
Susceptibility of F/A-18 Flight Controllers to the
Falling-Leaf Mode: Nonlinear Analysis

Abhijit Chakraborty,∗ Peter Seiler,† and Gary J. Balas‡

University of Minnesota, Minneapolis, Minnesota 55455

DOI: 10.2514/1.50675

The F/A-18 Hornet aircraft with the original flight control law exhibited a nonlinear out-of-control phenomenon

knownas the falling-leafmode. This unstablemodewas suppressed bymodifying the original control law. This paper

employs the falling-leaf phenomenon as an example to demonstrate the utility of recently developed nonlinear

analysis methods to flight control validation tools. The flight control law is usually validated and verified by

performing linear robustness analysis at different trim points and running many Monte Carlo simulations.

Additional insight can be gained by using nonlinear analyses. This paper compares the two flight control laws using

nonlinear region-of-attraction analyses and Monte Carlo simulations. The results of these nonlinear analyses

indicate that the revised flight control law has significantly improved nonlinear robustness properties as compared

with baseline design.

Nomenclature

ay = lateral acceleration, g
g = gravitational constant, ft

s2

m = mass, slugs
p = roll rate, rad

s
q = pitch rate, rad

s
�q = dynamic pressure, lbs

ft2

r = yaw rate, rad
s

T = thrust, lbf
V = velocity, ft

s
� = angle of attack, rad
� = sideslip angle, rad
� = pitch angle, rad
� = density, slugs

ft3

� = bank angle, rad
 = yaw angle, rad

I. Introduction

S AFETY critical flight systems require extensive validation
before entry into service. Validation of the flight control system

is becomingmore difficult due to the increased use of advancedflight
control algorithms, e.g., nonlinear flight controls systems. NASA’s
Aviation Safety Program aims to reduce the fatal (commercial)
aircraft accident rate by 90% by 2022 [1]. A key challenge to
achieving this goal is the need for improved validation and
certification tools for the flight systems. The current certification and
validation procedure involves analysis, simulations, and exper-
imental techniques such as flight tests [1]. Before flight tests,
extensive analyses and simulations are performed to validate safety
of the system. Standard practice is to assess the closed-loop stability
and performance characteristics of the aircraft flight control system
around numerous trim conditions using linear analysis tools. These

techniques include stability margins, robustness analyses and worst-
case analyses. Linear analyses techniques are supplemented with
Monte Carlo simulations of the full nonlinear equations of motion to
provide further confidence in the system performance. These
simulations are also used to uncover nonlinear dynamic character-
istics, e.g., limit cycles, that are not revealed by the linear analyses.
Hence, current practice involves extensive linear analyses at different
trim conditions and probabilistic nonlinear simulations. The
certification process typically does not involve nonlinear analysis
methods.

Recently, significant research has been performed on the devel-
opment of nonlinear analysis tools for computing regions of
attraction, reachability sets, input-output gains, and robustness with
respect to uncertainty for nonlinear polynomial systems [2–11].
These tools make use of polynomial sum-of-squares (SOS) opti-
mization [11] and hence they can only be applied to systems whose
dynamics are described by polynomial vector fields. These
techniques offer great potential to complement the linear analyses
and nonlinear simulations that are typically used in the flight control
validation process.

The main objective of this paper is to use nonlinear region-of-
attraction (ROA) analyses andMonte Carlo simulations to assess the
robustness properties of two F/A-18 flight control laws. ROA
analysis for nonlinear systems provides a guaranteed stability region
usingLyapunov theory and SOSoptimization [2–4,11,12]. TheROA
analysis complements the use of Monte Carlo simulations. SOS
stability analysis has previously been applied to simple examples [2–
4,11,12]. This paper presents the first successful application of these
techniques to a flight control problem of realistic complexity.

The analysis of the F/A-18 control laws is a particularly interesting
example for the application of nonlinear robustness analysis
techniques. The U.S. Navy F/A-18 A/B/C/D Hornet aircraft with the
baseline flight control law experienced a number of out-of-control
flight departure phenomenon known as the falling-leafmode [13,14].
An extensive revision of the original (baseline) flight control lawwas
performed by NAVAIR and Boeing in 2001 to suppress the falling-
leaf departure phenomenon [14]. The revised control law was
implemented and successfully flight tested on the F/A-18 E/F Super
Hornet aircraft, which has similar aerodynamic and inertial
characteristics as of the Hornet [14].

The falling-leaf mode is nonlinear in nature and was handled by
modifying the flight control law in the Hornet. Accurate modeling of
the falling-leaf mode is still an open issue [15] and this is a significant
factor in the inability to predict the susceptibility of an aircraft to this
mode. However, this mode is inherently nonlinear and hence it
provides a good example for nonlinear analysismethods. The F/A-18
mathematical model of used in this paper is able to reproduce a
falling-leaf type of motion. Linear analyses have been performed on
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both the flight controllers of the Hornet [16,17]. Classical gain and
phase margin analyses indicate that the revised flight control law has
similar robustness properties as the baseline flight control law. More
advanced linear analysis tools, such as � and worst-case perfor-
mance, indicate that the revised flight controller has noticeably better
robustness properties than the baseline control law [16,17].However,
it can be difficult to interpret these results because the falling-leaf
motion is a truly nonlinear dynamic phenomenon. Thus nonlinear
analyses tools would provide useful insight into why the revised
design is robust to the falling-leaf motionwhile the baseline design is
susceptible.

The paper has the following structure. First, a computational
procedure to estimate regions of attraction for polynomial systems
[2–4,18–21] is provided in Sec. II. The six-degree-of-freedom (DOF)
nine-state model of the F/A-18 aircraft is discussed in Sec. III. State-
space realizations for the baseline and revised control laws are given
in Sec. IV. Polynomial models are constructed in Sec. V for the
closed-loop systemswith the baseline and revised flight control laws.
This step is required because the proposed computational method to
estimate the ROA is only applicable to polynomial systems. The
robustness properties of the two closed-loop systems are then
analyzed in Sec. VI. The paper concludes with a summary of the
contributions of the paper.

II. ROA Estimation

This section describes the technical approach to estimate the ROA
for nonlinear, polynomial systems. This analysis is based on a
fundamental difference between asymptotic stability for linear and
nonlinear systems. For linear systems, asymptotic stability of an
equilibrium point is a global property. In other words, if an
equilibrium point is asymptotically stable then its state trajectorywill
converge back to the equilibrium when starting from any initial
condition. For nonlinear systems, asymptotically stable equilibrium
points are not necessarily globally asymptotically stable. Khalil [22]
and Vidyasagar [23] provide good introductory discussions of this
issue. The ROA of an asymptotically stable equilibrium point is the
set of initial conditions whose state trajectories converge back to the
equilibrium [22]. If the ROA is small, then a disturbance can easily
drive the system out of the ROA and the systemwill fail to come back
to the stable equilibrium point. Thus the size of the ROA can be
interpreted as a measure of the stability properties of a nonlinear
system around an equilibrium point. This motivates the computation
of ROA estimates.

Consider an autonomous nonlinear, polynomial system of the
form

_x� f�x�; x�0� � x0 (1)

where x 2 Rn is the state vector and f: Rn ! Rn is a multivariable
polynomial. Assume that the origin is a locally asymptotically stable
equilibrium point. This assumption is without loss of generality
because state coordinates can always be redefined to shift an
equilibrium point to the origin. The ROA is formally defined as

R :� fx0 2 Rn: If x�0� � x0 then lim
t!1

x�t� � 0g (2)

Computing the exact ROA for nonlinear dynamic systems is very
difficult. There has been significant research devoted to estimating
invariant subsets of the ROA [5–11,24,25]. The approach taken in
this paper is to restrict the search to ellipsoidal approximations of the
ROA. Given an n � nmatrixN � NT > 0, define the shape function
p�x� :� xTNx and level set E� :� fx 2 Rn: p�x� � �g. p�x�
defines the shape of the ellipsoid and � determines the size of the
ellipsoid E�. The choice of p is problem dependent and reflects
dimensional scaling information as well as the importance of certain
directions in the state space.N can typically be chosen to be diagonal
with Ni;i :� 1=x2i;max. With this choice, E��1 is a coordinate-aligned
ellipsoid whose extreme points along the ith state direction are
�xi;max. In this form, the level set value � provides an easily
interpretable value for the size of the level set.

Given the shape function p, the problem is to find the largest
ellipsoid E� contained in the ROA:

�� �max� subject to : E� � R (3)

Determining the best ellipsoidal approximation to the ROA is still a
challenging computational problem. Instead, lower and upper

bounds for �� satisfying � � �� � �� are computed. If the lower and

upper bounds are close then the largest ellipsoid level set, defined by
Eq. (3), has been approximately computed.

The upper bounds are computed via a search for initial conditions
leading to divergent trajectories. If limt!1x�t� � 	1when starting

from x�0� � x0;div then x0;div =2 R. If we define ��div :� p�x0;div� then
E ��div

⊄R which implies �� � ��div. An exhaustive Monte Carlo

search is used to find a tight upper bound on��. Specifically, random
initial conditions are chosen starting on the boundary of a large
ellipsoid: x0 is chosen to satisfy p�x0� � �try where �try is
sufficiently large that �try 
 ��. If a divergent trajectory is found,
the initial condition is stored and an upper bound on �� is computed.
�try is then decreased by a factor of 0.995 and the search continues
until a maximum number of simulations is reached. There is a
tradeoff involved in choosing the factor 0.995. A smaller factor
results in a larger reduction of the upper bound for each divergent
trajectory but it typically limits the accuracy of the upper bound. No
divergent trajectories can be found when �try < �

� and this roughly
limits the upper bound accuracy to ��/(factor). The value of 0.995 is
very close to one and is chosen to obtain an accurate upper bound on

��. ��MC will denote the smallest upper bound computed with this
Monte Carlo search.

The lower bounds are computed using Lyapunov functions and
recent results connecting sums-of-squares polynomials to semi-
definite programming. Computing these bounds requires the vector
field f�x� in Eq. (1) to be a polynomial function. The computational
algorithm is briefly described here and full algorithmic details are
provided in references [2–4,18–21]. Lemma 1 is the main Lyapunov
theorem used to compute lower bounds on��. This specific lemma is
proved by [2] but very similar results are given in textbooks [23].

Lemma 1: if there exists � > 0 and a polynomial V: Rn ! R such
that

V�0� � 0 and V�x�> 0 8 x ≠ 0 (4)

�� :� fx 2 Rn: V�x� � �g is bounded (5)

�� � fx 2 Rn: rV�x�f�x�< 0g [ f0g (6)

then for all x 2 �� , the solution of Eq. (1) exists, satisfies x�t� 2 ��

for all t � 0, and �� � R.
A function V, satisfying the conditions in Lemma 1 is a Lyapunov

function and �� provides an estimate of the ROA. If x� 0 is
asymptotically stable, a linearization can be used to compute a

Lyapunov function. Let A :� @f
@x
jx�0 be the linearization of the

dynamics about the origin and compute P > 0 that solves the
Lyapunov equation ATP	 PA��I. VLIN�x� :� xTPx is a
quadratic Lyapunov function that satisfies the conditions of Lemma
1 for sufficiently small � > 0. VLIN can be used to compute a lower
bound on �� by solving two maximizations:

��: �max� subject to : �� � fx 2 Rn: rVLIN�x�f�x�< 0g (7)

� :� max� subject to : E� � ��� (8)

Thefirst maximizationfinds the largest level set��� ofVLIN such that
Lemma 1 can be used to verify���  R. The second maximization
finds the largest ellipsoid E� contain within��� . The set containment

constraints are replaced with a sufficient condition involving non-
negative polynomials [2]. For example, E� � ��� in Optimization
(8) is replaced by
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�: �max
�;s�x�

� subject to : s�x� � 0

8 x � �� � p�x��s�x� 	 ��� � VLIN�x�� � 0 8 x (9)

The function s�x� is a decision variable of the optimization, i.e., it is
found as part of the optimization. It is straight-forward to show that
the two nonnegativity conditions in Optimization (9) are a sufficient
condition for the set containment condition in Optimization (8). If
s�x� is restricted to be a polynomial, both constraints involve the
nonnegativity of polynomial functions. A sufficient condition for a
generic multivariate polynomial h�x� to be nonnegative is the
existence of polynomials fg1; . . . ; gng such that h� g21 	 � � � 	 g2n.
A polynomial which can be decomposed in this way is called a SOS.
Finally, if we replace the nonnegativity conditions in Optimization
(9) with SOS constraints, then we arrive at an SOS optimization
problem:

�: �max� subject to : s�x� is SOS � �� � p�x��s�x�
	 ��� � VLIN�x�� is SOS (10)

There are connections between SOS polynomials and semidefinite
matrices. Moreover, optimization problems involving SOS con-
straints can be converted and solved as a semidefinite programming
optimization. Importantly, there is freely available software to set up
and solve these problems [12,26–28]. �

LIN
will denote the lower

bound obtained from Optimization (10) using the quadratic
Lyapunov function obtained from linearized analysis.

Unfortunately, �
LIN

is usually orders of magnitude smaller than

the upper bound ��MC. Several methods to compute better Lyapunov
functions exist, including V � s iterations [18–21], bilinear
optimization [2], and the use of simulation data [3,4]. In this paper,
V � s iteration is used to compute the Lyapunov function and the
inner ellipsoidal approximation to the ROA. The Lyapunov function
V�x� in the iteration is initialized with the linearized Lyapunov
function VLIN. The iteration also uses functions l1�x� � ��1xTx and
l2�x� � ��2xTx where �1 and �2 are small positive constants on the
order of 10�6. The V � s iteration algorithm steps are as follows:

1) � step: hold V fixed and solve for s2 and �
�:

�� :� max
s22SOS;�

� s:t: � �� � V�s2 �
�
@V

@x
f	 l2

�
2 SOS

2) � step: hold V, �� fixed and solve for s1 and �:

� :� max
s12SOS;�

� s:t: � �� � p�s1 	 ��� � V� 2 SOS

3) V step: hold s1, s2, �, �
�
fixed and solve for V satisfying

� ��� � V�s2 �
�
@V

@x
f	 l2

�
2 SOS

��� � p�s1 	 ��� � V� 2 SOS V � l1 2 SOS; V�0� � 0

4) Repeat as long as the lower bound � continues to increase.

Software and additional documentation on the V � s iteration is
provided in the [28]. The basic issue is that searching for a Lyapunov
function V results in a bilinear term Vs2 in the � constraint. This
bilinear term can not be handled directly within the SOS
programming framework because the constraints in SOS programs
must be linear in the decision variables. The V � s iteration avoids
the bilinearity inVs2 by holding either s2 orV fixed. Each step of this
iteration is a linear SOS optimization that can be solved with
available software. In theV � s iteration, the Lyapunov functions are
allowed to have polynomial degree greater than two. Increasing the
degree of the Lyapunov function will improve the lower bound at the
expense of computational complexity.

The V step requires additional discussion. An interior-point linear
matrix inequality solver is used to find a feasible solution to the
feasibility problem in the V step. The Lyapunov function V that is
used in the � and � steps will be feasible for the constraints in the V

step. Thus it is possible for the solver to simply return the same
Lyapunov function that was used in the � and � steps. While this is
possible, it typically happens that the solver returns a different V that
allows both � and� to be increased at the next iteration. This step can
be understood by the fact that interior-point solvers try to return a
solution at the analytic center of set specified by the linear matrix
inequality constraints. Thus the V step typically returns a feasible V
that is “pushed away” from the constraints. Amore formal theory for
the behavior of this feasibility step is an open question.

III. F/A-18 Aircraft and Model Development

A nonlinear mathematical model of the F/A-18 Hornet aircraft
including its aerodynamic characteristics and control surface
description is presented for the purpose of linear and nonlinear
analysis of flight control system. Unfortunately, a full aerodynamic
data set for the Hornet is not available in the public domain. Hence, a
nonlinear model of the F/A-18 aircraft is developed based on the
publicly available aerodynamic data for the F/A-18 High-Alpha
Research Vehicle (HARV) [29–34]. The model developed for
analysis has limitations. First, the flight test data are provided over a
range of 5 or 10� to 60� angle-of-attack with fewer data points at low
angle-of-attack (0� � � � 10�). Extrapolation of data within the
lower range of angle-of-attack can lead to unrealistic fits which may
lead to unrealistic aerodynamic characteristics at low angle-of-
attack. For traditional aircraft, the aerodynamic characteristics of the
vehicle do not change significantly at low angle-of-attack (� � 10�).
Hence if data are unavailable, the aerodynamic coefficient is held
constant for angle-of-attack between 0 and 10�.§ The resultingmodel
is reasonably accurate for an angle-of-attack range from 0�–60�.
Second, data are unavailable for nonzero sideslip flight conditions.
However, the basic airframe coefficients are functionally dependent
on both �, �. In this paper, the basic airframe dependence of
CY;basic��; ��, Cl;basic��; ��, Cn;basic��; �� are approximated as
CY;basic����,Cl;basic����,Cn;basic���� to account for this lack of data.
This implies, forCY, that the sideforce is expected to be zerowhen the
sideslip is zero. This approximation step can also be viewed as
linearization of the sideslip effect around the origin. A similar
approach to approximate sideforce was considered by Stevens and
Lewis [35]. Note that the sideslip characteristics are an important
aspect of the falling-leafmotion. The nonlinear aircraftmodel used in
this paper is able to reproduce a falling-leaf motion even with the
approximations specified preceding.

Themathematical description of the six-DOF, nine-statemodel for
the F/A-18 aircraft uses flight tests data publicly available for the F/
A-18HARV [29–33]. The aerodynamic characteristics of the F/A-18
Hornet and Super Hornet are similar to the HARV aircraft. The
aerodynamic characteristics of the aircraft are expressed as closed-
form polynomial approximations to flight test data with functional
dependence on states and control surfaces [16,17]. State variables
describing the F/A-18 mathematical model are: velocity (V, ft=s),
sideslip angle (�, rad), angle-of-attack (�, rad), roll rate (p, rad=s),
pitch rate (q, rad=s), yaw rate (r, rad=s), bank angle (�, rad), pitch
angle (�, rad) and yaw angle ( , rad). Symmetric stabilator (	stab,
rad), differential aileron (	ail, rad), differential rudder (	rud, rad) and
thrust (T, lbf) are considered as control effectors for the analyses
performed in this paper. Table 1 lists the aerodynamic reference and
physical parameters of the F/A-18 Hornet [36].

The mathematical model of the F/A-18 Hornet is described by the
conventional aircraft equations ofmotion [33,37,38] in the following
form:

_x� f�x; u� (11)

where x :� �V�ft=s�; ��rad�; ��rad�; p�rad=s�; q�rad=
s� r�rad=s�; ��rad�; ��rad�;  �rad��. and u :� � 	ail�rad�;
	rud�rad�; 	stab�rad�; T�lbf��.

§Personal communication with Dr. John V. Foster, NASA Langley
Research Center.
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The equations of motion are presented next. Closed-form
polynomial expressions for the aerodynamic coefficients are pre-
sented in Appendix A. A detailed description of the aerodynamic
model is provided in [16,17].

The kinematics of the aircraft are described in terms of Euler
angles. The kinematic relations are given in Eq. (12):

_�
_�
_ 

2
4

3
5� 1 sin� tan � cos� tan �

0 cos� � sin�
0 sin� sec � cos � sec �

2
4

3
5 p

q
r

2
4

3
5 (12)

Equation (13) defines the force equations for the F/A-18 Hornet.
The aerodynamic forces, gravity forces and thrust force applied to the
aircraft are considered. For all analyses, the thrust force is assumed to
be constant and fixed at its trim value:

_V �� 1

m
�D cos� � Y sin�� 	 g�cos� cos � sin� cos�

	 sin� cos � sin� � sin � cos � cos��

	 T
m
cos� cos� (13a)

_��� 1

mV cos�
L	 q � tan��p cos�	 r sin��

	 g

V cos�
�cos� cos � cos �	 sin� sin �� � T sin�

mV cos�
(13b)

_�� 1

mV
�Y cos�	D sin�� 	 p sin� � r cos�

	 g
V
cos� sin� cos �

	 sin�

V

�
g cos� sin � � g sin� cos� cos �	 T

m
cos �

�
(13c)

where CD, CL, CY denote the drag, lift and sideforce coefficients,
respectively. These force coefficients are expressed as a sum of basic
airframe and control deflections as C� � C�;basic��; ��	
C�;control��; 	control�. The variable � denotes D, L, Y and 	control can
be replaced by 	stab, 	ail, 	rud. The detailed expressions for these force
coefficients are provided in Tables 2 and 3.

The aerodynamic moments are considered for external applied
moments. The gyroscopic effect of the moment is neglected in this
paper. Equation (14) describes the moment equations for the F/A-18
Hornet:

_p

_q

_r

2
64

3
75�

Izz



0
Ixz



0 1
Iyy

0

Ixz



0 Ixx



2
664

3
775

�
l

M

n

2
64

3
75�

0 �r q

r 0 �p
�q p 0

2
64

3
75

Ixx 0 �Ixz
0 Iyy 0

�Ixz 0 Izz

2
64

3
75

p

q

r

2
64

3
75

0
B@

1
CA (14)

where 
� IxxIzz � I2xz. l :� �qSbCl, M :� �qScCM, n :� �qSbCn
denote the roll, pitch and yaw moment, respectively. The moment
coefficients,Cl,CM, andCn, are expressed as a sumof basic airframe,
control deflections, and rate damping as C� � C�;basic��; ��	
C�;control��; 	control� 	 C�;rate�rate; V�. The variable ‘�’ denotes l,M,
n, control denotes stab, ail, rud and rate denotes the variable p, q, r.
Appendix A provides explicit forms for these moment coefficients.

IV. F/A-18 Flight Control Laws

State-space realizations for both the baseline and revised flight
control laws are presented in this section. This paper presents a
simplified control law structure representing the stability aug-
mentation system of the Hornet flight control system. This
simplification is justified because the paper is only concerned with
the stability issues of the F/A-18 aircraft. A more detailed
descriptions of theseflight control laws can be found in other [16,17].

The controller

K � Ac Bc
Cc DC

� �

can be realized as the following:

_x c � Acxc 	 Bcy (15)

Table 1 Aircraft parameters

Parameter Symbol Value
Wing area S 400 ft2

Mean aerodynamic chord �c 11.52 ft
Wing span b 37.42 ft
Mass m 1034.5 slug
Roll axis moment of inertia Ixx 23; 000 slug � ft2
Pitch axis moment of inertia Iyy 151; 293 slug � ft2
Yaw axis moment of inertia Izz 169; 945 slug � ft2
Cross product of inertia about y-axis Ixz �2971 slug � ft2

Table 2 Aerodynamic moment coefficients

Pitching moment Rolling moment Yawing moment

Cm�2
��1:2897 Cl�4

��1:6196 Cn�2
��0:3816

Cm�1
� 0:5110 Cl�3

� 2:3843 Cn�1
� 0:0329

Cm�0
��0:0866 Cl�2

��0:3620 Cn�0
� 0:0885

Cm	stab2
� 0:9338 Cl�1

��0:4153 Cn	ail3
� 0:2694

Cm	stab1
��0:3245 Cl�0

��0:0556 Cn	ail2
��0:3413

Cm	stab0
��0:9051 Cl	ail3

� 0:1989 Cn	ail1
� 0:0584

Cmq3
� 64:7190 Cl	ail2

��0:2646 Cn	ail0
� 0:0104

Cmq2
��68:5641 Cl	ail1

��0:0516 Cn	rud4
� 0:3899

Cmq1
� 10:9921 Cl	ail0

� 0:1424 Cn	rud3
��0:8980

Cmq0
��4:1186 Cl	rud3

��0:0274 Cn	rud2
� 0:5564

—— Cl	rud2
� 0:0083 Cn	rud1

��0:0176
—— Cl	rud1

� 0:0014 Cn	rud0
��0:0780

—— Cl	rud0
� 0:0129 Cnp1

��0:0881
—— Clp1

� 0:2377 Cnp0
� 0:0792

—— Clp0
��0:3540 Cnr1

��0:1307
—— Clr2

��1:0871 Cnr0
��0:4326

—— Clr1
� 0:7804 ——

—— Clr0
� 0:1983 ——

Table 3 Aerodynamic force coefficients

Sideforce coefficient Drag force coefficient Lift force coefficient

CY�2
��0:1926 CD�4

� 1:4610 CL�3
� 1:1645

CY�1
� 0:2654 CD�3

��5:7341 CL�2
��5:4246

CY�0
��0:7344 CD�2

� 6:3971 CL�1
� 5:6770

CY	ail3
��0:8500 CD�1

��0:1995 CL�0
��0:0204

CY	ail2
� 1:5317 CD�0

��1:4994 CL	stab3
� 2:1852

CY	ail1
��0:2403 CD0

� 1:5036 CL	stab2
��2:6975

CY	ail0
��0:1656 CD	stab3

��3:8578 CL	stab1
� 0:4055

CY	rud3
� 0:9351 CD	stab2

� 4:2360 CL	stab0
� 0:5725

CY	rud2
��1:6921 CD	stab1

��0:2739 ——

CY	rud1
� 0:4082 CD	stab0

� 0:0366 ——

CY	rud0
� 0:2054 —— ——
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u3 � Ccxc 	Dcy (16)

where xc is the controller state, u3 :� �	ail; 	rud; 	stab� indicates the
input of the plant. The plant measurements are y :�
� ay; p; r; �; �; q; _�lin �. The lateral acceleration is given

by ay � �qS
mg
CY (in units of g) and computed around a flight condition.

The measurement signal _�lin represents the linearized representation

of the sideslip-rate ( _�). This signal is estimated by using a first-order
approximation to the sideslip state-derivative equation around a
flight condition.

A. Realization of Baseline Flight Control Law

Figure 1 shows the simplified control law architecture for the
baseline control laws used for analysis in this paper. The baseline
controller structure for the F/A-18 aircraft closely follows the control
augmentation system presented in the report by Buttrill et al. [36].
The actuator dynamics are ignored in the nonlinear analysis
presented in this paper to reduce computational complexity. More-
over, the normal acceleration feedback, a proportional-integrator
compensator in the F/A-18 baseline design, is not implemented in the
simplified control law structure. The feedback gain of the normal
acceleration is significantly lower at the flight condition of interest
than that of alpha feedback gain. In addition, the values of normal
acceleration around the flight condition of interest are estimated by
performing numerous simulations. The estimated value is bounded

by 1.22 g. Hence, the contribution of the normal acceleration
feedback term is negligible and eliminated from the analysis.

The state-space realization for the baseline flight control law is

Ac Bc
Cc Dc

� �
�

�1 0 0 4:9 0 0 0 0

0 0 0:8 0 0 0 0 0

�1 �0:5 0 �1:1 0 0 0 0

0 0 0 0 �0:8 0 �8 0

2
664

3
775
(17)

B. Realization of Revised Flight Control Law

Figure 2 shows the architecture of the revised F/A-18flight control
law as described in the papers by Heller et al. [14,39].

The state-space realization for the revised controller is

Ac Bc
Cc Dc

� �
�

�1 0 0 4:9 0 0 0 0

0 0 0:8 0 0 2 0 0:5
�1 �0:5 0 �1:1 0 0 0 0

0 0 0 0 �0:8 0 �8 0

2
664

3
775

(18)

The revised flight control law has two additional feedback
measurements to the aileron and the differential stabilator channels,
sideslip and sideslip-rate feedback, comparedwith the baseline flight
control law. The paper by Heller et al. [14] refers to these additional
two feedback channels, especially the sideslip-rate feedback, being
the key for suppressing the falling-leaf motion.

Note, the differential stabilator channel is ignored in this paper.
Both aileron and differential stabilator channels are useful to control
sideslip with the ailerons being most effective to roll the aircraft at
high angles-of-attack and the differential stabilator in aiding the
vehicle to yaw. Sincemainly roll maneuverswith small sideslip angle
are considered in this paper, the differential stabilator too was
deemed appropriate to ignore.

V. Polynomial Model Formulation and Validation
of F/A-18 Aircraft

Section II described an approach to estimate regions of attraction
for nonlinear systems. The approach to estimate lower bounds on the
ROA relies on SOS optimization methods and can only be applied to
polynomial systems. Moreover, the computational requirements for
the SOS optimizations grow rapidly in the number of state variables
and polynomial degree. This approximately limits this method to
nonlinear analysis problems with at most 7–10 states and degree 3–5
polynomialmodels. Consequently, the construction of accurate, low-
degree polynomial models is an important step in the proposed
analysis process. However, to our knowledge, no rigorous method
exists to construct an optimal polynomial approximation to a
nonlinear dynamic system. Hence, the polynomial model in this
paper is developedwith an “informal”method driven by engineering
judgment. In this paper, the polynomial model is formulated in two
steps. First, the aerodynamic look-up data have been expressed as
closed-form functions of states. Second, the closed-loop analytical
nonlinear model is approximated by polynomial functions of the
states by posing a least-square optimization problem over a gridded
state-space region of interest. The gridded state-space region of
interest is determined by the range of values the aircraft can undergo
during the slow alpha falling-leaf motion. MATLAB tools has been
developed to speed the development of polynomial models but this
step still requires more effort when compared with the construction
of linearizations. The MATLAB software to construct polynomial
models is freely available at [28]. The benefit of the additional
modeling effort is that the polynomial model provides information
on higher-order dynamics of the vehicle that the linear models fail to
capture.

This section formulates cubic degree polynomial models for the
closed-loop systems consisting of the F/A-18 aircraft and the
baseline and revised flight control laws.

Fig. 1 F/A-18 baseline flight control law.

Fig. 2 F/A-18 revised flight control law.
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A. Polynomial Model Formulation

A nine-state, six-DOF nonlinear model for the F/A-18 was
described in Sec. III. The phugoidmode of the aircraft involves theV
and � states. The phugoid mode is slow and is not important for
capturing the falling-leaf characteristics. The heading angle  also
does not impact any of other state dynamics and hence it can be
neglected. Consequently a six-state model of the F/A-18 aircraft is
sufficient for analyzing the falling-leaf mode. Additional rationale
for neglecting �V; �;  � is discussed in [16].

The mechanism to extract a six-state representation from the nine-
state model is outlined. First, the nine-state model, Eq. (11), is
trimmed around a specific flight condition. The flight condition is
chosen such that all three directions of the aircraft are excited. Hence,
the aircraft ismore likely to experience the falling-leafmotion around
the flight condition.

Consider the flight condition for a coordinated turn (�t � 0�) at a
35� bank angle and at Vt � 350 ft=s.

The trimvalues are provided in Eq. (19). The subscript ’t’denotes a
trim value:

�t
pt
qt
rt
�t
 t

2
6666664

3
7777775
�

20:17�

�1:083�=s
1:855�=s
2:634�=s
18:69�

0�

2
6666664

3
7777775
;

	stab;t
	ail;t
	rud;t
	th;t

2
664

3
775�

�4:449�
�0:4383�
�1:352�
14500 lbf

2
664

3
775 (19)

The analysis in this paper, is performed around the flight condition
mentioned in Eq. (19). This flight condition is one of the eight
operating points, specifically plant 4, around which linear analysis
was performed in a previous work [16,17].

The states and inputs for the six-state model are defined relative to
this trim point: x6 :� �� � �t; � � �t; p � pt; q � qt;
r � rt; � � �t� and u3 :� � 	ail � 	ailt ; 	rud � 	rudt ; 	stab � 	stabt �.
The state derivatives for the six-state model, _x6, are computed using

Eq. (13c), (13b), and (14) and the first row ( _� entry) of (12),
respectively. In these equations, V, �,  and T are held fixed at their
trimmed values. Moreover, these state derivatives are linear in the
inputs. Thus the six-state model is of the following form:

_x 6 � F�x6� 	G�x6�u3 (20)

y�H�x6� 	 J�x6�u3 (21)

Figure 3 shows the structure of the closed-loop plant considered.P
denotes the six-state nonlinear model mentioned in Eqs. (20) and
(21).K denotes either the baseline or revised control law presented in
Sec. IV. Both the closed-loop models are formed with the negative
feedback of the controller (K) around the nonlinear plant (P), as
shown in Fig. 3.

The autonomous (rref � 0) closed-loop dynamics are given by

dxcl
dt
� F �xcl� (22)

where xcl :� � xT6 ; xc �T 2 R7 denotes the closed-loop states andF
is given by Eq. (23):

F � F�x6� � G�x6�Ccxc � G�x6�DcM�x6��1�H�x6� � J�x6�Ccxc� 	G�x6�u3t
Acxc 	 BcM�x6��1�H�x6� � J�x6�CcXc�

� �
(23)

where M�x6� � �Il 	 J�x6�Dc�. l denotes the number of measure-
ments in y.

The seven-state closed-loopmodelF , in Eq. (23), is nonlinear due
to trigonometric terms,M�x6��1, and polynomial functions to model
the aerodynamic coefficients. F can be approximated by a third-
degree polynomial function of xcl. The approximation steps are as

follows. First, the linearization of F is computed at xcl � 0. F is
expressed as F :� F linxcl 	 F nonl�xcl� where F lin denotes the
linearization. Second, each entry of the vector-valued function
F nonl�xcl� is approximated by a polynomial consisting of second- and
third-degree terms. The benefit of this procedure is that the
polynomial model retains the same linearization as the original
nonlinear model.

The polynomial approximation step exploits structure that exists
in the nonlinear model. For example, p, q, r, and xc typically enter
linearly with nonlinear functions of �, �, and/or �. To illustrate the

point, consider the state-derivative _�� p	 tan ��q sin�	 r cos��
from Eq. (12). The value of � is held at its trim value during
approximation. Notice, q and r enters linearly with nonlinear
functions of�. By examining each state-derivative separately, insight
can be gained on the structure of the nonlinear model.

The assumed structure of the polynomial approximation used in
this paper is shown while presenting the approximated closed-loop
polynomial model inAppendix B. This structure is used to determine
the second- and third-degree terms to include in the polynomial
functions. The coefficients of the polynomial functions are computed
to approximate Eq. (23) over a specified range of the closed-loop
state-space. The range of the state-space is chosen to be the seven
dimensional hypercube in Table 4. The state values roughly fall
within the range of the slow alpha falling-leaf motion [13]. Values are
provided in degrees for ease of interpretation. The hypercube is
uniformly gridded along each dimension by the number of points
specified in Table 4. This gridding results in a total of 60,000 samples
in the hypercube. The nonlinear function F nonl is evaluated at these
points and least-squares is used to compute the polynomial
coefficients that minimize the difference between F nonl and the
polynomial function at these 60,000 samples. The approximation
results a cubic degree polynomial model of the form

_x cl � P�xcl� (24)

P is provided in Appendix B for both the baseline and the revised
controller.

B. Polynomial Model Validation

The cubic polynomial models for the baseline and revised control
laws involve approximations due to neglecting three aircraft states
and due to the polynomial least-squares fits. It is important to
determine if the cubic polynomial models are sufficiently accurate.
This section compares the polynomial closed-loop models with
closed-loop models constructed with the original nine-state
nonlinear model [Eq. (11)]. The term “original model” will refer to
the closed-loop models constructed with the nine-state nonlinear
model. Numerical tools do not exist to rigorously perform this
comparison and hence the validation performed in this section relies

on heuristic procedures. However, the validation provides some
confidence that the polynomial model provides, for engineering
purposes, a sufficiently accurate approximation.

The first approach to validation is to compare the polynomial and
original model by simulating from many initial conditions.
Numerous simulations have been performed by perturbing the states

Fig. 3 Feedback system.
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from their trim values. Most state trajectories are similar for both the
polynomial and original model. Figure 4 compares the polynomial
and original models with the baseline control law. This specific
simulation is performed by perturbing the �, �, p, q, r, � states by 5,
20 and 25� and 20�=s, 20�=s, 5�=s, respectively, from their trim

points. For the originalmodels,V, �, and are initialized to their trim
values. The simulation results show that the polynomial model is in
good agreement with the original model. Note, however, that the �
trajectory for the polynomial model diverges from the original model
as time progresses. This deviation is large (relative to other states)
when the perturbation in the � state is large. However, the simulation
comparisons show that the cubic degree polynomial model captures
the dynamic characteristics of the original closed-loop model, even
with such large perturbation in the initial condition.

Figure 5 provides a similar comparison of the polynomial and
original models with the revised control law. Similar results were
obtained at many other simulation initial conditions. This indicates
that the polynomial approximation accurately the closed-loop
dynamics of the original nonlinear closed-loop model.

The second comparison method provides a statistical quan-
tification on the accuracy of the polynomial model approximation.
The closed-loop realization for either of the controllers can be
generated by using Eq. (23) based on the original nonlinear model.
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Fig. 4 Simulation comparison between the original and approximated closed-loop baseline models due to initial perturbation in the states.
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Fig. 5 Simulation comparison between the original and approximated closed-loop revised models due to initial perturbation in the states.

Table 4 State-space hypercube data for constructing

polynomial models

State Range: [min max] Trim value Sampled data
points

�, deg � �10� 10� � 0� 5
�, deg � �4:83� 45:17� � 20.17� 6
p, deg =s � �36:083� 33:91�=s � �1:083�=s 5
q, deg =s � �28:85�=s 31:85�=s � 1:85�=s 5
r, deg =s � �12:37�=s 17:63�=s � 2:63�=s 5
�, deg � 10� 60� � 35� 5
xc, deg � �20� 20� � —— 4
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For a given control law, two different seven-state realizations are
developed: 1) F , based on the original nonlinear model, and 2) P, a
cubic degree polynomial approximation to P. For this comparison,
both the models are evaluated by sampling random points within the

ellipsoid xTclNxcl � ��, where �� is the upper bound of ROA

estimation introduced in Sec. II. The value of �� for both the control
law is estimated in Sec. VI.A. Moreover, the shape matrix N in the
ellipsoid is presented in Eq. (25). The relative weightings of the
diagonal elements of N is determined by the physical operating
range of the states around the trim point specified. In other words,
the shape matrix roughly scales each state by the maximum
magnitude observed during the flight conditions. The maximum
magnitude is chosen to be the range of states over which the least
squares is performed, as mentioned in Table 4. For ease of
interpretation, the shape matrix is also provided in units of degrees
or deg =s. However, the computation is performed using the radian
representation of N:

N :� diag�0:1745 rad; 0:4363 rad; 0:6109 rad=s; 0:5236 rad=s;

0:2618 rad=s; 0:4363 rad; 0:3491 rad��2 (25)

:� diag�10�; 25�; 35�=s; 30�=s; 15�=s; 25�; 20���2 (26)

Now, define relative error :� k�F jxi�Pjxi �k2kF jxi k2
, where xi 2 R7�1

satisfies xTi Nxi � ��. The relative error, evaluated within the
ellipsoid, defines a metric on the notion of how “close“ the
approximated model is to the original model. The relative error for
the baseline control law is computed at 30,000 different xi 2 R7�1

within the ellipsoid xTi Nxi � 2:3. Note, ��� 2:3 is taken from
Sec. VI.A. The approximation incurs less than 10% relative error on
88% of the 30,000 points. Similarly, the relative error for the revised
control law is also computed at 30,000 different points within the
ellipsoid xTi Nxi � 5:9. In this case, the approximation incurs less
than 10% relative error on approximately 90% of the 30,000 points.
Moreover, for both the control laws, the spread of the relative error is
uniform as the approximated models deviate away from the trim
point.

Both validation approaches are heuristic because it is still an open
problem to develop rigorous and computable metrics of the
approximation error between a generic nonlinear (nonanalytic)
model and a polynomial model. However, these approaches provide
some confidence that the developed polynomial model has captured
the dynamic characteristics of the original model, for all engineering
purposes.

VI. Nonlinear Analysis

Extensive linear analyses has been performed to compare the
robustness properties of the closed-loop systems with the baseline
and revised flight control laws [17]. Both closed-loop systems yield
similar gain and phase margins, while some of the � analyses
indicated that the revised design has better robustness properties than
the baseline. However, linear analysis is only valid within a small
region around the operating point which is in general insufficient for
analyzing nonlinear phenomenon like the falling-leaf motion. This
section applies the nonlinear ROA estimation (described in Sec. II)
method to compare the robustness properties of both flight control
laws. The analyses are performed for the operating point mentioned
in Eq. (19) using the cubic polynomial closed-loop models
developed in Sec. V.

A. Estimation of Upper Bound on ROA

The Monte Carlo search, described in Sec. II, is used to estimate

ROA upper bounds �� for both flight control laws. The Monte Carlo
search was performed with 2 million simulations each for the
baseline and revised control laws. The search returns an initial
condition x0 on the boundary of the ellipsoid, i.e. p�x0��
xT0Nx0 � ��MC, that causes the system to go unstable. Hence, the

value of the ��MC provides an upper bound of the ROA for the F/A-18

aircraft. Recall that the shape matrix N is defined in Eq. (25). The

baseline control law provides an upper bound of ��MC � 2:298
whereas the revised control law provides an upper bound of
��MC � 5:836.
The Monte Carlo search returned the following initial condition

for the closed system with the baseline control law:
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Fig. 6 Unstable trajectories for baseline control law with initial

condition (IC) s.t. xTo Nxo � 2:298.
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Fig. 7 Unstable trajectories for revised control law with IC s.t.

xToNxo � 5:895.

−40 −20 0 20 40 60 80
−30

−20

−10

0

10

20

30

α (deg)

β 
(d

eg
)

Quartic Lyapunov
Monte Carlo Upper Bound

Baseline

Revised

Fig. 8 Lower/upper bound slices for ROA estimate in �-� plane. The

lower bound estimate is based on the quartic Lyapunov function.

80 CHAKRABORTY, SEILER, AND BALAS



x0 � ��5:632�; �33:54�=s; 7:908�=s; 0:6103�; 3:959�; 6:107�=s; 0:06820� �T

This initial condition satisfies p�x0� � 2:298. Figure 6 shows the
unstable response of the baseline system resulting from this initial
condition. Decreasing the initial condition slightly to 0:995x0 leads
to a stable response.

For the revised control law the Monte Carlo search returned the
following initial condition:

x0 � � 3:841�; 54:25�=s; 8:705�=s; 29:45�; 1:641�; 0:630�=s; 0:7880� �T

This initial condition satisfies p�x0� � 5:895 and Fig. 7 shows the
unstable response of the revised system resulting from this initial
condition. Again, a stable initial condition is obtained by slightly
decreasing the initial condition to 0:995x0.

The complete six-DOF model, including actuator dynamics and
position/rate limits, was simulated with the initial condition, x0;poly,
for which the polynomial model was unstable. For both control laws
the six-DOF model exhibits stable response with these initial
conditions. Next, The full six-DOF model was simulated with the
scaled initial condition �x0;poly. For the baseline control law, the
complete six-DOF model was unstable when the initial condition
was scaled by �� 1:3. This gives an ROA upper bound estimate of
��full � 3:883 for the complete six-DOF model. For the revised
control law, the complete six-DOF model was unstable when the
initial conditionwas scaled by �� 1:1, resulting in an upper bound of
��full � 7:132. For both the baseline and revised controllers, the upper
bound estimation of the complete six-DOF model is slightly larger
than the ones for the polynomial model.

The Monte Carlo technique described preceding can also be
directly applied to the complete six-DOF model. The Monte Carlo
search to the complete six-DOF model was performed with 10,000
simulations each for the baseline and revised control laws. For the
baseline control law, applying the Monte Carlo method to the
complete six-DOFmodel results in an ROA upper bound estimate of
��full � 2:154. The initial condition achieving this bound is given by

x0 � ��6:538�; 8:198�=s; 14:54�=s; �3:699�; 17:92�; 1:472�=s; 0� �T

For the revised control law, the ROA upper bound estimate is ��full � 12:00. The initial condition is

x0 � � 10:65�; 59:63�=s; 15:55�=s; �16:52�; 17:88�; �24:12�=s; �30:45� �T

Note, scaling the initial conditions, that result instability in the
polynomial model, provide better upper bound estimates for the
complete six-DOF model.

B. Estimation of Lower Bound on ROA

The V � s iteration, described in Sec. II, is employed to estimate
the ROA lower bounds � for both the F/A-18 flight control laws.

Recall, N � NT indicates the shape matrix of ellipsoid and is
determined by the physical operating range of the states around the
trim point specified. N is provided by Eq. (25). The ellipsoid,
xTclNxcl � �, defines the set of initial conditions for which the control
law will bring the aircraft back to its trim point. The state
corresponding to the smaller diagonal element of N is expected to
have awide range of variation in estimating the ROA. If the aircraft is
perturbed due to a wind gust or other upset condition but remains in
the ellipsoid the control law will recover the vehicle back to trim. In
other words, the ellipsoid defines a safe flight envelope for the F/A-
18. Hence, the ROA provides a measure of how much perturbation

the aircraft can tolerate before it becomes unstable. Roughly, the
value of the � can be thought of as ‘nonlinear stability margin’,

similar to the linear stability margin (km) concept presented in the
linear analysis [16]. However, these two margins are not directly
comparable to each other.

Increasing the degree of the Lyapunov function improves the
lower bound estimate of the ROA as discussed in Sec. II. At first,
bounds using the quadratic Lyapunov function from linearized
analysis, denoted as �

LIN
, are computed. This method has been

proposed for validation of flight control laws [1]. The baseline flight
control law achieves a bound of �

LIN
� 5:100 � 10�3 while the

revised achieves �
LIN
� 8:200 � 10�3. Recall, the upper bound

estimation, ��MC, of the ROA is 2.298 for baseline and 5.895 for the
revised flight control law. These lower bounds are not particularly
useful because they are three orders of magnitude smaller than the
corresponding upper bounds. The estimate of the lower bound needs
to be improved. Hence, theV � s iteration with quadratic and quartic
Lyapunov functions are used to increase the lower bound estimate.

The V � s iteration with quadratic Lyapunov functions gives
�
2
� 0:8921 for the baseline control law and �

2
� 3:719 for the

revised control law. The lower bound estimation was improved
dramatically compared with the linearized Lyapunov analysis.
However, the estimation can be further improved by using quartic
Lyapunov function. The V � s iteration with quartic Lyapunov
functions is �

4
� 2:006 for the baseline control law and �

4
� 4:299

for the revised control law. These bounds are significantly larger than
the bounds obtained for the linearized Lyapunov function. A sixth-
order Lyapunov function can lead to improved lower bounds butwith
a significant increase in computation time. The lower bounds with
different degree of Lyapunov function show that the linearized ROA

method ismuchmore conservative than the results obtained using the
quartic Lyapunov function.

Moreover, numerous initial conditions have been generated by
sampling both the inner ellipsoids of the ROA. These sampled initial
conditions are used to simulate the complete six-DOF model. The
complete six-DOF model was stable for all initial conditions
generated by this method. This provides confidence that the ROA
lower bound estimate computed with the polynomial model is
contained with the ROA for the complete six-DOF model.

C. Discussion

The largest ellipsoid contained in the ROA is denoted as
E�� :� fxcl 2 R7: xTclNxcl � ��g. The lower and upper bounds on��
have been computed for the polynomial closed-loop systems with
both F/A-18 flight control laws. The bounds on �� for the baseline
control law are: 2:006 � �� � 2:298. For the revised control law the
bounds are: 4:299 � xTclNxcl � 5:895. The same relation holds even
when the outer bounds are computedwith the six-DOFmodel. These
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bounds on the ROA can be visualized by plotting slices of the
ellipsoid xTclNxcl. Figures 8 and 9 show slices of both the inner/outer
approximations of the best ellipsoidal ROA approximation for both
the flight control laws, respectively, in �-� and p-r planes. These
states are chosen because they play an important role in char-
acterizing the falling-leaf motion. In both the figures, the solid lines
show the slices of the inner bounds obtained from quartic Lyapunov
analysis. Every initial conditionwithin the solid ellipseswill return to
the trim condition (marked as	). If the aircraft is perturbed due to an
upset condition orwind gust but remainswithin this ellipsoid then the
control law will recover the aircraft and bring it back to trim. The
dashed lines show the slices of the outer bounds obtained fromMonte
Carlo analysis. There is at least one initial condition on the outer
ellipsoid which leads to a divergent trajectory. The ellipsoid is seven
dimensional and hence the initial condition leading to a divergent
trajectory does not necessarily lie on the slice of the ellipsoid shown
in the figure. Upset conditions that push the aircraft state to this upper
bound ellipsoid could potentially lead to loss of control.

The closeness of these upper/lower bounds indicate that the best
ellipsoidal ROA approximation problem has been solved for
engineering purposes. Hence, definitive conclusions regarding the
stability region about the flight control laws can be drawn for the
F/A-18 aircraft. The slices for the quartic Lyapunov functions
demonstrate that the ROA estimate for the revised control law is
larger than the one for the baseline control law. For example, from the
�-� slice it can be concluded that the baseline controller returns to the
trim condition for initial perturbations in an ellipse defined by �
between (approximately) �14� and 	14� and � between
(approximately) �15 and 	55�. The revised controller returns to
the trim condition for initial perturbations in an ellipse defined by �
between �21� and 	21� and � between �32� and 	72�. It is
important to note that, the revised controller is better able to damp out
the sideslip motion and consequently, increasing the Dutch-roll
damping. It has been shown that increased dutch-roll damping due to
the revised flight control law architecture is one of the key reasons to
suppress the falling-leaf motion [14]. Figure 8 shows that the sideslip
damping has significantly improved in the revised flight control law
compared with the baseline design. The stability region also
increases along other state direction under the revised flight control
law.Moreover, the aircraft also achieves an increased stability region
along the angle-of-attack direction with the revised design. Overall,
the suppression of the falling leaf can be attributed to the larger
stability region provided by the revised flight control law.

In fact, the robustness improvement for the revised controller is
more dramatic if the volume of the ROA estimate is considered. The
volume of the ellipsoid E� is proportional to��n=2�where n� 7 is the
state dimension. Thus the ROA estimate obtained by the revised
control law has a volume which is ��

4;rev
=�

4;base
�3:5 greater than that

obtained by the baseline design. This corresponds to a volume
increase of 14.3 for the revised flight control law. Thus information
from these two ellipsoids can be used to draw conclusions about the

safe flight envelope. The size of these ellipsoids measure the
robustness of the flight control law to disturbances. In summary, the
ellipsoids define a metric for the safe flight envelope of the F/A-18
aircraft. Based on thismetric, the revised control lawhas an increased
safe flight envelope, which helps suppressing the falling-leaf motion.

The nonlinear analysis tools used in this paper currently cannot
incorporate hard nonlinearities, e.g., actuator position and rate limits.
Hence these hard nonlinearities are neglected. In addition, the
actuator dynamics are neglected to reduce the computational time
associated with the nonlinear analysis method. These approxima-
tions have an effect on the estimated recovery envelope. The impact
of these approximations can be assessed by comparing the results
with simulations on the full six-DOF model including actuator
dynamics and position/rate limits. Direct incorporation of hard
nonlinearities in the proposed nonlinear analysis method is currently
an area of active research.

The nonlinear analysis imposes a limitation that the dynamics of
the aircraft need to be described by the polynomial functions of the
states. Hence, the caveatwith this nonlinear analysis results is that the
size of the ROA may be larger than where the polynomial model is
valid. Because of the approximation procedure, the approximated
polynomial model deviates from the original model away from
the trim points. As a cross-validation, both the approximated and the
originalmodel are simulated by sampling the initial conditions on the

ellipsoid xTclNxcl � ��. Numerous simulation comparisons revealed
that both the models’ state trajectories are in good agreement, in light
of the discussion of Sec. V.B. Moreover, the heuristic statistical
method of model validation, performed in Sec. V.B, also provides
some confidence on the validity of the approximated model on the
boundary of the outer ellipsoidal approximation.

The computation time required for the lower bounds is sum-
marized in Table 5. The quartic Lyapunov functions provided much
better lower bounds than the quadratic Lyapunov functions.
However, computing bounds with quartic Lyapunov functions
required significantly more time than computing bounds with
quadratic Lyapunov functions. This is due to the computational
growth of SOS optimizations due to an increase in the degree of the
polynomial model. Increasing the state dimension, e.g., by including
theV and � states, alsowould result in a large increase in computation
for the lower bounds. The analyses are performed on Intel Core i7
CPU 2.67 GHz 8.00 GB RAM.

VII. Conclusions

This paper estimated bounds on the regions of attraction for 2 F/A
flight control laws. Upper bounds were estimated usingMonte Carlo
simulations and lower bounds were estimated using SOS
optimization. It is important to note that the ROA analysis accounts
for significant nonlinearities in the F/A-18 aircraft dynamics. This
makes the analysis more applicable to nonlinear flight phenomenon
such as the falling-leaf mode. The conclusion of this analysis is that
the revised F/A-18 flight control lawhas a significantly larger region-
of-attraction than the baseline control law. This nonlinear analysis
indicates that revised control law is less susceptible to a loss of
control phenomenon like the falling-leaf mode.

Appendix A: Aerodynamic Coefficients

The aerodynamic coefficients presented here have been extracted
from various papers [29–34]. The aerodynamic model of the aircraft

Table 5 Computational time for estimating lower bound of ROA

with V � s iteration procedure

Plant Lyapunov
degree

Iteration
steps

Baseline Revised

—— Fourth 80 7.935 Hrs 7.365 Hrs
Seven-state, cubic
degree

Second 40 0.113 Hrs 0.111 Hrs

Seven-state linear Second 40 0.00340 Hrs 0.00440 Hrs
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Fig. 9 Lower/upper bound slices for ROA estimate in p-r. The lower

bound estimate is based on the quartic Lyapunov function.
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is presented here as a closed-form expression. Moreover, the
MATLAB M-files to generate the models and the results shown in
this paper can also be found in the website¶:

Pitching Moment; Cm � �Cm�2�
2 	 Cm�1�	 Cm�0 �

	 �Cm	stab2 �
2 	 Cm	stab1 �	 Cm	stab0 �	stab

	 �c

2VT
�Cmq3�

3 	 Cmq2�
2 	 Cmq1�	 Cmq0 �q

Rolling Moment; Cl � �Cl�4�
4 	 Cl�3�

3 	 Cl�2�
2 	 Cl�1�

	 Cl�0 ��	 �Cl	ail3 �
3 	 Cl	ail2 �

2 	 Cl	ail1 �	 Cl	ail0 �	ail

	 �Cl	rud3 �
3 	 Cl	rud2 �

2 	 Cl	rud1 �	 Cl	rud0 �	rud 	
b

2VT
�Clp1�

	 Clp0 �p	
b

2VT
�Clr2�

2 	 Clr1�	 Clr0 �r

Yawing Moment; Cn � �Cn�2�
2 	 Cn�1�	 Cn�0 ��

	 �Cn	rud4 �
4 	 Cn	rud3 �

3 	 Cn	rud2 �
2 	 Cn	rud1 �

	 Cn	rud0 �	rud 	 �Cn	ail3 �
3 	 Cn	ail2 �

2 	 Cn	ail1 �

	 Cn	ail0 �	ail 	
b

2VT
�Cnp1�	 Cnp0 �p	

b

2VT
�Cnr1�	 Cnr0 �r

Sideforce Coefficient; CY � �CY�2�
2 	 CY�2�	 CY�0 ��

	 �CY	ail3 �
3 	 CY	ail2 �

2 	 CY	ail1 �	 CY	ail0 �	ail 	 �CY	rud3 �
3

	 CY	rud2 �
2 	 CY	rud1 �	 CY	rud0 �	rud

Lift Coefficient; CL � �CL�3�
3 	 CL�2�

2 	 CL�1�

	 CL�0 � cos
�
2�

3

�
	 �CL	stab3 �

3 	 CL	stab2 �
2 	 CL	stab1 �

	 CL	stab0 �	stab

Drag Coefficient; CD � �CD�4�
4 	 CD�3�

3 	 CD�2�
2 	 CD�1�

	 CD�0 � cos�	 CD0
	 �CD	stab3 �

3 	 CD	stab2 �
2 	 CD	stab1 �

	 CD	stab0 �	stab

Appendix B: Closed-Loop Polynomial Model

The closed-loop cubic degree polynomial models discussed in
Sec. V are presented next. Moreover, the MATLAB M-files to
generate the models can also be found in the website.∗∗

I. Baseline Polynomial Model

The cubic degree polynomial approximation for the closed-loop
system with the baseline control law is

_���3:978� 10�3�3 � 2:191� 10�1�2�	 2:9427� 10�5�2�
� 2:458� 10�3��2	 5:509� 10�2���� 4:330� 10�5��2

	 6:2222� 10�2�3 � 1:672� 10�2�2�	 2:785� 10�3��2

� 6:786� 10�3�3	 2:708� 10�2�2	 2:017� 10�1��
� 5:323� 10�5��� 2:698� 10�2�2	 2:729� 10�2��
� 2:747� 10�2�2	��3:181� 10�1�2	 3:466� 10�2�2

	 9:638� 10�1��p	��3:634� 10�1��	 2:708

� 10�1��q	�4:009� 10�1�2 � 5:344� 10�3�2	 3:141

� 10�1��r	�2:496� 10�2�2 � 2:630� 10�2�2 � 5:127

� 10�2��xcB 	�1:411� 10�3�	 2:314� 10�2�	 3:474

� 10�1p	 7:134� 10�2�� 9:225� 10�1r	 1:406� 10�2xcB

_���2:139 � 10�1�3 	 7:550 � 10�3�2�	 3:540 � 10�2�2�

� 1:846 � 10�2��2 � 4:181 � 10�5���	 1:029 � 10�2��2

� 4:365 � 10�3�3 � 4:154 � 10�3�2� � 6:8825 � 10�5��2

	 1:252 � 10�2�3 	 3:637 � 10�1�2 � 5:181 � 10�2��

	 1:364 � 10�2�� � 2:243 � 10�2�2 	 1:093 � 10�4��

� 3:648 � 10�2�2 	 �6:357 � 10�1�� � 9:576 � 10�1��p
	 ��1:132�2 	 1:988 � 10�1�2 	 6:941 � 10�1��q
	 ��7:499 � 10�1�� � 3:619 � 10�1��r	�2:299 � 10�1�

	 1:870 � 10�3� � 4:688 � 10�2�	 7:259 � 10�1q

_p��3:314 � 10�2�3 � 19:69�2� � 1:646 � 10�3��2

	 18:79�3 � 8:022 � 10�2�2 	 15:86��	 1:219 � 10�3�2

	 ��5:204 � 10�1�2 	 1:252��p	 ��4:737�2 	 6:823

� 10�2��r � 8:150 � 10�1qr � 3:173 � 10�2pq

	 ��2:056�2 	 3:553 � 10�2��xcB 	 4:916 � 10�2�

� 7:366� � 9:538 � 10�1p � 3:688 � 10�2q	 1:479r

	 6:513 � 10�1xcB

_q� 1:553�3 � 2:174�2 	 �17:13�2 	 4:40��q � 1:964 � 10�2r2

	 9:712 � 10�1pr	 1:964 � 10�2p2 	 ��2:303�	 4:393

� 10�2p � 14:56q � 2:026 � 10�2r�

_r��3:196 � 10�2�3 � 1:678�2�	 1:274 � 10�2��2 � 3:236

� 10�1�3 	 3:869 � 10�2�2 � 1:795�� � 9:442 � 10�3�2

	 ��9:543 � 10�2�2 	 2:081 � 10�2��p	 ��5:179
� 10�1�2 	 4:541 � 10�1��r	 3:173 � 10�2qr � 7:543

� 10�1pq	 ��5:102 � 10�1�2 	 4:497 � 10�1��xcB
	�1:329 � 10�2�	 5:164 � 10�1�	 5:438 � 10�3p

	 1:579 � 10�2q � 5:042 � 10�1r � 3:129 � 10�1xcB

¶Data available online at http://www.aem.umn.edu/~AerospaceControl/
[retrieved 10 Oct. 2010].

∗∗Data available online at http://www.aem.umn.edu/AerospaceControl/
[retrieved 10 Oct. 2010].
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_�� ��1:481 � 10�1�2 	 2:921 � 10�1��q	 ��7:226 � 10�2�2

� 2:181 � 10�1��r	 p	 1:941 � 10�1q	 2:772 � 10�1r

_x cB � 4:900r � xcB

II. Revised Polynomial Model

The cubic degree polynomial approximation for the closed-loop
system with the revised control law is

_�� 3:153 � 10�6�3 � 2:065 � 10�1�2�	 1:958 � 10�3�2�

� 1:360 � 10�3��2 	 5:556 � 10�2��� � 4:814 � 10�4��2

	 5:772 � 10�2�3 � 1:964 � 10�2�2�	 3:563 � 10�3��2

� 6:644 � 10�3�3 	 2:404 � 10�2�2 	 1:717 � 10�1��

� 6:328 � 10�3�� � 2:454 � 10�2�2 	 2:606 � 10�2��

� 2:771 � 10�2�2 	 ��3:010 � 10�1�2 	 2:034 � 10�2�2

	 9:247 � 10�1��p	 ��3:634 � 10�1��	 2:708

� 10�1��q	 �3:558 � 10�1�2 	 3:255 � 10�2�2 	 4:181

� 10�1��r	 �2:576 � 10�2�2 � 2:700 � 10�2�2 � 5:287

� 10�2��xcR 	�1:434 � 10�3�	 2:750 � 10�2�	 3:529

� 10�1p	 7:253 � 10�2�� 9:372 � 10�1r	 1:429 � 10�2xcR

_���2:139 � 10�1�3 	 7:550 � 10�3�2�	 3:540 � 10�2�2�

� 1:845 � 10�2��2 � 4:182 � 10�5���	 1:029 � 10�2��2

� 4:365 � 10�3�3 � 4:154 � 10�3�2�� 6:883 � 10�5��2

	 1:252 � 10�2�3 	 3:637 � 10�1�2 � 5:181 � 10�2��

	 1:364 � 10�2�� � 2:243 � 10�2�2 	 1:093 � 10�4��

� 3:649 � 10�2�2 	 �6:357 � 10�1�� � 9:576 � 10�1��p
	 ��1:132�2 	 1:988 � 10�1�2 	 6:941 � 10�1��q
	 ��7:499 � 10�1�� � 3:619 � 10�1��r	�2:299 � 10�1�

	 1:871 � 10�3� � 4:688 � 10�2�	 7:259 � 10�1q

_p��4:415 � 10�1�3 � 23:22�2� � 7:476 � 10�1�2�� 2:556

� 10�1��2 	 20:20�3 	 2:031 � 10�1�2 	 20:65��

	 1:149��	 6:667 � 10�2�2 	 ��5:104�2 	 7:496��p
	 �7:453�2 � 16:52��r � 3:173 � 10�2pq � 8:151

� 10�1qr	 ��2:227�2 	 2:823 � 10�1��xcR 	 6:123

� 10�2� � 9:701� � 3:923p � 6:103 � 10�1� � 3:688

� 10�2q	 9:365r	 5:311 � 10�1xcR

_q� 1:554�3 � 2:175�2 	 �17:13�2 	 4:404��q	 1:964

� 10�2p2 � 1:964 � 10�2r2 	 9:713 � 10�1pr	�2:303�
	 4:393 � 10�2p � 14:55q � 2:026 � 10�2r

_r��2:469 � 10�1�3 � 2:324�2�	 9:538 � 10�2��2 � 4:018

� 10�2�3 	 1:781 � 10�1�2 � 1:419�� � 2:519 � 10�2�2

	 ��9:357 � 10�1�2 	 5:264 � 10�1��p	 �1:7156�2

� 8:8988 � 10�1��r	 3:173 � 10�2qr � 7:544 � 10�1pq

	 ��5:427 � 10�1�2 	 4:694 � 10�1��xcR 	 ��1:344
� 10�2�	 5:455 � 10�1�	 4:254 � 10�2p	 7:624

� 10�3�	 1:579 � 10�2q � 6:027 � 10�1r � 3:114 � 10�1xcR�

_�� ��1:481 � 10�1�2 	 2:921 � 10�1��q	 ��7:226 � 10�2�2

� 2:182 � 10�1��r	 p	 1:941 � 10�1q	 2:772 � 10�1r

_x cR � 4:900r � xcR
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