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Abstract:
This paper presents an overview of Dr. Gary Balas research activities in linear, parameter-
varying (LPV) systems applied to aeroservoelastic (ASE) aircraft. More efficient aircraft can be
designed by reducing weight and structure in the wings and fuselage. This makes the aircraft
more flexible leading to increased ASE effects. Such ASE aircraft can be modeled as a linear
parameter varying (LPV) system with an arbitrary, i.e. not necessarily rational, dependence on
the scheduling parameters. The system involves coupling of the aircraft structural dynamics and
aerodynamics thus resulting in large state dimension. This large dimension necessitates special
approaches to modeling, order reduction and control design. The paper describes the process
of designing an LPV controller for flutter suppression of a flexible unmanned aircraft starting
from the nonlinear equation of motions for the vehicle.
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1. INTRODUCTION

This paper is a tribute to Dr. Gary Balas’ work in the
field of linear parameter varying (LPV) systems. Dr. Balas
made countless major contributions to the LPV commu-
nity over the last 25 years. His main research interest
was narrowing the gap between engineering requirements,
real-time control implementation, and theoretical control
analysis and design techniques. Dr. Balas successfully ap-
plied LPV methods to a variety of systems. These in-
clude fighter aircraft (Balas et al., 1997), turbofan engines
(Balas, 2002), active vehicle suspension (Fialho and Balas,
2002), and supercavitating vehicle (Vanek et al., 2010;
Escobar Sanabria et al., 2014). Dr. Balas saw a significant
potential for LPV techniques to improve the control of
aeroservoelastic (ASE) aircraft given that their dynamics
are naturally parameter dependent. His interest in flexible
structures dates back to his early research as a PhD stu-
dent at Caltech (Balas, 1990). He continued this work in
the late nineties when he participated on the development
of the Benchmark Active Controls Technology wind tunnel
model (Barker and Balas, 2000). Finally, he dedicated the
last five years to develop a research and experimental plat-
form for control of ASE vehicles. The purpose of this paper
is to summarize his final contributions to LPV systems and
ASE aircraft.

ASE research aids the design of lightweight, slender wings,
whose flexibility can increase aircraft endurance and ma-
neuverability. These modifications can achieve fuel effi-
ciency gains and extended range due to reduced air re-
sistance, in turn reducing the cost of operation. However,

the high flexibility and significant deformation in flight ex-
hibited by these aircraft increases the interaction between
the aerodynamics and structural dynamics, resulting in
adverse handling qualities and may even lead to dynamic
instability. This instability, called flutter, can destroy the
aircraft if left uncontrolled. Hence, an integrated active
approach to flight control, flutter suppression and struc-
tural mode attenuation is required to make full use of the
benefits of modern highly flexible aircraft.

Dr. Balas established a research infrastructure at Univer-
sity of Minnesota (UMN) within the Unmanned Aerial
Vehicle (UAV) Laboratory to study ASE vehicles. Details
on this infrastructure are given in Section 2. Prof. Balas
heartedly embraced a “research through development”
philosophy for ASE aircraft. He partnered with NASA to
“bring back the spirit of learning by flying” envisioned for
the future fixed wing research (Warwick, 2014). Through
this partnership, Dr. Balas obtained a small flexible UAV
and initiated the development of UMN’s own research
platform. Based on those two platforms, his research fo-
cused on the modeling and control of this type of sys-
tems. Specifically, LPV models have been developed for
these platforms and he worked on LPV order reduction
schemes which are suitable for large scale ASE systems,
see Section 3. Moreover, Dr. Balas worked on the design
of LPV controllers to address flutter suppression and mode
attenuation (Section 4). Dr. Balas had ambitious goals for
the coming years. An extensive flight testing campaign is
planned and UMN, along with other project partners, will
design, develop and fly a performance adaptive aeroelastic
wing, see Section 5.



Dr. Balas also highly valued a philosophy of open source
development and availability of its resources to the larger
aerospace community. Therefore, all the research data as
well as the software used to obtain said data for the
ASE research can be downloaded from (http://www.aem.
umn.edu/~AeroServoElastic/). The ASE research group
hopes that this data becomes an important resource and
a future benchmark for researchers in the field.

2. FLIGHT TEST INFRASTRUCTURE

Reliable analysis tools and versatile experimental plat-
forms are essential for the transition of theoretical research
into real world application. Therefore, to facilitate research
in ASE controls and other fields, an extensive support in-
frastructure is developed at the UAV laboratory at UMN.
UMN has two flight test platforms available to conduct
ASE research, namely the body freedom flutter (BFF)
aircraft (Burnett et al., 2010) and the mini-MUTT (Multi
Utility Technology Testbed), shown in Fig. 1. The former
was developed by Lockheed Martin and Air Force Research
Laboratory and later on donated to UMN. It is a high as-
pect ratio flying wing with a span of 3 m. The basic aircraft
configuration of the BFF vehicle with location of sensors
and control surfaces is presented in Fig. 2. The aircraft
has 8 control surfaces and 11 sensors available for control.
Sensor measurements include gyros, accelerometers and
hot-film sensors located at the leading-edge stagnation
point (LESP) to estimate the lift distribution.

Fig. 1. BFF Vehicle (back) and Mini-MUTT (front)

The mini-MUTT has been completely designed and man-
ufactured in-house at UMN based on the BFF aircraft’s
outer mold line. The key distinction between both aircraft
is that the mini-MUTT follows a modular design philos-
ophy similar to the X-56 MUTT aircraft. It features a
common rigid center body and interchangeable wings of
varying flexibility. This modular approach allows testing
several wing configurations at a low cost.

Note that all the results presented in this paper are based
on the BFF vehicle. In the future, it is contemplated to
apply the same approach on the mini-MUTT.

Fig. 2. Body Freedom Flutter Vehicle (Burnett et al., 2010)

3. LPV MODELING

This section briefly describes the method to obtain an
LPV model for an ASE aircraft via Jacobian linearization.
Consider a nonlinear system of the following form:

ẋ(t) = f(x(t), u(t), ρ(t))

y(t) = h(x(t), u(t), ρ(t))
(1)

where f and h are differentiable, input u(t) ∈ Rnu , output
y(t) ∈ Rny , state variable x(t) ∈ Rnx and ρ(t) ∈ Rnρ
is a measurable exogenous parameter vector, called the
scheduling parameter. The parameter vector ρ is assumed
to be a continuously differentiable function of time and
the admissible trajectories are restricted based on physical
considerations to a known compact subset P ⊂ Rnρ . The
rates of the parameter variation ρ̇ are assumed to be
bounded in some applications, i.e. ρ̇ ∈ Ṗ, where Ṗ ⊂ Rnρ
is a compact subset. The set of admissible trajectories is
defined as A := {ρ : R+ → Rnρ : ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥
0}. Throughout the paper the explicit dependence on t is
suppressed to shorten the notation.

Assumption 1. There is a family of equilibrium points
(x̄(ρ), ū(ρ)) such that

f(x̄(ρ), ū(ρ), ρ) = 0

ȳ(ρ) = h(x̄(ρ), ū(ρ), ρ)
∀ρ ∈ A. (2)

The nonlinear system given by (1) can be linearized about
the equilibrium points via Jacobian linearization based on
Taylor series expansion. Define the deviation variables as

δx := x− x̄(ρ), δd := d− d̄(ρ), δy := y − ȳ(ρ). (3)

Differentiating the δx term of (3) results in

δ̇x = ẋ− ˙̄x(ρ) = f(x, u, ρ)− ˙̄x(ρ). (4)

The Taylor series expansion of f and h about the equilib-
rium point yields

δ̇x = ∇xf |o δx + ∇uf |o δu + εf (δx, δu, ρ)− ˙̄x(ρ)

δy = ∇xh|o δx + ∇uh|o δu + εh(δx, δu, ρ),
(5)

where the |o denotes the evaluation at the equilibrium
point (x̄(ρ), ū(ρ), ρ), εf and εh represent the higher order
terms of the Taylor series expansion. The term ˙̄x(ρ) arises
due to the time variation in ρ. It is important to empha-
size that this term is equal to zero considering a single
operating condition (i.e., a constant value of ρ) and hence
this term disappears in the normal linearization process.
However, it must be retained here as we require our control
design to apply to changing operating conditions (i.e., time



varying ρ(t)). The linearization is performed with respect
to (x, u) but the nonlinear dependence on ρ is retained.
Define L(ρ) := −∇x̄(ρ). Then the linearization about the
family of trim points (2) takes the form:

δ̇x =A(ρ)δx +B(ρ)δu + L(ρ)ρ̇+ εf (δx, δd, ρ)

δy =C(ρ)δx +D(ρ)δu + εh(δx, δu, ρ)
(6)

The LPV system is commonly obtained by assuming that
the higher order terms of the Taylor series are negligible,
i.e. εf and εh ≈ 0. In addition, it is typically assumed
that the parameter variation is sufficiently slow so that
L(ρ)ρ̇ ≈ 0. Under these assumptions, an LPV system is
defined using x, u, y instead of the deviation variables as:

ẋ =A(ρ)x+B(ρ)u

y =C(ρ)x+D(ρ)u
(7)

Note that other approaches in literature exist to obtain
LPV models from a nonlinear system, e.g., function sub-
stitution (Tan, 1997). An overview of different techniques
to obtain LPV models for aircraft is given in Marcos and
Balas (2004). The most prevalent approach, however, is
based on Jacobian linearization as presented here. This
is also the approach pursuit in this paper to obtain LPV
models of the ASE systems.

3.1 LPV Models of ASE Systems

Lockheed Martin constructed a collection of linearized
models for the BFF aircraft on a grid of flight speeds. They
provided this grid based LPV model along with the actual
BFF aircraft to the UMN UAV lab. The gridded model
consists of 21 linear models parameterized by equivalent
airspeed from 40 to 80 knots in steps of 2 knots, see
Burnett et al. (2010). The model represent straight level
flight at 1000 ft altitude. The airframe model, excluding
sensor and actuator models, has 148 states. The results
presented in this paper are based on this Lockheed Martin
model.

In parallel to this work, UMN is developing nonlinear
models for flexible aircraft from first principles. Various
techniques exist in literature to derive the equations of
motion for a flexible aircraft. The main difference is in
the coordinate system used in the derivation. The two
predominant approaches in literature are based on a mean
axis reference frame (Waszak and Schmidt, 1988; Schmidt,
2012) and a body fixed reference frame (Meirovitch, 1989;
Meirovitch and Tuzcu, 2004). The former is a floating
frame, i.e. not fixed to a material point on the aircraft.
Its origin is chosen at the instantaneous center of mass.
The latter is fixed to a material point of the undeformed
aircraft.

Modeling ASE systems requires the integration of struc-
tural dynamics, aerodynamics, and flight dynamics. Each
of theses models can be developed separately. The aerody-
namics of the BFF aircraft is modeled using the doublet
lattice method (DLM). DLM is a panel method that con-
siders unsteady aerodynamic effects and solves for flow
across a harmonically oscillating lifting surface (Albano
and Rodden, 1969). A DLM code has been developed in-
house at UMN that is openly available on the group’s web-
site (Kotikalpudi et al., 2015). The structural dynamics
model of the BFF aircraft is obtained from a finite element

model constructed using linear Euler beams, see Moreno
et al. (2014a); Gupta et al. (2015).

Independent of the chosen approach and the complexity of
the subcomponents, the equations of motion of a flexible
aircraft will have the general form of a nonlinear system
as given in (1). The scheduling parameter ρ for typical
flexible aircraft can include, e.g., airspeed, altitude, mass
and center of gravity position. An LPV model of the air-
craft dynamics can be obtained by applying the Jacobian
linearization based approach described above.

3.2 LPV Model Order Reduction

The computational complexity associated with synthe-
sizing LPV controllers strongly depends on the dynamic
order of the models. Including structural dynamics and
aeroelastic effects, as described in the previous section,
results in high order LPV models that cannot be used for
control design. Hence, reduced order LPV models of ASE
systems are needed. This section summarizes the balanced
LPV model reduction method derived by Wood et al.
(1996) and a local approximation method termed “modal
matching” (Theis et al., 2015b). A more comprehensive
discussion about extensions of LTI model reduction to
LPV systems is given in Moreno et al. (2014b).

Balanced LPV model reduction is based on the measures
of controllability and observability of a state-space model.
These measures are provided by symmetric positive defi-
nite matrices P � 0 and Q � 0 satisfying the Lyapunov
inequalities

A(ρ)P + P AT(ρ) +B(ρ)BT(ρ) ≺ 0

AT(ρ)Q+QA(ρ) + CT(ρ)C(ρ) ≺ 0
∀ρ ∈ A (8)

The matrices P and Q are called Gramians, which in
general can be parameter varying. However, in this ap-
proach only constant Gramians are considered. Addition-
ally, Gramians exist only for stable LPV systems. The
approach is hence not suitable for ASE models that include
unstable dynamics. To address this problem, a contractive
right coprime factorization of an LPV system (7) is defined
as[

ẋ
y
u

]
=

 A(ρ) +B(ρ)F (ρ) B(ρ)S−1/2(ρ)
C(ρ) +D(ρ)F (ρ) D(ρ)S−1/2(ρ)

F (ρ) S−1/2(ρ)

[ x
q

]
, (9)

where q ∈ L2 is introduced as an auxiliary signal,
S(ρ) = I + DT(ρ)D(ρ), and F (ρ) = −S(ρ)−1(BT(ρ)X +
DT(ρ)C(ρ)). In the following, the dependence on ρ is
omitted for brevity. The controllability Gramian P and
observability Gramian Q of the realization (9) are

Q = X, P = (I + Y X)−1Y, (10)

where ∀ρ ∈ A, the matrices X � 0 and Y � 0 must
satisfy the generalized Riccati inequalities represented by
the linear matrix inequalities (LMIs)[

ΛX −B S−1BT X CT

? −R

]
≺ 0, (11a)[

ΛY − CTR−1C Y B
? −S

]
≺ 0, (11b)

with ΛX = X (A−B S−1DTC)
T

+ (A−B S−1DTC)X,

ΛY = Y (A−BDTR−1C) + (A−BDTR−1C)
T
Y , and

R = I +DDT .



A significant problem with this approach is the growth
of the LMI problem (11) with the dynamic order and the
number of scheduling parameters of an LPV model. Higher
order systems hence require a heuristic pre-processing to
reduce the number of states before applying the balanced
reduction.

In contrast to this global LPV model order reduction,
Theis et al. (2015b) proposed to perform reduction at
each grid point individually and to define a new LPV
model from the resulting set of local LTI models. While
this allows numerically stable and well-tractable computa-
tional methods to be applied, a new problem arises. Since
individual reduction results in different state space bases
for each reduced order model, a consistent representation
needs to be constructed in order to define an LPV system.
This is achieved by transforming the local models into a
canonical modal form with approximately consistent state
space bases for all models.

Both the global and the local order reduction approaches
were successfully applied to the BFF vehicle in order
to obtain a low-order model for control systems design
(Moreno et al., 2014b; Theis et al., 2015b). With the
global approach, a sequence of truncating low-frequency
dynamics and residualizing high frequency dynamics was
used to pre-process the LPV model before the balanced
LPV reduction was applied. The result of this procedure
is an LPV model with 26 states. Following the local ap-
proach, modal decomposition and balanced reduction were
applied individually to the local models. An LPV model
with 15 states is afterwards obtained by interpolating the
canonical modal state space representations of the local
reduced order systems. Similar accuracy for the frequency
range of interest (10–160 rad/s) was observed for both
reduced order models. Bode plots showing these results
are presented in Fig. 3.

4. LPV CONTROL DESIGN

The induced L2-norm of an LPV system Gρ from input d
to output e is defined as

‖Gρ‖ = sup
d∈L2\{0}, ρ∈A, x(0)=0

‖e‖2
‖d‖2

, (12)

i. e., the largest amplification of L2 input signals over all
admissible trajectories. It can be used to specify perfor-
mance for a feedback interconnection in terms of a gener-
alized plant Pρ, analog toH∞-norm optimal design for LTI
systems. An LPV controller Kρ can be synthesized using
the by now well-known bounded-real type LMI conditions
developed by Wu (1995); Wu et al. (1996). The controller
is guaranteed to internally stabilize the closed-loop inter-
connection given by the lower fractional transformation
FL(Pρ,Kρ) and to achieve a performance index γ that
provides an upper bound on the induced L2-norm, i. e.
‖FL (Pρ,Kρ) ‖ < γ.

Dr. Balas was a major contributor in the development
of the Robust Control Toolbox for Matlab. This toolbox
played a significant role in transitioning theoretical robust
control results to industrial practice. In the last few years,
Dr. Balas was involved in the development of another
Matlab toolbox, LPVTools (Hjartarson et al., 2014). LPV-
Tools contains a suite of functions for modeling, analysis,
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Fig. 3. Bode plots of full order model (148 states) at
43 knots ( ) and 77 knots ( ), locally reduced
model with 15 states ( / ), and globally re-
duced model with 26 states ( / ). The lightened
area denotes the frequency range beyond interest.

and control design of LPV systems. Among its various
functions, LPVTools implements the infinite dimensional
LPV controller synthesis conditions (Wu, 1995) as a finite
dimensional approximation on a grid {pk}

ngrid

1 ⊂ A and
allows to efficiently solve the resulting convex optimization
problem of minimizing the performance index γ.

Researchers at UMN are using LPVTools for the design
and analysis of control systems for ASE aircraft. One
particular control design objective for the BFF vehicle
is to stabilize the aircraft across the flight envelope and
to increase damping of flexible modes up to 60 knots.
Selection of adequate sensors and control effectors plays
a critical role in the control design process. A wrong
choice may put fundamental limitations on performance
and robustness that cannot be overcome even by available
advanced control design techniques. An approach based on
the sensor selection via closed-loop objectives by Balas and
Young (1999) has been extended to consider uncertainty in
aeroservoelastic systems. The goal is to find the best con-
figuration of actuators and sensors that provides sufficient
robustness and the desired performance by accounting
for model uncertainty (Moreno et al., 2015). Based on
this analysis, the considered control inputs u for flutter



suppression are deflections of the right and left body as
well as outboard flaps. The output measurements y are
the six accelerometers in the wings and center body.

A reduced order model of the BFF aircraft as described in
the previous section is used to design a dedicated flatter
suppression controller. The performance specifications are
shown in Fig. 4. The generalized velocities of the (unsta-
ble) first symmetric bending, symmetric torsion and anti-
symmetric torsion modes are collected into the signal η
that is weighted and forms the penalty e1 (Theis et al.,
2015a; Hanel, 2001). The performance weight used in the
design is Wη = diag{10, 10, 5}. Disturbances to the control
surfaces are modeled by a signal d1 and weights Wd = 1.
Control authority is limited by weights Wu = 1000(s +
165.2)/(s+ 1.835× 105) to avoid excitation of unmodeled
high-frequency dynamics outside of the control bandwidth.
In addition, noise d2 on the acceleration measurements
is included with a weight Wn = 0.2. The controller Kρ

minimizes the induced L2-norm from [dT1 dT2 ]T to [eT1 eT2 ]T

and hence seeks to attenuate structural vibration of the
aircraft with limited control authority.

Gρ

WdWu

Kρ

WηWn

e1e2

η

y

d2 d1

ymeas u

Fig. 4. Control interconnection for output feedback design

An LPV controller is synthesized for a grid that covers
airspeed from 40 to 60 knots in increments of 2 knots. Fig. 5
shows the full-order (148 states) open-loop and closed-
loop frequency responses of the system at the grid points.
Without active flutter suppression, flying above the critical
airspeed would inevitably result in immediate structural
failure due to the fast growing oscillation indicated by
the large peak at around 25 rad/s. The LPV controller
completely compensates this peak and stabilizes the air-
craft. Moreover, the magnitude of the closed-loop gain is
decreased well below 0 dB and has a flattened characteris-
tic compared to the open-loop response. This shows that
disturbances are well attenuated evenly across frequency
and for all considered airspeeds. For low frequencies and
at some mid frequencies, visible e. g. in Fig. 5(b) for 30–50
rad/s, disturbance sensitivity is slightly increased.

5. FUTURE WORK

Future work will mature the presented LPV approach to
ASE control in order to design and control a performance
adaptive aeroelastic wing. Valuable knowledge gained from
prototype flight experiments, see Fig. 6, will be exploited
to drive advances in modeling, controls, optimization, ef-
fector/sensor selection and design processes. The perfor-
mance adaptive aeroelastic wing will optimally include
many distributed control effectors and a large distributed
sensor network enabling innovative control solutions for
flutter suppression and alleviation of gust and turbulence
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Fig. 5. Frequency response of full order open-loop model
( ) and closed-loop ( ).

loading, further decreasing the structural weight. This
will result in a wing that is significantly lighter than the
current state of the art. This wing will suppress flutter,
including body-freedom flutter, and gust loads while mor-
phing its shape to minimize drag over a range of cruise
conditions and produce high-lift for takeoff and landing.
It will significantly reduce fuel burn, emissions, and noise
while enabling operations at local, non-hub airports. These
results will contribute towards an aviation infrastructure
with a secure future that is environmentally friendly.

Fig. 6. Mini-MUTT Flight Test
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