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The F/A-18 Hornet aircraft with the original flight control law exhibited an out-of-
control phenomenon known as the falling leaf mode. Several aircraft were lost due to
the falling leaf mode and which led NAVAIR and Boeing to redesign the flight control
law. The revised flight control law successfully suppressed the falling leaf mode during
flight tests with aggressive maneuvers. This paper compares the robustness of the original
(baseline) and revised control laws using linear analyses, Monte Carlo simulations, and
nonlinear region-of-attraction analyses. The linear analyses indicate the revised controller
only marginally improves the closed-loop robustness while the nonlinear analyses indicate
a substantial improvement in robustness over the baseline controller. This example demon-
strates the potential for nonlinear analyses to detect out-of-control phenomenon that are
not evident from linear analyses.

Nomenclature

α Angle-of-attack, rad
β Sideslip Angle, rad
VT Velocity, ft/s
p Roll rate, rad/s
q Pitch rate, rad/s
r Yaw rate, rad/s
φ Bank angle, rad
θ Pitch angle, rad
ψ Yaw angle, rad
T Thrust, lbf
ρ Density, slugs/ft3

q̄ 1
2ρV

2
T : Dynamic pressure

V Lyapunov Function
m Mass, slugs
IC Initial Condition

I. Introduction

The US Navy F/A-18 A/B/C/D Hornet aircraft with the original baseline flight control law experienced a
number of out-of-control flight departures since the early 1980’s. Many of these incidents have been described
as a falling leaf motion of the aircraft.1 The falling leaf motion has been studied extensively to investigate the
conditions that lead to this behavior. The complex dynamics of the falling leaf motion and lack of flight data
from the departure events pose a challenge in studying this motion. An extensive revision of the baseline
control law was performed by NAVAIR and Boeing in 2001 to suppress departure phenomenon, improve
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maneuvering performance and to expand the flight envelope.1 The revised control law was implemented on
the F/A-18 E/F Super Hornet aircraft after successful flight tests. These flight tests included aggressive
maneuvers that demonstrated successful suppression of the falling leaf motion by the revised control law.

It is of practical interest to compare the robustness of the baseline and revised flight controllers. One
objective of this paper is to use linear analyses, Monte Carlo simulations, and nonlinear region of attraction
analyses to compare the robustness guarantees of each of the design. Region-of-attraction analysis for
nonlinear systems provides a guaranteed stability region using Lyapunov theory and recent results in sum-of-
squares optimization.2–6 This is complementary to the use of Monte Carlo simulations to search for unstable
trajectories. The sums-of-squares stability analysis has previously been applied to simple examples,2–6

though this is the first application of these techniques to an actual industry flight control problem. The
second objective is to use the nonlinear region-of-attraction technique to analyze and draw conclusions
about the F/A-18 aircraft flight control system. Nonlinear analysis is necessary as the falling leaf motion is
due to nonlinearities in the aircraft dynamics and cannot be replicated in simulation by linear models. This
makes the falling leaf motion a particularly interesting example for the application of nonlinear robustness
analysis techniques.

The remainder of the paper has the following outline. Section II describes the characteristics of the
falling leaf motion. Section III provides a brief description of the F/A-18 aircraft including its aerodynamic
characteristics and equations of motion. The baseline and revised flight control laws are described in Section
IV. Section V provides a comparison of the closed-loop robustness properties with the baseline and revised
flight control laws. This section includes both the linear and nonlinear analyses for each control law. A
summary of results and comparisons between linear robustness and nonlinear analyses techniques is also
presented in Section V. Finally a brief conclusion is given in Section VI. All data required to reproduce the
results presented in this paper are provided in the Appendices.

II. Falling Leaf Motion

The falling leaf motion of an aircraft can be characterized as large, coupled out-of-control oscillations
in the roll (p) and yaw (r) direction combined with large fluctuations in angle-of-attack (α) and sideslip
(β).1,7 Figure 1 shows the main characteristics of the falling leaf motion.1,7 This out-of-control mode
exhibits periodic in-phase roll and yaw rates with large amplitude fluctuations about small or zero mean.
The roll and yaw rate generation is mainly due to the large sideslip oscillation. During large sideslip and
angle-of-attack motion, the dihedral effect (roll caused by sideslip) of the aircraft wings becomes extremely
large and the directional stability becomes unstable. The like-signs of these two values are responsible for
the in-phase motion. The roll rate motion can easily reach up to ±120◦/s, while the yaw rate motion
can fluctuate around ±50◦/s. During this motion, the value of angle-of-attack can reach up to ±70◦ with
sideslip oscillations between ±40◦.7 The required aerodynamic nose-down pitching moment is exceeded by
the pitch rate generation due to the inertial coupling of the in-phase roll and yaw rates. The reduction in
pitching moment is followed by a reduction in normal force, eventually causing a loss of lift in the aircraft.
A distinguishing feature of the falling leaf motion is that α vs. β plot produces a mushroom shape curve as
seen in Figure 1. For more details on the falling leaf motion, readers are encouraged to refer to the papers
by Jaramillo & Ralston7 and Heller, David & Holmberg.1

III. F/A-18 Aircraft Description and Model Development

This section contains a brief description of the F/A-18 Hornet including the physical parameters and
the aerodynamic characteristics of the aircraft. More information can be found in the report by Buttrill,
Arbuckle, and Hoffler.8 A full six degree-of-freedom (DOF) nonlinear model of the F/A-18 Hornet dynamics
is presented in Appendix A. This full model is not directly used in any of the analyses presented in this paper
and is only included for completeness. Each of the analyses presented in this paper uses a slightly different
approximated model derived from this full 6 DOF model. To avoid confusion, it is worth summarizing
the various models which will be used. A six state, cubic polynomial model, presented in Appendix B, is
appropriate for the analysis of roll-coupled maneuvers. This cubic polynomial model was used to generate
the falling leaf simulations shown in Figure 1 and for linearization about trim points. It was also used for
linearization around eight different trim points corresponding to steady and unsteady turning maneuvers.
These models are described further in Section III.E. The resulting linear state space models are used to

2 of 25

American Institute of Aeronautics and Astronautics



Figure 1. Characteristic Behavior of Falling Leaf Motion

perform the linear robustness analysis in Section V.A. One of these open loop linear plant (Plant 4 in Table
3) is provided in Appendix C. The state space realizations of both the baseline and revised control laws are
provided in Appendix D. For either control law, the closed loop system can be constructed by placing the
linear control law in Appendix D in negative feedback around the appropriate linear model. Feeding back
the baseline or revised control law around the cubic polynomial model results in a model that is a rational
function of the states. The nonlinear region-of-attraction analysis in Section V.B.2 requires the closed-loop
system dynamics be described by a polynomial function of the states. To derive a polynomial model for the
region of attraction analysis, linear least square and Taylor series approximation are used to approximate
the closed-loop systems as cubic polynomial functions of the states. These polynomial models are provided
in Appendix E. Figure 2 shows the steps used to derive the F/A-18 aircraft models used in this paper.

Figure 2. Steps for F/A-18 Model Reduction

As we proceed through the various analyses, the model being used in each case will be explicitly stated. The
polynomial model captures the characteristics of the full 6 DOF model. However, the closed-loop polynomial
model has not been able to reproduce the mushroom shape curve for α-β plot, as seen in Figure 1.
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A. Physical Parameters

Figure 3. F/A-18 Hornet

The F/A-18 Hornet aircraft, Figure 3a, is a high performance, twin engine fighter aircraft built by the
McDonnell Douglas (currently known as the ‘Boeing’) Corporation. Each engine is a General Electric, F404-
GE-400 rated at 16,100-lbf of static thrust at sea level. The aircraft features a low sweep trapezoidal wing
planform with 400 ft2 area and twin vertical tails.8 Table 1 lists the aerodynamic reference and physical
parameters of the aircraft.

Table 1. Aircraft Parameters

Wing Area, Sref 400 ft2

Mean Aerodynamic Chord (c̄) 11.52 ft
Wing Span, bref 37.42 ft

Mass, m 1034.5 slugs
Ixx 23000 slug-ft2

Iyy 151293 slug-ft2

Izz 169945 slug-ft2

Ixz -2971 slug-ft2

B. Control Surfaces

The conventional F/A-18 Hornet aircraft has five pairs of control surfaces: stabilators, rudders, ailerons,
leading edge flaps, and trailing edge flaps. However, only the symmetric stabilator, differential aileron and
differential rudder are considered as control effectors for the analyses performed in this paper. Longitudinal
control or pitch control is provided by the symmetric deflection of the stabilators. Deflection of differen-
tial ailerons is used to control the roll or lateral direction, while differential deflection of rudders provide
directional or yaw control. The actuation systems for these primary controls are modeled as first order lags.
Table 2 provides the mathematical models of the actuators and their deflection and rate limits.8 However,
the actuators’ dynamics and rate/position limits are neglected for all analyses. Their values are only included
for completeness.

Table 2. Control Surface and Actuator Configuration

Actuator Rate Limit Position Limit Model
Stabilator, δstab ±40◦/s -24◦,+10.5◦ 30

s+30

Aileron, δail ±100◦/s -25◦,+45◦ 48
s+48

Rudder, δrud ±61◦/s -30◦,+30◦ 40
s+40

aPictures taken from http://www.dfrc.nasa.gov/Gallery/Photo/F-18Chase/Large/EC96-43830-11.jpg
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C. Equations of Motion & Aerodynamic Model

The conventional aircraft equations of motion described in Stengel,9 Cook,10 and Napolitano and Spagnuolo11

are primarily driven by the aerodynamic forces and moments acting on the aircraft. In this paper, we follow
the notation used in the report by Napolitano and Spagnuolo.11 The equations of motion for the 6 DOF full
model are presented in the Appendix A. The two aerodynamic angles, angle-of-attack (α) and sideslip angle
(β), are needed to specify the aerodynamic forces and moments. These aerodynamic forces and moments
also depend on the angular rates and the deflection of the control surfaces. The longitudinal coefficients (lift,
drag, and pitching moment) primarily depend on the angle-of-attack (α); in the lateral directional coefficients
(roll, yaw, and sideforce), sideslip angle (β) is equally as important as α.12 Many flight experiments have
been performed to estimate the stability and control derivatives of the F/A-18 High Alpha Research Vehicle
(HARV).13–16 The F/A-18 HARV has similar aerodynamic characteristics as the F/A-18 Hornet17 with the
exception of the F/A-18 HARV having thrust vectoring control. Hence, we will use the F/A-18 HARV
aerodynamic data to represent the F/A-18 aircraft in all models that are presented in this paper. The
aerodynamic model for the full six degree-of-freedom model is presented in the Appendix A.

D. Reduced Equations of Motion

The nonlinear region of attraction analysis3 requires the aircraft dynamics to be described by a polynomial
model. The computational burden of the analysis also restricts the polynomial degree to be less than or
equal to 3. Hence, a six state cubic polynomial model of the F/A-18 aircraft for roll-coupled maneuvers18 is
used in this paper for performing all the analyses. The reduced (open loop cubic polynomial) equations of
motion are presented in the Appendix B.

The polynomial model described in the Appendix B captures the characteristics of the full 6 DOF model
presented in Appendix A. During this OCF motion, the velocity is usually on the order of 250 ft/s.7 In this
paper, the velocity is assumed to be constant, and equal to 250 ft/s. Aggressive maneuvers, like bank turn,
are more likely to put the aircraft in the falling leaf motion compared to straight and level flight. Hence, we
consider a steady bank turn maneuver of the aircraft with zero climb rate (θ̇ = 0). This assumption allows
the pitch angle (θ) and yaw angle (ψ) to be ignored, resulting in a six state model. Thrust effects in the
sideslip direction are also neglected. Small angle approximations are used for the trigonometric terms in the
full 6 DOF model to derive a polynomial representation of the aircraft dynamics. Finally, we perform least
squares fit of the aerodynamic data over a gridded α - β space of −20◦ ≤ β ≤ 20◦, and −10◦ ≤ α ≤ 40◦ to
restrict the description of the dynamics up to cubic degree.

E. Formulation of Linear Models

The cubic polynomial model, presented in Appendix B, is linearized around steady (β = 0) and unsteady
(β = 10o) turning maneuvers for different bank angles (φ). Steady bank turn is a usual maneuver for any
aircraft. However, wind disturbances or any upset conditions can force the aircraft to perform unsteady
bank turn maneuvers. Hence, we will consider both scenarios. Aggressive maneuvers, like large bank turn
(i.e, φ = 60o), are more likely to put the aircraft into the falling leaf motion compared to straight and level
flight. Longitudinal and lateral direction become highly coupled during such maneuvers. Hence, linearization
around such maneuvers will result in linear models which may be well suited to capture the coupling effect of
the aircraft which is one of the important causes for initiating the falling leaf motion.7 It is of considerable
interest to perform linear robustness comparison between the baseline and revised flight control law. The
operating points for formulating the linear models are presented in Table 3. All the linear aircraft models are
trimmed around the flight condition of: VT = 250 ft/s, altitude =25, 000 ft, and α = 26o. We will perform
the nonlinear analysis around the trim condition listed for Plant 4 in Table 3. Only Plant 4 and Plant 8 are
considered for loopmargin analysis. In addition, all eight plants, mentioned in Table 3, are used to perform
the linear robustness (µ) analysis as presented in Section V.A.

IV. Control Law Design

This section provides an overview of both the baseline and revised control laws. In both cases, the control
laws are divided into three channels: longitudinal, lateral, and directional.
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Table 3. Trim Values around VT = 250 ft
s

altitude =25, 000 ft, and α = 26o

State/Input Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 Plant 7 Plant 8
Sideslip, β 0◦ 0◦ 0◦ 0◦ 10◦ 10◦ 10◦ 10◦

Bank Angle, φ 0◦ 25◦ 45◦ 60◦ 0◦ 25◦ 45◦ 60◦

Roll Rate, p 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s
Yaw Rate, r 0◦/s 3.20◦/s 5.78◦/s 7.70◦/s 0.069◦/s 3.28◦/s 5.84◦/s 7.77◦/s
Pitch Rate, q 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s 0◦/s

δStab -21.78◦ -21.78◦ -21.78◦ -21.78◦ -21.78◦ -21.78◦ -21.78◦ -21.78◦

δAil 0◦ 0.31◦ 0.56◦ 0.75◦ 19.68◦ 19.98◦ 20.24◦ 20.42◦

δRud 0◦ -2.37◦ -4.27◦ -5.69◦ 3.32◦ 0.96◦ -0.94◦ -2.36◦

T (lbf) 36464 36464 36464 36464 36464 36464 36464 36464

A. Baseline Control Law

Figure 4 shows the control law architecture for the baseline control laws used for analysis in this paper.
The baseline controller structure for the F/A-18 aircraft closely follows the Control Augmentation System
(CAS) presented in the report by Buttrill, Arbuckle, and Hoffler.8 The actuator (Astab, Arud, Aail) dynamics,
presented in Table 2, are neglected for analysis purposes, i.e. Astab = Arud = Aail = 1. Any differences
between the control structure presented here and in the report by Buttrill, Arbuckle, and Hoffler8 is described
in the following sections.

Actuator

Actuator

Actuator

8

0.5

-0.8

0.8

Longitudinal

Lateral

Directional F/A-18 Plant

Figure 4. F/A-18 Baseline Flight Control Law

1. Longitudinal Control

The longitudinal baseline control design for the F/A-18 aircraft includes angle-of-attack (α in rad), normal
acceleration (an in g), and pitch rate (q in rad/s) feedback. The angle-of-attack feedback is used to stabilize
an unstable short-period mode that occurs during low speed, high angle-of-attack maneuvering. The inner-
loop pitch rate feedback is comprised of a proportional feedback gain, to improve damping of the short-period
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mode. In the high speed regime, this feedback gain needs to be high to avoid any unstable short-period mode.
The normal acceleration feedback, a proportional-integrator (PI) compensator, has not been implemented
in our analysis since only roll-coupled maneuvers are considered.

2. Lateral Control

Control of the lateral direction axis involves roll rate (p in rad/s) feedback to the aileron actuators. Roll rate
feedback is used to improve roll damping and the roll-subsidence mode of the aircraft. Due to the inherent
high roll damping associated with the F/A-18 aircraft at high speed, the roll rate feedback authority is
usually reduced at high dynamic pressure. In the low speed regime, the roll rate feedback gain is increased
to improve the Dutch roll damping. The roll rate feedback gain ranges between 0.8 at low speed to 0.08 at
high speed. At 250 ft/s, flight condition described in this paper, a feedback gain of 0.8 is used to provide
roll damping.

3. Directional Control

Directional control involves feedback from yaw rate (r in rad/s) and lateral acceleration (ay in g) to the
rudder actuators. Yaw rate is fed back to the rudder to generate a yawing moment. Yaw rate feedback
reduces yaw rate contribution to the Dutch-roll mode. In a steady state turn, there is always a constant
nonzero yaw rate present. This requires the pilot to apply larger than normal rudder input to negate the
effect of the yaw damper and make a coordinated turn. Hence, a washout filter is used to effectively eliminate
this effect. The filter approximately differentiates the yaw rate feedback signal at low frequency, effectively
eliminating yaw rate feedback at steady state conditions.12 The lateral acceleration feedback contributes to
reduce sideslip during turn coordination.

B. Revised Control Law

Actuator

Actuator

Actuator

8

0.5

-0.8

0.8

Longitudinal

Lateral

Directional F/A-18 Plant

-0.5

-2

Figure 5. F/A-18 Revised Flight Control Law

Figure 5 shows the architecture of the revised F/A-18 flight control law as described in the papers by
Heller, David, & Holmberg1 and Heller, Niewoehner, & Lawson.19 The objective of the revised flight control
law was to improve the departure resistance characteristics and full recoverability of the F/A-18 aircraft
without sacrificing the maneuverability of the aircraft.1 The significant change in the revised control law
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was the additional sideslip (β in rad) and sideslip rate (β̇ in rad/s) feedback to the aileron actuators. The
sideslip feedback plays a key role in increasing the lateral stability in the 30− 35◦ range of angle-of-attack.
The sideslip rate feedback improves the lateral-directional damping. Hence, sideslip motion is damped even
at high angles-of-attack. This feature is key to eliminating the falling leaf mode, which is an aggressive form
of in-phase Dutch-roll motion. There are no direct measurements of sideslip and sideslip rate. Therefore,
they are estimated for feedback. The sideslip and the sideslip rate feedback signals are computed based on
already available signals from the sensors and using the kinematics of the aircraft. Proportional feedback
has been implemented for these two feedback channels. The values of the proportional gains are kβ = 0.5
and kβ̇ = 2.

V. Analysis

Linear robustness and nonlinear region-of-attraction analyses are performed to compare the baseline and
the revised F/A-18 flight control laws. The linear analysis captures the local behavior of the system and
is only valid around the equilibrium point of the linearization. Linear analysis does not provide insight
into how the nonlinearities of the aircraft dynamics will affect the stability properties of the system. Two
approaches are taken to analyze the effect of the nonlinearities. First, the closed-loop flight control systems
are analyzed by using region-of-attraction estimation techniques to compute an inner estimate of the stability
boundaries. Second, Monte Carlo simulations are performed on the closed-loop dynamics to estimate outer
bounds of the stability boundaries. The linear robustness analysis has been performed using the Robust
Control Toolbox.20

A. Linear Analysis

The cubic polynomial model described in Appendix B is linearized around the flight condition of: VT = 250
ft/s, altitude =25, 000 ft at different bank angle turn, i.e, φ = 0o, 25o, 45o, 60o. Section III.E presents the
operating points for the linear systems. The actuator states are excluded from both linear and nonlinear
models. The actuators have very fast dynamics, as mentioned in Table 2, and their dynamics can be neglected
without causing any significant variation in the analysis results. Validation and verification of flight control
law relies heavily on applying linear analysis at trim points throughout the flight envelope. Linear analysis
usually amounts to investigating robustness issues and possible worst-case scenarios around the operating
points of interest.

1. Loopmargin Analysis

Gain and phase margins provide stability margins for the closed-loop system. Poor gain and phase margins
indicate poor robustness of the closed-loop system. A typical requirement for certification of a flight control
law requires the closed-loop system to achieve at least 6dB of gain margin and 450 of phase margin. However,
the classical loop-at-a-time SISO (Single-Input-Single-Output) margin can be unreliable for MIMO (Multi-
Input-Multi-Output) systems. The F/A-18 aircraft closed- loop plants under consideration are multivariable;
hence, we will perform both disk margin and multivariable margin analysis in addition to the classical loop-
at-a-time margin analysis.

Classical Gain, Phase and Delay Margin Analysis: Classical gain, phase and delay margins provide
robustness margins for each individual feedback channel with all the other loops closed. This loop-at-a-time
margin analysis provides insight on the sensitivity of each channel individually. Table 4 provides the classical
margins for both the baseline and the revised flight control laws. The results, presented in Table 4, are based
on the unsteady (β = 10o) bank turn maneuver at φ = 60o (Plant 8). The baseline and revised flight control
laws have very similar classical margins at the input channel. However, loop-at-a-time margin analysis can be
unreliable for a multivariable system. Hence, multivariable loop margin analysis is necessary to understand
how coupling between the channel effects the robustness properties.

Disk Margin Analysis: Disk margin analysis provides an estimate on how much combined gain/phase
variations can be tolerated at each channel with other loops closed. The disk margin metric is very similar
to an exclusion region on a Nichols chart. As with the classical margin calculation, coupling effects between
channels may not be captured by this analysis. Table 5 provides the disk gain and phase variations at each
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Table 4. Classical Gain & Phase Margin Analysis for Plant 8

Input Channel Baseline Revised

Aileron Gain Margin ∞ 27 dB
Phase Margin 104o 93o

Delay Margin 0.81 sec 0.44 sec
Rudder Gain Margin 34 dB 34 dB

Phase Margin 82o 76o

Delay Margin 2.23 sec 1.99 sec
Stabilator Gain Margin ∞ ∞

Phase Margin 91o 91o

Delay Margin 0.24 sec 0.24 sec

loop for both the control laws. The results are based on the unsteady (β = 10o) bank turn maneuver at
φ = 60o (Plant 8). The baseline flight control law achieves slightly better stability margins in the stabilator
channel; while the revised flight control law has slightly better margins in the aileron channel. Overall, the
disk margins between the two flight control laws are nearly indistinguishable. Disk margin analysis has not
provided any definitive certificate on which of the two flight control law is more robust. The multivariable,
simultaneous disk margin analysis across all channels may provide a better insight on which control law has
better margins.

Table 5. Disk Margin Analysis for Plant 8

Input Channel Baseline Revised

Aileron Gain Margin 20 dB ∞
Phase Margin 78o 90o

Rudder Gain Margin 15 dB 14 dB
Phase Margin 69o 67o

Stabilator Gain Margin ∞ ∞
Phase Margin 90o 90o

Multivariable Disk Margin Analysis: The multivariable disk margin indicates how much simultaneous
(across all channels), independent gain and phase variations can the closed-loop system tolerate before
becoming unstable. This analysis is conservative since it allows independent variation of the input channels
simultaneously. Figure 6 presents the multivaribale disk margin ellipses. Figure 6(a) is based on Plant 4
and Figure 6(b) is based on Plant 8. The mutivariable disk margin analysis certifies that for simultaneous
gain & phase variations in each channel inside the region of the ellipses the closed-loop system remains
stable. The mutivariable disk margin analysis for steady bank turn maneuvers, in Figure 6(a), shows both
the baseline and the revised flight control laws have similar multivariable margins. For this steady maneuver,
both the control laws can handle gain variation up to ≈ ±12.5 dB and phase variation of ≈ ±64o across
channels. Figure 6(b) shows the mutivariable disk margin analysis for unsteady bank turn maneuvers. Here,
the revised flight control law achieves slightly better margin (Gain margin = ±11.3dB, Phase margin =
±600) than the baseline flight control law ( Gain margin = ±9.5dB, Phase margin = ±540). However, the
differences in the margins between the two control laws is not significant enough to conclude which flight
control law is susceptible to the falling leaf motion. Moreover, both the control laws achieve the typical
margin requirement specification (6dB gain margin and 450 phase margin).

2. Input Multiplicative Uncertainty

Modeling physical systems perfectly is always a challenge. A mathematical model of the physical system
always differs from the actual behavior of the system in many engineering problems. The F/A-18 aircraft
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(a) Steady Maneuvers at φ = 60o (b) Unsteady Maneuvers at φ = 60o

Figure 6. Disk Margin Analysis of the Baseline and Revised F/A-18 Flight Control Law

Figure 7. F/A-18 Input Multiplicative Uncertainty Structure

model presented in this paper is no exception. One approach is to account for the inaccuracies of the modeled
aircraft dynamics as input multiplicative uncertainty.

Figure 7 shows the general uncertainty structure of the plant that will be considered in the input multi-
plicative uncertainty analysis. To assess the performance due to the inaccuracies of the modeled dynamics,
we introduce multiplicative uncertainty, WI∆IM , in all four input channels. The uncertainty ∆IM represents
unit norm bounded unmodeled dynamics. The weighting function will be set to unity for analysis purpose,
WI = I4×4. We will perform the structured-singular-value (µ) analysis. The 1

µ value measures the stability
margin due to the uncertainty description in the system.

Diagonal Input Multiplicative Uncertainty: Figure 8 shows the µ plot of both the closed loops at both
steady and unsteady bank maneuvers. The left subplot presents results based on plants 1-4, as mentioned in
Table 3, for steady (β = 0) maneuvers, and the right subplot presents results based on plants 5-8 for unsteady
(β = 10o) maneuvers. Here the uncertainty, ∆IM , has a diagonal structure. This models uncertainty in
each actuation channel but no cross-coupling between the channels. The value of µ at each frequency ω is
inversely related to the smallest uncertainty which causes the feedback system to have poles at ±jω. Thus
the largest value on the µ plot is equal to 1/km where km denotes the stability margin. In Figure 8(a), the
peak value of µ is 0.97 (km = 1.03) for both the revised and baseline controller during steady maneuvers,
which indicates a very robust flight control system. In addition, Figure 8(b) shows the peak value of µ for
both the control laws at unsteady bank turn maneuvers. Here, the baseline flight controller exhibits a peak
µ value of 1.25 (km = 0.83) and the revised flight controller achieves a µ value of 1.20 (km = 0.80). In both
steady and unsteady maneuvers, both the controllers achieve similar stability margins for diagonal input
multiplicative uncertainty across the input channel. These results corresponds well with the classical margin
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(a) Steady Maneuvers (b) Unsteady Maneuvers

Figure 8. Diagonal Input Multiplicative Uncertainty Analysis of the Baseline and Revised F/A-18 Flight
Control Law

results in Section V.A.1 .

Full Block Input Multiplicative Uncertainty: Figure 9 shows the µ plot for both steady and unsteady
maneuvers. The left subplot presents results based on plants 1-4, as mentioned in Table 3, for steady (β = 0)
maneuvers, and the right subplot presents results based on plants 5-8 for unsteady (β = 10o) maneuvers. In
this analysis, ∆IM is allowed to be a full block uncertainty. This uncertainty structure models the effects
of dynamic cross-coupling between the channels to determine how well the flight control laws are able to
handle the coupling at the input to the F/A-18 actuators. As mentioned before, the falling leaf motion is
an exaggerated form of in-phase Dutch-roll motion with large coupling in the roll-yaw direction. Increased
robustness of the flight control law with respect to the full ∆IM is associated with its ability to mitigate
the onset of the falling leaf motion. Figure 9(a) shows the µ analysis for steady maneuvers. In this case,
both the baseline and revised flight control law achieves similar stability margin (µ = 1.02 and km = 0.98).
Figure 9(b) shows the µ analysis for unsteady maneuvers. Here, the baseline flight controller exhibits a peak
µ value of 1.25 (km = 0.83) and the revised flight controller achieves a µ value of 1.20 (km = 0.80). In
both steady and unsteady maneuvers, both the controllers achieve similar stability margins for full input
multiplicative uncertainty across the input channels.

Robustness analysis with respect to input multiplicative uncertainty (both full block and diagonal) across
input channels has not detected any performance issue with the baseline flight control law compare to the
revised flight control law. At this point, the linear analysis shows both controllers are very robust with
similar stability margins and that should mitigate the onset of the falling leaf motion.

3. Robustness Analysis to Parametric Uncertainty

So far we have provided a stability analysis with respect to unstructured dynamic uncertainty at the model
inputs. Robustness analysis of flight control system with structured uncertainty is another important analysis
in validating closed-loop robustness and performance.21 Moreover, robustness assessment of the flight control
law due to the nonlinear variations of aerodynamic coefficients over the flight envelope needs to be considered.
Including parametric uncertainty models into the analysis is one approach to address this issue. Both
controllers are examined with respect to robustness in the presence of parametric variations in the plant
model. To this end, we represented the stability derivatives of the linearized model with ±10% uncertainty
around their nominal values. These terms are chosen carefully to represent the stability characteristics of
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(a) Steady Maneuvers (b) Unsteady Maneuvers

Figure 9. Full Block Input Multiplicative Uncertainty Analysis of the Baseline and Revised F/A-18 Flight
Control Law

the F/A-18 aircraft that play an important role in the falling leaf motion. These terms are related to the
entries of the linearized open-loop A matrix. The terms in the lateral directions are: sideforce due to sideslip
(Yβ); rolling moment due to sideslip (Lβ); yawing moment due to sideslip (Nβ); roll damping (Lp); yaw
damping (Nr). The following longitudinal terms have also been considered: pitch damping (Mq); normal
force due to pitch rate (Zq); pitch stiffness (Mα). Cook10 provides a detailed description of these terms. The
lateral aerodynamic terms: Yβ , Lβ , Nβ , Lp, and Nr correspond respectively to the (1, 1), (2, 1), (3, 1), (2, 2),
and (3, 3) entries of the linearized A matrix presented in previous section. The longitudinal aerodynamic
terms: Mq, Zq, and Mα correspond respectively to the (6, 6), (5, 6), and (6, 5) entries of the same linearized
A matrix.

Figure 10 shows the µ plot (for both steady and unsteady maneuvers) of both closed-loop systems with
respect to this parametric uncertainty. Again, the left subplot presents results based on plants 1-4, as
mentioned in Table 3, for steady (β = 0o) maneuvers, and the right subplot presents results based on plants
5-8 for unsteady (β = 10o) maneuvers. For steady maneuvers, in Figure 10(a), the stability margin for
parametric uncertainty in the aerodynamic coefficients of the revised controller (µ = 0.092 and km = 10.8) is
approximately 1.3 times larger than that of the baseline controller (µ = 0.115 and km = 8.7). For unsteady
maneuvers, in Figure 10(b), the stability margin for parametric uncertainty in the aerodynamic coefficients
of the revised controller (µ = 0.109 and km = 9.17) is approximately 1.2 times larger than that of the
baseline controller (µ = 0.131 and km = 7.63). Hence, the revised flight controller is more robust to error in
aerodynamic derivatives than the baseline design, but overall both flight controllers are very robust designs.

To this point, the linear robustness analysis indicate both the revised and baseline flight control laws
are slightly less robust for unsteady maneuvers compared to the steady maneuvers. However, both the
control laws achieve similar robustness properties separately for steady and unsteady maneuvers. The linear
robustness analysis for the F/A-18 flight control laws do not indicate any dramatic improvement in departure
resistance for the revised flight control compare to the baseline flight control law. This is contrary to the
fact that the revised flight control law has been tested to be more robust as it is able to suppress the falling
leaf motion problem in the F/A-18 Hornet aircraft. Hence, this motivates us to investigate the nonlinear
stability analysis for both the flight control laws.
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(a) Steady Maneuvers (b) Unsteady Maneuvers

Figure 10. Stability Analysis of the Baseline and Revised F/A-18 Flight Control Law with Real Parametric
Uncertainty in Aerodynamic Coefficients

B. Nonlinear Analysis

The falling leaf motion is due to nonlinearities in the aircraft dynamics and cannot be replicated in simula-
tion by linear models. Thus the linear analyses, which are local analyses only valid near an operating point,
may be insufficient for analyzing the falling leaf motion. We propose to use nonlinear region-of-attraction
analysis to study the F/A-18 dynamics. This analysis is based on a fundamental difference between asymp-
totic stability for linear and nonlinear systems. For linear systems asymptotic stability of an equilibrium
point is a global property. In other words, if the equilibrium point is asymptotically stable then the state
trajectory will converge back to the equilibrium when starting from any initial condition. A key difference
with nonlinear systems is that equilibrium points may only be locally asymptotically stable. Khalil22 and
Vidyasagar23 provide good introductory discussions of this issue. The region-of-attraction (ROA) of an
asymptotically stable equilibrium point is the set of initial conditions whose state trajectories converge back
to the equilibrium.22 If the ROA is small, then a disturbance can easily drive the system out of the ROA
and the system will then fail to come back to the stable equilibrium point. Thus the size of the ROA is a
measure of the stability properties of a nonlinear system around an equilibrium point. This provides the
motivation to estimate the region-of-attraction (ROA) for an equilibrium point of a nonlinear system. In
this section we describe our technical approach to estimating the ROA and its application to estimate the
ROA for the closed loop F/A-18 system with both the baseline and revised control laws. Results presented
in this section are based on the models described in Appendix E. Moreover, the actuators’ rate and position
limit, presented in Table 2, are not considered in the analysis.

1. Technical Approach

We consider autonomous nonlinear dynamical systems of the form:

ẋ = f(x), x(0) = x0 (1)

where x ∈ Rn is the state vector. We assume that x = 0 is a locally asymptotically stable equilibrium point.
Formally, the ROA is defined as:

R0 =
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
(2)
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Computing the exact ROA for nonlinear dynamical systems is very difficult. There has been significant
research devoted to estimating invariant subsets of the ROA.5,24–31 Our approach is to restrict the search
to ellipsoidal approximations of the ROA. The ellipsoid is specified by {xT0 Nx0 ≤ β} where N = NT > 0
is a user-specified matrix which determines the shape of the ellipsoid. Given N , the problem is to find the
largest ellipsoid contained in the ROA:

β∗ = maxβ (3)

subject to: {xT0 Nx0 ≤ β} ⊂ R0

Determining the best ellipsoidal approximation to the ROA is still a challenging computational problem.
Instead we will attempt to solve for upper and lower bounds satisfying β ≤ β∗ ≤ β̄. If these upper and
lower bounds are close then we have approximately solved the best ellipsoidal approximation problem given
in Equation 3.

The upper bounds are computed via a search for initial conditions leading to divergent trajectories. If
limt→∞ x(t) = +∞ when starting from x(0) = x0,div then x0,div /∈ R0. If we define β̄div := xT0,divNx0,div

then {xT0 Nx0 ≤ β̄div} 6⊂ R0. Thus β̄div is a true upper bound on β∗ and {xT0 Nx0 ≤ β̄div} is an outer
approximation of the best ellipsoidal approximation to the ROA. We use an exhaustive Monte Carlo search
to find the tightest possible upper bound on β∗. Specifically, we randomly choose initial conditions starting
on the boundary of a large ellipsoid: Choose x0 satisfying xT0 Nx0 = βtry where βtry is sufficiently large that
βtry � β∗. If a divergent trajectory is found, then the initial condition is stored and an upper bound on β∗

is computed. βtry is then decreased by a factor of 0.995 and the search continues until a maximum number of
simulations is reached. β̄MC will denote the smallest upper bound computed with this Monte Carlo search.

The lower bounds are computed using Lyapunov functions and recent results connecting sums-of-squares
polynomials to semidefinite programming. To compute these bounds we need to further assume that the
vector field f(x) in the system dynamics (Equation 1) is a polynomial function. We briefly describe the
computational algorithm here and full algorithmic details are provided elsewhere.2–4,32–35 Lemma 1 is the
main Lyapunov theorem used to compute lower bounds on β∗. This specific lemma is proved by Tan4 but
very similar results are given in textbooks, e.g. by Vidyasagar.23

Lemma 1 If there exists a continuously differentiable function V : Rn → R such that:

• V (0) = 0 and V (x) > 0 for all x 6= 0

• Ωγ := {x ∈ Rn : V (x) ≤ γ} is bounded.

• Ωγ ⊂ {x ∈ Rn : ∇V (x)f(x) < 0}

then for all x ∈ Ωγ , the solution of Equation 1 exists, satisfies x(t) ∈ Ωγ for all t ≥ 0, and Ωγ ⊂ R0.

A function V satisfying the conditions in Lemma 1 is a Lyapunov function and Ωγ provides an estimate
of the region of attraction. Any subset of Ωγ is also inside the ROA. In principle we can compute a lower
bound on β∗ by solving the maximization:

β := maxβ (4)

subject to: {xT0 Nx0 ≤ β} ⊂ Ωγ

Our computational algorithm replaces the set containment constraint with a sufficient condition involving
non-negative functions:

β := maxβ (5)

subject to: s(x) ≥ 0 ∀x
− (β − xTNx)s(x) + (γ − V (x)) ≥ 0 ∀x

The function s(x) is a decision variable of the optimization, i.e. it will be found as part of the optimization.
It is a “multiplier” function. It is straight-forward to show that the two non-negativity conditions in Opti-
mization 5 are a sufficient condition for the set containment condition in Optimization 4. If both V (x) and
s(x) are restricted to be polynomials then both constraints involve the non-negativity of polynomial func-
tions. A sufficient condition for a generic multi-variate polynomial p(x) to be non-negative is the existence
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of polynomials {g1, . . . , gn} such that p = g2
1 + · · ·+ g2

n. A polynomial which can be decomposed in this way
is rather appropriately called a sum-of-squares (SOS). Finally, if we replace the non-negativity conditions in
Optimization 5 with SOS constraints, then we arrive at an SOS optimization problem:

β := maxβ (6)

subject to: s(x) is SOS

− (β − xTNx)s(x) + (γ − V (x)) is SOS

There are connections between SOS polynomials and semidefinite matrices. Moreover, optimization prob-
lems involving SOS constraints can be converted and solved as a semidefinite programming optimization.
Importantly, there is freely available software to set up and solve these problems.6,36,37

The choice of the Lyapunov function which satisfies the conditions of Lemma 1 has a significant impact on
the quality of the lower bound, β. The simplest method is to compute P > 0 that solves the Lyapunov equa-

tion ATP +PA = −I. A := ∂f
∂x

∣∣∣
x=0

is the linearization of the dynamics about the origin. VLIN (x) := xTPx

is a quadratic Lyapunov function since x = 0 is assumed to be a locally asymptotically stable equilibrium
point. Thus we can solve for the largest value of γ satisfying the set containment condition in Lemma 1:
Ωγ ⊂ {x ∈ Rn : ∇VLIN (x)f(x) < 0}. This problem can also be turned into an SOS optimization with
“multiplier” functions as decision variables. β

LIN
will denote the lower bound obtained using the quadratic

Lyapunov function obtained from linearized analysis.
Unfortunately, β

LIN
is typically orders of magnitude smaller than the upper bound β̄MC . Several methods

to compute better Lyapunov functions exist, including V -s iterations,32–35 bilinear optimization,4 and use
of simulation data.2,3 We applied the V -s iteration starting from VLIN . In the first step of the iteration,
the multiplier functions and β

LIN
are computed. Then the multiplier functions are held fixed and the

Lyapunov function candidate becomes the decision variable. The SOS constraints of this new problem are
those which arise from the two set containment conditions: Ωγ ⊂ {x ∈ Rn : ∇VLIN (x)f(x) < 0} and
{xT0 Nx0 ≤ β} ⊂ Ωγ . In the next iteration, the multiplier functions are again decision variables and a lower
bound is computed using the new Lyapunov function computed in the previous iteration. The V -s iteration
continues as long as the lower bound continues to increase. In this iteration, we can allow Lyapunov functions
of higher polynomial degree. Increasing the degree of the Lyapunov function will improve the lower bound at
the expense of computational complexity. The computational time grows very rapidly with the degree of the
Lyapunov function and so degree 4 candidates are about the maximum which can be used for problems like
the F/A-18 analysis. β

2
and β

4
denote the best lower bounds computed with the V -s iteration for quadratic

and quartic Lyapunov functions.

2. ROA Analysis for F/A-18

ROA lower bounds β for the F/A-18 using with the V -s iteration are computed in this section . The
analysis will be performed for the F/A-18 aircraft operating at a steady (β = 0) bank turn of φ = 60o. This
ROA analysis uses the cubic polynomial models for 60o steady bank turn maneuver (Appendix E). The
ordering of the state vector is xT := [β, p, r, φ, α, q, xc]. The shape matrix for the ellipsoid is chosen to
be N := (5)2 · diag(5o, 20o/s, 5o/s, 45o, 25o, 25o/s, 25o)−2. This roughly scales each state by the maximum
magnitude observed during flight conditions. The factor of (5)2 normalizes the largest entry of the matrix
N to be equal to one. The ellipsoid, xTNx = β, defines the set of initial conditions for which the control
law will bring the aircraft back to its trim point. If the aircraft is perturbed due to a wind gust or other
upset condition but remains in the ellipsoid then the control law will recover the aircraft and bring it back
to trim. In other words the ellipsoid defines a safe flight envelope for the F/A-18. Hence, the ROA provides
a measure of how much perturbation the aircraft can tolerate before it becomes unstable. The value of
the β can be thought of as ’nonlinear stability margin’, similar to the linear stability margin (km) concept
presented in Section V.A . However, these two margins are not comparable to each other.

As previously mentioned, increasing the degree of the Lyapunov function will improve the lower bound
estimate of the ROA. We first computed a bound using the quadratic Lyapunov function from linearized
analysis. This method has been proposed for validation of flight control laws.21 We computed β

LIN
=

8.05 × 10−5 for the baseline control law and β
LIN

= 1.91 × 10−4 for the revised control. Unfortunately
these lower bounds are not particularly useful since they are two to three orders of magnitude smaller than
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(a) ROA Estimation in α− β Space (b) ROA Estimation in p− r Space

Figure 11. Estimated Lower Bound of ROA with both Linearized and Quartic Lyapunov Function

the corresponding upper bounds computed via Monte Carlo search (see Section V.B.3). Next, lower bounds
with the V -s iteration using quadratic and quartic Lyapunov functions are computed. The V -s iteration
with quadratic Lyapunov functions gives β

2
= 3.45× 10−3 for the baseline control law and β

2
= 9.43× 10−3

for the revised control law. The V -s iteration with quartic Lyapunov functions is β
4

= 1.24 × 10−2 for the
baseline control law and β

4
= 2.53× 10−2 for the revised control law. These bounds are significantly larger

than the bounds obtained for the linearized Lyapunov function. A sixth order Lyapunov function would lead
to improved lower bounds but with a significant increase in computation time.

The lower (inner) bounds on the region-of-attraction can be visualized by plotting slices of the ellipsoid
p(x) = β. Figure 11 shows slices of the ellipsoid in the α-β (left subplot) and p-r (right subplot) planes.
The results for the linearized Lyapunov function and quartic Lyapunov function are shown in each plot. As
mentioned previously, the use of the Lyapunov function from linear analysis has been proposed for validating
flight control laws.21 The slices in Figure 11 show that this method is much more conservative than the
results obtained using the quartic Lyapunov function.

The slices for the quartic Lyapunov functions demonstrate that the ROA estimate for the revised control
law is larger than for the baseline control law. For example, from the α-β slice we conclude the baseline
controller will return to the trim condition for initial perturbations in an ellipse defined by β between −6.4o

and +6.4o and α between −5.9o and +57.9o . The revised controller will return to the trim condition
for initial perturbations in an ellipse defined by β between −9.1o and +9.1o and α between −19.6o and
+71.6o. In fact, the robustness improvement for the revised controller is more dramatic if we consider the
volume of the ROA estimate. The volume of the ellipsoid p(x) = β is proportional to β(n/2) where n is
the state dimension. Thus the ROA estimate obtained by the revised control law has a volume which is
( β

4,rev
/β

4,base
)3.5 greater than that obtained by the linearized Lyapunov function. This corresponds to a

volume increase of 12.1 for the quartic Lyapunov functions.
This is the first application of the nonlinear region of attraction analysis techniques to an actual flight

control problem. However, this nonlinear analysis imposes a limitation that the dynamics of the aircraft need
to be described by the polynomial functions of the states. Hence, the caveat with this nonlinear analysis
results is that the size of the ROA may be larger than where the polynomial model is valid. In this paper, the
aerodynamic coefficients have been fitted over a gridded α - β space of −20◦ ≤ β ≤ 20◦, and −10◦ ≤ α ≤ 40◦.
However, the results shown in Figure 11 go outside the bounds of this gridding. Hence, the results may not
be valid over the entire region shown in the figure.
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3. Monte Carlo Analysis for F/A-18

In the previous section we computed lower bounds on the best ellipsoidal ROA approximation. In this
section we provide upper bounds computed via a Monte Carlo search for unstable trajectories. Closeness of
the upper/lower bounds means that we have approximately solved the best ellipsoidal ROA approximation
problem.

The Monte Carlo search was described in Section V.B.1 . We performed the search with a maximum of 2
million simulations each for the baseline and revised control laws. The baseline control law provides an upper
bound of β̄MC = 1.56×10−2 whereas the revised control law provides an upper bound of β̄MC = 2.95×10−2.
The search also returns an initial condition x0 on the boundary of the ellipsoid, i.e. p(x0) = xT0 Nx0 = β̄MC ,
that causes the system to go unstable. Hence, the value of the β̄MC provides an upper bound of the ROA
for the F/A-18 aircraft. This is complementary information to that provided by the Lyapunov-based lower
bounds. The Monte Carlo search returned the following initial condition for the closed system with the
baseline control law:

x0 = [−1.1206o, −12.3353o/s, 1.5461o/s, −5.8150o, 28.9786o, 9.9211o/s, 0]T

This initial condition satisfies p(x0) = 1.56 × 10−2. The left subplot of Figure 12(a) shows the unstable
response of the baseline system resulting from this initial condition. Decreasing the initial condition slightly
leads to a stable response. The right subplot of Figure 12(a) shows the stable system response when starting
from 0.995x0. For the revised control law the Monte Carlo search returned the following initial condition:

x0 = [0.3276o, −8.0852o/s, 2.8876o/s, −2.1386o, 44.8282o, 9.9829o/s, 0]T

This initial condition satisfies p(x0) = 2.95 × 10−2 and the left subplot of Figure 13(a) shows the unstable
response of the revised system resulting from this initial condition. Decreasing the initial condition slightly
leads to a stable response. The right subplot of Figure 13(a) shows the stable system response when starting
from 0.995x0.

However, the actuator exceeds the physical limit in all cases presented above. In the analysis presented in
this paper, we have ignored the saturation and rate limits of the actuator. This issue needs to be addressed
in the future.

(a) Unstable Trajectory with IC s.t. xT
0 Nx0 = 0.0155 (b) Stable Trajectory with IC s.t. xT

0 Nx0 = 0.0154

Figure 12. Time Response of F/A-18 Aircraft Baseline Closed Loop Model

At this point, we have computed the lower and upper bounds on β∗. Figure 14 shows slices of the
inner/outer approximations of the best ellipsoidal ROA approximation for both the baseline and revised
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(a) Unstable Trajectory with IC s.t. xT
0 Nx0 = 0.0295 (b) Stable Trajectory with IC s.t. xT

0 Nx0 = 0.0294

Figure 13. Time Response of F/A-18 Aircraft Revised Closed Loop Model

control laws. The blue solid lines show the slices of the inner bounds obtained from quartic Lyapunov
analysis. Every initial condition within the blue ellipses will return to the trim condition (marked as a ’+’).
The red dashed lines show the slices of the outer bounds obtained from Monte Carlo analysis. There is at
least one initial condition on the outer ellipsoid which leads to a divergent trajectory. The initial condition
leading to a divergent trajectory does not necessarily lie on the slice of the ellipsoid shown in the figure.
The closeness of the inner and outer ellipsoids means that we have solved, for engineering purposes, the best
ROA ellipsoid problem.

Again, the aerodynamic coefficients have been fitted over a gridded α - β space of −20◦ ≤ β ≤ 20◦, and
−10◦ ≤ α ≤ 40◦. Hence, the results shown in Figure 14 may not be valid over the entire region as shown in
the figure itself.

C. Summary

Table 6 summarizes the stability analysis results described in this section. There are several key points to
be gathered from this analysis. First, the F/A-18 aircraft with the baseline control law was susceptible to
the falling leaf motion. However, the linear robustness analysis did not detect any stability issues with this
control law. Second, the revised control law demonstrated an ability to suppress the falling leaf motion in
the F/A-18 aircraft in flight tests. However, the linear analyses did not show a significant improvement in
the stability and robustness properties of the revised control law as compared to the baseline control law.
Hence, based on the linear analyses alone both controllers should have mitigated the effect of the falling leaf
motion. In contrast, the nonlinear analysis showed that the revised control law leads to a significant increase
in the ROA estimate over the baseline design. This implies that the closed-loop system with the revised
control law is more robust to disturbances and upset conditions. It is important to note that the region of
attraction analysis accounts for significantly nonlinearities in the aircraft dynamics. This makes the analysis
more applicable to highly nonlinear flight phenomenon such as the falling leaf mode.

VI. Conclusion

In this paper, we have compared the stability and robustness properties of the two control laws (the
baseline and the revised) of the F/A-18 aircraft using linear robustness concepts and nonlinear region-
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(a) Estimation of α-β Region-of-Attraction (b) Estimation of p -r Region-of-Attraction

Figure 14. Lower and Upper Bound Estimate of ROA for Baseline and Revised Flight Control Law around
Steady 60o Bank Turn

Table 6. Summary of Analysis Results

Linear Analysis Baseline Revised

Multivariable Loop Phase Margin ±63.4◦ ±64.0◦

Multivariable Loop Gain Margin (dB) ±12.53 ±12.73
Diagonal Input Multiplicative: (km = 1

µ ) 1.03 1.03
Full Input Multiplicative: (km = 1

µ ) 0.98 0.98
Parametric Uncertainty: (km = 1

µ ) 8.70 10.8

Nonlinear Analysis: {xTNx ≤ β∗}
Linearized Lyapunov Function,β

lin
8.05× 10−5 1.91× 10−4

Generic Quadratic Lyapunov Function, β
2

3.45× 10−3 9.43× 10−3

Generic Quartic Lyapunov Function, β
4

1.24× 10−2 2.53× 10−2

Monte Carlo Simulation, β̄MC 1.56× 10−2 2.95× 10−2

of-attraction analysis tools. The nonlinear ROA analysis showed that the revised control law has better
robustness properties compared to the baseline control law, whereas the linear analysis showed similar sta-
bility margins for both the control laws. Sum-of-Squares programming has been used to establish guaranteed
stability regions for the nonlinear F/A-18 aircraft models. This is the first time that this technique has been
successfully applied to a real physical system. This approach provides a guaranteed stability certificate for
the control law as opposed to the widely used exhaustive Monte Carlo simulation technique.
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Appendix

A. Full Model

The full six degree-of-freedom F/A-18 Hornet aircraft model is presented in this section. This model is not
directly used for analysis presented in this paper, but is included for completeness.

1. Equations of Motion

The equations of motion described are taken from the report (chapter 4) by Napolitano and Spagnuolo.11

The state variables are:
XT = [VT α β p q r φ θ ψ]

The following three equations describe the force equations of the aircraft:

V̇T = − q̄Sref
m

(CD cosβ − CY sinβ) + g(cosφ cos θ sinα cosβ + sinφ cos θ sinβ

− sin θ cosα cosβ) +
T

m
cosα cosβ

α̇ = − q̄Sref
mVT cosβ

CL + q− tanβ(p cosα+ r sinα)

+
g

VT cosβ
(cosφ cos θ cosα+ sinα sin θ)− T sinα

mVT cosβ

β̇ =
q̄Sref
mVT

(CY cosβ + CD sinβ) + p sinα− r cosα+
g

VT
cosβ sinφ cos θ

+
sinβ
VT

(g cosα sin θ − g sinα cosφ cos θ +
T

m
cosα)

where q̄ = 1
2ρV

2
T and ρ = 0.001066 slugs

ft3 at an altitude of 25,000 ft.

The equations describing the equations of moment of the aircraft are:ṗ
q̇
ṙ

 =


Izz
κ 0 Ixz

κ

0 1
Iyy

0
Ixz
κ 0 Ixx

κ




L

M

N

−
 0 −r q

r 0 −p
−q p 0


 Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz




p
q
r




where κ = IxxIzz − I2
xz and L,M,N indicates roll, pitch, and yaw moment:LM

N

 =

Clq̄SrefbrefCmq̄Sref c̄

Cnq̄Srefbref


The kinematic relations of the aircraft:φ̇θ̇

ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ


p

q
r


2. Full Aerodynamic Model

The aerodynamic coefficients presented here have been extracted from various papers.13–16 The aerodynamic
model of the aircraft is presented and the coefficient values are given in Tables 7, 8.
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Pitching Moment, Cm = Cmαα+ Cm0 + (Cmδstabα+ Cmδstab0
)δstab

+
c̄

2VT
(Cmqα+ Cmq0 )q

Rolling Moment, Cl = (Clβ2α
2 + Clβ1α+ Clβ0 )β + (Clδailα+ Clδail0

)δail

+ (Clδrudα+ Clδrud0
)δrud +

bref
2VT

(Clpα+ Clp0 )r

Yawing Moment, Cn = (Cnβ2α
2 + Cnβ1α+ Cnβ0 )β + (Cnδailα+ Cnδail0

)δail

+ (Cnδrudα+ Cnδrud0
)δrud + (Cnrα+ Cnr0 )

bref
2VT

r

Table 7. Aerodynamic Moment Coefficients

Pitching Moment Rolling Moment Yawing Moment
Cmα = -0.9931 Clβ2 = 0.8102 Cnβ2 = -0.3917
Cm0 = 0.1407 Clβ1 = -0.6446 Cnβ1 = 0.3648
Cmδstab = 0.6401 Clβ0 = -0.0427 Cnβ0 = 0.0894
Cmδstab0

= -1.1055 Clδail = -0.1553 Cnδail = -0.0213

Cmq = -14.30 Clδail0
= 0.1542 Cnδail0

= 0.0051

Cmq0 = - 2.00 Clδrud = -0.0858 Cnδrud = 0.0534
Clδrud0

= 0.0943 Cnδrud0
= -0.0724

Clp = 0.0201 Cnr = -0.0716
Clp0 = -0.3370 Cnr0 = -0.4375

Sideforce Coeffificent, CY = (CYβ2α
2 + CYβ1α+ CYβ0 )β + (CYδailα+ CYδail0

)δail

+ (CYδrudα+ CYδrud0
)δrud

Lift Coefficient, CL = (CLα3
α3 + CLα2

α2 + CLα1
α+ CLα0

) cos(
2β
3

)

(CLδstabα+ CLδstab0
)δstab

Drag Coefficient, CD = (CDα4
α4 + CDα3

α3 + CDα2
α2 + CDα1

α+ CDα0
) cosβ

+ CD0 + (CDδstabα+ CDδstab0
)δstab

Table 8. Aerodynamic Force Coefficients

Sideforce Coefficient Drag Force Coefficient Lift Force Coefficient
CYβ2 = 0.5781 CDα4

= 1.4610 CLα3
= 1.1645

CYβ1 = 0.2834 CDα3
= -5.7341 CLα2

= -5.4246
CYβ0 = -0.8615 CDα2

= 6.3971 CLα1
= 5.6770

CYδrud = -0.4486 CDα1
= -0.1995 CLα0

= -0.0204
CYδrud0

= 0.3079 CDα0
= -1.4994 CLδstab = -0.3573

CYδail = 0.4270 CD0 = 1.5036 CLδstab0
= 0.8564

CYδail0
= -0.1047 CDδstab = 0.7771

CDδstab0
= -0.0276
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B. Reduced Model

1. Reduced Equations of Motion

Roll-coupled maneuvers18 of the aircraft are the focus of the analysis. The velocity, VT , is assumed to be
constant and equal to 250 ft/s.

α̇ = − q̄Sref
mVT

CL + q− pβ +
g

VT
− rβα

β̇ =
q̄Sref
mVT

(CD + CY β) + pα− r +
g

VT
φ

ṗ =
1
κ

(IzzL+ IxzN − [I2
xz + Izz(Izz − Iyy)]rq)

q̇ =
1
Iyy

(M + (Izz − Ixx)pr)

ṙ =
1
κ

(IxzL+ IxxN + [I2
xz + Ixx(Ixx − Iyy)]pq

φ̇ = p

2. Reduced Aerodynamic Model

The rolling moment (Cl), pitching moment (Cm), yawing moment (Cn), and sideforce (CY ) coefficients for
the full aerodynamic model presented in Appendix A.2 are same for the reduced aerodynamic model. The
lift and drag coefficients have been approximated by employing the standard least square approximation
technique within −20◦ ≤ β ≤ 20◦, and −10◦ ≤ α ≤ 40◦. The model is presented below:

Lift Coefficient, CL :=CLα2
α2 + CLα1

α+ CLα0
+ (CLδstabα+ CLδstab0

)δstab
Drag Coefficient, CD:=CDα2

α2 + CDα1
α+ CDβ2β

2 + (CDδstabα+ CDδstab0
)δstab

Table 9. Approximated Lift & Drag Force Coefficients

Drag Coefficient Lift Coefficient
CDα2

= 2.7663 CLα2
= −4.5022

CDα1
= 0.1140 CLα1

= 5.4854
CDβ2 = 1.2838 CLα0

= −0.0406
CDδstab = 0.7771 CLδstab = −0.3573
CDδstab0

= −0.0275 CLδstab0
= 0.8563

C. Linearized Model

The reduced order model presented in the Appendix B is used to derive the linearized model around a trim
point. The trim values for the states and the inputs are presented in Table 3. The model ẋOL = AxOL+Bu
with the output equation y = CxOL + Du is presented in this section. The ordering of the states, inputs
and outputs are mentioned below: xT

OL = [β p r φ α q ] and u = [δail δrud δstab T ]. However, the
C and D matrices will be different for each of the control law due to different feedback measurements. They
are: yT

Baseline = [ay p r α q] and yT
Revised = [ay p r α β q β̇]

The open loop plant, G , is represented as: G =

[
A B

CRevised DRevised

]
The linearized matrices for 60o

bank angle turn (Plant 4 in Table 3) is presented. The C and D matrices will be presented for the revised
flight control law. Appropriate C and D matrices for the baseline flight control law can be extracted from
these matrices.
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[
A B

]
=



−0.0059 0.4538 −1 0.1288 0.0026 0 0.0046 0.0054 0 0

−3.6680 −0.4000 0.0134 0 −0.0015 −0.1095 1.8210 0.2573 0 0

0.1382 0.0070 −0.1034 0 −0.0184 0 −0.0453 −0.1459 0 0

0 1 0 0 0 0 0 0 0 0

−0.0609 0 0 0 −0.2201 1 0 0 −0.0358 −1.755× 10−6

0 0.1305 0 0 −1.2550 −0.1984 0 0 −0.8269 0


The C and D matrices for the revised controller are as follows:

[
CRevised DRevised

]
=



−0.2456 0 0 0 0.02005 0 0.0356 0.0418 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0.4538 −1 0.1288 0 0 0 0 0 0



D. Control Law State Space Realization

The state space realization of both the baseline and the revised control laws are presented here. The

controller, K =

[
Ac Bc

Cc DC

]
where ẋc = Acxc + Bcy and u = Ccxc + Dcy describes the controllers’ state

space realization with u and y as described in Appendix C.

1. Baseline Controller Realization: y = yBaseline

[
Ac Bc

Cc Dc

]
=


−1 0 0 4.9 0 0

0 0 0.8 0 0 0

−1 −0.5 0 −1.1 0 0

0 0 0 0 −0.8 −8

0 0 0 0 0 0


2. Revised Controller Realization: y = yRevised

[
Ac Bc

Cc Dc

]
=


−1 0 0 4.9 0 0 0 0

0 0 0.8 0 0 2 0 0.5

−1 −0.5 0 −1.1 0 0 0 0

0 0 0 0 −0.8 0 −8 0

0 0 0 0 0 0 0 0
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E. Third Order Approximated Polynomial Closed-Loop Models

1. Baseline Controller Closed-Loop Model

β̇ = 0.20127α2β − 0.0015591α2p− 0.0021718α2r + 0.0019743α2xc + 0.32034αβq + 0.065962β3

+ 0.17968αβ + 0.98314αp− 0.023426αr− 0.024926αxc + 0.134βq + 0.0025822α− 0.0068553β

+ 0.45003p + 0.1288φ− 0.99443r + 0.0056922xc

ṗ = 17.7160α2β − 0.0277α2p− 0.0386α2r + 0.0351α2xc − 0.0033β3 + 2.1835αβ + 3.0420αp

− 0.4139αr− 0.4699αxc − 0.8151qr− 0.0015α− 3.7098β − 1.8607p− 0.1096q + 0.2799r

+ 0.2723xc

ṙ = −1.4509α2β + 0.0105α2p + 0.0146α2r− 0.0133α2xc + 0.0012β3 − 1.0095αβ − 0.0148αp

+ 0.1410αr + 0.1854αxc − 0.7544pq− 0.0185α+ 0.1620β + 0.0455p− 0.2546r− 0.1544xc

φ̇ = p

α̇ = −αβr + 0.2467α2 − 0.1344αβ + 0.1473αq− βp− 0.4538βr− 0.2487α− 0.0609β + 0.7139q

q̇ = 0.5196α2 + 4.8613αq + 0.97126pr− 1.9162α− 6.8140q + 0.1305p

ẋc = 4.9r− xc

2. Revised Controller Closed-Loop Model

β̇ = 0.1831α2β − 0.0496α2p− 0.0005α2φ+ 0.0017α2r + 0.0030α2xc + 0.3203αβq + 0.0643β3

+ 0.0027αβ + 0.9557αp− 0.0054αφ+ 0.0187αr− 0.0250αxc + 0.1340βq + 0.0026α− 0.0091β

+ 0.4457p + 0.1276φ− 0.9850r + 0.0056xc

ṗ = 1.1530α2β + 6.6577α2p− 0.0082α2φ+ 0.0308α2r− 0.1205α2xc + 18.3689β3 − 0.5080αβ

+ 2.4908αp + 0.8743αφ− 7.2037αr− 0.3495αxc − 0.8151qr− 0.0109α− 4.6009β

− 3.5186p− 0.4703φ− 0.1096q + 3.9316r + 0.2527xc

ṙ = −1.4275α2β + 0.0546α2p + 0.0031α2φ− 0.0117α2r− 0.0132α2xc + 0.0079β3 − 1.0008αβ

− 0.0096αp− 0.0029αφ+ 0.1638αr + 0.1832αxc − 0.7544pq− 0.0182α+ 0.1854β + 0.0895p

+ 0.0124φ− 0.3509r− 0.1539xc

φ̇ = p

α̇ = −αβr + 0.2467α2 − 0.1344αβ + 0.1473αq− βp− 0.4538βr− 0.2487α− 0.0609β + 0.7139q

q̇ = 0.5196α2 + 4.8613αq + 0.97126pr− 1.9162α− 6.8140q + 0.1305p

ẋc = 4.9r− xc
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