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Varying Systems Using Integral Quadratic Constraints
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SUMMARY

This paper considers the robustness of a feedback connection of a known linear parameter varying (LPV)
system and a perturbation. A sufficient condition is derived to bound the worst-case gain and ensure robust
asymptotic stability. The input/output behavior of the perturbation is described by multiple integral quadratic
constraints (IQCs). The analysis condition is formulated as a dissipation inequality. The standard approach
requires a non-negative definite storage function and the use of “hard” IQCs. The term “hard” means the
IQCs can be specified as time-domain integral constraints that hold over all finite horizons. The main result
demonstrates that the dissipation inequality condition can be formulated requiring neither a non-negative
storage function nor hard IQCs. A key insight used to prove this result is that the multiple IQCs, when
combined, contain hidden stored energy. This result can lead to less conservative robustness bounds. Two
simple examples are presented to demonstrate this fact.
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1. INTRODUCTION

This paper considers the robustness of an uncertain linear parameter varying (LPV) system. The
uncertain system is represented as a feedback connection of a known LPV system and a perturbation.
The class of “gridded” LPV systems is considered in this paper. For this class the state matrices are
arbitrary functions of the scheduling parameter, e.g as in [27, 28]. This is more general than LFT-
type LPV systems whose state matrices have a rational dependence on the scheduling parameter
[1, 13, 17]. Integral quadratic constraints (IQCs) are used to model the uncertain and/or nonlinear
components. IQCs, introduced in [11], provide a general framework for robustness analysis. An IQC
stability theorem was formulated in [11] for a feedback interconnection of a linear time-invariant
(LTI) system and a perturbation. The stability theorem involved with frequency domain conditions
and was proved using a homotopy method.

The uncertain systems in this paper involve a nominal LPV system and hence the frequency
domain conditions are not applicable. Instead, a time-domain approach is used. This time-domain
approach involves “hard” IQCs that are specified as integral constraints that hold over all finite time
intervals. These hard IQCs can be used to formulate an alternative time domain stability theorem
based on dissipativity theory [25,26]. This approach was used in [15] to derive a sufficient condition
for robust performance of an uncertain LPV system. This result, summarized in Section 2, requires a
nonnegative storage function. In addition, a combined IQC is parameterized as a conic combination
of individual hard IQCs. This approach is correct but can lead to unnecessary conservatism for
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two reasons. First, the frequency domain condition derived in [11] for nominal LTI systems can
be converted to a related dissipation inequality type constraint by the KYP Lemma but without the
non-negativity constraint on the storage function. Second, conic combinations of hard IQCs is not
the most general parameterization, e.g. it does not include the alternative parameterizations in [18].

The main contribution of this paper is to provide a less conservative condition to assess the
worst case gain and robust asymptotic stability of an uncertain LPV system. This result, stated
as Theorem 1 in Section 3, differs in two respects from the prior result in [15]. First, the main result
involves a dissipation inequality but it does not enforce the storage function to be non-negative.
Second, the main result allows for more general IQC parameterizations. In particular, the IQC need
not be hard, i.e. it need not specify a valid finite-horizon integral constraint. Instead, the main result
replaces the standard dissipation inequality assumptions with a milder technical assumption on the
combined multiplier. This technical assumption essentially implies that the combined multiplier has
a special J-spectral factorization [3]. This is used to show that the combined multiplier has some
hidden stored energy. As a result, the analysis condition can be reformulated into a valid dissipation
inequality with a single hard IQC and a non-negative storage function.

This main result Theorem 1 directly generalizes the result in [15]. This can lead to less
conservative analysis results as demonstrated by examples in Section 4. This extends the results
in [20] developed for a nominal LTI system and a single IQC. It was shown in [20] that the non-
negativity constraint on the storage function can be dropped in the time domain approach if a J-
spectral factorization is used for the IQC multiplier. The main result here extends these results to
LPV systems and multiple IQCs. Another closely related prior work is [22] which provides an IQC
dissipation inequality condition after a loop transformation. Moreover, it uses a specific, unique
factorization. This paper avoids such a transformation and focuses on non-unique factorizations.

2. BACKGROUND

2.1. Notation

R and C denote the set of real and complex numbers, respectively. RL∞ denotes the set of rational
functions with real coefficients that are proper and have no poles on the imaginary axis. RH∞ is
the subset of functions in RL∞ that are analytic in the closed right half of the complex plane.
Cm×n, RLm×n∞ and RHm×n

∞ denote the sets of m× n matrices whose elements are in R, C, RL∞,
RH∞, respectively. A single superscript index is used for vectors, e.g. Rn denotes the set of n× 1
vectors whose elements are in R. Sn denotes the set of n× n symmetric matrices. R+ describes
the set of nonnegative real numbers. For z ∈ C, z̄ denotes the complex conjugate of z. For a matrix
M ∈ Cm×n, MT denotes the transpose and M∗ denotes the complex conjugate transpose. The
para-Hermitian conjugate of G ∈ RLm×n∞ , denoted as G∼, is defined by G∼(s) := G(−s̄)∗. Note
that on the imaginary axis, G∼(jω) = G(jω)∗. Ln2 [0,∞) is the space of functions v : [0,∞)→ Rn
satisfying ‖v‖2 <∞ where

‖v‖2 :=

[∫ ∞
0

v(t)T v(t) dt

]0.5

(1)

Given v ∈ Ln2 [0,∞), vT denotes the truncated function:

vT (t) :=

{
v(t) for t ≤ T
0 for t > T

(2)

The extended space, denoted L2e, is the set of functions v such that vT ∈ L2 for all T ≥ 0.

2.2. Problem Statement

This paper considers the robustness of uncertain LPV systems. The uncertain system is described
by the feedback interconnection of an LPV system G and an uncertainty ∆ as shown in Figure 1.



This feedback interconnection with ∆ wrapped around the top of G is denoted Fu(G,∆). The LPV
system G is a linear system whose state space matrices depend on a time-varying parameter vector
ρ : R+ → Rnρ as follows:

ẋG(t) = AG(ρ(t))xG(t) +BG(ρ(t))
[
w(t)
d(t)

]
[
v(t)
e(t)

]
= CG(ρ(t))xG(t) +DG(ρ(t))

[
w(t)
d(t)

] (3)

where xG ∈ RnG is the state, w ∈ Rnw and d ∈ Rnd are inputs, and v ∈ Rnv and e ∈ Rne are
outputs. The state matrices of G have dimensions compatible with these signals, e.g. AG(ρ) ∈
RnG×nG . In addition, the state matrices are assumed to be continuous functions of ρ. The state
matrices at time t depend on the parameter vector at time t. Hence, LPV systems represent a special
class of time-varying systems. The explicit dependence on t is occasionally suppressed to shorten
the notation. Moreover, it is important to emphasize that the state matrices are allowed to have an
arbitrary dependence on the parameters. This is called a “gridded” LPV system and is more general
than “LFT” LPV systems whose state matrices are restricted to have a rational dependence on the
parameters [1, 13, 17].

G

∆

de

wv

Figure 1. Feedback Interconnection

The parameter ρ is assumed to be a continuously differentiable function of time and admissible
trajectories are restricted to a known compact set P ⊂ Rnρ . In addition, the parameter rates of
variation ρ̇ : R+ → Ṗ are assumed to lie within a hyperrectangle Ṗ := {q ∈ Rnρ | νi ≤ qi ≤ ν̄i, i =
1, . . . , nρ}. The set of admissible trajectories is defined as

T :=
{
ρ : R+ → Rnρ : ρ ∈ C1, ρ(t) ∈ P and ρ̇(t) ∈ Ṗ ∀t ≥ 0

}
(4)

The parameter trajectory is said to be rate unbounded if Ṗ = Rnρ .
Throughout the paper it is assumed that the uncertain system has a form of nominal stability.

Specifically, G is assumed to be parametrically-dependent stable as defined in [27].

Definition 1. G is parametrically-dependent stable if there is a continuously differentiable function
P : Rnρ → SnG×nG such that P (p) ≥ 0 and

AG(p)TP (p) + P (p)AG(p) +

nρ∑
i=1

∂P

∂pi
qi < 0 (5)

hold for all p ∈ P and all q ∈ Ṗ .

As discussed in [27], parametric-stability impliesG has a strong form of robustness. In particular,
the state xG(t) of the autonomous response (w = 0, d = 0) decays exponentially to zero for any
initial condition xG(0) ∈ RnG and allowable trajectory ρ ∈ T (Lemma 3.2.2 of [27]). Moreover, the
state xG(t) of the forced response decays asympotically to zero for any initial condition xG(0) ∈
RnG , allowable trajectory ρ ∈ T , and inputs w, d ∈ L2 (Lemma 3.3.2 of [27]). The parameter-
dependent Lyapunov function V (xG, ρ) := xTGP (ρ)xG plays a key role in the proof of these results.
To shorten the notation, a differential operator ∂P : P × Ṗ → Rnx is introduced as in [19]. ∂P is



defined as ∂P (p, q) :=
∑nρ

i=1
∂P
∂ρi

(p) qi. This simplifies the expression of Lyapunov-type inequalities
similar to Equation 5.

The uncertainty ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) is a bounded, causal operator. The notation ∆ is
used to denote the set of bounded, causal uncertainties ∆. The input/output behavior of the uncertain
set is bounded using quadratic constraints as described further in the next section. At this point it is
sufficient to state that ∆ can have block-structure as is standard in robust control modeling [30]. ∆
can include blocks that are hard nonlinearities (e.g. saturations) and infinite dimensional operators
(e.g. time delays) in addition to true system uncertainties. The term uncertainty is used for simplicity
when referring to the perturbation ∆.

The objective of this paper is to assess the robustness of the uncertain system Fu(G,∆). For a
given ∆ ∈∆, the induced L2 gain from d to e is defined as:

‖Fu(G,∆)‖ := sup
06=d∈Lnd2 [0,∞)
ρ∈T , xG(0)=0

‖e‖2
‖d‖2

(6)

Two forms of robustness are considered. First, the worst-case induced L2 gain from input d to the
output e is defined as

sup
∆∈∆

‖Fu(Gρ,∆)‖. (7)

This is the worst-case gain over all uncertainties ∆ ∈∆ and admissible trajectories ρ ∈ T . Second,
the system has robust asymptotic stability if xG(t)→ 0 for any initial condition xG(0) ∈ RnG ,
allowable trajectory ρ ∈ T , disturbance d ∈ L2 and uncertainty ∆ ∈∆. The main result provides a
sufficient condition for the uncertain LPV system have both robust asymptotic stability and bounded
worst-case gain.

2.3. Integral Quadratic Constraints (IQCs)

A frequency-domain IQC is defined in [11] using a multiplier Π. In particular, let Π : jR→
C(nv+nw)×(nv+nw) be a measurable Hermitian-valued function. Two signals v ∈ Lnv2 [0,∞) and
w ∈ Lnw2 [0,∞) satisfy the IQC defined by the multiplier Π if∫ ∞

−∞

[
V (jω)
W (jω)

]∗
Π(jω)

[
V (jω)
W (jω)

]
dω ≥ 0 (8)

where V (jω) and W (jω) are Fourier transforms of v and w, respectively. A bounded, causal
operator ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) satisfies the IQC defined by Π if Equation 8 holds for all
v ∈ Lnv2 [0,∞) and w = ∆(v).

IQCs were introduced in [11] to assess the robustness of the feedback interconnection Fu(G,∆)
for the case thatG is LTI. The stability conditions in [11] were expressed in the frequency domain. In
this paper, the nominal partG is LPV and hence the frequency-domain conditions cannot be applied.
An alternative time-domain stability condition can be constructed using (time-domain) IQCs and
dissipation theory. Specifically, any Π ∈ RL(nv+nw)×(nv+nw)

∞ can be factorized as Π = Ψ∼MΨ

where M = MT ∈ Rnz×nz and Ψ ∈ RHnz×(nv+nw)
∞ . Such factorizations are not unique but can

be computed with state-space methods [19]. Appendix A provides two specific factorizations. Let
(Ψ,M) be any such factorization of Π. Then v, w ∈ L2 satisfy the IQC in Equation (8) if and
only if Z(jω) := Ψ(jω)

[
V (jω)
W (jω)

]
satisfies

∫∞
−∞ Z(jω)∗MZ(jω) dω ≥ 0. By Parseval’s theorem,

this frequency-domain constraint on z can be equivalently expressed in the time-domain as:∫ ∞
0

z(t)TMz(t) dt ≥ 0 (9)

where z = Ψ [ vw ] is the output of the linear system Ψ starting from zero initial conditions:

ψ̇(t) = Aψψ(t) +Bψ1v(t) +Bψ2w(t), ψ(0) = 0

z(t) = Cψψ(t) +Dψ1v(t) +Dψ2w(t)
(10)



Thus ∆ satisfies the IQC defined by Π = Ψ∼MΨ if and only if the time domain constraint in
Equation 9 holds for all v ∈ Lnv2 [0,∞) and w = ∆(v). The constraint in Equation 9 holds, in
general, only over infinite time. The term hard IQC in [11] refers to the more restrictive property:∫ T

0
z(t)TMz(t) dt ≥ 0 holds ∀T ≥ 0. In contrast, IQCs for which the time domain constraint need

not hold for all finite times are called soft IQCs. This distinction is important because the dissipation
theorem presented below requires the use of hard IQCs. A more precise definition is now given.

Definition 2. Let Π be factorized as Ψ∼MΨ with Ψ stable. (Ψ,M) is a hard factorization of Π if for
any bounded, causal operator ∆ satisfying the (frequency domain) IQC defined by Π (Equation 8)
the following (time-domain) inequality holds∫ T

0

z(t)TMz(t) dt ≥ 0 (11)

for all T ≥ 0, v ∈ Lnv2 [0,∞), w = ∆(v) and z = Ψ [ vw ].

As noted above, the factorization of Π is not unique. Thus the hard/soft property is not inherent
to the multiplier Π but instead depends on the factorization (Ψ,M). One particularly useful
factorization is the J-spectral factorization defined as follows: (Ψ̂, Jnv,nw) is a J-spectral factor of

Π if Π = Ψ̂∼Jnv,nwΨ̂, Jnv,nw =
[
Inv 0
0 −Inw

]
and Ψ̂, Ψ̂−1 ∈ RH(nv+nw)×(nv+nw)

∞ . In other words,

the factor Ψ̂ is square, stable, and stably inverible. It follows from Lemma 1 in Appendix A that a
J-spectral factorization is a hard factorization. Lemma 1 also provides a simple frequency domain
condition that is sufficient for the existence of a J-spectral factor. A J-spectral factor of Π (if one
exists) can be constructed using the solution of a related algebraic Riccati equation.

A strength of the IQC framework is that many IQCs for a single ∆ can be incorporated into
the analysis. A simple example is provided below to demonstrate that classes of IQCs can be
parameterized in different ways.

Example 1. Consider the SISO, LTI uncertainty ∆ ∈ RH∞ with ‖∆‖∞ := supω |∆(jω)| ≤ 1. In
[11] an IQC for the operator ∆ is defined by Π :=

[
X 0
0 −X

]
where X(jω) = X(jω)∗ ≥ 0 ∀ω.

This IQC multiplier can be parameterized by picking a collection of transfer functions {Xi}nπi=1

that are ≥ 0 on the imaginary axis. Then ∆ satisfies the IQCs defined by multipliers of the form
Πi :=

[
Xi 0
0 −Xi

]
. Moreover, ∆ satisfies any conic combination of these multipliers defined by

Π(λ) :=
∑nπ

i=1 λiΠi where λi ≥ 0 for i = 1, . . . , nπ. A factorization of this conic combination can
also be parameterized. By the spectral factorization theorem [29, 30] it is possible to construct
stable, minimum phase systems Di such that Xi = D∼i Di. The Di are called D-scales in the robust
control literature [6, 14, 16]. Define the filter Ψi := DiI2 and matrix Mi :=

[
1 0
0 −1

]
. This yields a

factorization for each individual multiplier as Πi := Ψ∼i MiΨi. Note that each Ψi is square, stable
and stably invertible. Hence each (Ψi,Mi) is a J-spectral (and thus a hard) factorization of Πi. A
factorization for the conic combination of multipliers can be parameterized as:

Π(λ) =

[
Ψ1

...
Ψnπ

]∼
︸ ︷︷ ︸

Ψ∼

[
λ1M1

. . .
λnπMnπ

]
︸ ︷︷ ︸

M(λ)

[
Ψ1

...
Ψnπ

]
︸ ︷︷ ︸

Ψ

(12)

Note that Ψ as defined in Equation 12 is not square, in general, and therefore (Ψ,M(λ)) is not a
J-spectral factorization for Π(λ).

A more general parameterization for IQCs satisfied by ∆ is given in [23]. Select a column of
stable systems and stack into a vector as Ψ̄ ∈ RHk×1

∞ . The IQC multiplier is parameterized as:

Π(Λ) =

[
Ψ̄ 0

0 Ψ̄

]∼
︸ ︷︷ ︸

Ψ∼

[
Λ 0

0 −Λ

]
︸ ︷︷ ︸

M(λ)

[
Ψ̄ 0

0 Ψ̄

]
︸ ︷︷ ︸

Ψ

(13)



with Λ = ΛT ∈ Rk×k constrained to satisfy Ψ̄∼(jω)ΛΨ̄(jω) ≥ 0 for all ω and λ denoting the vector
of unique entires in the matrix variable Λ. This parameterization is more general as it is not simply
a conic combination of multipliers. Details, including the MIMO case, are provided in [23]. Again,
the Ψ as defined in Equation 13 is not square, in general, and therefore (Ψ,M(λ)) is not a J-spectral
factorization for Π(Λ).

2.4. Dissipation Inequality Condition

This section describes a dissipation inequality condition to assess the robustness of the uncertain
LPV system Fu(G,∆). The result in this section is a minor extension of that contained in [15].
Assume the uncertainty ∆ satisfies a collection of IQCs {Πi}nπi=1 with corresponding factorizations
{(Ψi,Mi)}nπi=1. The Ψi can be stacked into a single filter:

Ψ :=

[
Ψ1

...
Ψnπ

]
(14)

Ψ has a state space realization as in Equation 10. The robustness of the uncertain LPV system
Fu(G,∆) can be analyzed using the interconnection structure shown in Fig. 2. The feedback
interconnection including Ψ is described by w = ∆(v) and

ẋ = A(ρ)x+B1(ρ)w +B2(ρ)d

z = C1(ρ)x+D11(ρ)w +D12(ρ)d

e = C2(ρ)x+D21(ρ)w +D22(ρ)d,

(15)

where x :=
[ xG
ψ

]
∈ RnG+nψ is the extended state. The state matrices of the extended system in

Equation 15 can be constructed from the state matrices of G (Equation 3) and Ψ (Equation 10). The
output z has block structure corresponding to the outputs of Ψi:

z =

[
z1
...

znπ

]
=

[
C1,1(ρ)

...
C1,nπ (ρ)

]
x+

[
D11,1(ρ)

...
D11,nπ (ρ)

]
w +

[
D12,1(ρ)

...
D12,nπ (ρ)

]
d (16)

G

∆

Ψ

de

wv

z

Figure 2. Analysis Interconnection

The next theorem provides an analysis condition using IQCs and a standard dissipation argument.
The analysis replaces the precise relation w = ∆(v) with integral quadratic constraints on zi. The
sufficient condition uses a quadratic storage function that is defined using a symmetric, parameter-
dependent matrix P : P → Snx .

Theorem 1. Let G be a parametrically stable LPV system defined by Equation (3) and ∆ :
Lnv2e [0,∞)→ Lnw2e [0,∞) be a bounded, causal operator such that Fu(G,∆) is well-posed. Assume
∆ satisfies the IQCs defined by the multipliers {Πi}nπi=1. If

1. Each Πi has a hard factorization (Ψi,Mi).



2. There exists a continuously differentiable P : P → Snx×nx , scalars λi ≥ 0, and a scalar γ > 0
such that P (p) ≥ 0 and

[
ATP+PA+∂P PB1 PB2

BT1 P 0 0

BT2 P 0 −γ2I

]
+

[
CT2
DT21
DT22

][
CT2
DT21
DT22

]T
+

nπ∑
i=1

λi

[
CT1,i

DT11,i

DT12,i

]
Mi

[
CT1,i

DT11,i

DT12,i

]T
< 0 (17)

hold for all p ∈ P and all q ∈ Ṗ .

Then

a) For any x(0) ∈ RnG+nψ and d ∈ L2, limT→∞ x(T ) = 0

b) ‖Fu(G,∆)‖ ≤ γ

In Equation (17) the dependence of the matrices on p and q has been omitted to shorten the notation.

Proof
To show b), define a parameter-dependent storage function V : RnG+nψ ×Rnρ → R+ by V (x, ρ) =
xTP (ρ)x and let d ∈ Lnd2 [0,∞) be any input signal and ρ ∈ T any allowable parameter trajectory.
From well-posedness, the interconnection Fu(G,∆) has a solution that satisfies the dynamics in
Equation (15). Left and right multiply Equation (17) by [xT , wT , dT ] and [xT , wT , dT ]T to show
that V satisfies:

V̇ (t) +

nπ∑
i=1

λizi(t)
TMizi(t) ≤ γ2d(t)T d(t)− e(t)T e(t) (18)

The dissipation inequality Equation (18) can be integrated from t = 0 to t = T with the initial
condition x(0) = 0 to yield:

V (x(T )) +

nπ∑
i=1

λi

∫ T

0

zi(t)
TMizi(t) dt ≤ γ2

∫ T

0

d(t)T d(t) dt−
∫ T

0

e(t)T e(t) dt (19)

Apply the hard IQC conditions, λi ≥ 0, and V ≥ 0 to show Equation (19) implies
∫ T

0
e(t)T e(t) dt ≤

γ2
∫ T

0
d(t)T d(t) dt. Hence ‖Fu(G,∆)‖ ≤ γ.

The proof for a) is more subtle but follows similar arguments to those given in [10]. First, note
that Equation (17) still holds if the term ε

[
InG+nψ

0

0 0nw+nd

]
is added to the left hand side with ε > 0

sufficiently small. Left and right multiply the modified Equation (17) to yield:

V̇ (t) +

nπ∑
i=1

λizi(t)
TMizi(t) + εxT (t)x(t) ≤ γ2d(t)T d(t)− e(t)T e(t) (20)

Consider now the response for any initial condition x(0), input d ∈ L2, and allowable trajectory
ρ ∈ T . Integrate Equation 20 from t = 0 to t = T and apply the hard IQC conditions, λi ≥ 0, and
V ≥ 0 to show

ε

∫ T

0

xTx dt ≤ γ2

∫ T

0

dT d dt−
∫ T

0

eT e dt+ V (x(0), ρ(0)) (21)

As T →∞ this gives ε‖x‖22 ≤ γ2‖d‖22 + V (x(0), ρ(0)) <∞. It follows that x ∈ L2. A similar
perturbation argument can be used to show that v ∈ L2 and hence w = ∆(v) ∈ L2 by the assumed
boundedness of ∆. The time derivative of x is given by ẋ = A(ρ)x+B1(ρ)w +B2(ρ)d. Therefore
ẋ ∈ L2 since (x,w, d) ∈ L2 and A, B1 and B2 are bounded on P . Finally, (x, ẋ) ∈ L2 implies that
x(T )→ 0 as T →∞ (e.g. see Appendix B of [5]).



Conclusion (b) of Theorem 1 is essentially Theorem 2 in [15]. Conclusion (a) is the minor
extension provided here. Theorem 1 is correct but there are two key issues. First, it parameterizes the
IQC as conic combinations of individual hard factorizations. The hard IQCs

∫ T
0
zi(t)

TMizi(t)dt ≥
0 are clearly used in the dissipation inequality proof. However, this approach cannot incorporate
more general parameterizations, e.g. Ψ∼M(λ)Ψ as in [23] where Ψ is stable (possibly non-square)
and M(λ) is an affine function of λ. Second, Theorem 1 requires P (p) ≥ 0 for all p ∈ P . This
is a natural assumption given the dissipation inequality approach used in the proof. However, the
constraint P (p) ≥ 0 can lead to conservative results. For example, the frequency domain condition
in [11] can be applied when G is LTI. This frequency domain condition is equivalent to a similar
LMI (by the KYP Lemma) but without the constraint P (p) ≥ 0. A key insight is that the constraint
P (p) ≥ 0 neglects additional energy stored in the combined IQC multiplier. The main result in the
next section addresses both of these key issues.

3. MAIN RESULT

In Theorem 1, it was assumed that the storage function V (x, ρ) = xTP (ρ)x is non-negative definite
and the (Ψi,Mi) are hard factorizations. As noted above, this neglects the additional (hidden) energy
stored in the combined IQC and also prevents the use of more general IQC parameterizations. A
related result in [20] shows that, for a single IQC Π and LTI plant G, the constraint P ≥ 0 can be
dropped if a J-spectral factorization is used for the multiplier. The main result (Theorem 2 below)
extends this for multiple IQCs and LPV plants G. This provides less conservative analysis results
for the uncertain system Fu(G,∆) by not enforcing P (ρ) ≥ 0 and allowing for more general (not
necessarily hard) IQC parameterizations. Theorem 2 again uses the interconnection of G and Ψ as
shown in Fig. 2. It is assumed that the IQC has the form Π = Ψ∼M(λ)Ψ so that the interconnection
of G and Ψ again has a state-space representation as in Equation (15).

Theorem 2. Let G be a parametrically stable LPV system defined by Equation (3) and ∆ :
Lnv2e [0,∞)→ Lnw2e [0,∞) be a bounded, causal operator such that Fu(G,∆) is well-posed. Assume
∆ satisfies the IQC parameterized by Π(λ) = Ψ∼M(λ)Ψ with Ψ stable. If

1. The combined multiplier, partitioned as Π(λ) =
[

Π11 Π12

Π∼
12 Π22

]
, satisfies Π11(jω) > 0 and

Π22(jω) < 0 ∀ω ∈ R ∪ {∞} where Π11 is nv × nv and Π22 is nw × nw.

2. There exists a continuously differentiable P : P → Snx×nx , and a scalar γ > 0 such that

[
ATP+PA+∂P PB1 PB2

BT1 P 0 0

BT2 P 0 −γ2I

]
+

[
CT2
DT21
DT22

][
CT2
DT21
DT22

]T
+

[
CT1
DT11
DT12

]
M(λ)

[
CT1
DT11
DT12

]T
< 0 (22)

hold for all p ∈ P and all q ∈ Ṗ .

Then

a) For any x(0) ∈ RnG+nψ and d ∈ L2, limT→∞ x(T ) = 0

b) ‖Fu(G,∆)‖ ≤ γ

In Equation (22) the dependence of the matrices on p and q has been omitted to shorten the notation.

Proof
Define a parameter-dependent storage function V : RnG+nψ ×Rnρ → R+ by V (x, ρ) := xTP (ρ)x.
Left and right multiply Equation (22) by [xT , wT , dT ] and [xT , wT , dT ]T to show that V satisfies:

V̇ (t) + z(t)TM(λ)z(t) ≤ γ2d(t)T d(t)− e(t)T e(t) (23)



This is not a valid dissipation inequality as neither P (p) ≥ 0 nor
∫ T

0
z(t)TM(λ)z(t)dt ≥ 0 hold, in

general. The proof is based on converting Equation (22) into an equivalent formulation with only a
single, hard IQC (Ψ̂, Jnv,nw) and a new matrix P̂ (p) ≥ 0.

First, note that the state space representation of Ψ (Equation 10) can be used to express zTMz in
terms of (ψ, v, w) as follows:

zTMz =

 ψ

v

w


T [

Q S

ST R

] ψ

v

w

 (24)

where Q := CTψM(λ)Cψ, S := CTψM(λ)Dψ and R := DT
ψM(λ)Dψ. By assumption 1 and

Lemma 1 in the appendix, it follows that the combined multiplier Π(λ) has a J-spectral
factorization. The state space representation realization of the J-spectral factor Ψ̂ is given by
Lemma 1 as (Aψ, Bψ, Ĉψ, D̂ψ) with Ĉψ = Jnv,nwD̂

−T
ψ (BTψX + ST ) and D̂ψ satisfying R =

D̂T
ψJnv,nwD̂ψ. The matrix X = XT is the unique, stabilizing solution of the algebraic Riccati

equation (ARE) (Equation 38). This ARE can be re-written in terms of the state matrices of the
J-spectral factor as:

Q = −ATψX −XAψ + ĈTψ Jnv,nw Ĉψ (25)

Substitute for Q in Equation (24) using the ARE and use ST = D̂T
ψJnv,nw Ĉψ −BTψX to obtain

zTMz = −(Aψψ +Bψ [ vw ])TXψ − ψTX(Aψψ +Bψ [ vw ])

+ (Ĉψψ + D̂ψ [ vw ])TJnv,nw(Ĉψψ + D̂ψ [ vw ])

This can be simplified to the following expression:

zTMz = −ψ̇TXψ − ψTXψ̇ + ẑTJnv,nw ẑ (26)

where ψ and ẑ are the state and the output, respectively of the J-spectral factor Ψ̂.
Define the modified matrix P̂ (ρ) := P (ρ)− [ 0 0

0 X ]. This yields a modified storage function
V̂ : RnG+nψ ×Rnρ → R+ defined as V̂ (x, ρ) = xT P̂ (ρ)x. This modified storage has the form
V̂ (x, ρ) = V (x, ρ)− ψTXψ where the second term can be interpreted as hidden energy stored in
the combined IQC multiplier. Substitute Equation (26) into Equation (23) to get

˙̂
V (t) + ẑ(t)TJnv,nw ẑ(t) ≤ γ2d(t)T d(t)− e(t)T e(t), (27)

This dissipation inequality is equivalent to the linear matrix inequality (Equation 17) in Theorem 1
with a single IQC (Ψ̂, Jnv,nw). It remains to show that P̂ (p) ≥ 0 so that V̂ ≥ 0 is a valid storage
function.

Use the J-spectral factorization (Ψ̂, Jnv,nw) to define the cost J(ψ0) of the following max/min
game:

J(ψ0) := sup
w∈Lnw2 [0,∞)

inf
v∈Lnv2 [0,∞)

∫ ∞
0

ẑ(t)TJnv,nw ẑ(t) dt (28)

subject to:

ψ̇ = Aψψ +Bψ1v(t) +Bψ2w(t), ψ(0) = ψ0

ẑ = Ĉψψ + D̂ψ1v(t) + D̂ψ2w(t)

By Lemma 1 the cost of this max/min game is J(ψ0) = 0. Note that J(ψ0) involves a max over w
followed by a min over v. Hence the choice of v may depend on w. Choose v to be the output of
the nominal LPV plant G generated by w with some initial condition xG,0 and allowable parameter



trajectory ρ ∈ T . This specific choice of v yields a value that is no lower than the infimum over all
possible v ∈ L2. Hence, V̂ ∗(x0) ≥ J(ψ0) = 0, where V̂ ∗(x0) is defined as:

V̂ ∗(x0) := sup
w∈Lnw2
ρ∈T

∫ ∞
0

ẑ(t)TJnv,nw ẑ(t) dt (29)

subject to:
ẋ(t) = A(ρ(t))x(t) +B1(ρ(t))w(t), x(0) = x0

ẑ(t) = C(ρ(t))x(t) +D11(ρ(t))w(t)

where (A,B1, C,D11) are the state matrices obtained by connecting G and Ψ as in the analysis
interconnection (Figure 2) but neglecting the disturbance d and error e signals. As before x :=[ xG
ψ

]
∈ RnG+nψ denotes the extended state of this interconnection.

The last step of the proof is to show V̂ (x0) ≥ V̂ ∗(x0) for all x0. This follows along the lines of
Theorems 2 and 3 in [24] and hence the proof is only sketched. Let x(t) and z(t) be the resulting
solutions of the interconnectionG and Ψ̂ for a givenw(t), ρ(t) and x0. Disregarding the performance
inputs and outputs d and e, Equation (27) can be integrated from t = 0 to t = T resulting in

V̂ (x(T ), ρ(T )) +

∫ T

0

ẑ(t)TJnv,nw ẑ(t) dt ≤ V̂ (x0, ρ(0)) (30)

By assumption G is parametrically stable (Definition 1) and hence for any w ∈ L2 and initial
condition xG(0) it follows that limT→∞ xG(T ) = 0 and v ∈ L2. Moreover, the stability of Ψ̂
and w, v ∈ L2 together imply that limT→∞ ψ(T ) = 0. Hence, limT→∞ x(T ) = 0 and therefore
limT→∞ V̂ (x(T ), ρ(T )) = 0. Maximizing the left hand side of Equation (30) over w ∈ Lnw2 [0,∞)

for T =∞ yields V̂ (x0, ρ(0)) ≥ V̂ ∗(x0).
To summarize, it has been shown that V̂ (x, ρ) = xT P̂ (ρ)x satisfies the dissipation inequality in

Equation (27). This dissipation inequality is equivalent to the linear matrix inequality (Equation 17)
in Theorem 1 with a single IQC (Ψ̂, Jnv,nw). Moreover, V̂ (x0) ≥ V̂ ∗(x0) ≥ J(ψ0) = 0 for all x0.
Hence P̂ (ρ) ≥ 0. Finally, the J-spectral factorization (Ψ̂, Jnv,nw) is a hard IQC by Lemma 1. Hence
Theorem 1 can be applied to conclude that statements (a) and (b) hold.

Theorem 2 has two main benefits as compared to Theorem 1. First, it drops the constraint
P (p) ≥ 0. Second, it allows for more general IQC parameterizations that are not necessarily hard
factorizations. This can reduce the conservatism in the analysis as demonstrated in the examples
below. Theorem 2 adds one technical restriction (Condition 1) on the combined multiplier Π(λ). The
proof uses this technical condition to obtain a J-spectral factorization for the combined multiplier.
This allows the analysis condition to be converted into a valid dissipation inequality with a non-
negative storage function and a single (hard) IQC.

The implementation of Theorem 2 involves some numerical issues. These are briefly described
here and more details can be found in [15]. If the IQC is parameterized such that M(λ) is an affine
function of λ then Theorem 2 involves parameter dependent LMI conditions in the variables P (ρ)
and λ. Note that the entries of λ do not have to be nonnegative as is required in Theorem 1. λ only
needs to satisfy condition 1 in Theorem 2, i.e. Π11 > 0 and Π22 < 0. These are infinite dimensional
(one LMI for each (p, q) ∈ P × Ṗ) and they are typically approximated with finite-dimensional
LMIs evaluated on a grid of parameter values. Additionally, the main decision variable is the
function P (ρ) which must be restricted to a finite dimensional subspace. A common practice [2,28]
is to restrict P (ρ) to be a linear combination of user-specified basis functions. The analysis can then
be performed as a finite-dimensional SDP [4], e.g. minimizing γ subject to the approximate finite-
dimensional LMI conditions. This paper focused on gridded LPV systems whose state matrices have
an arbitrary dependence on the parameter. If the LPV system has a rational dependence on ρ then
finite dimensional LMI conditions can be derived (with no gridding) using the techniques in [1,13].



4. NUMERICAL EXAMPLE

4.1. Simple LTI Example

The first example is a simple nominal LTI system G under a perturbation ∆ described by two IQC
multipliers Π1 and Π2. The nominal system G is given by

ẋG = −0.1xG +
[
0 −1

] [
w

d

]
[
v

e

]
=

[
−1

0

]
xG +

[
−1 0

−1 0

][
w

d

]
.

(31)

The first IQC multiplier is Π1 = Ψ∼1 MΨ1 with M =
[

1 0
0 −1

]
and Ψ1 =

[−3 1
1 6

]
. This is a static

multiplier with no dynamics in Ψ1. The second IQC multiplier is Π2 = Ψ∼2 MΨ2 with Ψ2 given by

ψ̇ = −0.2ψ +
[
−1 −1

] [
v

w

]

z =

[
0

−0.1

]
ψ +

[
1 0

0 0.5

][
v

w

]
.

(32)

Both Ψ1 and Ψ2 are stable with stable inverses. Thus {(Ψi,M)}2i=1 are both J-spectral
factorizations and hence hard factorizations (Lemma 1 in Appendix A). Invoking Theorem 1 with
the IQC parameterization Π(λ) = λ1Π1 + λ2Π2 yields a worst case gain bound of γ1 = 4.98. This
is solved by minimizing γ subject to the LMI conditions P ≥ 0 and Equation (17). Using instead
Theorem 2, i.e. dropping the constraint P ≥ 0, results in γ2 = 4.15. The optimal decision variables
in this case are P ∗ = [ 11.94 0.353

0.353 0.0033 ], λ∗1 = 0.589, and λ∗2 = 0.168. The resulting P has eigenvalues
at 11.94 and −0.007 and is therefore indefinite. By Lemma 1, a J-spectral factorization of the
combined multiplier Π(λ∗) = λ∗1Π1 + λ∗2Π2 can be constructed. The stabilizing solution of the ARE
for Π(λ∗) is X = −0.009. This yields a modified storage function P̂ = P − [ 0 0

0 X ], as described in
the proof of Theorem 2. As expected, P̂ ≥ 0 with eigenvalues at 11.94 and 0.002. This simple
example demonstrates that enforcing P ≥ 0 with multiple IQCs will yield conservative results.
Theorem 2 provides a valid dissipation inequality proof (under additional technical assumptions
on Π(λ)) even if the constraint P ≥ 0 and the hard IQC assumption are dropped.

4.2. LPV Example

The second example is the same example used in [15] except that the uncertainty is assumed to be a
real parameter in addition to norm bounded. The example represents a feedback interconnection of
a first-order LPV system with a gain-scheduled proportional-integral controller as shown in Fig. 3.
The system H , taken from [21], is first order with dependence on a single parameter ρ. It can be
written as

ẋH = − 1

τ(ρ)
xH +

1

τ(ρ)
uH

yH = K(ρ)xH

(33)

with the time constant τ(ρ) and output gainK(ρ) depending on the scheduling parameter as follows:

τ(ρ) =
√

133.6− 16.8ρ,

K(ρ) =
√

4.8ρ− 8.6.
(34)

The scheduling parameter and rate are restricted to ρ ∈ [2, 7] and |ρ̇| ≤ 1. For the following
analysis a grid of six points is used that span the parameter space equidistantly. A time-delay of



HDτ

∆

C

e

d yHu uH

Figure 3. Closed Loop Interconnection with Parametric Uncertainty

0.5 seconds is included at the control input. The time delay is represented by a second order Pade
approximation, denoted Dτ :

Dτ (s) =
(Tds)

2

12 − Tds
2 + 1

(Tds)2

12 + Tds
2 + 1

, (35)

where Td = 0.5. A gain-scheduled PI-controller C is designed that guarantees a closed loop
damping ζcl = 0.7 and a closed loop frequency ωcl = 0.25 at each frozen value of ρ. The controller
gains that satisfy these requirements are given by

Kp(ρ) = −2ζclωclτ(ρ)− 1

K(ρ)
,

Ki(ρ) = −ω
2
clτ(ρ)

K(ρ)
.

(36)

The controller is realized in the following state space form:

ẋc = Ki(ρ)e

u = xc +Kp(ρ)e
(37)

The uncertainty ∆ is assumed to be real, constant scalar satisfying |∆| ≤ 0.5. ∆ satisfies IQC
multipliers of the form Π(λ) := Ψ∼M(λ)Ψ where Ψ(jω) :=

[
Ψ̄(jω) 0

0 Ψ̄(jω)

]
, M :=

[
Λ1 Λ2

ΛT2 −Λ1

]
,

Λ1 = ΛT1 , Λ2 = −ΛT2 , ψ stable, and Ψ(jω)∼Λ1Ψ(jω) > 0 for all ω. See [18] for details. In this

example, Ψ̄ is chosen as Ψ̄ =
[
1 1

s+1.5
0.5
s+1

]T
.

Using an affine parameter dependence for P , i.e. P (p) = P0 + pP1, and restricting P (p) ≥ 0
yields a (smallest) bound on the worst case gain of γ1 = 10.28. Applying the analysis condition in
Theorem 2, i.e. removing the positivity constraint P (p) ≥ 0, improves the bound to γ2 = 9.06. The
minimum eigenvalue of the optimal P ∗(p) is between −1636.9 at p = 2 and −1183.8 at p = 7. The
optimal decision variables Λ∗1 and Λ∗2 in this case are

Λ∗1 =

 12.6 −56.26 50.17

−56.26 2560.9 −3317.6

50.17 −3317.6 4353

 , Λ∗2 =

 0 −639.6 1027.7

639.6 0 −1257.8

−1027.7 1257.8 0

 .
The stabilizing solution of the ARE for Π(Λ∗) is

X =


18.99 −24.51 0 −17935

−24.51 32 17935 0

0 17935 −75.96 98.04

−17935 0 98.04 −127.98

 .
This yields a modified storage function P̂ (p) = P (p)− [ 0 0

0 X ] with minimum eigenvalue between
1.12 at p = 2 and 6.76 at p = 7. This example demonstrates that Theorem 2 enables the use of
more general IQC parameterizations and also reduces the conservatism by dropping the constraint
P (p) ≥ 0.



5. CONCLUSIONS

This paper derived new robustness analysis conditions for uncertain LPV systems using dissipativity
theory and IQCs. Unlike previous results, the new conditions require neither a hard factorization
of the IQC nor a non-negative definite storage function. The proof of this new result used a time-
domain characterization that included the additional energy that is implicitly stored by the combined
IQC. Simple numerical examples demonstrated that the new conditions are less conservative than
previous results.
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APPENDIX

A. J-SPECTRAL FACTORIZATION

This appendix provides numerical procedures to factorize Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ as

Ψ∼MΨ. Such factorizations are not unique and this appendix provides two specific factorizations.
The second of these factorizations (Lemma 1) is particularly useful for use in time-domain
dissipation inequality results. First, let (Aπ, Bπ, Cπ, Dπ) be a minimal state-space realization for
Π. Separate Π into its stable and unstable parts Π = GS +GU . Let (A,B,C,Dπ) denote a state
space realization for the stable part GS so that A is Hurwitz. The assumptions on Π imply
that GU has a state space realization of the form (−AT ,−CT , BT , 0) (Section 7.3 of [9]). Thus
Π = GS +GU can be written as Π = Ψ∼MΨ where Ψ(s) :=

[
(sI−A)−1B

I

]
and M :=

[
0 CT

C Dπ

]
.

This provides a factorization Π = Ψ∼MΨ where M = MT ∈ Rnz×nz and Ψ ∈ RHnz×(nv+nw)
∞ .

For this factorization Ψ is, in general, non-square (nz 6= (nv + nw)).
The stability theorems in this paper require a special J-spectral factorization [3] such that Ψ

is square (nz = (nv + nw)), stable, and with a stable inverse. More precisely, given non-negative
integers p and q, let Jp,q denote the signature matrix

[
Ip 0
0 −Iq

]
. Ψ̂ is called a J-spectral factor of Π if

Π = Ψ̂∼Jp,qΨ̂ and Ψ̂, Ψ̂−1 ∈ RH(nv+nw)×(nv+nw)
∞ . Lemma 1 provides a simple frequency domain

condition that is sufficient for the existence of a J-spectral factor. In addition, this lemma provides
several useful properties of J-spectral factorizations.

Lemma 1. Let Π(s) :=
[

(sI−A)−1B
I

]∼ [
Q S

ST R

] [
(sI−A)−1B

I

]
∈ RL(nv+nw)×(nv+nw)

∞ be given with

A Hurwitz, Q = QT and R = RT . Partition Π as
[

Π11 Π12

Π∼
12 Π22

]
where Π11 ∈ RLnv×nv∞ and Π22 ∈

RLnw×nw∞ . If Π11(jω) > 0 and Π22(jω) < 0 for all ω ∈ R ∪ {∞} then

1. R is nonsingular and there exists a unique real solution X = XT to the Algebraic Riccati
Equation

ATX +XA− (XB + S)R−1(BTX + ST ) +Q = 0 (38)

such that A−BR−1
(
BTX + ST

)
is Hurwitz.

2. Π has a J-spectral factorization (Ψ̂, Jnv,nw). Moreover, Ψ̂ is a J-spectral factor of Π if and
only if it has a state-space realization

[
Âψ B̂ψ

Ĉψ D̂ψ

]
:=

[
A B

Jnv,nwW
−T (BTX + ST

)
W

]
(39)

where W is a solution of R = WTJnv,nwW .

3. (Ψ̂, Jnv,nw) is a hard factorization of Π.



4. The cost of the max/min game defined in Equation 40 based on (Ψ̂, Jnv,nw) is J(ψ0) = 0.

J(ψ0) := sup
w∈Lnw2 [0,∞)

inf
v∈Lnv2 [0,∞)

∫ ∞
0

ẑ(t)TJnv,nw ẑ(t) dt (40)

subject to:

ψ̇ = Âψψ + B̂ψ [ vw ] , ψ(0) = ψ0

ẑ = Ĉψψ + D̂ψ [ vw ]

where (Âψ, B̂ψ, Ĉψ, D̂ψ) is a state space realization for Ψ̂.

Proof
This lemma follows from results in [20]. Briefly, the sign definite conditions on Π11 and Π22 can be
used to show that Π has no equalizing vectors as defined in [12]. Thus the Riccati Equation 38 has
a unique stabilizing solution (Theorem 2.4 in [12]). Statements 3 and 4 follow from known results
on linear quadratic games [7, 8].


