditions. Hence, these extremely slow modes are truncated to obtain a LPV reduced

order model with 146 states.

Figure 4.3 shows a comparison of the frequency responses between the full order model

with 148 states and the truncated model with 146 states. The bode plots corresponding

to the transfer functions from the left body flap deflection to the pitch rate measurement

and the right outboard flap deflection to the left forward wing accelerometer are plotted for

the flight conditions at 42 and 72 KEAS. Here, the highlighted area denotes the frequency

bandwidth of interest for the model reduction problem. The plots show that the two states

around 10−3 rad/s are successfully truncated without affecting the input/output relationship

at higher frequencies.

Figure 4.4 plots the frequency dependency of the ν-gap metric between the full order

model and the truncated model for all flight conditions. Notice that the errors across

frequency and airspeed is of order 10−7. Hence, the elimination of plunge displacement and

roll angle does not affect the closed-loop response of the system in the ν-gap metric sense.

Figure 4.5 shows the full order model pole migration in the complex plane and compares

it with the pole migration of the truncated model. The plot shows the trajectory of poles

and their transition from stable to unstable with respect to airspeed. Blue color poles

correspond to low velocities and red color poles to the highest speeds in the flight envelope.

Notice that the aircraft is stable at 40 KEAS (i.e., all dark blue poles are in the left-hand

plane) with three complex pairs close to the imaginary axis. These complex poles migrate to

the right-half plane and it is observed that the aircraft becomes highly unstable at the fastest

velocities. Comparing the pole migration for the full order model and truncated model, it

is observed that truncation of the rigid body states preserves the unstable dynamics of the

system perfectly. Hence, the truncated LPV model with 146 states is accepted as a good

approximation of the LPV full order model. The next step is to eliminate the high-frequency
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Figure 4.3: Bode plots of full order model (148 states) at 42 KEAS ( ) and 72 KEAS

( ) compared to truncated model with 146 states ( / ). Lighter areas denote

frequency range of no interest.
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Figure 4.4: Variation of the ν-gap metric with respect to frequency and airspeed: Computed

between full order model (148 states) and truncated model (146 states)

content outside the bandwidth of interest as described in the following subsection.

4.3.2 Modal Truncation

Modal truncation is chosen to eliminate the high-frequency modes outside the bandwidth

of interest. A constant linear transformation, T64, computed at 64 KEAS, is used to display

the states with major contributions to the modes of the model with 146 states. This modal

transformation decouples the model at 64 KEAS and exhibits that 50 states are related

to high-frequency modes outside the bandwidth of interest. A quasi-modal LPV model

is generated by applying the constant transformation T64 at all flight conditions and 50

identified high-frequency states are truncated from the model. This step leads to a LPV

model with 96 states.

Figure 4.6 shows a comparison of the frequency responses between the truncated model

with 146 states and the new modal reduced model with 96 states. As in the previous

subsection, the bode plots correspond to the transfer functions from the left body flap

deflection to the pitch rate measurement and the right outboard flap deflection to the

left forward wing accelerometer at 42 and 72 KEAS flight conditions. In this case, model

mismatches beyond 160 rad/s, corresponding to lightened areas, are not considered. The
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Figure 4.5: Pole migration across the flight envelope for full order model and truncated

model

plots show that the frequency response of the selected input/output transfer functions match

accurately within the bandwidth of interest (10-160 rad/s).
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Figure 4.6: Bode plots of truncated model (146 states) at 42 KEAS ( ) and 72 KEAS

( ) compared to modal truncated model with 96 states ( / ). Lighter areas denote

frequency range of no interest.

Figure 4.7 plots the frequency dependency of ν-gap metric between the truncated model

and the new modal reduced model with 96 states for all flight conditions. Notice here that
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the ν-gap metric is below 0.2 at all flight conditions in the bandwidth of interest. These

values for the ν-gap metric are considered good and indicate that the closed-loop response

of both reduced models are very similar.
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Figure 4.7: Variation of the ν-gap metric with respect to frequency and airspeed: Computed

between truncated model (146 states) and modal truncated model (96 states)

Figure 4.8 shows the pole migration of the modal truncated model with respect to the

velocity. Comparing this plot to the full order model pole migration (Fig. 4.5), it is observed

that the unstable dynamics follows the expected trajectory. Hence, the truncation of high-

frequency modes beyond 160 rad/s does not affect the predominant dynamics of the system.

With this last validation, the LPV model with 96 states is accepted as a good match of

the LPV full order model within the bandwidth of interest. Following, the elimination of

modes with multiplicity greater than 1 is presented.

4.3.3 Residualization

Residualization of states is preferred when fidelity of the approximation at low frequencies

is of interest. In this step, modes of multiplicity greater than 1 are residualized based on

their ν-gap metric values. The ν-gap metric elimination threshold is set at 0.1, meaning

that a state is eliminated if the ν-gap metric between the non-residualized and residualized

model, within the bandwidth of interest, is less than 0.1 at all flight conditions. From this
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Figure 4.8: Pole migration across the flight envelope for modal truncated model

iteration, 55 states that achieve the ν-gap metric threshold are residualized to obtain a LPV

model with 41 states.

Figure 4.9 shows a comparison of the frequency responses between the modal truncated

model with 96 states and the new residualized model with 41 states. Again, bode plots of

the transfer functions from the left body flap deflection to the pitch rate measurement and

the right outboard flap deflection to the left forward wing accelerometer are shown for the 42

and 72 KEAS flight conditions. The bandwidth of interest (10-160 rad/s) corresponds to the

highlighted area. Notice that there is a phase shift in the transfer functions corresponding

to 42 KEAS. Originally, this flight condition is marginally stable, having a pair of complex

poles very close to the imaginary axis. This indicates that the modal damping is almost zero

and hence, small changes in the real value of these poles can lead to shifts in the phase values.

In this case, the modal damping corresponding to the marginal stable mode is of the order

of 10−4 in the full order model. The residualization procedure slightly moves this marginal

stable pole to the right half plane, which has a new modal damping approximately of −10−4.

Here, negative damping indicates unstable modes. From this analysis it is concluded that

the slightly shift of the pole at 42 KEAS does not affect the response of the system and

hence, can be neglected. This statement is also confirmed from the ν-gap metric values

across the frequency range of interested presented next.
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Figure 4.9: Bode plots of modal truncated model (96 states) at 42 KEAS ( ) and

72 KEAS ( ) compared to residualized model with 41 states ( / ). Lighter ar-

eas denote frequency range of no interest.

Figure 4.10 plots the frequency dependency of ν-gap metric between the modal truncated
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model and the new residualized model with 41 states for all flight conditions. It is observed

that the ν-gap metric is below 0.2 at all flight conditions in the bandwidth of interest.

Notice that these values for the ν-gap metric are higher than the decision threshold set for

elimination of states. However, the elimination of the whole set of states that individually

introduce a ν-gap metric less than 0.1, can only be expected to be worse than this threshold.

In addition, values for the ν-gap metric less than 0.2 are considered good and hence, the

LPV residualized model is said to be similar to the LPV modal truncated model in the

ν-gap metric.
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Figure 4.10: Variation of the ν-gap metric with respect to frequency and airspeed: Com-

puted between modal truncated model (96 states) and residualized model (41 states)

Figure 4.11 shows the pole migration of the residualized model with respect to the

velocity. Comparing this plot to the modal reduced model pole migration (Fig. 4.8), it

is observed that the unstable dynamics follows the expected trajectory. Note that this

residualization step removes the complex pair poles located very close to the imaginary axis

that were still present in the modal truncated model. Also note that the shifting of the

pole at 42 KEAS follows the trajectory expected and hence, does not make a big difference

in the system response. The next step is then to find a LPV balanced realization of this

residualized model with 41 states and eliminate the least controllable and observable states.

This last procedure is presented below.
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Figure 4.11: Pole migration across the flight envelope for residualized model

4.3.4 Balanced Coprime Factorization Residualization

The objective is to find a balanced realization based on the coprime factorization of the

LPV system and eliminate the least controllable and observable states. A right-coprime

factorization of the 41 states LPV model is used to compute the generalized controllability

and observability Gramians of the system. These Gramians are built from the solutions of

Riccati inequalities associated to the LMIs in (4.36) and (4.37).

Note that the size of each LMI problem grows as function of the state order n, number

of parameters nρ, and parameter griding ρi of the LPV system. The number of decision

variables, k, to solve for symmetric matrices is related with the state order as k = n(n+1)/2.

Hence, the LMI problem specified for the residualized LPV model with 41 states requires

the solution of 861 decision variables subject to 27 feasibility constraints. These constraints

result from the parameter gridding of the LPV system, in this case the 26 flight conditions

available for the BFF model, and the required positive definite condition of the variable

matrices, X and Y . LMI Lab in the Robust Control Toolbox for MATLAB [51] is used

to find positive definite, symmetric feasible solutions for X and Y of 41 × 41 dimension.

These solutions are computed after 3 hours using a standard personal computer. Then, the

controllability and observability Gramians, P and Q are obtained by replacing the X and
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Y feasible solutions in (4.34).

The balancing transformation Tb is obtained from singular value decompositions of the

generalized Gramians as in (4.42). This transformation finds a balanced realization of the

LPV coprime factorization such that its Gramians are equal and diagonal. The diagonal

entries of the balanced Gramians are the so called Hankel singular values. These values,

associated with the combined controllability and observability of the system, are plotted

in the Fig. 4.12. This bar plot shows that 20 balanced states have Hankel singular values

less than 0.25. Hence, a balanced LPV model with 21 states is obtained by residualizing

the 20 states with the smallest Hankel singular values. This last procedure is validated by

comparing the LPV balanced model with the LPV full order model as presented below.
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Figure 4.12: Hankel singular values: States contribution to controllability and observability

Figure 4.13 shows a comparison of the frequency responses between the full order model

with 148 states and the balanced reduced model with 21 states. The same input/output

transfer functions presented in previous subsections, are shown in these bode plots. Notice

that the balanced residualized model at 42 KEAS reduces significantly the magnitude of the

marginally stable mode. However, the phase shift produced by the model reduction indicates

that the response of the system grows infinitely with time and hence, the amplification of

the system at this particular frequency is very high. On the other hand, the balanced

reduced model seems to capture accurately the input/output relationships in the frequency
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range of interest at all flight conditions.

−20

0

20

40

60

M
ag
n
it
u
d
e
(d
B
)

From: LeftBodyFlap To: Pitchrate

101 102 103
−360

−270

−180

−90
0

90

180

270

Frequency (rad/s)

P
h
a
se

(d
eg
)

−60

−40

−20

0

20

40

M
ag
n
it
u
d
e
(d
B
)

From: RightOutFlap To: LeftWingForw

101 102 103
−1,080

−720

−360

0

360

720

Frequency (rad/s)

P
h
as
e
(d
eg
)

Figure 4.13: Bode plots of full order model (148 states) at 42 KEAS ( ) and 72 KEAS

( ) compared to balanced residualized model with 21 states ( / ). Lighter areas

denote frequency range of no interest.
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Figure 4.14 plots the frequency dependency of ν-gap metric between the full order model

with 148 states and the new balanced reduced model with 21 states for all flight conditions.

This plot shows that the ν-gap metric is less than 0.2 for almost all the frequency range of

interest. A higher ν-gap metric value of 0.3 is achieved at approximately 160 rad/s, however

ν-gap metric values of 0.3 are acceptable because the closed-loop responses of both systems

are still similar when the same controller is used.

Figure 4.15 shows the pole migration of the balanced reduced model with respect to

the velocity. Comparing this plot to the residualized model pole migration (Fig. 4.11), it is

observed that balancing the system modifies the location of the stable poles (i.e. left-half

plane poles). This is to be expected from balanced reduction methods because only the

singular hankel values are invariant under balanced transformations (see (4.38)). On the

other hand, it is observed that the unstable poles and their trajectory across the flight

envelope are preserved on the balanced reduced model. However, notice that the unstable

real poles present at 90 KEAS are slightly changed into a complex pair pole with equivalent

frequency and modal damping. Because the second order system created with the positive

real poles is equivalent to the system with the complex poles, it is concluded that the

balanced residualized model represents accurately the predominant dynamics of the aircraft.

The following subsection compares this LPV balanced reduced model (41 states) with a set

of LTI reduced order models resulting from neglecting the LPV nature of the system.

4.3.5 LTI Model Reduction at Individual Flight Conditions

This subsection shows that a lower order model can be obtained by treating the models at

individual flight conditions as LTI systems. These results set a lower bound for the model

reduction problem for the LPV ASE model of the vehicle. The model reduction procedure

applied to the LTI systems is the same as described for the LPV model. However, in this

case individual similarity transformations are computed for each of the 26 models. For

instance, the corresponding modal transformations at each flight condition decouple the

LTI systems at those particular velocities. Hence, the naturally LPV description of the

ASE model is lost under these transformations.

On the other hand, the solutions for the controllability and observability Gramians

are obtained by solving the equivalent form of the Riccati equations in (4.33) and (4.35)

at each flight condition. Here, the balanced realization of the LTI coprime factorization

is also obtained by computing the corresponding similarity transformations at each flight

condition. In this case, LTI reduced models with 17 states are obtained. This means that
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Figure 4.14: Variation of the ν-gap metric with respect to frequency and airspeed: Com-

puted between full order model (148 states) and balanced residualized model (21 states)
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Figure 4.15: Pole migration across the flight envelope for balanced residualized model
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the ASE model can not be reduced further than 17 states even when a single LTI model at

a particular flight condition is used.

Figure 4.16 compares the frequency response of the full order model (148 states), LPV

balanced reduced model (21 states) and LTI balanced reduced model (17 states) for flight

conditions at 42 KEAS and 72 KEAS. The plots show that the LTI reduced model is very

similar to the LPV reduced model as it matches accurately the frequency bandwidth of

interest. This is confirmed by the ν-gap metric values between the full order model and the

LTI reduced model in Fig. 4.17. Here the ν-gap metric values across the frequency range

of interest is below 0.25 for all individual flight conditions. In addition, the ν-gap metric

values between the LPV reduced model and LTI reduced model are shown in Fig. 4.18.

This plot indicates that the LPV and LTI reduced models are extremely close in the ν-

gap metric sense, which means that both models preserve the important dynamics in the

bandwidth of interest. Notice that the highest differences between the LPV and LTI reduced

models is presented around velocities of 60 KEAS. Recall that the aircraft exhibits three

unstable flutter interactions at these velocities. Because the dynamics of the system varies

significantly at those velocities, the LPV reduced model needs to retain additional states to

capture accurately these variations across the flight envelope.

4.4 Summary

This chapter described a four-step model reduction procedure for aeroservoelastic mod-

els based on classical and balanced model reduction techniques. These techniques are: (1)

truncation, (2) modal truncation, (3) residualization, and (4) balanced coprime factor resid-

ualization. The motivation of using the first three procedures in aeroservoelastic systems

is related to the computational complexity associated to balancing coprime factors of very

high order. Because the balancing problem grows with the number states of the system and

varying-parameters, feasible solutions to this problem are very hard to find for high-order

systems. Hence the need of pre-processing steps previous to the balanced coprime reduction

problem.

The procedure was successfully applied to the experimental Body Freedom Flutter air-

craft, originally modeled with 148 states, to obtain an LPV balanced reduced model with

21 states. This model is considered suitable for control synthesis as it will allow the design

of gain-scheduled multivariable controllers that guarantee robust stabilization and perfor-

mance across the flight envelope. The following chapter discusses the actuator and sensor

selection considerations previous to the design of robust controllers.
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Figure 4.16: Bode plots of full order model (148 states) at 42 KEAS ( ) and 72 KEAS

( ) compared to LPV balanced reduced model with 21 states ( / ) and LTI bal-

anced reduced model with 17 states ( / ). Lighter areas denote frequency range of

no interest.
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Figure 4.17: Variation of the ν-gap metric with respect to frequency and airspeed: Com-

puted between full order model (148 states) and LPV balanced reduced model (21 states)
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Chapter 5

Actuator and Sensor Selection for

Aeroservoelastic Systems

This chapter presents an actuator and sensor selection approach for aeroservoelastic (ASE)

systems. Selection of adequate sensor measurements and control effectors plays a criti-

cal role in the control design process. A wrong choice of actuator and sensors may put

fundamental limitations on the performance and robustness that cannot be overcome by

available advanced control design techniques. Hence, special attention to selection of input

and output measurements for feedback control is required as an initial step in the design of

controllers in order to successfully meet the desired performance. A brief review of the main

methods for input/output selection found in the literature is presented in Section 5.1. Sec-

tion 5.2 describes the problem formulation of the proposed actuator and sensor approach.

Lastly, Section 5.3 presents the actuator and sensor selection results for the body freedom

flutter (BFF) vehicle.

5.1 Literature Review: Input/Output Selection Methods

The selection of an appropriate number, place, and type of actuators and sensors plays a

significant role in the design of controllers. Satisfying a set of performance objectives for

a control system depends highly on the ability of its sensor measurements to determine

the predominant dynamics and the ability of the actuators to correct the output responses.

In general, a high number of sensors will provide more information to the controller and

a high number of actuators will have a large influence on the system. However, these

large quantities of instrumentation increase the costs of operation and maintenance of the
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system, which is one of the major motivations for effective actuator and sensor selection. In

addition, the use of less instrumentation for control decreases the probability of failure of

the system, which makes the system more reliable. Hence, selection of actuator and sensors

for feedback control has become a prerequisite for control design leading to the development

of systematic methods that aid engineers in the design process [72].

Several methods to address the actuator and sensor selection problem are found in the

literature. A majority of these methods can be grouped as control design independent and

control design dependent methods. The great advantage of control independent methods

is that they eliminate sets of inputs and outputs in a direct and efficient manner without

involving any complete controller design. These methods are usually based on measures of

input-output controllability and observability of the plant. They include the popular system

frequency dependent condition number and relative gain array (RGA) measures [73–75]. A

brief overview of these two methods is given below.

The condition number of the plant is defined as the ratio between its maximum and

minimum singular values, cond(G) = σ̄(G)/σ(G). This means that the condition number

is large if both G and G−1 have large elements. In general, a small condition number

indicates that the multivariable effects of uncertainty are not likely to be serious. On the

other hand, a large condition number implies that the system is sensitive to unstructured

input uncertainty. Large condition numbers may also mean that the RGA elements of the

plant are large [67]. The RGA of a transfer matrix was introduced as a measure of robustness

and interactions in decentralized control. This measure is defined as RGA(G) = G×(G−1)T ,

where × denotes element-by-element multiplication. Systems with large RGA elements are

very sensitive to diagonal multiplicative input uncertainty if an inverse-based controller

is used [72, 75]. This indicates that the system is fundamentally difficult to control and

therefore, sets of inputs and outputs that causes large RGA elements should be avoided.

Even though control independent methods are direct and efficient, controllability mea-

sures are only a crude representation of the actual control objectives. In some cases, when

the achievable closed-loop performance of the system is an important criterion, including

the controller design in the selection of actuators and sensors results beneficial. Conse-

quently, several methods for actuator and sensor selection based on closed-loop objectives

have been developed. These methods can refer to nominal performance [76–80], robust

stability and/or robust performance [81–84]. The most relevant control-dependent methods

to this dissertation are reviewed next.

Balas et al. [80] proposed a systematic approach for sensor selection based onH2 optimal

control design techniques. This approach exploits the well-known separation structure of
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the H2 problem which is solved by combining the full information and output estimation

problems. Here, the full information cost represents the best control possible by having

all the system information available for feedback. Hence, if the full information cost is a

large fraction of the output feedback H2 performance level, then the selected measurements

are providing enough information of the system and hence, additional measurements will

not help to improve the performance. The method was applied to the selection of sensors

for active vibration attenuation on an experimental structure indicating that acceleration

measurements for feedback control are better than displacement measurements for this

particular problem.

Recently, the problem of sensor and actuator selection based on nominal performance

was also approached by Dhingra et al. [77]. The proposed method evaluates the degradation

of the H2 performance level by designing a global optimal state feedback controller for actu-

ator selection and a global optimal state observer for sensor selection. In addition, a convex

sparsity-promoting term is included in order to eliminate the combinatorial nature of the

problem. The optimal solutions for this problem are obtained from a customized algorithm

that is well-suited for large-scale systems. Here, the design of H2 optimal controllers does

not include modeling error in the problem formulation. Hence, this methodology is particu-

larly suitable when the achievable robust performance level is close to the optimal nominal

performance of the system.

Robust performance objectives are included in the actuator and sensor selection method

developed by Lee et al. [84]. This method eliminates undesirable input/output candidates

for which a robust controller does not exist. The screening tools are based on the structured

singular value theory to compare the level of performance achieved in the presence of model

uncertainty. A shortcoming of the method is that the necessary conditions for existence

of a controller achieving the desired robust performance is a result of dropping the stabi-

lizing property of the controller. This means that sets of actuator and sensors for which

a stabilizing controller achieves the specified robust performance may not be constructed.

Hence, this method is particularly challenging for ASE systems where stabilization plays a

significant role.

This chapter proposes an actuator and sensor selection method for ASE systems that

is based on robust stability and robust performance closed-loop objectives. Here, H∞
controllers that are robust to uncertainties in the model are used to compare the level of

robust performance for a determined group of sensors or actuators. Similar to the approach

presented in [80], the selection of actuators is based on the full information problem where

the information provided to the controller corresponds to all the states of the system. On
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the other hand, the selection of sensors is based on the full control problem where the control

signal has access to the all the states through output injection. The proposed method for

input and output selection is described in the next section followed by its application to the

body freedom flutter (BFF) vehicle.

5.2 Problem Formulation

The actuator and sensor selection for ASE systems is formulated as follows: Given a number

of available actuators and sensors for feedback control, we are interested in obtaining a

subset of control inputs and measurements that achieves the desired performance objectives

and provides sufficient robustness to model uncertainty.

The approach proposed to address this problem consists of two procedures. First, robust

full-information (FI) controllers are designed for different actuator configurations ui, and

their performance is compared to obtain an optimal selection of actuators. Second, robust

full-control (FC) controllers are designed for different sensor configurations yi. Again, the

performance is compared to optimally select sensors. Notice that the full set of all com-

binatorial choices of actuators and sensors is large and unwieldy. Hence, this procedure is

executed for a limited number of configurations to expedite the analysis.

The FI and FC problems are special cases of the output feedback control problem, where

the FI plant provides the controller directly with states as measurements, while the FC plant

assumes that the controller directly affects the states. The advantage of using the FI and

FC formulations is that they are both convex problems. Hence, a globally optimal controller

can be synthesized for each sensor/actuator configuration, and the controller performance

for each configuration can be directly compared.

On the other hand, the design of output feedback controllers without the FI and FC

assumptions, yields a non-convex problem [85]. A well-known method to solve this non-

convex problem is the DK-iteration [86,87]. However, the DK-iteration does not synthesize

globally nor locally optimal controllers, leaving the performance of controllers depending not

only on the selected configuration but also the initial condition of the algorithm. Hence, the

performance of these controllers cannot be directly compared for different configurations.

Thus, this dissertation uses the FI and FC assumptions for the actuator and sensor selection

analysis.

A review of the mathematical details of the robust control formulation follows. Consider

the general control synthesis configuration for uncertain systems in Fig. 5.1. Here G is a

linear time invariant (LTI) system, K is the controller, and ∆ is the model uncertainty.
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The performance objectives are collected in e, and the disturbances are collected in d. The

controller is provided with measurements y and generates control inputs u. In addition, the

dynamic model uncertainty ∆ is assumed to lie in the set

∆1/γ =: {diag(∆1, . . . ,∆s)| ‖∆k‖ ≤ γ−1, k = 1, . . . , s} (5.1)

G

K

∆

d e

u y

w z

Figure 5.1: Robust control configuration

The robust control problem is to find a stabilizing controller K that minimizes the

H∞ norm of the closed-loop transfer function from d to e while maximizing the robustness

against the uncertainty ∆. This robust performance synthesis is formulated as

inf
K

(
sup

∆∈∆1/γ

‖FU (FL(G,K),∆)‖
)
≤ γ (5.2)

where the linear fractional transformation FU (FL(G,K),∆) denotes the uncertain closed-

loop transfer function, ‖·‖ denotes the induced L2 norm of the system, and γ denotes the

robust performance (RP) level achieved by the controller.

The optimization problem in (5.2) can be turned into a norm computation of a scaled

system such that

inf
K

(
inf

Θ∈Θ

∥∥∥Θ1/2FL(G,K)Θ−1/2
∥∥∥) < γ (5.3)

where the scalings Θ belong to the set

Θ := {diag(θ1Im1 , . . . , θsIms , Ih)|θk > 0, k = 1, . . . , s} (5.4)

with mk as the dimension of the kth uncertainty block in (5.1) and h as the dimension of

the performance objectives. Here, it is assumed that disturbance and performance channels
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are both of dimension h. Notice that with this definition each Θ ∈ Θ has the property that

it commutes with each ∆ ∈∆1/γ , i.e. Θ∆ = ∆Θ.

The optimization problem in (5.3) is non-convex and there is no direct method to syn-

thesize an optimal output feedback controller. However, this problem results in a convex

optimization if the FI and FC special assumptions are considered for the control design.

Following, the conditions for the FI problem are derived.

The FI nominal plant, GFI , is defined by the state space model
ẋ

e

y

 =


A B1 B2

C1 D11 D12

I 0 0



x

d

u

 (5.5)

where x ∈ Rn, e ∈ Rne , d ∈ Rnd , y ∈ Rny , and u ∈ Rnu .

The H∞ robust FI problem is to find a stabilizing controller u = Kx such that

inf
Θ∈Θ

∥∥∥Θ1/2FL(GFI ,K)Θ−1/2
∥∥∥ < γ (5.6)

where the scaled closed-loop transfer matrices Θ1/2FL(GFI ,K)Θ−1/2 yields the state space

[
A+B2K B1Θ−1/2

Θ1/2(C1 +D12K) Θ1/2D11Θ−1/2

]
(5.7)

The H∞ norm computation in (5.6) can be transferred into a linear matrix inequality

(LMI) optimization described by the following lemma.

Lemma 5.2.1 Let the scaled closed-loop transfer function in (5.7) be a stable LTI system.

Then
∥∥Θ1/2FL(GFI ,K)Θ−1/2

∥∥ < γ if and only if Θ ∈ Θ and there exists a symmetric

matrix P > 0 such that [88][
(A+B2K)TP + P (A+B2K) PB1Θ−1/2

Θ−1/2BT
1 P −γ2I

]
+ (5.8)

[
(C1 +D12K)T

Θ−1/2DT
11

]
Θ
[

(C1 +D12K) D11Θ−1/2
]
< 0

The bi-linear terms in (5.8) are simplified using the Schur-complement. The result is

then pre- and post-multiplied by the diagonal matrix diag(I,Θ1/2,Θ−1/2) to obtain
ATP+PA+KTBT

2 P+PB2K PB1 CT1 +KTDT
12

BT
1 P −γ2Θ DT

11

C1+D12K D11 −Θ−1

 < 0 (5.9)
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As a final simplification, the first row and column of (5.9) are pre- and post-multiplied

by P−1. By defining Q = P−1, L = KQ and applying a Schur Complement, we obtain[
QAT +AQ+ LTBT

2 +B2L QCT1 + LTDT
12

C1Q+D12L −Θ−1

]
(5.10)

+
1

γ2

[
B1Θ−1BT

1 B1Θ−1DT
11

D11Θ−1BT
1 D11Θ−1DT

11

]
< 0

The LMI formulation in (5.10) is turned into a generalized eigenvalue problem to solve

for a controller K that minimizes the RP level γ. This eigenvalue problem is computed

using existing software such as LMILab and YALMIP. On the other hand, the conditions

for the FC problem are similarly derived using the FI dual problem. Here, the full control

plant is defined as GFC = GFI
T . These conditions are then used for the selection of sensors.

Following, the application of these two procedures are presented for the experimental ASE

vehicle.

5.3 Actuator and Sensor Selection for Body Freedom Flutter

Vehicle

This section presents the actuator and sensor selection for feedback control of the BFF

vehicle using the approach described in Section 5.2. The aircraft has 8 control surfaces and

11 sensors available for control. Sensor measurements include gyros, accelerometers and

hot-film sensors located at the leading-edge stagnation point (LESP) to estimate the lift

distribution. This configuration of sensors and control surfaces was depicted in Fig. 3.4.

The reduced order models with 21 states obtained in Chapter 4 are used to synthe-

size FI and FC controllers for several subsets of control surfaces and sensor measurements.

The control objectives are to suppress the unstable flutter interactions observed at 44, 60,

and 62 KEAS and to increase the structural damping of the vehicle. Damping of modes can

be achieved by generating a signal that is in phase with the modal velocities to reduce the

structural vibration energy [89]. However, with the existent description of inputs and out-

puts of the system, modal velocities are not observed explicitly. Hence, a modification of the

system’s description is required to extract modal velocities as the performance objectives.

Modal velocities can be obtained by transforming the reduced order system, Gρr , into
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a second order modal realization such that at a fixed parameter ρ = κ

ξ̇1

ξ̈1

...

ξ̇k

ξ̈k


=



0 1

−ω2
1(κ)−2ζ1(κ)ω1(κ)

. . .

0 1

−ω2
k(κ)−2ζk(κ)ωk(κ)





ξ1

ξ̇1

...

ξk

ξ̇k


+



b̄11,1(κ)

b̄21,1(κ)
...

b̄1k,1(κ)

b̄2k,1(κ)


u (5.11)

Here, it is assumed that the reduce order model has only complex conjugate eigenvalues

λk = −ζkωk ± ωk
√

1− ζ2i, where ωk is the modal frequency and ζk is the modal damping.

Consequently, the transformed coordinates ξk represent the modal deflections and ξ̇k repre-

sent the modal velocities. The goal is now to find the transformation T , such that ξ = Txr

and (5.11) holds.

Rewriting the state matrix of the system in the real block diagonal form at (5.11),

involves the real modal decomposition and the controllability matrices associated to each of

the modes. The first step is to bring the reduced order model to its real modal decomposition

such that Âr(κ) = T1Ar(κ)T−1
1 is block diagonal

Âr(κ) =


Â1(κ)

Â2(κ)
. . .

Âk(κ)

 (5.12)

where Âk(κ) is a 2× 2 block representing the complex conjugate eigenvalue k and has the

form

Âk(κ) =

 −ζk(κ)ωk(κ)
√
ω2
k(κ)− ζ2

k(κ)

−
√
ω2
k(κ)− ζ2

k(κ) −ζk(κ)ωk(κ)

 (5.13)

If the system has real eigenvalues, Âk(κ) is a 1× 1 with the corresponding real pole λk as

entry. This block diagonal structure is then induced by the transformation matrix defined

as

T−1
1 =

[
<{v1(κ)} = {v1(κ)} · · · < {vk(κ)} = {vk(κ)}

]
(5.14)

where vk(κ) is the eigenvector associated to the complex conjugate eigenvalue λk(κ) of the

original state matrix Ar(κ). Again, if the system has real eigenvalues then the corresponding

real eigenvector is the only entry in the transformation matrix [90].

Once the system is in the real modal realization described by (5.13), each 2 × 2 block
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Âk(κ) can be transformed into the second order form

Āk(κ) =

[
0 1

−ω2
k(κ) −2ζk(κ)ωk(κ)

]
(5.15)

using a similarity transformation tk = skmk where

sk =
[
B̂k,1(κ) Âk(κ)B̂k,1(κ)

]
(5.16)

mk =

[
2ζk(κ)ωk(κ) 1

1 0

]
(5.17)

Here, B̂k,1(κ) corresponds to the first column of B̂k = T1Br(κ) and sk represents the

controllability matrix associated to the mode k. Then, a transformation T2 such that

Ār(κ) = T2Âr(κ)T−1
2 is in the form (5.11) can be constructed by stacking the local modal

transformations tk as

T2 =


t1

t2
. . .

tk

 (5.18)

where tk = 1 if the system has pure real eigenvalues [89].

Finally, the real modal transformation T1 and controllability transformation T2 build

up the transformation matrix T = T2T1 to express the reduced order system in terms of

modal deflections and velocities. Notice that the transformation T depends on the varying

parameter ρ. However, this transformation is only used to generate additional outputs and

hence, the state consistency of the LPV systems is not affected. With these modal veloc-

ities as performance objectives, several controllers are designed using different subsets of

actuators or sensors for each flight condition. Then, a comparison between the performance

levels and robustness measures achieved by these controllers is used to decide on the appro-

priate subset of actuators and sensors that effectively stabilize and increase the structural

damping of the system. The following subsections present the results for the two selection

procedures.

5.3.1 Control surface selection

The FI problem is used for selecting the appropriate set of actuation for the BFF aircraft.

The interconnection used to synthesize the FI controllers is depicted in Fig. 5.2. Here, e

represents the modal velocity outputs where Tκ is the collection of all local second order
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modal transformations across the flight envelope. As expected, the controller KFI takes

all the system’s states x as feedback measurements. The controller minimizes the RP level

from actuation disturbances, d, to modal velocities, e, while maximizing the robustness to

model uncertain for each input channel.

Wu ∆

d

Wd

GFI

x

KFI

ui

T−1
κ Wx

e

Figure 5.2: Control interconnection for actuator selection

Constant weights, Wd, are used to model the disturbances to each control surface.

This weight is selected as Wd = 0.5 for all control surfaces. In addition, multiplicative

input uncertainty is included to avoid destabilizing unmodeled high-frequency flexible modes

outside the control bandwidth. Recall that the available actuator bandwidth corresponds

to 125 rad/s. The uncertainty weight represents approximately 40% model error up to

100 rad/s and as much as 100% uncertainty at 300 rad/s for each input channel. This

uncertainty is described by the weight, Wu = 500(s+121.4)/(s+1.6×105). The uncertainty

block ∆ is diagonal with ||∆k|| ≤ 1 representing independent variations for each input

channel.

On the other hand, the damping of critical modes is enforced by a constant perfor-

mance weight Wx. The three modal velocities selected as control objectives correspond to

symmetric wing bending, symmetric wing torsion and anti-symmetric wing torsion. These

modes are critical for the flutter phenomena and hence, a high gain attenuation of Wx = 8

is assigned to each of them in order to ensure damping. Once all the weights are defined,

the next step is to design FI controllers for several actuation subsets ui using the intercon-

nection in Fig. 5.2. The RP levels, γ, obtained by each controller, KFI , are plotted as a

function of airspeed in Fig. 5.3.

Fig. 5.3 shows that the selection of different control surfaces subset do not have a

significant effect in the performance of the aircraft unless only a pair of flaps is used.

Furthermore, it is observed that the combination of the Body and Midboard flaps shows
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Figure 5.3: Performance level γ variation across the flight envelope for all available

flaps ( ), inboard+outboard ( ), body+midboard ( ), body+outboard ( ),

body+midboard+outboard ( ) and only body flaps ( )

a different result between 58 and 66 KEAS. Recall that the aircraft has 1 unstable mode

at 58 KEAS, 2 unstable modes at 60 KEAS and 3 unstable modes beyond 62 KEAS. Notice

that for all cases the performance starts to rapidly degrade when the aircraft has three

unstable modes (62 KEAS). The robustness analysis follows next.

Fig. 5.4 shows the phase disk margins for each of the actuators used in the different

subsets for control. A disk margin is the largest region for each channel that, for all simul-

taneous gain and phase variations inside the region, the nominal closed-loop system is stable.

It is observed that the phase margins for the outboard flap are the most affected when the

airspeed increases, even if all the available actuators are used. Using only body flaps results

in, as expected, small robustness margins when the aircraft has more than one unstable

mode. On the other hand, the combination of three flap pairs (body+midboard+outboard)

seems to obtain the best phase margins across the flight envelope. Gain margins are suffi-

ciently large for all the combinations across the flight envelope which means that they do

not constitute a constraint for actuator selection and thus, plots are not shown.

From this analysis, the conclusion is that the best combination of actuators to achieve
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Figure 5.4: Actuators phase disk margins (loop-at-a-time) using all available

flaps ( ), inboard+outboard ( ), body+midboard ( ), body+outboard ( ),

body+midboard+outboard ( ) and only body flaps ( )

the desired performance is the body, midboard and outboard flaps. In addition, the best

combination of two pairs of surfaces seems to be the set of body and outboard flaps. Fig. 5.5

and Fig. 5.6 show the closed-loop frequency responses at 42 and 72 KEAS for two optimal

controllers synthesized using different control effectors. It is observed that the controller

synthesized with two pairs of flaps provides almost the same damping to the three flutter

that the controller using the three pairs of flaps.
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Figure 5.5: Frequency response from disturbances in the body and outboard flaps to the

three critical modal velocities for the open-loop system ( ), closed-loop system with

body+outboard flaps ( ), and body+midboard+outboard flaps ( ) at 42 KEAS

5.3.2 Sensor measurement selection

The FC problem is used for selecting the appropriate set of measurements for the BFF

aircraft. The interconnection used to synthesize the FC controllers is depicted in Fig. 5.7.

Here, d represents the disturbances to modal velocities. As described previously, the con-

troller KFC affects directly all the system states. This controller minimizes the RP level

from modal disturbances, d, to output measurements, e, while maximizing the robustness

to model uncertainty for each output.

The weights used for design are Wx = 1 for the three critical modes and We = 1

for all measurements. Multiplicative output uncertainty is included to avoid sensitivity to

measurement noise outside the control bandwidth. The uncertainty weight, Wu = 500(s+
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three critical modal velocities for the open-loop system at ( ), closed-loop system with
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Figure 5.7: Control interconnection for sensor selection
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109.1)/(s+1.4×105), represents approximately 40% model error up to 80 rad/s and as much

as 100% uncertainty for frequencies higher than 300 rad/s. Here, the diagonal uncertainty

block ∆ with ||∆k|| ≤ 1 represents the sensor noise variation for each measurement.

Several sensor combinations were tested but only the most relevant results are plotted.

Fig. 5.8 shows the variation of RP levels, γ, for six different sets of measurements as a

function of airspeed. This plot shows that the system’s robust performance is more sensitive

to the selection of sensors than to the selection of actuators shown in the previous subsection.
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Figure 5.8: Performance level γ variation across the flight envelope for all available sensors

( ), 6 accelerometers ( ), pitch rate+wing aft accels ( ), pitch rate+wing fwd accels

( ), pitch rate+fwd accels+LESP ( ) and only rate sensors ( )

The best robust performance is given, as expected, by the usage of all available measure-

ments. However, using all the acceleration information in the aircraft, which corresponds to

6 accelerometers distributed between the body and both wings, obtains acceptable robust

performance. Notice also that for all cases, the performance is degraded across the flight

envelope and it is critical at 66 KEAS. Recall that at this critical speed, the body freedom

flutter is close in proximity to the symmetric torsional flutter mode.

In addition, a comparison between the set of sensors corresponding to the pitch rate
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together with the wing aft/forward accelerometers is shown in Fig. 5.8. Here, the com-

bination that includes the accelerometers at the leading edge of the wing provides better

information to the controller than the accelerometers at the trailing edge. It is also noticed

that the performance for the leading edge set, compared to the set with 6 accelerometers,

is degraded for flight conditions starting at 74 KEAS. In this case, the body freedom flutter

is close in proximity to the anti-symmetric torsional flutter mode. This means that accel-

eration information from both leading and trailing edge is required to successfully damp

out the anti-symmetric mode. Moreover, using the LESP sensors together with the pitch

rate and leading edge accelerometers can improve the performance at high speeds. Lastly,

it is observed that the performance is significantly degraded starting at 58 KEAS if only

the vehicle rates are used for feedback. At this critical speed, the aircraft is in transition to

have two flutter modes.

Fig. 5.9 and Fig. 5.10 compare the modal damping in the closed-loop system for two

sensor combinations at 42 and 72 KEAS. The plots show, as expected, that the FC controller

synthesized with all available sensors can provide more damping to the critical flutter modes

than the combination with the 6 accelerometers. Notice that the controller is not able to

add damping to the symmetric torsion mode. Penalizing this mode with a higher weight Wd

will increase damping, however the robustness of the system will be significantly degraded.

This means that the available sensor information is not able to capture the dynamics of

all three critical modes. Next, the robustness analysis comparing the phase disk margins

for each measurement is presented. Gain margins, as in the actuator selection case, are

sufficiently large for all the combinations and hence, are not plotted.

Fig. 5.11 and Fig. 5.12 plot the phase disk margins obtained for each sensor combination

across the flight envelope. Both plots show that using all the available sensors for control is

not always the best case scenario for robustness. This means that maximizing the robustness

of more channels while achieving the desired performance is harder than if less sensors are

used. Furthermore, it is observed that the controller using the 6 accelerometers for feedback,

achieves good phase margins and in cases like the wing accelerometers in the trailing edge

are better than the margins provided when all available sensors are used. From this analysis,

the conclusion is that the suitable combination of sensors for control feedback of the BFF

vehicle, given the desired performance and robustness, corresponds to the 6 accelerometers

available in the aircraft.
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Figure 5.9: Frequency response from the three modal velocity disturbances to the pitch

rate and accelerometer in the wing trailing edge for the open-loop system ( ), closed-

loop system with all sensors available ( ), and only accelerometers ( ) at 42 KEAS

5.4 Summary

This chapter described an approach for selection of actuators and sensors for aeroservoelastic

systems. The approach is based on special cases of robust control synthesis when the system

has access to all the states information and actuation. These cases, called FI and FC

problems, provide a globally optimal controller that allows a fair comparison between the

performance achieved by different sensor/actuator combinations.

The proposed actuator/sensor selection method was applied to the experimental Body

Freedom Flutter aircraft that has three flutter modes occurring across the flight envelope.

The desired performance is determined to stabilize the aircraft and add sufficient damping

to the three critical flutter modes. From this analysis it is concluded that the most suitable

subset of control surfaces corresponds to the body and outboard flaps. Following, the

most suitable subset of sensor measurements for feedback corresponds to the combination

with the 6 accelerometers available in the aircraft wings and center body. These actuator
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Figure 5.10: Frequency response from the three modal velocity disturbances to the pitch

rate and accelerometer in the wing trailing edge for the open-loop system ( ), closed-loop

system with all sensors available ( ), and only accelerometers ( ) at 72 KEAS

and sensor selection results will then be used to design output feedback controllers. The

following chapter presents the results for these designs. Notice here that the performance

obtained by the output feedback controllers can only be expected to be worse than the

performance levels reported for the FI and FC special cases.
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Figure 5.11: Rates and wing accelerometers phase disk margins (loop-at-a-time) using all

available sensors ( ), 6 accelerometers ( ), pitch rate+wing aft accels ( ), pitch

rate+wing fwd accels ( ), pitch rate+fwd accels+LESP ( ) and only rate sensors

( ) for control
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Figure 5.12: Body accelerometers and LESP phase disk margins (loop-at-a-time) using all

available sensors ( ), 6 accelerometers ( ), pitch rate+wing aft accels ( ), pitch

rate+wing fwd accels ( ), pitch rate+fwd accels+LESP ( ) and only rate sensors

( ) for control
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Chapter 6

Robust Control Synthesis for

Aeroservoelastic Systems

The design of multivariable feedback controllers for aerospace systems is often based on

the interpolation of linear controllers at various operation points. This procedure is known

as gain-scheduling control. One advantage of gain-scheduling control is the potential to

incorporate linear robust control methodologies into non-linear control design. However,

traditional gain-scheduling methods are still an ad hoc procedure that do not guarantee

the robustness, performance or stability of the system for rapid changes in the scheduling

variables [11, 30, 91]. These drawbacks were the main motivation to develop multivariable

gain-scheduled control techniques based on the linear, parameter-varying (LPV) description

of non-linear systems. The advantage of LPV techniques is that they allow the performance,

robustness, and stability limitations to be incorporated in a unified framework. These

control techniques are described in Section 6.1.

Aeroservoelastic (ASE) systems can be modeled in the LPV framework as described in

Chapter 2. In particular, this chapter refers to the design of multivariable robust controllers

for the body freedom flutter (BFF) aircraft, where the scheduling parameter for the con-

trollers corresponds to airspeed. Section 6.2 presents the design of linear, time-invariant

(LTI) robust controllers for the BFF aircraft at individual flight conditions. The point

design formulation for these controllers is the base for the synthesis of an LPV controller

that guarantees the stabilization and robust performance of the aircraft. Lastly, Section 6.3

presents the results of an LPV controller and compares the robust performance achieved

with respect to the LTI controllers designed at individual flight conditions.
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6.1 LPV Controller Synthesis

The method for LPV controller synthesis presented in this section is a generalized version

of the standard H∞ problem. This synthesis problem is depicted in Fig. 6.1. Here, Gρ

represents an LPV system andKρ represents an LPV controller. The performance objectives

are collected in e and the disturbances are collected in d. In addition, the controller is

provided with measurements, y, and generates control inputs, u.

Gρ

Kρ

d e

u y

Figure 6.1: LPV control configuration

Recall from Chapter 2 that the LPV system Gρ has the form

ẋ = A(ρ)x+B(ρ)d

e = C(ρ)x+D(ρ)d
(6.1)

where the set of admissible trajectories is defined as

A :=
{
ρ : R+ → Rnρ : ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥ 0

}
(6.2)

and the parameter rates of variation are assumed to lie in

Ṗ := {ρ̇ ∈ Rnρ | |ρ̇i| ≤ νi,i = 1, . . . , nρ} (6.3)

Now, the robust control objective in Fig. 6.1 is to find a controller Kρ such that the

resultant closed-loop system is exponentially stable and the induced L2-norm from d to

e is less than γ. This problem is commonly known as the quadratic LPV γ-performance

problem [92]. Formal definitions and assumptions for the solution of this synthesis problem

follow.

The quadratic LPV γ-performance problem is written as

min
Kρ

γ s.t ∀(ρ, ρ̇)

‖FL (Gρ,Kρ)‖L2→L2 < γ

FL (Gρ,Kρ) is exponentially stable

(6.4)
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where the linear fractional transformation FL (Gρ,Kρ) denotes the closed-loop system,

‖·‖L2→L2 denotes the induced L2-norm of the system, and γ denotes the robust perfor-

mance (RP) level achieved by the controller. Here, the induced L2-norm is defined as

‖FL (Gρ,Kρ)‖L2→L2 = sup
ρ∈A

sup
d6=0,d∈L2

‖e‖2
‖d‖2

(6.5)

where ‖·‖2 represents the signal L2-norm, i.e. ‖d‖2 =
(∫∞

0 dTd dt
)1/2

. Following, the

mathematical performance conditions in (6.4) are presented.

The general open-loop LPV system Gρ is transformed under mild assumptions on D(ρ)

into the form [93]
ẋ

e1

e2

y

 =


A(ρ) B11(ρ) B12(ρ) B2(ρ)

C11(ρ) D1111(ρ) D1112(ρ) 0

C12(ρ) D1121(ρ) D1122(ρ) Ine2
C2(ρ) 0 Ind2 0




x

d1

d2

u

 (6.6)

where ρ ∈ A, x ∈ Rn, e1 ∈ Rp1 , e2 ∈ Rp2 , y ∈ Rny , d1 ∈ Rm1 , d2 ∈ Rm2 , and u ∈ Rnu .

Similarly, the controller Kρ is defined as[
ẋK

u

]
=

[
AK(ρ, ρ̇) BK(ρ, ρ̇)

CK(ρ, ρ̇) DK(ρ, ρ̇)

][
xK

y

]
(6.7)

where xK ∈ RnK denotes the controller states and ρ̇ ∈ Ṗ denotes the parameter variation

rates. With these, the closed-loop LPV system FL (Gρ,Kρ) yields the state-space represen-

tation [
ẋcl

e

]
=

[
Acl(ρ, ρ̇) Bcl(ρ, ρ̇)

Ccl(ρ, ρ̇) Dcl(ρ, ρ̇)

][
xcl

d

]
(6.8)

Here, xTcl =
[
xT xTK

]
, eT =

[
eT1 eT2

]
, dT =

[
dT1 dT2

]
, and

Acl(ρ, ρ̇) =

[
A(ρ) +B2(ρ)DK(ρ, ρ̇)C2(ρ) B2(ρ)CK(ρ, ρ̇)

BK(ρ, ρ̇)C2(ρ) AK(ρ, ρ̇)

]
(6.9)

Bcl(ρ, ρ̇) =

[
B11(ρ) B12(ρ)DK(ρ, ρ̇)

0 BK(ρ, ρ̇)

]
(6.10)

Ccl(ρ, ρ̇) =

[
C11(ρ) 0

C12(ρ) +DK(ρ, ρ̇)C2(ρ) CK(ρ, ρ̇)

]
(6.11)

Dcl(ρ, ρ̇) =

[
D1111(ρ) D1112(ρ)

D1121(ρ) D1122(ρ)DK(ρ, ρ̇)

]
(6.12)
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Now, the L2-norm and stability conditions of FL(Gρ,Kρ) in (6.4) can be transferred into a

linear matrix inequality described in the following lemma.

Lemma 6.1.1 The LPV system FL(Gρ,Kρ) is exponentially stable with ‖FL (Gρ,Kρ)‖L2→L2
< γ, if there exists a continuously differentiable matrix function W : Rnρ → R(n+nK)×(nK+n),

W (ρ) = W (ρ)T > 0 and continuous bounded matrix functions AK : Rnρ × Rnρ → RnK×nK ,

BK : Rnρ × Rnρ → RnK×ny , CK : Rnρ × Rnρ → Rnu×nK , and DK : Rnρ × Rnρ → Rnu×ny

such that [93]
ATcl(ρ, ρ̇)W (ρ) +W (ρ)ATcl(ρ, ρ̇) +

∑s
i=1 ρ̇i

∂W
∂ρi

W (ρ)Bcl(ρ, ρ̇) γ−1CTcl(ρ, ρ̇)

BT
cl(ρ, ρ̇)W (ρ) −Ind γ−1DT

cl(ρ, ρ̇)

γ−1Ccl(ρ, ρ̇) γ−1Dcl(ρ, ρ̇) −Ine

 < 0

(6.13)

for all ρ ∈ A and |ρ̇i| ≤ νi, i = 1, · · · , nρ.

This synthesis problem can be solved numerically when expressed as the feasibility of a

set of affine matrix inequalities. The following theorem presents the main results for the

existence of an LPV controller that solves Lemma 6.1.1.

Theorem 6.1.2 The quadratic LPV γ-performance problem in (6.4) is solvable if there

exist continuously differentiable matrix functions X : Rnρ → Rn×n and Y : Rnρ → Rn×n

such that for all ρ ∈ A, X(ρ), Y (ρ) > 0, and [93] X(ρ)ǍTX(ρ)+ǍX(ρ)X(ρ)−∑s
i=1±

(
νi
∂X
∂ρi

)
−B2(ρ)BT2 (ρ) X(ρ)CT11(ρ) γ−1B̌X(ρ)

C11(ρ)X(ρ) −Ine1
γ−1D111·(ρ)

γ−1B̌TX(ρ) γ−1DT
111·(ρ) −Ind

 < 0

(6.14) ǍTY (ρ)Y (ρ)+Y (ρ)ǍY (ρ)+
∑s
i=1±

(
νi
∂Y
∂ρi

)
−C2(ρ)TC2(ρ) Y (ρ)B11(ρ) γ−1ČTY (ρ)

BT11(ρ)Y (ρ) −Ind1
γ−1DT

11·1(ρ)

γ−1ČX(ρ) γ−1D11·1(ρ) −Ine

 < 0

(6.15)[
X(ρ) γ−1In

γ−1In Y (ρ)

]
≥ 0

(6.16)

where

D111·(ρ) = [D1111(ρ), D1112(ρ)] , D112·(ρ) = [D1121(ρ), D1122(ρ)] ,

D11·1(ρ) =

[
D1111(ρ)

D1121(ρ)

]
, D11·2(ρ) =

[
D1112(ρ)

D1122(ρ)

]
,
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and

ǍX(ρ) = A(ρ)−B2(ρ)C12(ρ), B̌X(ρ) = B1(ρ)−B2(ρ)D112·(ρ),

ǍY (ρ) = A(ρ)−B12(ρ)C2(ρ), ČY (ρ) = C1(ρ)−D11·2(ρ)C2(ρ),

The controller Kρ is constructed with the feasible solutions for X(ρ), Y (ρ) and γ.

Implementation of the feasibility problem in Theorem 6.1.2 requires the parametrization

of X(ρ) and Y (ρ) with some pre-selected basis functions. Details about the controller

construction and implementation of the synthesis algorithm can be found in [93]. This

dissertation uses the synthesis algorithm developed in the Matlab LPVTools [94].

6.2 Output Feedback H∞ Controllers

This section presents the point design (i.e., fixed ρ) of H∞ controllers for the BFF vehicle.

The control objectives are to suppress the unstable flutter interactions observed at 44, 60,

and 62 KEAS and to increase the structural damping of the vehicle. These modes vary

between 20 and 70 rad/s and consist of the first symmetric wing bending, anti-symmetric

wing bending, symmetric wing torsional, and anti-symmetric wing torsional modes. The

performance measure is to minimize the maximum frequency response of the four flexible

modes against input disturbances.

As described in Chapter 5, the structural damping of the aircraft is achieved by re-

ducing the vibration energy from the modal velocities. This specification is formulated as

minimizing the H∞-norm between the input disturbances and the modal velocities. Here,

the set of actuators and sensors chosen to achieve this desired performance correspond to

the body and outboard flaps together with the acceleration measurements in the aircraft

wings and center body. This control problem formulation is shown in Fig. 6.2.

The block diagram in Fig. 6.2 shows a weighted control interconnection with multiple

performance specifications. These performance specifications are in the form of closed-loop

transfer functions which are to be made small through feedback. The mathematical ob-

jective is to make the H∞-norm of the multiple-input, multiple-output closed-loop transfer

function, γ, less than 1. This means that the weighting functions express the demand on

disturbance rejection, damping augmentation, robustness, and control usage of the system.

Hence, the design task is to find the appropriate tuning weights that meet the aircraft

performance objectives.

The weighting functions in the control interconnection are related to the closed-loop
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transfer functions of the aircraft as[
e

u

]
=

[
WeR

−1
ρ GxSIWd WeGxSIKWn

WuTIWd WuSIKWn

][
d

n

]
(6.17)

where SI = (I−KGy)−1 is the input sensitivity transfer function and TI = KGy(I−KGy)−1

is the complementary input sensitivity transfer function. Here, Gy represents the vehicle

dynamics with sensor measurement outputs and K the controller to be synthesized. Simi-

larly, Gx corresponds the full information vehicle dynamics with the states as outputs, and

Rρ corresponds to the modal velocities transformation. In addition, We and Wu represent

the performance weights and Wd and Wn represent the input scalings. The selection of

these weights is explained following.

The performance weight for vibration attenuation, We, is selected as a constant scaling

on the modal velocity outputs. This constant weighting shapes the closed-loop transfer func-

tion to be flat across frequency. Because the four flexible modes between 20 and 100 rad/s

are isolated from the output response, a constant scaling provides a good performance ob-

jective without adding additional states to the control problem. The constant weightings are

chosen to penalize the open-loop modes across the flight envelope. This diagonal constant

weighting is selected to be We = diag(10, 10, 15, 18) which correspond to the first symmetric

wing bending, anti-symmetric wing bending, symmetric wing torsional, and anti-symmetric

wing torsional modes, respectively.

In addition, constant weights Wd are used to adjust the importance of input distur-

bances. These weights are selected as Wd = 0.4 for all four control surfaces. Notice that the

closed-loop transfer function from disturbances, d, to modal velocities, e, is shaped by these

two weights We and Wd. This closed-loop performance objective expresses the demands
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in damping and disturbance rejection of the aircraft as compared with their open-loop re-

sponse. Fig. 6.3 shows the open-loop frequency response magnitude from the disturbances

d̃ to the modal velocities ẽ compared with the desired shaped closed-loop transfer function.

As mentioned before, this transfer function depends on the weighting functions. In this case,

the desired closed-loop behavior against disturbances is given by W−1
e and W−1

d . Observe

that the three flutter modes change dramatically across the flight envelope. This behavior

will be the main challenge in the design of scheduling controllers.

In addition, the control signal usage is penalized by the weight Wu. The performance

objective is to limit the control action while avoiding unmodeled high-frequency modes that

could destabilize the system. This objective is achieved by setting Wu as a high-pass filter.

Particularly, the body flaps are penalized by the first order filter 1000 s+330.36
s+3.67×105

which

corresponds to control roll-off at 160 rad/s. Recall that the flutter modes vary from 10-

160 rad/s. Similarly, the outboard flaps are penalized by 1000 s+123.88
s+1.38×105

which corresponds

to control roll-off at 60 rad/s. Here, the sensitivity to disturbances observed in Chapter 5

is the motivation to impose a lower bandwidth in the outboard flaps.

The sensor noise level for the accelerometers is also included as a performance limitation

in the problem formulation. The weighting function Wn is selected to be 0.05 for all sensors

and represents an accelerometer signal to noise ratio of 20. Here, the closed-loop transfer

function from noise disturbances, n, to control signals, u, is shaped by the weighting func-

tions Wn and Wu. Fig. 6.4 shows the desired closed-loop transfer function defined by W−1
u

and W−1
n . Notice that these weights are limiting the control bandwidth and energy used.

H∞ controllers are synthesized at each flight condition based on the block diagram

in Fig. 6.2. The weighting functions described previously remain unchanged with airspeed.

This means that the same control objectives are expected for all flight conditions and hence,

the controllers can be directly compared. Fig. 6.5 plots the performance level achieved for

each controller across the flight envelope. Here, the desired performance is achieved if

the H∞-norm of the closed-loop system in (6.17) is γ < 1. Notice that only part of the

flight envelope, from 50 to 68 KEAS, achieves the specified performance by the weighting

functions.

Fig. 6.6 shows the maximum singular values plot of the open loop gain of the system

for all flight conditions. As expected, the largest loop gains are provided in the frequency

range of the flutter modes. In addition, it is observed that a higher control bandwidth is

required at high velocities to achieve the desired performance. This control bandwidth is

the result of the limitations imposed by the instabilities of the aircraft at high airspeed.

More details about these limiting conditions will be given in later sections. Fig. 6.7 shows
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Figure 6.3: Frequency response magnitude of the open-loop transfer function from input

disturbances, d̃, at right body flap and right outboard flap to modal velocities, ẽ. Lighter

areas correspond to undesired closed-loop magnitudes limited by W−1
e and W−1

d
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Figure 6.4: Frequency response magnitude of the desired closed-loop transfer function from

noise disturbances, ñ, to control signals, ucont, defined by W−1
u and W−1

n

the transfer functions from disturbances in the body and outboard flaps to the four modal

velocities objectives. Observe that all controllers provide damping to the four critical modes

in comparison to the open loop system. Following, an analysis of the tradeoffs between

vibration attenuation, control usage, and robustness objectives is presented.

Fig. 6.8 plots the maximum singular values across frequency for the weighted transfer

function from input disturbances, d, to modal velocities, e. It is observed that the controllers

designed at higher velocities ( ) overpass the specified limit at critical frequencies. This

means that the controller can not achieve the desired performance at those frequencies. On

the other hand, the control design at slow velocities ( ) is also surpassing the magnitude

limit at lower frequencies. However, this does not constitute a bad design since the modes

at low frequencies are very well damped. Fig. 6.9 shows the maximum singular values

plot across frequency for the transfer function from sensor noise, n, to control action, u.

This transfer function limits the control usage of the controller to avoid saturation. As

expected, the control usage increases with airspeed due to the stabilization of the three

flutter modes. As before, it is observed that the controller requires a higher bandwidth as

velocity increases.
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Figure 6.6: Maximum singular value plot of loop gain KGy

The robustness in the system is imposed by the transfer function from input distur-

bances, d, to control action signals, u, and by the transfer function from noise disturbances,

n, to the modal velocities, e. Fig. 6.10 and Fig. 6.11 show the maximum singular values

for these weighted transfer functions. Both plots show that the desired robustness is harder
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Figure 6.7: Frequency response magnitude from input disturbances, d̃, to modal velocities,

ẽ. Open-loop ( ) and closed-loop ( / ) system comparison.

to achieve as airspeed increases. Fig. 6.12 and Fig. 6.13 plot the input and output disk

margins achieved by the controller across the flight envelope. Notice that the input disk
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Figure 6.8: Maximum singular value plot of the weighted closed-loop system from input

disturbances, d, to modal velocities, e.
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Figure 6.9: Maximum singular value plot of the weighted closed-loop system from noise

disturbances, n to control signal deflections, u.
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Figure 6.10: Maximum singular value plot of the weighted closed-loop system from input

disturbances, d, to control signal deflections, u.
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Figure 6.11: Maximum singular value plot of the weighted closed-loop system from noise

disturbances, n, to modal velocities, e.
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margins of the outboard flaps are higher for velocities at which the body freedom flutter

is the only instability in the aircraft. These results are to be expected because the body

freedom flutter is mainly suppressed by the body flaps.

In addition, it is observed that the body flaps margins degrade across the flight envelope

with a slightly improvement at velocities between 60 and 70 KEAS. This means that the

system stability is more sensitive to perturbations in the body flaps at velocities between 40

and 60 KEAS. Instead, the outboard disk margins degrade significantly at velocities higher

than 60 KEAS. Recall that the two wing flutter modes occur at this airspeed. This means

that the outboard flaps are mainly suppressing the two wing flutter modes and hence they

are more sensitive to perturbations at higher velocities. Following, a similar analysis for the

output disk margins is presented.
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Figure 6.12: Input disk margins for right/left body flap ( / ) and right/left outboard

flap ( / )

The output disk margins in Fig. 6.13 show that the control system is more sensitive

to disturbances in the sensor measurements. It is observed that the margins for the ac-

celerometers in the wing decrease significantly with airspeed. This is to be expected as the

information provided by the wing accelerometers is key for the suppression of all three flutter

modes. On the other hand, the accelerometers in the center body achieve higher margins.

Here, the information provided by the aft accelerometer seems to be more important for

stability of the body freedom flutter than the forward body accelerometer.

In addition, the multivariable gain and phase margins of the system are plotted in
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Figure 6.13: Output disk margins for right/left wing forward accels ( / ), right/left

wing aft accels ( / ), body forward accel ( ), and body aft accel ( )

Fig. 6.14. This plot shows that if the input/output channels are perturbed simultaneously,

the system has poor robustness margins across the flight envelope. These results will be

analyzed in Section 6.4. Finally, the control simulation with the full order model of the

aircraft (148 states) is presented next.
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Figure 6.14: Multivariable input ( ) and output ( ) margins
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Fig. 6.15 shows the frequency response magnitude for four different transfer functions

of the open-loop and closed-loop full order model. Here, the controller successfully adds

damping to the modes between 10 and 100 rad/s. Notice that the controller increases the

sensitivity to disturbance rejection at low frequencies (10-20 rad/s) and crossover frequencies

(60-200 rad/s) in the fastest velocities of the flight envelope. Despite this, the controllers do

not destabilize the system at frequencies beyond 160 rad/s where the reduced order model

is not accurate.
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Figure 6.15: Frequency response magnitude from input disturbances at right body flap and

right outboard flap to right wing forward accelerometer and body forward accelerometer.

Open-loop ( ) and closed-loop ( / ) full order model (148 states) comparison.

Two time simulations are carried out with the H∞ controllers for the reduced order

model and full order model. First, a disturbance acting on the body flaps are evaluated.

Fig. 6.16 shows the disturbance wave and magnitude applied to the simulation. Second,

disturbances acting on the outboard flaps are evaluated and Fig. 6.17 depicts those distur-

bances.
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Figure 6.16: Case A. Disturbance on right/left body flap ( / ) and right/left outboard

flap ( / )
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Figure 6.17: Case B. Disturbance on right/left body flap ( / ) and right/left outboard

flap ( / )

Fig. 6.18 shows the acceleration of vibrations in the wing and center body of the vehicle

flying at 62 KEAS and subject to disturbances in the body flaps (Case A). Notice that the

vibrations in the center body are completely eliminated by the control action. However,

the disturbances in the body flaps induce some vibrations in the wings. Even though

the controller stabilizes the system and successfully rejects the disturbances, it does not

provide sufficient damping to the anti-symmetric bending mode. However, these levels of

accelerations are still tolerable in flight. Fig. 6.19 shows the control action provided by the

four flaps in the vehicle. Here, both set of flaps are deflected less than 1 deg to stabilize and

provide damping to the system. Given that the maximum deflection of the flaps is 25 deg,

this simulation results will not saturate the system.
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Fig. 6.20 shows the acceleration of vibrations in the wing and center body of the vehicle

flying at 62 KEAS and subject to disturbances in the outboard flaps (Case B). As in Case

A, the vibrations in the center body are completely eliminated by the control action and

vibrations in the wings are also present in the vehicle. Notice that the levels of accelerations

are higher when the vehicle is subject to disturbances in the outboard flaps. This is to be

expected because the outboard flaps generate a higher moment when they are perturbed.

Fig. 6.19 shows the control action provided by the four flaps in the vehicle. Again, both set

of flaps are deflected less than 1 deg to stabilize and provide damping to the system.

On the other hand, the plots also shows a comparison between simulations with the

reduced order model and the full order model. In both cases, the responses obtained with

the full order model match accurately with the responses of the reduced order model for

which the controller was designed. This means that the reduced order model is accurate for

the control objectives specified. The next section presents the results of an LPV controller

designed with these same specifications.
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Figure 6.18: Case A. Acceleration time responses of closed-loop full order system ( )

and closed-loop reduced order system ( ) at 62 KEAS
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Figure 6.19: Case A. Flap control time responses of closed-loop full order system ( ) and

closed-loop reduced order system ( ) at 62 KEAS

6.3 Output Feedback LPV Controller

An LPV controller is synthesized for the BFF vehicle based on the control formulation

shown in Fig. 6.2. This control formulation uses the same weighting functions as in the

H∞ point designs. However, the flight envelope to study in this section corresponds to

velocities between 40 and 64 KEAS with increments of 2 KEAS. These 13 plant models of

the BFF vehicle exhibit three flutter modes. The flutter modes can be seen in Fig. 6.3 where

40 KEAS is represented by the blue dark curves and 64 KEAS is represented by the bright

green curves. Recall that this figure shows the change of dynamics of the BFF vehicle

as seen through the modal velocities. Here, modal velocities are the main performance

measure to guarantee damping in the system. Next, the LPV controller synthesis results

are presented.

Initially, LPV control design algorithms with non-rate bounds were used to synthesize a

controller. However, the algorithms could not find a feasible solution for this problem. This

indicates that it is not possible to synthesize an LPV controller that allows the airspeed to

vary infinitely fast. As expected, the LPV controller can not allow the vehicle to switch

infinitely fast between a stable and unstable plant. Hence, the rate-bounded LPV synthesis
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Figure 6.20: Case B. Acceleration time responses of closed-loop full order system ( ) and

closed-loop reduced order system ( ) at 62 KEAS

algorithm explained in Section 6.1 is used to design the parameter-varying controller. Here,

the rate of change of airspeed is limited to ±0.5 KEAS/s which corresponds to accelerations

of 30 KEAS/min. This airspeed variation is close to the expected rate of the actual BFF

vehicle in flight. On the other hand, the parametrization of the algorithm solutions are

selected as quadratic basis functions. All these design parameters are included using the

Matlab LPVTools [94].

Fig. 6.22 shows the frequency response from the right body and outboard flaps to the

accelerometers in the right wing and center body of the full order (148 states) open-loop and

closed-loop systems. This plot indicates that the LPV controller effectively suppresses the

flutter modes peaks between 20 and 100 rad/s. Without the active flutter suppression, flying

the vehicle above 42 KEAS would inevitably result in immediate structural failure due to

the fast growing oscillation at 24 rad/s. In general, the disturbances are well attenuated for

all considered airspeed, however this sensitivity is slightly increased at some low frequencies.

The sensitivity increase does not destabilize any low frequency mode as was also observed

in the H∞ point designs.

Fig. 6.23 and Fig. 6.24 show the input and output disk margins obtained by the LPV

controller at each grid point. Notice that these margins are very similar and in some cases
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Figure 6.21: Case B. Flap control time responses of closed-loop full order system ( ) and

closed-loop reduced order system ( ) at 62 KEAS

better than the margins obtained from the H∞ point designs. This indicates that the LPV

controller guarantees the stability and performance of the closed-loop vehicle flying between

40 and 64 KEAS. Next, a comparison of time response simulations are presented.

The same two disturbances cases used in the point designs to evaluate theH∞ controllers

are simulated with the LPV controller. Recall that Case A corresponds to input disturbances

in the body flaps and Case B corresponds to input disturbances in the outboard flaps. In

addition, the airspeed is set to be time-variant as shown in Fig. 6.25. The simulation

results show that the responses obtained with the LPV controller are very similar to the

responses obtained with the H∞ controller. Notice that the LPV controller slightly reduces

acceleration amplitudes in the response. This is to be expected because the LPV controller

is designed to account for speed variations. In conclusion, the LPV controller designed for

velocities between 40 and 60 KEAS with rate-bounds of ±0.5 KEAS/s successfully stabilizes

the flutter modes and provides additional damping to flexible modes in the region of interest.

However, the system does not have a good robustness at high velocities. This situation is

due to the high instability of the open-loop system at those velocities. An analysis of the

limitations in control of the system given high instabilities follows.
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Figure 6.22: Frequency response magnitude from input disturbances at right body flap and

right outboard flap to right wing forward accelerometer and body forward accelerometer.

Open-loop ( ) and closed-loop ( / ) full order model (148 states) comparison.

6.4 Limitations in Control Imposed by Unstable Poles

The previous sections showed that the feedback design goals are inherently conflicting and a

tradeoff must be performed among the different performance and robustness objectives. An

important tool used to quantify feedback design constraints is the Bode’s sensitivity integral

relation. This integral states that for single-input, single-output open-loop stable systems,

the integral of the logarithmic magnitude of the sensitivity function over all frequencies

must equal zero. Later, the theorem was extended to open-loop unstable systems showing

that the presence of unstable poles makes the sensitivity tradeoff a more difficult task [95].

This section presents the limitations in control of the BFF vehicle imposed by its flutter

modes. Here, a multivariable extension of Bode’s theorem is used.

Consider the output sensitivity function, SO(s) = (I + LO(s))−1, and the output com-

plementary sensitivity function, TO(s) = LO(s)(I+LO(s))−1, where LO(s) is the open-loop
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Figure 6.23: Input disk margins for right/left body flap ( / ) and right/left outboard

flap ( / )
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Figure 6.24: Output disk margins for right/left wing forward accels ( / ), right/left

wing aft accels ( / ), body forward accel ( ), and body aft accel ( )

gain G(s)K(s). Now, if G(s) has a right half-plane pole p with output direction yp, then
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Figure 6.26: Case A. Acceleration time responses of closed-loop full order system with LPV

controller ( ) and H∞ controller ( ) at 62 KEAS

for internal stability the following interpolation constraints apply:

SO(p)yp = 0 (6.18)

TO(p)yp = yp (6.19)

Recall that p is a pole of G(s) if there exist and output direction yp and an input direction

up with infinite gain for s = p, i.e. G(p)up = ∞ and y∗pG(p) = ∞. These pole directions
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Figure 6.27: Case A. Flap control time responses of closed-loop full order system with LPV

controller ( ) and H∞ controller ( ) at 62 KEAS

can be computed from [96]

yp = CxR (6.20)

up = BTxL (6.21)

where xR and xL are the eigenvectors corresponding to the two eigenvalue problems AxR =

pxR and x∗LA = x∗Lp, respectively. Here, the pole directions are normalized such that

y∗pyp = 1 and u∗pup = 1. With these, the Bode’s integral for multivariable unstable systems

is defined as ∫ ∞
0

ln σ̄(S(jω))dω ≥ πλmax

 k∑
j=1

<(pj)ypjy
∗
pj

 (6.22)

where

λmax

(
<(p1)yp1y

∗
p1 + · · ·+ <(pk)ypky

∗
pk

)
= λmax

[yp1 · · · ypk ]

<(p1) · · · 0

...
. . .

...

0 · · · <(pk)



y∗p1
...

y∗pk




(6.23)

The integral constraint in (6.22) is used to analyze the control limitations of the BFF

vehicle in the presence of the three flutter modes. Here, a simple shape for the desired
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Figure 6.28: Case B. Acceleration time responses of closed-loop full order system with LPV

controller ( ) and H∞ controller ( ) at 62 KEAS

sensitivity function is considered to perform the analysis [97]. Fig. 6.30 shows that the

closed-loop system has small sensitivity at low frequencies rising linearly above 0 dB up to

Ω1. Following, the sensitivity function stays flat from Ω1 to Ωa in order to pay as small

sensitivity penalty as possible. Finally, the sensitivity returns to 0 dB beyond Ωa so that

unmodeled dynamics is not excited by the controller. This frequency is usually determined

by the actuator bandwidth and/or model uncertainty. From this, the minimum sensitivity

peak value, smin, is determined by the performance requirements Ω1 and Ωa as

smin = exp

πλmax

(∑k
j=1<(pj)ypjy

∗
pj

)
+ Ω1

Ωa

 (6.24)

This maximum sensitivity peak is related to the multivariable gain and phase margins of

the system by [98]

GM =

[
1

1 + s−1
min

,
1

1− s−1
min

]
(6.25)

PM ⊆
[
−2 sin−1

(
s−1

min

2

)
, +2 sin−1

(
s−1

min

2

)]
(6.26)
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Figure 6.29: Case B. Flap control time responses of closed-loop full order system with LPV

controller ( ) and H∞ controller ( ) at 62 KEAS
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ω

ln σ̄(S)

smin

Figure 6.30: Sensitivity function shape

Fig. 6.31 shows the multivariable gain and phase margins in (6.25) and (6.26) computed

for a fixed value Ω1 = 100 rad/s and varying Ωa. In the first case, the margins for the
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available bandwidth of the BFF vehicle are plotted. This bandwidth corresponds to Ωa =

160 rad/s. Here, it is observed that the multivariable gain margins decay from 2 to 1 in

magnitude across the flight envelope. Similarly, the multivariable phase margins vary from

30 to 5 deg decaying rapidly at 60 KEAS. Recall that the aircraft is unstable at 42 KEAS

with one flutter mode, at 60 KEAS with two flutter modes, and at 62 KEAS with three

flutter modes. Notice that these results are very similar to the results obtained from the

control design in Section 6.2. Fig. 6.14 shows that the output feedback controllers designed

to stabilize the flutter phenomena and attenuate flexible modes do not provide the desired

robustness. Here, the multivariable gain margins decay from 2 to 1 in magnitude and

the multivariable phase margins vary from 40 to 5 deg as with a significant reduction at

60 KEAS as well.
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Figure 6.31: Minimum sensitivities for the BFF vehicle with Ω1 = 100 rad/s and varying

Ωa = 160 rad/s ( ), Ωa = 400 rad/s ( ), and Ωa = 1000 rad/s ( ).

On the other hand, two additional control bandwidths are analyzed with the Bode’s

integral. These correspond to values of Ωa = 400 rad/s and Ωa = 1000 rad/s. Fig. 6.31

shows that if the controller bandwidth is increased then the stability robustness of the system

improves. From here, it is observed that the controller needs to respond as fast as 1000 rad/s

in order to obtain the specified performance with good multivariable margins. However,

the control action at this broad frequency range may destabilize unmodeled dynamics at

high frequencies. Hence, an accurate model of the plant or appropriate model uncertainty

weights are required in the control bandwidth.
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6.5 Summary

This chapter presented a linear, parameter-varying output feedback controller for the Body

Freedom Flutter aircraft. The control objectives were to suppress the dangerous aeroservoe-

lastic interactions across the flight envelope and to provide additional damping to flexible

modes. These objectives are formulated using the modal velocities as the performance mea-

sure. Initially, H∞ controllers are designed at each individual flight condition. This control

interconnection is the base for the design of the parameter-varying controllers. The results

showed that the controllers meet the control goals by stabilizing and providing additional

damping to the system. However, the rapid change in dynamics across the flight envelope

degrades the stability margins at velocities where three flutter modes are present. This is

also the reason for which the parameter-varying algorithm design can not find a feasible

solution for the entire envelope.

Finally, an analysis of the limitations in control imposed by the unstable poles of the

system was presented. Here, a simple shape for the desired sensitivity function of the sys-

tem was used to compute analytical bounds for performance and robustness. The results

showed that the desired performance for the Body Freedom Flutter requires a higher band-

width than the one provided for the actuators available. In conclusion, it is recommended

to perform this control limitation analysis for unstable systems previous to the control

design in order to determine the achievable performance, desired robustness and actuator

requirements of the system.
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Chapter 7

Conclusions and Recommendations

This dissertation detailed an aeroservoelastic (ASE) robust control design procedure for

the University of Minnesota Body Freedom Flutter (BFF) aircraft. This procedure is based

on the application of linear, parameter-varying (LPV) systems techniques available in the

literature. Three main aspects for LPV control design were considered. The first aspect was

the model reduction of ASE systems. Here, a four-step procedure was proposed to reduce

the model order of ASE LPV models while retaining a set of common states. This procedure

was successfully applied to the experimental BFF aircraft, generating a LPV model that

was suitable for control synthesis. Model reduction was an important step previous to the

design of controllers because LPV synthesis techniques scale badly with the state order of

the systems. Hence, the state order reduction of ASE models that retained their natural

LPV description allowed the application of well-known LPV synthesis techniques for the

design of robust controllers.

The second aspect considered in this dissertation was the selection of actuators and

sensors for feedback control. This actuator and sensor selection method was based on

the robust stability and robust performance closed-loop objectives of ASE systems. The

proposed method was also applied to the experimental BFF aircraft for which active flutter

suppression and structural modes attenuation were the main control objectives. Selection of

adequate sensor measurements and control effectors played a key role in the control design

process. A wrong choice of actuators or sensors may put limitations on performance and

robustness that cannot be overcome by the control design. Hence, the effects of different

actuator and sensor sets on the closed-loop objectives of ASE systems must be analyzed to

assure a successful control design.

Finally, the application of LPV control techniques for active flutter suppression of the
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BFF aircraft was the third aspect considered in this dissertation. The control objectives

were the suppression of dangerous ASE interactions and structural attenuation of flexible

modes across the flight envelope. However, a feasible LPV controller that meet these control

objectives was only synthesized for part of the flight envelope. This numerical limitation was

imposed by the rapid change in dynamics across the flight envelope. Another issue observed

in the control design was the poor robustness margins that the aircraft had across the flight

envelope. These poor robustness margins were the motivation to analyze the limitations in

control of the BFF imposed by instabilities. The results showed that the available control

bandwidth provided by the actuators could not achieve the desired performance with good

stability margins. As a final recommendation, this dissertation proposed to perform a

control limitation analysis previous to the design task in order to determine the appropriate

actuator control bandwidth for the desired robustness and performance.

All the results presented in this dissertation leave several open topics for further research.

The model reduction approach presented in Chapter 4 is still an ad hoc procedure applied to

a particular system. In the future, the development of a model reduction method that can

handle high-order models without pre-processing is desired. Having a one-step procedure

that can successfully be applied to a broad range of ASE systems will generate more accurate

models for control purposes. In addition, a deeper investigation on the error measures to

determine the closeness of a reduced model to the full order model is required.

On the other hand, the combinatorial nature of the sensor selection approach proposed

in Chapter 5 is the motivation to incorporate a sparsity condition for the controller into the

optimization problem. This condition will minimize the number of nonzero rows or columns

in order to find the minimum subset of actuator and sensors that will achieve the desired

robust performance. With this, the limitation of the method to a determined number of

configurations will be eliminated.

In Chapter 6, a LPV controller was synthesized only for part of the flight envelope.

This indicates that it was challenging for the LPV rate-bounded controller synthesis algo-

rithm to find a parameter-varying controller that stabilizes all the plant models in the set

and achieves the desired performance. Further investigation is required to determine the

reasons for which the algorithm does not obtain a feasible solution. On the other hand,

this LPV controller was only designed for flutter suppression objectives. In the future, the

introduction of handling qualities in the control problem is desired. An integrated control

design will guarantee global stability, flutter suppression, structural mode attenuation and

good handling qualities. Finally, flight testing with these controllers will be the validation

of all the work presented in this dissertation.
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