
SOSOPT: A Toolbox for Polynomial Optimization

Version 2.00

Pete Seiler
seiler@aem.umn.edu

December 12, 2010

Abstract

SOSOPT is a Matlab toolbox for formulating and solving Sum-of-Squares (SOS) polynomial optimizations.
This document briefly describes the use and functionality of this toolbox. Section 1 introduces the problem for-
mulations for SOS tests, SOS feasibility problems, SOS optimizations, and generalized SOS problems. Section 2
reviews the SOSOPT toolbox for solving these optimizations. This section includes information on toolbox instal-
lation, formulating constraints, solving SOS optimizations, and setting optimization options. Finally, Section 3
briefly reviews the connections between SOS optimizations and semidefinite programs (SDPs). It is the connection
to SDPs that enables SOS optimizations to be solved in an efficient manner.

1 Sum of Squares Optimizations

This section describes several optimizations that can be formulated with sum-of-squares (SOS) polynomials [14, 11,
15]. A multivariable polynomial is a SOS if it can be expressed as a sum of squares of other polynomials. In other
words, a polynomial p is SOS if there exists polynomials {fi}mi=1 such that p =

∑m
i=1 f

2
i . An SOS polynomial is

globally nonnegative because each squared term is nonnegative. This fact enables sufficient conditions for many
analysis problems to be posed as optimizations with polynomial SOS constraints. This includes many nonlinear
analysis problems such as computing regions of attraction, reachability sets, input-output gains, and robustness with
respect to uncertainty for nonlinear polynomial systems [14, 25, 7, 9, 8, 15, 17, 12, 6, 4, 22, 10, 13, 21, 23, 26, 30,
29, 27, 24, 28, 1]. The remainder of this section defines SOS tests, SOS feasibility problems, SOS optimizations, and
generalized SOS optimizations.

Given a polynomial p(x), a sum-of-squares test is an analysis problem of the form:

Is p a SOS? (1)

A sum-of-squares feasibility problem is to construct decision variables to ensure that certain polynomials
are SOS. More specifically, an SOS feasibility problem is an optimization with constraints on polynomials that are
affine functions of the decision variables:

Find d ∈ Rr such that (2)
ak(x, d) ∈ SOS, k = 1, . . . Ns

bj(x, d) = 0, j = 1, . . . Ne

d ∈ Rr are decision variables. The polynomials {ak} and {bj} are given as part of the problem data and are affine
in d, i.e. they are of the form:

ak(x, d) := ak,0(x) + ak,1(x)d1 + · · ·+ ak,n(x)dn

bj(x, d) := bj,0(x) + bj,1(x)d1 + · · ·+ bj,n(x)dn

A sum-of-squares optimization is a problem with a linear cost and constraints on polynomials that are affine

1

functions of the decision variables:

min
d∈Rr

cT d (3)

subject to:
ak(x, d) ∈ SOS, k = 1, . . . Ns

bj(x, d) = 0, j = 1, . . . Ne

Again, d ∈ Rr denotes the decision variables and the polynomials {ak} and {bj} are given polynomials that are affine
in d. SOS tests, feasibility problems, and optimizations are all convex optimization problems. These problems are
solved by exploiting the connections between SOS polynomials and positive semidefinite matrices. This is briefly
reviewed in the Section 3.

Finally, a generalized sum-of-squares optimization is a problem of the form:

min
d∈Rr,t∈R

t (4)

subject to:
tbk(x, d)− ak(x, d) ∈ SOS, k = 1, . . . Ng

bk(x, d) ∈ SOS, k = 1, . . . Ng

cj(x, d) = 0, j = 1, . . . Ne

t ∈ R and d ∈ Rr are decision variables. The polynomials {ak}, {bk}, and {ck} are given data and are affine in d.
The optimization cost is t which is linear in the decision variables. The optimization involves standard SOS and
polynomial equality constraints. However, this is not an SOS optimization because the constraints, tbk(x, d)−ak(x, d
is SOS, are bilinear in the decision variables t and u. However, the generalized SOS program is quasiconvex [18] and
it can also be solved efficiently as described in the next subsection.

2 Using SOSOPT

This section describes the sosopt toolbox for solving SOS optimizations.

2.1 Installation

The toolbox was tested with MATLAB versions R2009a and R2009b. To install the toolbox:

• Download the zip file and extract the contents to the directory where you want to install the toolbox.

• Add the sosopt directory to the Matlab path, e.g. using Matlab’s addpath command.

The sosopt toolbox requires the multipoly toolbox to construct the polynomial constraints. multipoly can be
obtained from http://www.aem.umn.edu/∼AerospaceControl/. sosopt also requires one of the following optimiza-
tion codes for solving semidefinite programs (SDPs): SeDuMi, SDPT3, CSDP, DSDP, SDPAM, or SDPLR. sosopt
has been most extensively tested on SeDuMi version 1.3 [20, 19]. The latest version of SeDuMi can be obtained from
http://sedumi.ie.lehigh.edu/.

2.2 Formulating Constraints

Polynomial SOS and equality constraints are formulated using multipoly toolbox objects. The relational operators
<= and >= are overloaded to create SOS constraints. If p and q are polynomials then p>=q and p<=q denote the
constraints p − q ∈ SOS and q − p ∈ SOS, respectively. The relational operator == is overloaded to create a
polynomial equality constraint. If p and q are polynomials then p==q denotes the constraint p − q = 0. These
overloaded relational operators create a polyconstr constraint object. For example, the following code constructs
the constraints 6 + d1x

2
1 − 5x2

2 ∈ SOS and d1x
2
1 + d2 − 6x2

1 + 4 = 0.

>> pvar x1 x2 d1 d2
>> p = 6+d1*x1^2;
>> q = 5*x2^2;

2

>> p>=q
ans =
d1*x1^2 - 5*x2^2 + 6
>= 0

>> class(ans)
ans =
polyconstr

>> p=d1*x1^2+d2;
>> q=6*x1^2+4
>> p==q
ans =
d1*x1^2 - 6*x1^2 + d2 - 4
== 0

The polynomial constraints are displayed in a standard form with all terms moved to one side of the constraint.
The polynomials on the left and right sides of the constraint are stored and can be accessed with .LeftSide and
.RightSide. The one-sided constraint that is displayed can be accessed with .OneSide. In addition, multiple
polynomial constraints can be stacked into a vector list of constraints using the standard Matlab vertical concatenation
with brackets and rows separated by a semicolon. Finally, it is also possible to reference and assign into a list of
polynomial constraints using standard Matlab commands. These features are shown below.

>> pvar x1 x2 d1 d2
>> constraint1 = 6+d1*x1^2 >= 5*x2^2;
>> constraint1.LeftSide
ans =
d1*x1^2 + 6

>> constraint1.RightSide
ans =
5*x2^2

>> constraint1.OneSide
ans =
d1*x1^2 - 5*x2^2 + 6

>> constraint2 = d1*x1^2+d2 == 6*x1^2+4;
>> constraints = [constraint1; constraint2]
constraints =
polyconstr object with 2 constraints.

>> constraints(1)
ans =
d1*x1^2 - 5*x2^2 + 6
>= 0

>> constraints(1).OneSide
ans =
d1*x1^2 - 5*x2^2 + 6

>> constraints(2)
ans =
d1*x1^2 - 6*x1^2 + d2 - 4
== 0

>> constraints(2) = (d2==8);

3

>> constraints(2)
ans =
d2 - 8
== 0

>> constraints.RelOp
ans =

’>=’
’==’

2.3 Solving SOS Optimizations

The four SOS problems introduced in Section 1 can be solved using the sosopt functions described below. Docu-
mentation for each function can be obtained at the Matlab prompt using the help Command.

1. SOS test: The function issos tests if a polynomial p is SOS. The syntax is:

[feas,z,Q,f] = issos(p,opts)

p is a multipoly polynomial object. feas is equal to 1 if the polynomial is SOS and 0 otherwise. If feas=1
then f is a vector of polynomials that provide the SOS decomposition of p, i.e. p =

∑
i f

2
i . z is a vector of

monomials and and Q is a positive semidefinite matrix such that p = zTQz. z and Q are a Gram matrix
decomposition for p. This is described in more detail in Section 3. The opts input is an sosoptions object.
Refer to Section 2.6 for more details on these options.

2. SOS feasibility: The function sosopt solves SOS feasibility problems. The syntax is:

[info,dopt,sossol] = sosopt(pconstr,x,opts);

pconstr is an Np×1 vector of polynomial SOS and equality constraints constructed as described in Section 2.2.
x is a vector list of polynomial variables. The variables listed in x are the independent polynomial variables
in the constraints. All other variables that exist in the polynomial constraints are assumed to be decision
variables. The polynomial constraints must be affine functions of these decision variables. The opts input is
an sosoptions object (See Section 2.6).

The info output is a structure that contains a variety of information about the construction of the SOS
optimization problem. The main data in this structure is the feas field. This field is equal to 1 if the problem
is feasible and 0 otherwise.

The dopt output is a polynomial array of the optimal decision variables. The first column of dopt con-
tains the decision variables and the second column contains the optimal values. The polynomial subs com-
mand can be used to replace the decision variables in any polynomial with their optimal values, e.g subs(
pconstr(1).LeftSide, dopt) substitutes the optimal decision variables into the left side of the first con-
straint. dopt is returned as empty if the optimization is infeasible.

sossol is an Np × 1 structure array with fields p, z, and Q. sossol(i).p is pconstr(i) evaluated at the
optimal decision variables. If pconstr(i) is an SOS constraint then sossol(i).z and sossol(i).Q are the
vector of monomials and positive semidefinite matrix for the Gram matrix decomposition of sossol(i).p,
i.e. p = zTQz. This Gram matrix decomposition is described in more detail in Section 3. If pconstr(i) is a
polynomial equality constraint then these two fields are returned as empty. sossol is empty if the optimization
is infeasible.

3. SOS optimization: The function sosopt also solves SOS optimization problems. The syntax is:

[info,dopt,sossol] = sosopt(pconstr,x,obj,opts);

4

obj is a polynomial that specifies the objective function. This must be be an affine function of the decision
variables and it cannot depend on the polynomial variables. In other words, obj must have the form c0+

∑
i cidi

where ci are real numbers and di are decision variables. The remaining inputs and outputs are the same as
described for SOS feasibility problems. The info output has one additional field obj that specifies the minimal
value of the objective function. This field is the same as subs(obj,dopt). obj is set to +inf if the problem is
infeasible.

4. Generalized SOS optimization: The function gsosopt solves generalized SOS optimization problems. The
syntax is:

[info,dopt,sossol] = gsosopt(pconstr,x,t,opts)

pconstr is again an Np × 1 vector of polynomial SOS and equality constraints constructed as described in
Section 2.2. x is a vector list of polynomial variables. The variables listed in x are the independent polynomial
variables in the constraints. All other variables that exist in the polynomial constraints are assumed to be
decision variables. The objective function is specified by the third argument t. This objective must be a
single polynomial variable and it must be one of the decision variables. The constraints must have the special
structure specified in the Generalized SOS problem formulation. Let (d,t) denote the complete list of decision
variables. The constraints are allowed to have bilinear terms involving products of t and d. However, they
must be linear in d for fixed t and linear in t for fixed d. The opts input is an gsosoptions object (See
Section 2.6).

The outputs are the same as described for SOS feasibility and optimization problems. The only difference is
that the info output does not have an obj field. gsosopt uses a bisection to solve the generalized SOS problem.
It computes lower and upper bounds on the optimal cost such that the bounds are within a specified stopping
tolerance. These bounds are returned in the tbnds field. This is a 1× 2 vector [tlb, tub] giving the lower bound
tlb and upper bound tub on the minimum value of t. tbnds is empty if the optimization is infeasible.

2.4 Constructing Polynomial Decision Variables

The sosopt and multipoly toolboxes contain several functions to quickly and easily construct polynomials whose
coefficients are decision variables. The mpvar and monomials functions in the multipoly toolbox can be used to
construct a matrix of polynomial variables and a vector list of monomials, respectively. Examples are shown below:

>> P = mpvar(’p’,[4 2])
P =
[p_1_1, p_1_2]
[p_2_1, p_2_2]
[p_3_1, p_3_2]
[p_4_1, p_4_2]

>> pvar x1 x2
>> w = monomials([x1;x2],0:2)
w =
[1]
[x1]
[x2]
[x1^2]
[x1*x2]
[x2^2]

The first argument of mpvar specifies the prefix for the variable names in the matrix and the the second argument
specifies the matrix size. The first argument of monomials specifies the variables used to construct the monomials
vector. The second argument specifies the degrees of monomials to include in the monomials vector. In the example
above, the vector w returned by monomials contains all monomials in variables x1 and x2 of degrees 0,1, and 2.

These two functions can be used to quickly construct a polynomial p that is a linear combination of monomials
in x with coefficients specified by decision variables d.

5

>> pvar x1 x2
>> w = monomials([x1;x2],0:2);
>> d = mpvar(’d’,[length(w),1]);
>> [w, d]
ans =
[1, d_1]
[x1, d_2]
[x2, d_3]
[x1^2, d_4]
[x1*x2, d_5]
[x2^2, d_6]

>> p = d’*w
p =
d_4*x1^2 + d_5*x1*x2 + d_6*x2^2 + d_2*x1 + d_3*x2 + d_1

This example constructs a quadratic function in variables (x1, x2) with coefficients given by the entries of d. p could
alternatively be interpreted as a cubic polynomial in variables (x, d).

The polydecvar function can be used to construct polynomials of this form in one command:

>> p = polydecvar(’d’,w)
p =
d_4*x1^2 + d_5*x1*x2 + d_6*x2^2 + d_2*x1 + d_3*x2 + d_1

The first argument of polydecvar specifies the prefix for the coefficient names and the second argument specifies the
monomials to use in constructing the polynomial. The output of polydecvar is a polynomial in the form: p=d’*w
where d is a coefficient vector generated by mpvar. This is called the vector form because the coefficients are specified
in the vector d.

The Gram matrix provides an alternative formulation for specifying polynomial decision variables. In particular,
one can specify a polynomial as p(x,D) = z(x)TDz(x) where z(x) is a vector of monomials and D is a symmetric
matrix of decision variables. A quadratic function in variables (x1, x2) with coefficient matrix D is constructed as
follows:

>> pvar x1 x2
>> z = monomials([x1;x2],0:1);
>> D = mpvar(’d’,[length(z) length(z)],’s’)
D =
[d_1_1, d_1_2, d_1_3]
[d_1_2, d_2_2, d_2_3]
[d_1_3, d_2_3, d_3_3]

>> s = z’*D*z
s =
d_2_2*x1^2 + 2*d_2_3*x1*x2 + d_3_3*x2^2 + 2*d_1_2*x1 + 2*d_1_3*x2 + d_1_1

The ’s’ option specifies that mpvar should return a symmetric matrix. This construction can be equivalently
performed using the sosdecvar command:

>> [s,D] = sosdecvar(’d’,z)
s =
d_2_2*x1^2 + 2*d_2_3*x1*x2 + d_3_3*x2^2 + 2*d_1_2*x1 + 2*d_1_3*x2 + d_1_1

D =
[d_1_1, d_1_2, d_1_3]
[d_1_2, d_2_2, d_2_3]
[d_1_3, d_2_3, d_3_3]

6

This is called the matrix form because the coefficients are specified in the symmetric matrix D.
In the examples above, the vector and matrix forms both use six independent coefficients to specify a quadratic

polynomial in (x1, x2). In general, the matrix form uses many more variables than the vector form to represent the
coefficients of a polynomial. Thus the vector form will typically lead to more efficient problem formulations. The
only case in which sosdecvar leads to more efficient implementations is when the resulting polynomial is directly
constrained to be SOS. Specifically, the sosdecvar command should be used to construct polynomials that will be
directly added to the list of SOS constraints, as in the example below:

>> [s,D] = sosdecvar(’d’,z);
>> pconstr(i) = s>=0;

NOTE: Creating a polynomial variable s using the sosdecvar command will not cause sosopt or gsosopt
to constrain the polynomial to be SOS. The constraint s>=0 must be added to the list of constraints
to enforce s to be SOS.

2.5 Demos

sosopt includes several demo files that illustrate the use of the toolbox. These demo files can be found in the Demos
subfolder. A brief description of the existing demo files is given below.

1. SOS test: issosdemo1 demonstrates the use of the issos function for testing if a polynomial p is a sum
of squares. This example uses issos to construct an SOS decomposition for a degree four polynomial in
two variables. The example polynomial is taken from Section 3.1 of the SOSTOOLs documentation [17].
sosoptdemo1 solves the same SOS test using the sosopt function.

2. SOS feasibility: There are three demo files that solve SOS feasibility problems: sosoptdemo2, sosoptdemo4,
and sosoptdemo5. These examples are taken from Sections 3.2, 3.4, and 3.5 of the SOSTOOLs documentation
[17], respectively. Demo 2 solves for a global Lyapunov function of a rational, nonlinear system. Demo 4 verifies
the copositivity of a matrix. Demo5 computes an upper bound for a structured singular value problem.

3. SOS optimization: There are three demo files that solve SOS optimization problems: sosoptdemo3, sosoptdemoLP,
and sosoptdemoEQ. Demo 3 is taken from Section 3.3 of the SOSTOOLs documentation [17]. This demo uses
SOSOPT to compute a lower bound on the global minimum of the Goldstein-Price function. The EQ demo
provides a simple example with polynomial equality constraints in addition to SOS constraints. Finally, the
LP demo shows that linear programming constraints can be formulated using sosopt.

4. Generalized SOS optimization: There are two demo files that solve generalized SOS optimization problems:
gsosoptdemo1 and pcontaindemo1. gsosoptdemo1 gsosopt to compute an estimate of the region of attraction
for the van der Pol oscillator using the Lyapunov function obtained via linearization. pcontaindemo1 solves for
the radius of the largest circle that lies within the contour of a 6th degree polynomial. This is computed using
the specialized function pcontain for verifying set containments. The set containment problem is a specific
type of generalized SOS optimization.

2.6 Options

The sosoptions command will create a default options structure for the issos and sosopt functions. The
sosoptions command will return an object with the fields:

• solver: Optimization solver to be used. The choices are: ’sedumi’, ’sdpam’, ’dsdp’, ’sdpt3’, ’csdp’, or ’sdplr’.
The default solver is ’sedumi’.

• form: Formulation for the optimization. The choices are ’image’ or ’kernel’. These forms are described in
Section 3. The default is ’image’.

• simplify: SOS simplification procedure to remove monomials that are not needed in the Gram matrix form.
This reduces the size of the related semidefinite programming problem and hence also reduces the computational
time. The choices are ’on’ or ’off’ and the default is ’on’.

• scaling: Scaling of SOS constraints. This scales each constraint by the Euclidean norm (2-norm) of the
one-sided polynomial coefficient vector. The choices are ’on’ or ’off’ and the default is ’off’.

7

• checkfeas: Check feasibility of solution. The choices are ’off’, ’fast’, ’full’, and ’both’. The default is ’fast’.
’fast’ checks feasibility information returned by the solver. ’full’ checks the validity of the Gram matrix de-
composition in the output sossol. The ’full’ check is more computationally costly. ’both’ does both feasibility
checks.

• feastol: Feasibility tolerance used in the ’full’ feasibility check. This should be a positive, scalar, double. The
default is 1e-6.

• solveropts: Structure with options passed directly to the optimization solver. The default is empty. The
solver display is turned off with this default.

The gsosoptions command will create a default options structure for the gsosopt function. The gsosoptions
command will return an object with all fields contained in an sosoptions structure. In addition it will contain the
fields:

• minobj: Minimum value of objective for bisection. This should be a scalar double. The default is -1e3.

• maxobj: Maximum value of objective for bisection. This should be a scalar double. Moreover, maxobj should
be ≥ minobj. The default is 1e3.

• absbistol: Absolute bisection stopping tolerance This should be a positive, scalar, double. The default is
1e-3. The bisection terminates if tub − tlb ≤ absbistol.

• relbistol: Relative bisection stopping tolerance This should be a positive, scalar, double. The default is
1e-3. The bisection terminates if tub − tlb ≤ relbistol × tlb.

• display: Display bisection iteration information. The choices are ’on’ or ’off’ and the default is ’off’. If
display = ’on’ then gsosoptions displays, for each iteration, the attempted value of t, feasibility result and
the current upper and lower bounds on the optimal value of t. The display information generated by the
optimization solver is not affected by this option.

3 Connections to SDPs

Given a polynomial p, an SOS test is to determine if p is a SOS. To solve this problem, the polynomial if expressed
in the form p = zTQz where z is a vector of monomials and Q is a symmetric “Gram” matrix 1. The Gram matrix
is not unique and a known result is that p is a SOS if and only if there exists Q = QT � 0 such that p = zTQz
[5, 16]. Equating the coefficients of p and zTQz leads to linear equality constraints on the entries of Q. There exists
a matrix A and vector b such that these equality constraints can be represented as Aq = b where q := vec(Q) denotes
the vector obtained by vertically stacking the columns of Q. Thus the SOS test can be converted to a problem of
the form:

Given a matrix A and vector b, find Q � 0 such that Aq = b. (5)

This is a semidefinite programming (SDP) problem [2, 31]. In general, there are fewer equality constraints than
independent entries of Q, i.e. A has fewer rows than columns. One can compute a particular solution Q0 such that
p = zTQ0z and a basis of homogeneous solutions {Ni} such that zTNiz = 0 for each i where 0 is the zero polynomial.
The matrix A has special structure that can be exploited to efficiently compute these matrices. Thus every matrix
Q satisfying p = zTQz can be expressed in the form Q0 +

∑
i λiNi � 0 where λi ∈ R. This enables the SOS test to

be converted into the alternative formulation:

Given matrices Q0 and {Ni} find a vector λ such that Q0 +
∑

i λiNi � 0. (6)

This problem has a single linear matrix inequality (LMI) and is also a semidefinite programming problem. The SDPs
in Equation 5 and Equation 6 are dual optimization problems [31]. There exist many freely available codes to solve
these types of problem, e.g. SeDuMi [20, 19]. In the SeDuMi formulation, Equation 5 is called the primal or image
problem and Equation 6 is the dual or kernel problem.

1A monomial is a term of the form xα
.
= xα1

1 xα2
2 · · ·xαn

n where the αi are non-negative integers.

8

The constraints in SOS feasibility and optimization problems are similarly converted to semidefinite matrix
constraints. For example, ak(x, d) is SOS if and only if there exists Q � 0 such that

ak,0(x) + ak,1(x)d1 + · · ·+ ak,n(x)dn = z(x)TQz(x) (7)

Equating the coefficients leads to linear equality constraints on the decision variables d and the entries of Q. There
exist matrices Ad, Aq and a vector b such that these equality constraints can be represented as Add+Aqq = b where
q := vec(Q). Thus ak(x, d) is SOS if and only if there exists Q � 0 such that Add + Aqq = b. Each SOS constraint
can be replaced in this way by a positive semidefinite matrix subject to equality constraints on its entries and on
the decision variables. The polynomial equality constraints are equivalently represented by equality constraints on
the decision variables. Performing this replacement for each constraint in an SOS feasibility or optimization problem
leads to an optimization with equality and semidefinite matrix constraints. This is an SDP in SeDuMi primal/image
form. An SDP in SeDuMi dual/kernel is obtained by replacing the positive semidefinite matrix variables Q that
that arise from each SOS constraint with linear combinations of a particular solution Q0 and homogeneous solutions
{Ni}. This is similar to the steps described above for the SOS test and full details can be found in [1].

Finally, the generalized SOS optimization has SOS constraints that are bilinear in decision variables t and d. A
consequence of this bilinearity is that the SOS constraints cannot be replaced with linear equality constraints on the
decision variables. However, the generalized SOS program is quasiconvex [18] and it can be efficiently solved. In
particular, for fixed values of t the constraints are linear in the remaining decision variables d. An SOS feasibility
problem can be solved to determine if the constraints are feasible for fixed t. Bisection can be used to find the
minimum value of t, to within a specified tolerance, for which the constraints are feasible. In principle this problem
can also be converted to a generalized eigenvalue problem [3] (subject to some additional technical assumptions) but
the theory and available software for generalized eigenvalue problems are not as well-developed as for SDPs.

sosopt converts the SOS optimizations into SDPs in either primal/image or dual/kernel form. The form can
be specified with the form option in the sosoptions object. Interested users can see the lower level functions
gramconstraint and gramsol for implementation details on this conversion. sosopt then solves the SDP using one
of the freely available solvers that have been interfaced to the toolbox. The solver option is used to specify the
solver. Finally, sosopt converts the SDP solution back to polynomial form. Specifically, the optimal SOS decision
variables and the Gram matrix decompositions are constructed from the SDP solution. sosopt also checks the
feasibility of the returned solution. The checkfeas option specifies the feasibility check performed by sosopt. The
fast option simply checks the feasibility information returned by the SDP solver. The full option verifies the Gram
matrix decomposition for each SOS constraint. In particular, it checks that the Gram matrix is positive semidefinite
and it checks that p = zTQz within some tolerance. The full feasibility check also verifies that each SOS equality
constraint is satisfied within a specified tolerance.

4 Acknowledgments

This research was partially supported under the NASA Langley NRA contract NNH077ZEA001N entitled “Analyt-
ical Validation Tools for Safety Critical Systems” and the NASA Langley NNX08AC65A contract entitled ’Fault
Diagnosis, Prognosis and Reliable Flight Envelope Assessment.” The technical contract monitors are Dr. Christine
Belcastro and Dr. Suresh Joshi, respectively.

References

[1] G.J. Balas, A. Packard, P. Seiler, and U. Topcu. Robustness analysis of nonlinear systems.
http://www.aem.umn.edu/∼AerospaceControl/, 2009.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory,
volume 15 of Studies in Applied Mathematics. SIAM, 1994.

[3] S. Boyd and L. El Ghaoui. Method of centers for minimizing generalized eigenvalues. Linear Algebra and Its
Applications, 188:63–111, 1993.

[4] G. Chesi. On the estimation of the domain of attraction for uncertain polynomial systems via LMIs. In Proc.
of the IEEE Conference on Decision and Control, pages 881–886, 2004.

9

[5] M.D. Choi, T.Y. Lam, and B. Reznick. Sums of squares of real polynomials. Proc. of Symposia in Pure
Mathematics, 58(2):103–126, 1995.

[6] K. Gatermann and P. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. Journal of Pure
and Applied Algebra, 192:95–128, 2004.

[7] O. Hachicho and B. Tibken. Estimating domains of attraction of a class of nonlinear dynamical systems with
LMI methods based on the theory of moments. In Proc. of the IEEE Conference on Decision and Control, pages
3150–3155, 2002.

[8] Z. Jarvis-Wloszek. Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-
Squares Optimization. PhD thesis, University of California, Berkeley, 2003.

[9] Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard. Some controls applications of sum of squares
programming. In Proc. of the 42nd IEEE Conference on Decision and Control, volume 5, pages 4676–4681,
2003.

[10] Z. Jarvis-Wloszek, R Feeley, W. Tan, K. Sun, and A. Packard. Positive Polynomials in Control, volume 312 of
Lecture Notes in Control and Information Sciences, chapter Controls Applications of Sum of Squares Program-
ming, pages 3–22. Springer-Verlag, 2005.

[11] J.B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimiza-
tion, 11(3):796–817, 2001.

[12] J. Lofberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proc. of the CACSD Conference,
Taipei, Taiwan, 2004.

[13] A. Papachristodoulou. Scalable analysis of nonlinear systems using convex optimization. PhD thesis, California
Institute of Technology, 2005.

[14] P. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimiza-
tion. PhD thesis, California Institute of Technology, 2000.

[15] P. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming Ser.
B, 96(2):293–320, 2003.

[16] V. Powers and T. Wörmann. An algorithm for sums of squares of real polynomials. Journal of Pure and Applied
Algebra, 127:99–104, 1998.

[17] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox
for MATLAB, 2004.

[18] P. Seiler and G.J. Balas. Quasiconvex sum-of-squares programming. In Proc. of the IEEE Conference on
Decision and Control, 2010.

[19] J. Sturm. SeDuMi version 1.05. http://fewcal.kub.nl/sturm/software/sedumi.html, 2001.

[20] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization
Methods and Software, pages 625–653, 1999.

[21] W. Tan. Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming. PhD thesis, University
of California, Berkeley, 2006.

[22] W. Tan and A. Packard. Searching for control Lyapunov functions using sums of squares programming. In 42nd
Annual Allerton Conference on Communications, Control and Computing, pages 210–219, 2004.

[23] W. Tan, A. Packard, and T. Wheeler. Local gain analysis of nonlinear systems. In Proc. of the American Control
Conference, pages 92–96, 2006.

[24] W. Tan, U. Topcu, P. Seiler, G. Balas, and A. Packard. Simulation-aided reachability and local gain analysis
for nonlinear dynamical systems. In Proc. of the IEEE Conference on Decision and Control, pages 4097–4102,
2008.

10

[25] B. Tibken. Estimation of the domain of attraction for polynomial systems via LMIs. In Proc. of the IEEE
Conference on Decision and Control, pages 3860–3864, 2000.

[26] B. Tibken and Y. Fan. Computing the domain of attraction for polynomial systems via BMI optimization
methods. In Proc. of the American Control Conference, pages 117–122, 2006.

[27] U. Topcu. Quantitative Local Analysis of Nonlinear Systems. PhD thesis, University of California, Berkeley,
2008.

[28] U. Topcu and A. Packard. Linearized analysis versus optimization-based nonlinear analysis for nonlinear systems.
In submitted to the 2009 American Control Conference, 2009.

[29] U. Topcu, A. Packard, and P. Seiler. Local stability analysis using simulations and sum-of-squares programming.
Automatica, 44(10):2669–2675, 2008.

[30] U. Topcu, A. Packard, P. Seiler, and T. Wheeler. Stability region analysis using simulations and sum-of-squares
programming. In Proc. of the American Control Conference, pages 6009–6014, 2007.

[31] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

11

