
Chapter 1

Introduction

The objective of this text is to introduce methods for design and analysis of classical feedback
control systems. The basic principle of feedback is to:

• Use a sensor to measure the system behavior

• Compare the measured behavior with desired behavior, and

• Take an action based on this comparison.

Section 1.1 motivates the use of feedback control through a variety of applications. Next, Sec-
tion 1.2 introduces the use of block diagrams to represent feedback control systems consisting
of many components. This section also introduces the basic terminology used to describe the
key aspects of a control system.

1

1.1 Applications

Summary: This section introduces a variety of applications to motivate the use of feedback
control.

See slides.

2

1.2 Terminology and Block Diagrams

Summary: This section introduces the use of block diagrams to represent feedback control
systems consisting of many components. In addition, basic terminology is introduced to de-
scribe the key aspects of a control system.

See slides.

3

Chapter 2

Modeling

The methods introduced in these notes to analyze and design a control system are primarily
for systems modeled by linear ordinary differential equations (ODEs). Section 2.1 first reviews
models using both linear and nonlinear ODE. Next, Section 2.2 describes a method to approx-
imate a nonlinear ODE by a related linear ODE. Finally, Section 2.3 summarizes alternative
model representations including transfer functions and state-space models.

4

2.1 Modeling with Ordinary Differential Equations

Summary: Many systems can be modeled by nonlinear ordinary differential equations (ODEs).
However, the control design and analysis tools introduced in these notes are primarily for sys-
tems modeled by linear ODEs. Linear ODEs are easier to analysis because they satisfy the
important principle of superposition.

2.1.1 Linear and Nonlinear ODE Models

Models of physical systems are used for a variety of tasks in the design and analysis of control
systems. The models used for control design are typically given in the form of ODEs that
describe the effect of an input u on an output y. Systems can have many inputs and outputs
in which case u and/or y are vectors. These notes will mainly focus on the case where both u
and y are scalars. In this case, the system is called single-input, single-output (SISO). An nth

order linear ODE model takes the following form:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = bmu
[m](t) + · · ·+ b1u̇(t) + b0u(t) (2.1)

Here y[k] denotes the kth derivative with respect to time, i.e. y[k] := dky
dtk

. To simplify notation,

derivatives with respect to time are also occasionally represented using dots: ẏ := y[1], ÿ :=
y[2], etc. The coefficients {a0, . . . , an, b0, . . . , bm} are constants that are selected to model the
dynamics of a given system. We can assume without loss of generality that both an 6= 0 and
bm 6= 0. Moreover, we typically assume the system is proper in the sense that m ≤ n. The
system is called strictly proper if m < n.

An nth order ODE requires n initial conditions (ICs) to complete the model. These are
typically specified by the initial value of y and its first (n− 1) derivatives:

y(0) = y0; ẏ(0) = ẏ0; . . . ; y[n−1](0) = y
[n−1]
0 (2.2)

If the input u and initial conditions are given then the ODE can be solved for the output y.∗

Equation 2.1 is an ordinary differential equation because it involves functions (and their
derivatives) that depend on a single variable, time t. This is in contrast to partial differential
equations (PDEs) which involve functions of more than one variable. For example, Maxwell’s
equations and the Navier-Stokes equations describe electromagnetic fields and fluid motion,
respectively. These two PDEs involve functions (and their partial derivatives) that depend on
space and time. These notes will focus on ODEs and systems modeled by PDEs will not be
considered here.

Equation 2.1 is also linear as it only involves linear combinations of y, u, ẏ, etc. In other
words, nonlinear terms like u2(t) or sin(y(t)) do not appear. Many systems are more accurately
described by nth order nonlinear ODEs of the following form:

y[n](t) = f(y(t), ẏ(t), . . . , y[n−1](t), u(t), u̇(t), . . . , u[m](t)) (2.3)

∗In general, certain technical conditions must be satisfied for the solution to exist and be unique. These
conditions can be found in standard textbooks on ODEs [22]. We assume in these notes that the conditions
for existence and uniqueness are satisfied.

5

R

+ −vR

L

+

−

vL

C

+

−
vC

−
+vI

i

0 0.01 0.02 0.03 0.04 0.05
Time (sec)

-3

-2

-1

0

1

2

v C
 (

V
)

Figure 2.1: RLC circuit (left) and capacitor voltage response (right)

The function f : Rn+m+1 → R is selected to model the (nonlinear) dynamics of a given system.
Nonlinear ODEs can be specified in more general forms, e.g. they can be nonlinear in y[n], but
Equation 2.3 will be sufficient for our purposes. Nonlinear ODEs are typically higher fidelity
(more accurate) models used for simulation. However, the control design and analysis tools
presented in these notes will be almost exclusively for models described by linear ODEs. Thus
we’ll need a method to approximate a nonlinear ODE by a related linear ODE. This will be
covered in Section 2.2.

Examples of linear and nonlinear ODE models are provided next for a few simple systems.
Note that modeling is a domain-specific endeavor. In other words, each field of engineering
applies certain physical laws to model specific classes of systems, e.g. Kirchoff’s laws for
electrical circuits and Newton’s laws for the motion of mechanical systems. Constructing
models using basic laws of physics is known as first-principles modeling. Alternatively, the
field of system identification [12] considers techniques to construct models from experimental
data. The term black-box modeling refers to models constructed only using experimental input-
output data from the system. This will be discussed further in Section 5.7. In grey-box modeling
the form of the model is given by first-principles but the model parameters are determined using
experimental data. The important point is that many systems can ultimately be modeled (for
control design) using ordinary differential equations. As a result, the tools described in these
notes can be applied to design control systems for a wide variety of engineering applications.

Example 2.1. Consider the RLC circuit shown in Figure 2.1 (left). The resistor, capacitor,
and inductor values are R = 10Ω, C = 2 × 10−4F , and L = 0.01H. Assume the components
are ideal so that vR = iR, v̇C = i

C
, and vL = Li̇ where the voltages are in units of Volts (V)

and the current is in Amperes (A). The voltages around the circuit sum to zero by Kirchoff’s
voltage law. Hence using the ideal component relationships yields:

LC v̈C(t) +RC v̇C(t) + vC(t) = vI(t) (2.4)

6

Figure 2.2: BMW 750iL [13] (left) and free body diagram (right)

This is a second order linear ODE that models the dynamics with the voltage source as input
(u := vI) and voltage across the capacitor as the output (y := vC). Using notation from
Equation 2.1, the coefficients of this linear ODE are a2 = LC = 2 × 10−6sec2, a1 = RC =
2 × 10−3sec, a0 = 1, and b0 = 1. This is a first-principles model since it is based only on
Kirchoff’s voltage law and the ODE coefficients (a2, a1, a0, and b0) can be determined directly
from the selected components. To complete the model we must specify initial conditions. If
vC,0 = 1V and i0 = −1A are the initial capacitor voltage and circuit current then vC(0) = 1V
and v̇C(0) = i0

C
= −5000 V

sec
. Figure 2.1 (right) shows the response of Equation 2.4 with these

initial conditions and input voltage vI(t) = sin(200t). 4

Example 2.2. Again consider the RLC circuit shown in Figure 2.1 with the voltage source
as input (u := vI). However, now let the output be given by the voltage across the resistor
(y := vR). A second-order linear ODE also models these input/output dynamics:

LC v̈R(t) +RC v̇R(t) + vR(t) = RC v̇I(t) (2.5)

This model is obtained by differentiating both sides of Equation 2.4 and then substituting
v̇C = 1

RC
vR. The coefficients of this linear ODE are a2 = LC, a1 = RC, a0 = 1, b1 = RC, and

b0 = 0. Note that the derivative of the input signal appears in this simple model. 4

Example 2.3. Figure 2.2 shows a BMW 750iL (left) and a free-body diagram of the forces
acting on the car (right). Let v denote the longitudinal velocity of the car in m

sec
. The key

forces along the direction of vehicle motion consist of:

1. Gravitational force, Fgrav: If the car is moving up a slope of angle θ(t) (in rads) then this
force is mg sin(θ(t)). Here g = 9.81 m

sec2
is the gravitational constant and m = 2, 085kg

is the vehicle mass (without passengers).

2. Rolling resistance, Froll: This force is due to friction at the interface of the tire and road.

3. Aerodynamic drag, Faero: This force is modeled as cDv
2 where cD is the drag coefficient.

4. Engine/brake force, Fnet: The forces generated to accelerate or decelerate the car are
complicated to model. They include engine combustion, drivetrain, brake hydraulics,
and tire/road slip dynamics. For simplicity, we’ll neglect these complications and simply
treat the net engine/brake force Fnet as a control input that can be generated through
proper control of the throttle and brakes.

7

By Newton’s second law, the longitudinal motion of the car is modeled by the following first-
order, nonlinear ODE:

v̇(t) =
1

m

(
Fnet(t)− cDv2(t)− Froll −mg sin(θ(t))

)
(2.6)

Note that this model is only valid for v > 0, e.g. rolling resistance and drag would have the
opposite sign for a car moving in reverse. Additional details on vehicle modeling can be found
in [23]. The parameters cD = 0.4N ·sec

2

m2 and Froll = 228N were obtained from coast-down
experiments [9]. Equation 2.6 is a grey-box model since the form of the model is from first-
principles (Newton’s laws) but experiments were used to obtain some parameters. The velocity
is the output (y := v) and net engine/brake force is the controllable input (u := Fnet). The
road slope θ(t) changes with time and is a disturbance input acting on the vehicle. Hence this
model has two inputs and one output, i.e. it is a multiple-input, single-output model. The car
velocity can be solved for a given initial velocity, net engine/brake force, and slope. 4

To summarize, the dynamics of a system can often be modeled by nonlinear or linear ODEs.
It is important to note that such models are only an approximation of the real system behavior.
The model always involves some inaccuracies. For control system design we need the simplest
model that captures the essential dynamics. In addition, our design and analysis must account
for the impact of model errors.

2.1.2 Principle of Superposition

An important fact is that linear ODEs satisfy the principle of superposition. In particular,
assume that y1(t) is the solution of the linear ODE (Equation 2.1) with input u1(t) and zero
IC. In addition, assume y2(t) is the solution with input u2(t) and zero IC. Then the linear
ODE satisfies the following two properties:

• Scaling: For any constant c ∈ R, the solution of the linear ODE with input uS(t) =
c u1(t) and zero IC is given by yS(t) = c y1(t).

• Additivity: The solution of the linear ODE with input uA(t) = u1(t) + u2(t) and zero
IC is given by yA(t) = y1(t) + y2(t).

These superposition properties are key to the easy analysis of linear ODE models. Nonlinear
ODEs do not satisfy these properties and, as a result, they are more challenging to analyze.

Example 2.4. As a simple example, consider the linear ODE ẏ(t) + 2y(t) = 4u(t). The
left subplot of Figure 2.3 shows the response of this system y1(t) with zero IC and input
u1(t) = 1 (blue dashed). It also shows the response yS(t) with zero IC and input uS(t) = 2u1(t)
(red solid). By the principle of superposition scaling property, the results are related by
yS(t) = 2y1(t). The right subplot of Figure 2.3 shows the responses y1(t) and y2(t) to zero IC
and inputs u1(t) = 1 and u2(t) = sin(3t) (blue dashed). It also shows the response yA(t) with
zero IC and input uA(t) = u1(t) + u2(t) (red solid). By the principle of superposition additive
property, the results are related by yA(t) = y1(t) + y2(t).

4

8

0 1 2 3 4 5
Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
es

po
ns

e,
 y

y
1
:=Response to u

1

y
S
:=Response to 2*u

1

0 1 2 3 4 5
Time (sec)

-2

-1

0

1

2

3

4

R
es

po
ns

e,
 y

y
1
:=Response to u

1

y
2
:=Response to u

2

y
A
:=Response to u

1
+u

2

Figure 2.3:
(Left) Responses y1(t) and yS(t) to inputs u1(t) = 1 and uS(t) = 2u1(t) with zero IC.
(Right) Responses y1(t), y2(t), and yA(t) to inputs u1(t) = 1, u2(t) = sin(3t), and uA(t) =
u1(t) + u2(t) with zero IC.

9

2.2 Equilibrium Points and Linearization

Summary: An equilibrium point is essentially a constant solution to a nonlinear ODE. A
nonlinear ODE can be approximated as a linear ODE near an equilibrium point by Jacobian
linearization. A nonlinear system can have many equilibrium points and each equilibrium
point can have a different linear ODE approximation.

Consider an nth nonlinear ODE of the following form:

y[n](t) = f(y(t), ẏ(t), . . . , y[n−1](t), u(t), u̇(t), . . . , u[m](t)) (2.7)

An equilibrium point consists of (constant) values ȳ ∈ R and ū ∈ R such that

0 = f(ȳ, 0, . . . , 0, ū, 0, . . . , 0) (2.8)

This is called an equilibrium point because if the input is held constant at u(t) = ū for all
t ≥ 0 and the initial conditions are specified as y(0) = ȳ and ẏ(0) = · · · = y[n−1](0) = 0
then the solution of Equation 2.7 is y(t) = ȳ for all t ≥ 0. Finding an equilibrium point
(ȳ, ū) is often called “trimming” the system. In this case Equation 2.8 must be solved for two
unknowns. Hence the equilibrium point is typically not unique since there are fewer equations
than unknowns.

Example 2.5. Example 2.3 introduced a model for the BMW 750iL. If the road is level
(θ(t) = 0rads) then this model simplifies to the following nonlinear ODE:

v̇(t) =
1

m

(
Fnet(t)− cDv2(t)− Froll

)
:= f(v(t), Fnet(t)) (2.9)

IC: v(0) = v0

The function f : R2 → R describes the dynamics for the system with input Fnet and output v.
By definition, an equilibrium point (v̄, F̄net) for the car satisfies f(v̄, F̄net) = 0. For example, if
F̄net = 400N is given then f(v̄, F̄net) = 0 can be solved for the equilibrium velocity. This yields
v̄ = 20.7 m

sec
(≈ 46miles

hr
). Physically this means that if the initial velocity is v(0) = v̄ and the

input force is maintained at Fnet(t) = F̄net for all t ≥ 0 then the car will remain at the velocity
v(t) = v̄ for all t ≥ 0. Alternatively, if v̄ = 29 m

sec
(≈ 65miles

hr
) is given then we can solve for

F̄net = 564N . Note that the equilibrium point is not unique. The equilibrium velocity can be
solved for a given input force or the required input force can be solved for a given velocity.

4

If the solution of a nonlinear ODE remains “near” an equilibrium point then the dynamics
can be approximated by a linear ODE. The precise steps of this approximation are known
as Jacobian linearization. This is extremely useful because many tools for control design are
applicable for linear ODE models. Moreover, many controllers are designed to keep a system
near a particular equilibrium point. Hence, the controller, if properly designed, will ensure
the linear approximation is valid. Jacobian linearization uses the Taylor series expansion to
approximate the dynamics of a nonlinear system near an equilibrium point. Taylor series is

10

typically introduced in Calculus and is briefly reviewed in Appendix 2.4.1. For simplicity,
the Jacobian linearization process is initially described for a first-order, nonlinear ODE of the
following form:

ẏ(t) = f(y(t), u(t)) (2.10)

where f : R2 → R is a given function. The general case for nth order nonlinear ODEs is given
at the end of the section. Assume (ȳ, ū) is an equilibrium point, i.e. f(ȳ, ū) = 0. We know
that if the system is initialized at y(0) = ȳ and the input is held constant at u(t) = ū for all
t ≥ 0 then the solution of Equation 2.10 stays at y(t) = ȳ for all t ≥ 0. Jacobian linearization
is used to approximate the solution y(t) to the nonlinear ODE when y(0) is slightly different
from ȳ and/or the input u(t) is slightly different from ū. The first step is to define variables
that measure the deviation of the nonlinear solution (y, u) from the equilibrium point (ȳ, ū):

δy(t) := y(t)− ȳ (2.11)

δu(t) := u(t)− ū (2.12)

Note that δ̇y(t) = ẏ(t) because ȳ is a constant. Hence the nonlinear ODE in Equation 2.10 can
be rewritten in terms of these new deviation variables as:

δ̇y(t) = f(ȳ + δy(t), ū+ δu(t)) (2.13)

Next perform a multi-variable Taylor series expansion around (ȳ, ū) to obtain a linear approx-
imation for the nonlinear function f :

f(ȳ + δy(t), ū+ δu(t)) ≈ f(ȳ, ū) +
∂f

∂y
(ȳ, ū) · δy +

∂f

∂u
(ȳ, ū) · δu (2.14)

We have dropped the higher order terms (quadratics, etc) in the expansion. The function f has
two arguments and hence the Taylor series requires the partial derivatives of f with respect to
both y and u. Moreover, note that f(ȳ, ū) = 0 because (ȳ, ū) is assumed to be an equilibrium
point. Thus substituting Equation 2.14 into Equation 2.13 yields a first-order linear ODE :

δ̇y(t) + a0δy(t) = b0δu(t) (2.15)

where b0 := ∂f
∂u

(ȳ, ū) and a0 := −∂f
∂y

(ȳ, ū). Note the sign convention in the definition of
a0 is chosen so that the linear ODE approximation is in the standard form introduced in
Section 2.1. The solution of this linear ODE will approximate the solution of the nonlinear
ODE (Equation 2.10) as long as y(t) remains “near” ȳ and u(t) remains “near” ū, i.e. as long
as both δy(t) and δu(t) have “small” magnitudes.

Example 2.6. The BMW 750iL on a level road is modeled with the following nonlinear ODE:

v̇(t) =
1

m

(
Fnet(t)− cDv2(t)− Froll

)
:= f(v(t), Fnet(t)) (2.16)

IC: v(0) = v0

11

As shown in Example 2.5, this model has an equilibrium point at (v̄, F̄net) = (20.74 m
sec
, 400N).

The left subplot of Figure 2.4 shows vehicle velocity (solid blue line) computed from the
nonlinear ODE with initial condition v(0) = 19.74 m

sec
and input Fnet(t) = 400− 140 sin(2t). A

Jacobian linearization for this model requires two partial derivatives:

∂f

∂v
(v̄, F̄net) =

−2cDv̄

m

∣∣∣∣
(v̄,F̄net)

= −0.008
1

sec

∂f

∂Fnet
(v̄, F̄net) =

−1

m

∣∣∣∣
(v̄,F̄net)

= 4.8× 10−4 1

kg

where m = 2, 085kg and cD = 0.4N ·sec
2

m2 as introduced in Example 2.3. This yields the Jacobian
linearization for the BMW:

δ̇v(t) + 0.008δv(t) = (4.8× 10−4) δF (t) (2.17)

The solution of this linear ODE can be used to approximate the solution of the nonlinear ODE.
For example, consider the initial condition and input force specified above for the nonlinear
ODE. This is equivalent to an initial condition δv(0) = −1 m

sec
and input δF (t) = −140 sin(2t)

for the linear ODE. The linear ODE can be solved (analytically in this case) to obtain δv(t).
This yields the approximate velocity δv(t) + v̄ which is shown as the red dashed curve in
Figure 2.4. The solution to the linear ODE is almost indistinguishable from the solution
of the nonlinear ODE. The approximation is accurate because the velocity remains near the
equilibrium value v̄. However, the approximation is not quite as good for velocities further
from the equilibrium value. For example, the right subplot of Figure 2.4 shows the solution
of both the nonlinear ODE and the linear ODE for the same input force but with initial
condition v(0) = −10.74 m

sec
. There is a noticeable difference in the responses because the

velocity is far from the equilibrium velocity used to construct the linearization. The linear
ODE is constructed around a specific equilibrium point. A Jacobian linearization constructed
near the velocity −10.74 m

sec
would provide a better approximation for the nonlinear response

shown in the right subplot of Figure 2.4.
4

Next consider the more general case of an nth order nonlinear ODE:

y[n](t) = f(y(t), ẏ(t), . . . , y[n−1](t), u(t), u̇(t), . . . , u[m](t)) (2.18)

The Jacobian linearization process is similar in this case but with additional notation. Specif-
ically, let (ȳ, ū) be an equilibrium point. Then Jacobian linearization yields a linear ODE
approximation of the form:

δ[n]
y (t) + an−1δ

[n−1]
y (t) + · · ·+ a1δ̇y(t) + a0δy(t) = bmδ

[m]
u (t) + · · ·+ b1δ̇u(t) + b0δu(t) (2.19)

where δy(t) := y(t)− ȳ and δu(t) := u(t)− ū are the deviations of the output and input from
the equilibrium point. Moreover, the coefficients of the linear ODE are given by the following

12

Figure 2.4: BMW output velocity for Fnet(t) = 400 − 140 sin(2t)N with initial conditions
v(0) = 19.7 m

sec
(left subplot) and v(0) = 10.7 m

sec
(right subplot).

partial derivatives:

a0 = −∂f
∂y

(ȳ, 0, . . . , 0, ū, 0, . . . , 0) b0 =
∂f

∂u
(ȳ, 0, . . . , 0, ū, 0, . . . , 0)

a1 = − ∂f

∂y[1]
(ȳ, 0, . . . , 0, ū, 0, . . . , 0) b1 =

∂f

∂u[1]
(ȳ, 0, . . . , 0, ū, 0, . . . , 0)

...
...

an−1 = − ∂f

∂y[n−1]
(ȳ, 0, . . . , 0, ū, 0, . . . , 0) bm =

∂f

∂u[m]
(ȳ, 0, . . . , 0, ū, 0, . . . , 0)

Again, the coefficients (a0, a1, . . . , an−1) are defined as the negative of the corresponding partial.
This sign convention yields a linear ODE in our standard form (Equation 2.19) with all terms
involving y and its derivatives on the left side. It is important to emphasize that nonlinear
systems can, in general, have many equilibrium points. The Jacobian linearization is performed
at a particular equilibrium point and different linear ODE approximations are obtained at each
equilibrium point.

To summarize, Jacobian linearization is used to construct a linear ODE at an equilibrium
point (ȳ, ū). Let y(t) denote the solution of the nonlinear ODE to an input u(t) with initial
condition y(0). The linear ODE has an an equivalent input δu(t) = u(t)−ū and initial condition
δy(0) = y(0)− ȳ. The solution of the linear ODE is δy(t) and this yields an approximation for
the nonlinear solution (assuming small deviations from equilibrium) as y(t) ≈ δy(t) + ȳ.

13

2.3 Alternative Model Representations

Summary: This section reviews three alternative model representations. First, the transfer
function is introduced as an alternative notation for an nth order linear ODE. Second, linear
state-space models are a set of n coupled, first-order ODEs and can be used to represent an
nth order linear ODE. Third, nonlinear state-space models are briefly introduced.

2.3.1 Transfer Functions

An nth-order linear ODE is given by:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = bmu
[m](t) + · · ·+ b1u̇(t) + b0u(t) (2.20)

The transfer function for this ODE is defined as:

G(s) :=
bms

m + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

(2.21)

At this point Equation 2.21 is merely a new notation for the ODE, i.e. the transfer function
is simply a different way of representing the ODE. We will see later that the transfer function
has several uses beyond simply being another notation for the ODE. The function tf can be
used to create a transfer function in Matlab. The syntax is G=tf(num,den) where num is 1×m
row vector of numerator coefficients and den is a 1× n row vector of denominator coefficients.
Additional help and documentation can be found by typing “help tf” and “doc tf” at the
command line, respectively. The function tfdata can be used to extract the numerator and
denominator coefficients from a transfer function. A simple example is given below.

Example 2.7. Consider the second-order ODE:

6ÿ(t) + 9ẏ + 2y = 4u̇+ 8u (2.22)

The transfer function for this ODE is given by G(s) = 4s+8
6s2+9s+2

. This transfer function can be
created in Matlab with the tf function:

>> G=tf([4 8],[6 9 2])

G =

4 s + 8

6 s^2 + 9 s + 2

Continuous-time transfer function.

>> [num,den]=tfdata(G);

>> num{1}

ans =

0 4 8

>> den{1}

ans =

6 9 2

14

Note that tfdata returns the coefficients num and den as cell arrays. The syntax num{1} and
den{1} extracts the actual row vectors of coefficients from the cell array. 4

The Laplace Transform can be used to make a formal connection between the ODE and
its transfer function. This connection is briefly discussed in Appendix 2.4.2. However, the
Laplace Transform is not required in the remainder of these notes and hence Appendix 2.4.2
can be skipped with no loss of continuity.

2.3.2 Linear State-Space

The control design tools developed in these notes primarily use ODE and transfer function
models. This is commonly referred to as “classical control” design. Alternatively, the system
dynamics can be described by a state-space model as defined below. The use of state-space
models leads to an alternative set of control design tools commonly referred to as “modern”
or “state-space” design. State-space models are only briefly introduced here and details on
state-space design can be found in [4, 8, 10].

An nth order linear state-space model with input u and output y takes the form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (2.23)

IC: x(0) = x0

Here x ∈ Rn is an n-dimensional vector known as the state. The model dynamics are defined
by the matrices A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and D ∈ R. There is a non-uniqueness
in the state-space representation. In other words, there are different choices for (A,B,C,D)
that represent the same dynamics from input u to output y †. State-space models can handle
multiple-input, multiple-output systems with only minor notational changes. Thus, u and
y can, in general, be vectors although this discussion will focus on the case where they are
scalars. The model is completed with a single, vector-valued initial condition x(0) = x0 ∈ Rn.
Equation 2.23 expresses the dynamics as a first-order, vector differential equation, i.e. it is a
set of n first-order ODEs that are coupled together by (A,B,C,D).

The nth order linear ODE in Equation 2.20 can always be written in state-space form. This
is easiest to see when the derivatives of the input u do not appear in the ODE. Specifically,
consider the following form for the ODE:

y[n](t) + an−1y
[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = b0u(t)

IC: y(0) = y0; ẏ(0) = ẏ0; . . . ; y[n−1](0) = y
[n−1]
0

(2.25)

†Define a new set of state variables z := Tx where T is a nonsingular n × n matrix. Then dynamics from
input u to output y can be equivalently represented with the state z:

ż(t) =
(
TAT−1

)
z(t) + (TB)u(t)

y(t) =
(
CT−1

)
z(t) + Du(t)

(2.24)

15

The coefficient of y[n] has been normalized (an = 1) to simplify the notation. This normalization
can be done by simply dividing both sides of the ODE by an. Define the state variables x1 := y,
x2 := ẏ, . . ., xn := y[n−1]. The first n−1 state variables satisfy the simple relations ẋ1(t) = x2(t),
ẋ2(t) = x3(t), etc. Moreover, the linear ODE can be used to express ẋn(t) = y[n](t) in terms of
the state variables and input. As a result, the linear ODE in Equation 2.25 can be expressed
in state-space form with the following state-matrices:

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 , B =


0
0
...
0
b0


C =

[
1 0 0 · · · 0

]
, D = 0

The initial condition for the state-space model is x(0) =
[
y0, ẏ0, . . . , y

[n−1]
0

]T
. An nth-order

ODE (Equation 2.20) that contains derivatives of the input u can also be written in state-
space form. The state matrices are more complicated in this case and details can be found
in [6, 16, 18]. The reverse direction also holds: a state-space model can be converted to an
equivalent nth-order linear ODE. This conversion is discussed in Appendix 2.4.3.

The function ss can be used to create a transfer function in Matlab. The syntax is
G=ss(A,B,C,D) where A, B, C, and D have appropriate dimensions. Additional help and docu-
mentation can be found by typing “help ss” and “doc ss” at the command line. The function
ssdata can be used to extract the state-space matrices. The functions ss and tf can also be
used to convert between state-space and transfer function representations. A simple example
is given below.

Example 2.8. Consider the third-order ODE:

y[3](t) + 8ÿ(t) + 9ẏ(t) + 2y(t) = −3u(t)

IC: y(0) = y0; ẏ(0) = ẏ0; ÿ(0) = ÿ0

(2.26)

Define the variables x1 := y, x2 := ẏ, and x3 := ÿ. The single third-order ODE can be
re-written as three coupled first-order ODEs: ẋ1(t) = x2(t), ẋ2(t) = x3(t), and

ẋ3(t) = −2x1(t)− 9x2(t)− 8x3(t)− 3u(t). (2.27)

These three first-order ODEs can be compactly expressed as a vector, first-order ODE:

ẋ(t) =

 0 1 0
0 0 1
−2 −9 −8

x(t) +

 0
0
−3

u(t)

y(t) =
[
1 0 0

]
x(t)

IC: x(0) =
[
y0 ẏ0 ÿ0

]T
(2.28)

This state-space model is constructed in the Matlab code below.

16

>> A=[0 1 0; 0 0 1; -2 -9 -8];

>> B=[0;0;-3]; C=[1 0 0]; D=0;

>> G=ss(A,B,C,D);

% Comment: tf() converts G from SS to TF form. Note that we

% recover the TF for the original 3rd-order ODE.

>> tf(G)

ans =

-3

s^3 + 8 s^2 + 9 s + 2

% We can also construct the original TF and convert from TF to SS.

>> G2 = tf(-3,[1 8 9 2]); % Construct original TF

>> G3=ss(G2); % ss() converts G2 from TF to SS form

% Note that A3 is not the same as A given above. This is due to

% the non-uniqueness of state-space models, i.e. both G and G3

% represent the same dynamics but with different state matrices.

>> [A3,B3,C3,D3]=ssdata(G3);

>> A3

A3 =

-8.0000 -2.2500 -0.5000

4.0000 0 0

0 1.0000 0 4

2.3.3 Nonlinear State-Space

The linear state-space models introduced in the previous section can be generalized to nonlinear
dynamics. Specifically, an nth order nonlinear state-space model with input u and output y
takes the form:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t)) (2.29)

IC: x(0) = x0

Here x ∈ Rn is an n-dimensional vector known as the state. The model dynamics are defined
by the functions f : Rn+1 → Rn and h : Rn+1 → R. Again, u and y can, in general, be vectors
although the notation here is for the case where they are scalars. The model is completed with
a single, vector-valued initial condition x(0) = x0 ∈ Rn. The Jacobian linearization presented
in Section 2.2 can be extended to these nonlinear state-space models. This generalization
mainly involves additional notation and is not needed in the remainder of these notes. Details
on this extension of Jacobian linearization are provided in Appendix 2.4.4.

17

2.4 Appendix: Background and Additional Results

Summary: This appendix first provides a review of Taylor series expansion. Next the Laplace
transform is defined and used to formally connect the ODE and its associated transfer function.
This is followed by a discussion of the steps required to convert from a state-space model to
a transfer function / ODE model. Finally, Jacobian linearization for nonlinear state-space
models is briefly described.

2.4.1 Taylor Series

To start, first consider a function of one variable: f : R→ R. The Taylor series of f at a point
x̄ ∈ R is given by:

f(x) = f(x̄) +
df

dx
(x̄) · (x− x̄) + Higher Order Terms (Quadratic, etc) (2.30)

If x is “near” x̄ then the higher order terms can be neglected. This yields a linear function
that approximates f near x̄:

f(x) ≈ f(x̄) +
df

dx
(x̄) · (x− x̄) (2.31)

The error in making this linear approximation is on the order of (x − x̄)2. Here the linear
approximation passes through the equilibrium point (x̄, f(x̄) with slope df

dx
(x̄).

Example 2.9. Consider the quadratic drag term f(v) = cDv
2 that appears in the vehicle

model with cD = 0.4N ·sec
2

m2 . This function is shown Figure 2.5 below as the blue solid line. The
linear Taylor series approximation near v̄ = 29 m

sec
is:

cDv
2 ≈ cDv̄

2 + (2cDv̄) · (v − v̄)

= 336.4N +

(
23.2

N · sec
m

)
·
(
v − 29

m

sec

)
(2.32)

The linear approximation is also shown in the figure (red dashed). The linear Taylor series
approximates the nonlinear drag for velocities near v̄ = 29 m

sec
. For example, if v = 30 m

sec
then

the actual drag is cDv
2 = 360N . The linear Taylor series gives the approximate drag of 359.6N

(= 336.4 + 23.2 × 1). The approximation is accurate since v is near v̄. If we instead select
v = 10 m

sec
then the actual drag is cDv

2 = 40N . The linear Taylor series gives the approximate
drag of −104.4N (= 336.4 + 23.2×−19). The approximation is quite poor in this case since v
is far from v̄. In fact, the linear Taylor series yields a negative (non-physical) value for drag.

4

Additional details on Taylor Series can be found in most Calculus textbooks.

18

Figure 2.5: Quadratic drag and linear Taylor series approximation

2.4.2 Laplace Transform

Consider a signal y(t) defined on t ≥ 0. The one-sided Laplace transform of y(t) is defined as:

Y (s) :=

∫ ∞
0

y(t)e−stdt (2.33)

where s ∈ C. The complex function Y : C → C is defined on a region of convergence.
Specifically, the Laplace transform of y is defined at values of s ∈ C for which the integral
converges. The transform of y(t) will be denoted by either Y (s) or L{y(t)} The Laplace
transform has a number of useful properties that make it suitable for analysis of signals and
systems. In this context, y(t) is typically considered a function of time t and Y (s) is a function
of a (complex) frequency s. Hence the Laplace transform takes a signal in the time domain
and maps it to a signal in the frequency domain. The following relation is used to connect an
ODE and to its corresponding transfer function:

L{ẏ(t)} = sY (s)− y(0) (2.34)

This relation can be shown from the definition of the Laplace transform and integration by
parts. Thus if the signal has zero initial value y(0) = 0 then differentiation in the time domain
is equivalent to multiplication by “s” in the frequency domain. Similarly L{y[k](t)} = skY (s)
assuming that the y has zero ICs: y(0) = ẏ(0) = · · · = y[k−1](0) = 0. Finally, consider an nth

order ODE with input u and output y:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = bmu
[m](t) + · · ·+ b1u̇(t) + b0u(t) (2.35)

Applying the Laplace transform to this ODE with zero ICs yields:(
ans

n + an−1s
n−1 + · · · a1s+ a0

)
Y (s) = (bms

m + · · · b1s+ b0)U(s) (2.36)

19

Thus the input and output are related in the frequency domain by Y (s) = G(s)U(s) where
G(s) is the transfer function:

G(s) :=
bms

m + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0

(2.37)

This brief discussion demonstrates that, in the frequency domain, the output of an ODE is
given by the product of the transfer function and the input. Thus the transfer function is
not simply another notation for the ODE. Additional details on the Laplace transform can be
found in [6, 16,18].

2.4.3 State-Space to Transfer Function

This section describes the steps to convert a state-space model to an ODE/transfer function
representation. Recall that the state-space model has the following form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.38)

The Laplace transform, introduced in Appendix 2.4.2, can be used to show that the corre-
sponding transfer function is G(s) = C(sI −A)−1B +D. The numerator and denominator of
G(s) are polynomials in s that represent an equivalent linear ODE / transfer function.

This section will briefly describe an alternative derivation to convert from a state-space to
a transfer function model. This requires one fact from linear algebra. The function p(s) =
det(sI − A) is a polynomial in s and hence there are coefficients {a0, . . . , an} such that:

p(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 (2.39)

Recall that λ is an eigenvalue of A if and only if λ satisfies the characteristic equation p(λ) = 0.
The Cayley-Hamilton theorem [8] states that A also satisfies this characteristic equation:

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0 (2.40)

To derive an nth order linear ODE, first differentiate the output of the state-space model
(Equation 2.38) and substitute for ẋ:

ẏ = Cẋ+Du̇ = CAx+ CBu+Du̇ (2.41)

Continue differentiating the output n times and use the state-space model to substitute for ẋ
after each differentiation. Stacking these output derivatives yields:

y
ẏ
...
y[n]

 =


C
CA

...
CA[n]

x+


D 0 · · · 0
CB D · · · 0

...
. . .

...
CAn−1B CAn−2B · · · D



u
u̇
...
u[n]

 (2.42)

20

Multiply this equation on the left by the row vector
[
a0 a1 · · · an−1 1

]
. By the Cayley-

Hamilton theorem the term involving x drops out. This yields a linear ODE of the form:

y[n](t) + an−1y
[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = bnu

[n](t) + · · ·+ b1u̇(t) + b0u(t) (2.43)

where the coefficients {b0, . . . , bn} are defined as:

[
b0 b1 · · · bn−1 bn

]
:=
[
a0 a1 · · · an−1 1

]


D 0 · · · 0
CB D · · · 0

...
. . .

...
CAn−1B CAn−2B · · · D

 (2.44)

The corresponding transfer function is G(s) = bnsn+···+b1s+b0
sn+···+a1s+a0 . The denominator of the transfer

function is equivalent to the characteristic equation p(s) for the matrix A. Thus the matrix
A and the transfer function / linear ODE have the same characteristic equation. Moreover,
the eigenvalues of A are the same as the roots of this characteristic equation. It can be shown
with some additional algebra and another application of the Cayley Hamilton theorem that
the numerator of this transfer function is equivalent to: C (p(s)(sI − A)−1)B + p(s)D. The
denominator of the transfer function is the characteristic polynomial p(s). Hence the transfer
function can be written as G(s) = C(sI − A)−1B +D as obtained via the Laplace transform.

2.4.4 Jacobian Linearization

Consider the following nth order nonlinear state-space model with input u and output y:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t)) (2.45)

IC: x(0) = x0

An equilibrium point consists of (constant) values x̄ ∈ Rn, ȳ ∈ R and ū ∈ R such that

0 = f(x̄, ū) (2.46)

ȳ = h(x̄, ū) (2.47)

Define deviation variables δx(t) := x(t)− x̄, δy(t) := y(t)− ȳ, and δu(t) := u(t)− ū. Applying
the multivariable Taylor series approximation around the equilibrium point (x̄, ȳ, ū) yields the
following linear state-space model:

δ̇x(t) = Aδx +Bδu

δy(t) = Cδx +Dδu (2.48)

IC: δx(0) = x(0)− x̄
The entries of the state matrices are defined by the appropriate partials:

Ai,j :=
∂fi
∂xj

(x̄, ū), Bi,j :=
∂fi
∂uj

(x̄, ū)

Ci,j :=
∂hi
∂xj

(x̄, ū), Di,j :=
∂hi
∂uj

(x̄, ū)

21

Chapter 3

System Response

This chapter covers the response of systems focusing primarily on simple first and second
order systems. Section 3.1 reviews the use of numerical integration to compute the response
of a system. The remainder of the chapter describes analytical methods for understanding
the system response. Sections 3.2 and 3.3 review the procedure to solve for the free (initial
condition) and forced response of an input. The stability characteristics of the system is related
to the roots of a related characteristic equation. Next, Sections 3.4-3.6 derive the response of
first and second order systems due to a step input. The key features include the final (steady-
state) value, settling time, peak overshoot, rise time, and undershoot. Finally, Section 3.7
briefly summarizes key response features for general nth order ODEs.

22

3.1 Numerical Simulation

Summary: This section describes the basic approach to numerical integration. Then sev-
eral simulation tools within Matlab are reviewed. This includes command line functions for
simulating linear and nonlinear systems as well as the graphical tool Simulink.

3.1.1 Numerical Integration

This section provides a basic outline of numerical integration methods. Consider a simple
scalar, nonlinear ODE:

ẋ(t) = f(x(t), u(t)) (3.1)

A scalar ODE is considered here only to simplify the discussion and numerical integration
algorithms can typically handle higher order ODEs. Assume the initial condition x(0) = x0 ∈ R
is given and the input u(t) is specified for t ≥ 0. The next few sections provide an exact
analytical solution when the ODE is linear. However, in most cases it is not possible to
compute such analytical solutions. The objective of numerical integration is to compute an
approximate solution using evaluations of the function f . A simplistic approach to numerical
integration is based on the approximation of the time derivative for small ∆t as:

ẋ(t) ≈ x(t+ ∆t)− x(t)

∆t
(3.2)

Substitute this approximation into Equation 3.1 and solve for x(t+ ∆t) to obtain:

x(t+ ∆t) ≈ x(t) + f(x(t), u(t)) ·∆t (3.3)

Thus the given x(0) = x0 and input u(0) can be used to approximately compute x(∆t):

x(∆t) ≈ x0 + f(x0, u(0)) ·∆t (3.4)

Next, this approximation for x(∆t) along with the given input u(∆t) can be used to approxi-
mately compute x(2∆t):

x(2∆t) ≈ x(∆t) + f(x(∆t), u(∆t)) ·∆t (3.5)

We can continue stepping ahead in time using this approximation. This yields the following
iteration to compute an approximate solution to the nonlinear ODE for k = 0, 1, . . .:

x((k + 1)∆t) ≈ x(k∆t) + f(x(k∆t), u(k∆t)) ·∆t (3.6)

This algorithm is known as Euler integration. It assumes the step size ∆t is fixed and it only
requires a single evaluation of the function f at each step of the iteration. There are more
sophisticated and computationally efficient (fixed-step) solvers that evaluate f multiple times
at each step, e.g. the Runge-Kutta method. There are also numerical integration techniques
that vary the step size ∆t adaptively as the iteration progresses. These variable step solvers can
be even faster and more accurate. A key point of this discussion is that numerical integration
only approximately solves the ODE. For many problems the approximate solution will be of
sufficient accuracy. However, if the solution is not sufficiently accurate (e.g. the solution looks
“jagged”) then there are typically settings that can be modified to improve the accuracy.

23

3.1.2 Command Line Functions

Matlab contains several command line functions to simulate linear systems including:

• initial: The syntax [y,t]=initial(G,x0,TFINAL) computes the free (initial condition)
response for a system G with IC x(0) =x0 from t = 0 to t =TFINAL. This function requires
G to be given as a linear state-space system.

• lsim: The syntax [y,t]=lsim(G,u,t,x0) computes the forced response for a system G

with IC x(0)=x0 and input specified by (u,t). The system G can be given either as a
state-space or transfer function model. However the initial condition is used only if G is
a linear state-space system and is ignored if G is a transfer function.

• step: The syntax [y,t]=step(G,TFINAL) computes the forced unit step response for
a system G from t = 0 to t =TFINAL. This is the response with zero IC and input
u(t) = 1 for t ≥ 0. Again, G can be either a state-space or transfer function model. The
response due a step of any (non-unit) magnitude can be obtained by simply rescaling
the output of step. For example, the response y with zero IC and input u(t) = 2 for
t ≥ 0 is obtained by [yunit,t]=step(G,TFINAL) and y=2*yunit. This follows from the
principle of superposition as discussed in Section 2.1.2: if (u(t), y(t)) satisfy the linear
ODE with zero IC then (c u(t), c y(t)) also satisfy the linear ODE for any constant c ∈ R.

The help and documentation for these functions provides details including additional syntax
options and examples. The integration is performed using specialized code that exploits the
properties of linear systems.

Matlab also contains a variety of command line numerical integration solvers for nonlinear
state-space systems including ode45, ode23, and ode23s. For example, the syntax [t,x] =

ode45(ODEFUN,[T0 TFINAL],x0) integrates the system ẋ(t) = f(t, x(t)) with IC x(T0) =x0

from t = T0 to t =TFINAL. The input argument ODEFUN is itself a function that specifies the
system dynamics f by XDOT=ODEFUN(T,X). Note that f is allowed to depend explicitly on time
and this can be used to model the effects of an input. The ode45 routine uses the Runge-
Kutta (4,5) formula to perform the numerical integration. A variety of numerical integration
options can be specified using the odeset. See the documentation and help for additional
details. These notes will not make use of the command line numerical integration routines for
nonlinear systems. This brief summary is only intended to make you aware of these functions.
We will instead use Simulink which is introduced in the next section.

Example 3.1. The functions lsim and step are demonstrated with the following linear ODE:

2ÿ(t) + 0.5ẏ(t) + y(t) = 0.3u̇(t) + 7u(t)

IC: y(0) = 0; ẏ(0) = 0

The left subplot of Figure 3.1 shows two step responses with u(t) = 1 and u(t) = 0.5 for t ≥ 0.
The Matlab code to generate this figure is given below (omitting code to add labels, etc). The
response with u(t) = 0.5 is obtained by simply scaling the response with u(t) = 1.

24

0 5 10 15 20
0

2

4

6

8

10

12

Time (sec)

R
es

po
ns

e,
 y

(t
)

Unit: u(t)=1
Non−Unit: u(t)=0.5

0 5 10 15 20
−1

0

1

2

3

4

5

6

7

Time (sec)

R
es

po
ns

e,
 y

(t
)

Figure 3.1: Forced response of G(s) = 0.3s+7
2s2+0.5s+1

with step input (left) and u(t) = 0.5− cos(2t)
(right). Both responses are with zero IC.

>> G = tf([0.3 7],[2 0.5 1]);

>> Tf = 20;

>> [yunit,tunit]=step(G,Tf);

>> yscaled=0.5*yunit;

>> plot(tunit,yunit,’b’,tunit,yscaled,’r-.’);

The right subplot of Figure 3.1 shows the forced response with u(t) = 0.5− cos(2t) for t ≥ 0.
The Matlab code to generate this figure is given below (again omitting some additional code):

>> G = tf([0.3 7],[2 0.5 1]);

>> Tf = 20;

>> t = linspace(0,Tf,100);

>> u = 0.5-cos(2*t);

>> [y,t]=lsim(G,u,t);

>> plot(t,y); 4

3.1.3 Simulink

Matlab and Simulink are computational tools used to design, analyze and simulate control
systems. Simulink is a graphical simulation tool that is based on the block diagram concept.
It can be used to model interconnections of linear and/or nonlinear systems. One advantage
of Simulink (as compared to a command-line solver like ode45) is that the block diagram
framework easily allows components of a complex system to be independently modeled and in-
terconnected. A drawback of this graphical, block-diagram framework is that certain standard
programming concepts, e.g. “for-loops” and logical “if/else” statements, are cumbersome to
implement in Simulink.

There are a variety of freely available tutorials on Matlab and Simulink. For example,
Matlab offers several introductory tutorials in both video and written format:

25

• Interactive Simulink Tutorial: The link below contains a variety of video tutorials com-
bined into three groups: (i) “Simulink On-Ramp”, (ii) “Using Simulink to Model Con-
tinuous Dynamical Systems”, and (iii) “Using Simulink to Model Discrete Dynamical
Systems”. Each of these groups has a variety sub-topics. At this point it should be suf-
ficient to watch “Constructing and Running a Simple Model” in Group (i) (≈ 14min),
“Modeling Transfer Functions” in Group (ii) (≈ 13min) and “Modeling a System of
Differential Equations also in Group (ii) (≈ 7min). The remaining videos in Groups (i)
and (ii) are useful but not required. Discrete dynamical systems will not be a focus of
this course and hence the videos in Group (iii) can be skipped.

http://www.mathworks.com/academia/student_center/tutorials/sltutorial_launchpad.html?s_cid=0409_webg_sltutorial_294710

• Learn Simulink Basics: The link below contains more detailed written documentation
on basic Simulink. The videos specified above should be sufficient for this course. The
written document can serve as an additional resource.

http://www.mathworks.com/support/learn-with-matlab-tutorials.html

It is worth noting that Simulink can be used within a model-based design process. Specif-
ically, the “old” process is to use Matlab / Simulink (or another, similar tool) for the control
design, analysis, and simulation. The final control design is then handed off from the control
engineer to a software engineer. The software engineer translates the designed controller into
code in a true programming language, e.g. C++. This can then be compiled and implemented
on a production embedded processor. Bugs can be introduced in this translation step and the
process must be repeated if the controller is updated. As a result, this translation step is costly
both in terms of time and money. It is becoming standard practice in industry to instead use
a model-based design process. One aspect of model-based design is to automatically generate
production code. For example, Simulink has tools (Real-time Workshop) to directly generate
code from the Simulink model. This allows the control design, analysis, and simulation to
be done entirely within the Matlab/Simulink environment. The translation from Simulink to
code is done automatically and the hand-off from the control to software engineer is avoided.

26

http://www.mathworks.com/academia/student_center/tutorials/sltutorial_launchpad.html?s_cid=0409_webg_sltutorial_294710
http://www.mathworks.com/support/learn-with-matlab-tutorials.html

3.2 Free (Initial Condition) Response

Summary: A procedure to solve for the free response of a system is briefly reviewed. Next,
two important aspects of the free response are discussed. First, the system is defined to be
stable if the free response decays to zero for all initial conditions. The system is stable if and
only if all roots of the characteristic equation have negative real part. Second, the speed of
response is characterized by a time constant.

3.2.1 Free Response Solution

The previous section reviewed numerical integration. Numerical integration is used in most
cases to solve for the free or forced response of a system. However, our control design tools
require a better understanding of linear ODEs. Hence the next few sections will review the
explicit (analytical) solution for the free and forced response of a linear nth order ODE.

The free response of a linear system with input u and output y is obtained by setting the
input to zero: u(t) = 0 for all t ≥ 0. In this case the system response is modeled as:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = 0 (3.7)

IC: y(0) = y0; . . . y[n−1](0) = y
[n−1]
0 (3.8)

The free response of the system is equivalently called the initial condition response.
Solving for the free response requires a characterization of the homogeneous solutions of the

ODE. Specifically, any solution to the ODE in Equation 3.7 (but not necessarily satisfying the
IC in Equation 3.8) is called a homogeneous solution. Assume that y(t) = est is a homogeneous
solution for some number s ∈ C. Note that the first two derivatives are ẏ(t) = sest and ÿ(t) =
s2est. In general, the kth derivative is y[k](t) = skest. Substitute the assumed homogeneous
solution y and its derivatives into the ODE to obtain:(

ans
n + an−1s

n−1 + · · ·+ a1s+ a0

)
est = 0 (3.9)

The exponential est is nonzero for any values of s and t. Hence, y(t) = est is a homogeneous
solution if and only if s satisfies:

ans
n + an−1s

n−1 + · · ·+ a1s+ a0 = 0 (3.10)

Equation 3.10 is known as the characteristic equation and any solution s is called a root. The

characteristic equation is an nth order polynomial and hence it has n roots {s1, . . . , sn} ⊂ C
by the fundamental theorem of algebra. For simplicity assume the roots are distinct so that
there are no repeated roots. It can be shown [2,5] that y is a homogeneous solution if and only
if there exists coefficients {c1, . . . , cn} ⊂ C such that

y(t) =
n∑
i=1

cie
sit (3.11)

Based on this fact, the free response (assuming distinct roots) can be solved as follows:

27

1. Solve for the n roots {s1, . . . , sn} ⊂ C of the characteristic equation.

2. Form the general solution as y(t) =
∑n

i=1 cie
sit.

3. Use the n initial conditions to solve for the n unknown coefficients {c1, . . . , cn} ⊂ C.

Similar steps hold even if the system has repeated roots. The only distinction is that the terms
in the general homogeneous solution (Equation 3.11) must be altered if there are repeated roots.
Additional details can be found in textbooks on ODEs [2, 5]. It should also be noted that if
time t has units of sec then the roots si have units of rad

sec
. This implies that the product sit has

units of rad. The units rad
sec

should be assumed for the roots si whenever they are not explicitly
specified. The three-step solution process is demonstrated next with a simple example.

Example 3.2. Consider a system modeled by a second-order linear ODE:

2ÿ(t)− 2ẏ(t)− 12y(t) = 4u(t)

IC: y(0) = 11; ẏ(0) = −2

To find the free response (u(t) = 0), first compute the roots of the characteristic equation
2s2−2s−12 = 0. The two roots of this polynomial are s1 = −2 rad

sec
and s2 = 3 rad

sec
. The second

step is to note that all homogeneous solutions have the form y(t) = c1e
−2t + c2e

3t. The third
and final step is to use the initial conditions to solve for the coefficients c1 and c2. Substituting
the general solution y into the initial conditions yields two equations with two unknowns:

11 = y(0) = c1 + c2

−2 = ẏ(0) = −2c1 + 3c2

The solution is c1 = 7 and c2 = 4. Hence the free response is given by y(t) = 7e−2t + 4e3t. 4

Both roots in the example above are real numbers. However, the roots of the charac-
teristic equation can, in general, be complex numbers.∗ If si is complex then the complex
exponential esit appears in the homogeneous solution. Some additional clarification is needed
to demonstrate that a real-valued solution is obtained in this case. First note that if the ODE
coefficients {a0, a1, . . . , an} are real then any complex roots of the characteristic equation come
in complex conjugate pairs. Let s1 = α + jβ and s2 = α− jβ be a complex conjugate pair of
roots where j :=

√
−1. These roots lead to complex exponential terms in the solution of the

form c1e
s1t + c2e

s2t. It follows from Euler’s formula that these terms can be re-written as:

c1e
s1t + c2e

s2t = eαt(c1 + c2) cos(βt) + jeαt(c1 − c2) sin(βt) (3.12)

Define c̃1 := c1 + c2 and ĉ1 := j(c1 − c2). If the ICs are real numbers then it can be shown
that both c̃1 and ĉ1 will be real numbers. Thus the complex exponential terms that appear
in the solution will, in fact, yield real-valued terms c̃1e

αt cos(βt) + ĉ1e
αt sin(βt). The solution

procedure can be modified to explicitly express the homogeneous solution as real-valued signals:

∗See Appendix 3.8.1 for a brief review of complex numbers.

28

1. Solve for the n roots of the characteristic equation. Group the real roots {s1, . . . , sk} ⊂ R
and complex conjugate pairs {α1± jβ1, . . . , αl± jβl} ⊂ C of the characteristic equation.

2. Form the general solution as y(t) =
∑k

i=1 cie
sit +

∑l
i=1 c̃ie

αit cos(βit) + ĉie
αit sin(βit).

3. Use the n initial conditions to solve for the n unknown coefficients {c1, . . . , ck} ⊂ R and
{c̃1, ĉ1, . . . , c̃l, ĉl} ⊂ R.

Example 3.3. Consider a system modeled by a second-order linear ODE:

ÿ(t) + 2ẏ(t) + 5y(t) = u(t)

IC: y(0) = 6; ẏ(0) = −14

To compute the free response (u(t) = 0), first solve for the roots of the characteristic equation
s2 + 2s + 5 = 0. The roots are s1 = −1 + 2j rad

sec
and s2 = −1 − 2j rad

sec
. The second step

is to form the general solution. This can be done with complex exponentials yielding y(t) =
c1e

(−1+2j)t + c2e
(−1−2j)t. The third and final step is to use the IC to solve for the coefficients c1

and c2. Substituting y into the IC yields two equations with two unknowns:

6 = y(0) = c1 + c2

−14 = ẏ(0) = (−1 + 2j)c1 + (−1− 2j)c2

The solution is c1 = 3 + 2j and c2 = 3 − 2j. These coefficients are complex conjugates
as expected from the discussion above. By Euler’s formula, the free response y(t) = (3 +
2j)e(−1+2j)t + (3− 2j)e(−1−2j)t can be rewritten as y(t) = e−t(6 cos(2t)− 4 sin(2t)).

We can obtain the same result using the general solution expressed with real sinusoids.
Specifically, all homogeneous solutions have the form y(t) = c̃1e

−t cos(2t) + ĉ1e
−t sin(2t). The

initial conditions can be used to solve the unknown coefficients yielding c̃1 = 6 and ĉ1 = −4. 4

3.2.2 Stability

Stability is a property of the free response as t→∞ as formalized in the next definition.

Definition 3.1. A linear system is stable if the free response returns to zero (y(t) → 0 as
t→∞) for any initial condition. The system is called unstable if it is not stable.

The free response is a linear combination of exponentials esit where si is a characteristic
equation root. If si is real then the exponential can decay to zero (if si < 0), grow unbounded
(if si > 0) or remain constant (if si = 0). If si is part of a complex pair αi ± jβi then it
contributes terms of the form eαit cos(βit) and eαit sin(βit). These terms can decay to zero (if
αi < 0), grow unbounded (if αi > 0) or oscillate (if αi = 0). This leads to the following fact:

Fact 3.1. A linear system is stable if and only if all roots of the characteristic equation have
strictly negative real part, i.e. Re{si} < 0 for all i where Re denotes the real part of the root.

The system in Example 3.3 is stable (Re{si} = −1 < 0 for i = 1, 2) while the system
in Example 3.2 is unstable (s2 = 3 > 0). In general if a system has at least one root with
Re{si} > 0 then the free response grows unbounded. If the system has no roots with Re{si} >
0 but has (distinct) roots with Re{si} = 0, then the solution will neither decay to zero nor
grow unbounded. Instead, the solution will either oscillate or remain constant. A system with
these properties is sometimes called marginally stable but we will still consider it as unstable.

29

3.2.3 Time Constant

Next, the “speed” of the free response is discussed. To clarify the notion of “speed”, consider
a first order system ẋ(t) + a0x(t) = 0 with IC x(0) = x0. The solution is x(t) = x0e

−a0t. For
the concrete value a0 = 1, the solution satisfies x(3) = e−3x0 ≈ 0.05x0. In other words, the
response is stable (s = −1 rad

sec
) and decays to ≈ 5% of its original value in 3sec. Alternatively if

a0 = 4 then x(0.25) = e−3x0 ≈ 0.05x0. Again, the response is stable (s = −4 rad
sec

) and decays to
≈ 5% of its original value in 0.25sec. Note that the speed of convergence for a stable, first-order
system is inversely related to the root. This concept is formalized in the next definition.

Definition 3.2. The time constant associated with a root s ∈ C is defined to be τ = 1
|Re{s}| sec.

As discussed above, the time constant associated with a real root s is directly related to
the speed of convergence of est. Similarly, complex conjugate roots s = α±β give rise to terms
of the form eαt cos(βt) and eαt sin(βt). If α < 0 (stable response) and t is three time constants
(i.e. t = 3

|α|) then |eαt cos(βt)| ≤ e−3 ≈ 0.05 and |eαt sin(βt)| ≤ 0.05. Thus all terms in the

free response individually decay to ≈5% of their original value after three time
constants. The free response y(t) of an nth order system is a sum of n such terms. Thus it
is not easy to precisely characterize the time for a stable response y(t) to decay to 5% of y(0).
Roughly the slowest term (longest time constant) will dominate the speed of response. This
dominant root approximation will be discussed further in Section 3.7.

Figure 3.2 shows the free response terms for various values of the root. Specifically, the
top subplot shows the term est for real roots s = −2,−1, 0, and 0.5 rad

sec
. The response decays

to zero for s = −2 and −1, grows unbounded for s = 0.5, and remains constant for s = 0.
The inset graph shows the location of the roots in the complex plane. It is common to state
Fact 3.1 as: “a system is stable if and only if all roots are strictly in the left half of the complex
plane (LHP)”. The roots s = −2 and −1 have time constants of 0.5sec and 1sec. Thus the
responses for s = −2 and −1 converge to 0.05 in approximately three time constants (1.5sec
and 3sec, respectively). Note that a slower response corresponds to a larger time constant.
Thus, (stable) roots closer to the imaginary axis in the complex plane correspond to a slower
response, e.g. s = −1 is slower than s = −2. Similarly, unstable roots closer to the imaginary
axis diverge more slowly than those farther to the right, e.g. s = +2 (not shown) diverges
more quickly than s = +0.5.

The bottom subplot shows the free response term eαt cos(βt) for complex roots s = α± jβ
with α = −2,−1, 0, 0.5 and β = 2. The related term eαt sin(βt) has similar behavior and is
not shown. The response decays to zero for α = −2 and −1, grows unbounded for α = 0.5,
and oscillates for α = 0. The inset graph shows the location of the root α+ jβ in the complex
plane. The other conjugate root α − jβ is not shown. The roots with α = −2 and −1 have
time constants of 0.5sec and 1sec. The responses for α = −2 and −1 converge to 0.05 in
approximately three time constants (1.5sec and 3sec, respectively). Again, a slower response
corresponds to a larger time constant and roots closer to the imaginary axis correspond to
slower response. The oscillations in the response are related to the imaginary part β. For
example, cos(βt) = 0 for t = π

2β
, 3π

2β
, Thus all responses in the bottom subplot of Figure 3.2

are zero at t ≈ 0.79 and 2.36sec. These oscillations are discussed further in Section 3.3.

30

0 0.5 1 1.5 2 2.5 3
Time (sec)

0

0.5

1

1.5

2
R

es
po

ns
e:

 e
st -2 -1 0 1

Real

-1

0

1

Im
ag

0 0.5 1 1.5 2 2.5 3
Time (sec)

-2

-1

0

1

2

R
es

po
ns

e:
 e
,

 t
 c

os
(-

 t)

-2 -1 0 1
Real

0

1

2

Im
ag

Figure 3.2: Free response terms due to real roots (top) and complex roots (bottom).

31

3.3 Forced Response

Summary: A procedure to solve for the forced response of a system is briefly reviewed.
Next, a technical point is discussed regarding minimal and non-minimal systems. Finally, the
system is defined to be bounded-input, bounded-output (BIBO) stable if the output remains
bounded for any bounded input. A minimal system is BIBO stable if and only if all roots of
the characteristic equation have negative real part. Thus the conditions for BIBO stability are
identical to those given for stability of the free response.

3.3.1 Forced Response Solution

The forced response of a linear system with input u and output y is obtained with nonzero
inputs. In this case the system response is modeled as:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = bmu
[m](t) + · · ·+ b1u̇(t) + b0u(t) (3.13)

IC: y(0) = y0; . . . y[n−1](0) = y
[n−1]
0 (3.14)

Any solution to the forced ODE in Equation 3.13 (but not necessarily satisfying the IC in Equa-
tion 3.14) is called a particular solution. The forced response can be solved by building on the
procedure described for the free response. Again assume for simplicity that the characteristic
equation has no repeated roots. Then the forced response can be solved as follows:

1. Solve for the n roots {s1, . . . , sn} ⊂ C of the characteristic equation.

2. Find any particular solution yP (t).

3. Form the general solution as y(t) = yP (t) +
∑n

i=1 cie
sit.

4. Use the n initial conditions to solve for the n unknown coefficients {c1, . . . , cn} ⊂ C.

The solution procedure is similar if the system has repeated roots but with some modification
to the terms in the general homogeneous solution. One example of the required modifications is
given in Section 3.6.3. Moreover, the complex exponential terms arising from complex roots can
be re-written as real terms as discussed in Section 3.2. There are a variety of methods to solve
for a particular solution in Step 3 including the method of undetermined coefficients. These
methods won’t be described in detail because we’ll mainly consider simple input functions, e.g.
steps and sinusoids. Additional details on the forced response solution can be found in [2, 5].

Example 3.4. Example 2.6 derived a model for a BMW 750iL linearized around the equilib-
rium point (v̄, F̄net) = (20.74 m

sec
, 400N). The linearized dynamics are given by:

δ̇v(t) + 0.008δv(t) = (4.8× 10−4) δF (t) (3.15)

The exact forced response with initial condition δv(0) = 0 and step input δF (t) = 50N for
t ≥ 0 will be derived using the solution procedure described above. First, the characteristic
equation has only a single (stable) root s = 0.008 rad

sec
. Second, the input δF is a constant and

hence there is a constant particular solution δv(t) = δ̄v. This particular solution must satisfy

32

0 100 200 300 400
Time (sec)

0

0.5

1

1.5

2

2.5

3
V

el
oc

ity
 D

ev
ia

tio
n,

 /
v (

m
/s

)

0 100 200 300 400
Time (sec)

20.5

21

21.5

22

22.5

23

23.5

24

V
el

oc
ity

, v
 (

m
/s

)

Figure 3.3: Step response for linearized BMW dynamics with step force δF = 50N . Velocity
deviation from trim (left) and actual velocity (right) are shown.

the ODE which, for a constant solution, simplifies to 0.008δ̄v = (4.8 × 10−4) × (50). This
yields the particular solution δv(t) = 3 m

sec
. Third, the general solution is δv(t) = 3 + c1e

−0.008t.
The final step is to use the initial condition δv(0) = 0 to solve for c1 = −3. Hence the forced
step response for the BMW is given by δv(t) = 3 − 3e−0.008t m

sec
. This solution is shown in

the left subplot of Figure 3.3. The final value in this case is simply the particular solution,
δv(t) → 3 m

sec
. The time constant associated with the root is τ = 1

0.008
= 125sec. It takes

approximately three time constants (≈ 375sec) for the step response to converge to within 5%
of its final value. Note that δv is the deviation of the car from its trim velocity. The actual
vehicle velocity is obtained by simply adding back the trim velocity, i.e. v(t) = δv(t) + v̄. This
is shown in the right subplot of Figure 3.3. The forced step response can also be approximately
computed using the numerical methods described in Section 3.1. For example, the code below
uses the step command to compute the (approximate) solution:

>> G = tf(4.8e-4,[1 0.008]); % Linearized dynamics

>> Tf = 400; % Final simulation time, sec

>> dF = 50; % Step input force, N

>> [dv_unit,t]= step(G,Tf); % Unit step response (dF=1);

>> dv = dv_unit*dF; % Step response with specified dF

>> plot(t,dv) 4

3.3.2 Minimal Realizations

This section will clarify a technical point regarding “non-minimal” ODEs. To highlight the
issue, consider the ODE ẏ+y = 2u̇+2u. For any (differentiable) input u this ODE has y = 2u
as a particular solution. Hence the first-order model ẏ + y = 2u̇ + 2u is not minimal in the
sense that the same input-output dynamics is obtained by the (zero-order) model y = 2u.

To generalize this discussion, consider the transfer function for an nth order linear ODE:

G(s) =
bms

m + · · ·+ b1s+ b0

ansn + · · ·+ a1s+ a0

(3.16)

33

Up to this point the transfer function has simply been used as another notation for the ODE.
Additional insight can be gained by viewing G as a complex function. See Appendix 3.8.1 for
a brief review of complex functions. This viewpoint is used in the following definitions.

Definition 3.3. A number s ∈ C is a pole of the system if ans
n + · · · + a1s + a0 = 0. Hence

the terms “poles” and “roots” have the same meaning and will be used interchangeably.

Definition 3.4. A number z ∈ C is a zero of the system if bmz
m + · · · + b1z + b0 = 0. The

zero z is called a right-half plane (RHP) zero or non-minimum phase zero if Re{z} ≥ 0.†

A system that has no common poles and zeros is called minimal. For minimal systems, z is
a zero if and only if G(z) = 0. Similarly s is a pole if and only if |G(r)| =∞. Also note that if
no input derivatives appear in the ODE then the transfer function numerator is simply b0 6= 0
and the system has no zeros. Thus the zeros are associated with input derivative terms.

A system that has a pole and zero at the same location is called non-minimal. In this case
the transfer function is not well-defined at the location of the common pole/zero. For example,

the system ẏ + y = 2u̇ + 2u discussed above has the transfer function G(s) = 2(s+1)
s+1

. This

system has a common pole and zero at s = −1. Thus G(−1) = 0
0

is not well-defined. The
common pole/zero can be canceled. This yields the transfer function G(s) = 2 corresponding
to the zero-order model y = 2u. In general, common poles/zeros in non-minimal systems can
be canceled to obtain a minimal representation with equivalent input-output dynamics. This
cancellation “hides” some unobserved dynamics. In most cases, we’ll consider systems with
minimal representations. However, this technical point regarding non-minimal realizations
will appear when considering feedback systems later in the course. Minimal and non-minimal
realizations are discussed further in textbooks on state-space modeling and control [4, 8, 10].

The Matlab commands pole and zero can be used to compute the poles (roots) and zeros
of a general nth order system. The command minreal is used to compute a minimal realization
for a system. The help and documentation for these functions provides additional details.

Example 3.5. The Matlab functions pole, zero, and minreal are demonstrated below. The
step responses for the non-minimal and minimal realizations (Figure 3.4) are identical.

>> G = tf([3042 10140 3042],[1 13 199 507]);

>> zero(G) % Zeros are roots of 3024s^2+10140s+3042 = 0

ans =

-3.0000

-0.3333

>> pole(G) % Poles are roots of s^3+13s^2+199s+507 = 0

ans =

-5.0000 +12.0000i

-5.0000 -12.0000i

-3.0000 + 0.0000i

>> Gmin = minreal(G) % Cancels common pole/zero at s=-3

†The term “non-minimum phase” arises from the forced response with a sinusoidal input as discussed later.

34

0 0.5 1 1.5 2
Time (sec)

-50

0

50

100

150

O
ut

pu
t,

y

Non-Minimal
Minimal

Figure 3.4: Step response for non-minimal realization G(s) and minimal realization Gmin(s).

Gmin =

3042 s + 1014

s^2 + 10 s + 169

>> step(G,’b’,Gmin,’r’) % Step responses are identical 4

3.3.3 Stability

Definition 3.1 in Section 3.2 defines stability in terms of the free (initial condition) response
generated with zero input (u(t) = 0). There is another notion of stability related to the forced
response with non-zero inputs.

Definition 3.5. A linear system is bounded-input, bounded-output (BIBO) stable if the output
remains bounded for every bounded input. The system is called (BIBO) unstable if it is not
(BIBO) stable.

More precisely, an input u is said to be bounded if there is some number Nu < ∞ such
that |u(t)| < Nu for all t ≥ 0. If a system is BIBO stable then a bounded input u will lead to
a bounded output y. Thus there will exist some other number Ny <∞ such that |y(t)| < Ny

for all t ≥ 0. There is a simple condition for BIBO stability in terms of the system poles.

Fact 3.2. A minimal, linear system is BIBO stable if and only if all roots of the characteristic
equation have strictly negative real part, i.e. Re{si} < 0 for all i.

The proof of Fact 3.2 requires additional concepts and will be given in Section XXX.
This fact is stated for minimal systems to avoid the technical issues associated with canceled
dynamics (as discussed in the previous subsection). Note that the condition for stability of
the free response (Fact 3.1) is identical to this condition for BIBO stability. Hence the two
stability definitions (free response and BIBO) are equivalent for minimal, linear systems. Thus
we won’t distinguish between them when using the term “stable”. The two notions of stability
are not equivalent, in general, for nonlinear systems.

35

3.4 Step Response

Summary: This section briefly discusses the key qualitative features of the step response.
The main focus is on step responses for stable systems. The key features include the final
(steady-state) value, settling time, peak overshoot, rise time, and undershoot.

Time domain performance specifications can be used to design simple controllers. These
specifications are usually given in terms of the forced response of the system with zero ini-
tial conditions and a step input: u(t) = ū for t ≥ 0. The step response can be com-
puted with the solution procedure in Section 3.3.1. This yields a step response of the form
y(t) = yP (t) +

∑n
i=1 cie

sit where {s1, . . . , sn} ⊂ C are the roots, yP is a particular solution
and the coefficients {c1, . . . , cn} ⊂ C are determined from the zero initial conditions. The step
response characteristics depend on the stability of the system:

• Stability: Figure 3.5 shows a collection of unit step responses for stable (left) and
unstable (right) systems. The locations of the system poles in the complex plane are also
shown inset. The step function is a bounded input. Hence, if the system is stable then the
step response will remain bounded. As noted in the previous section, the system is (free
response and BIBO) stable if and only if all poles have negative real part. If the system
is unstable then, in most cases, the step response will grow unbounded. However, it is
possible for the step response of an unstable system to remain bounded. For example
ÿ(t) + y(t) = u(t) has poles s = ±j. This system is unstable and yet the unit step
response is bounded/oscillatory as shown in the right subplot of Figure 3.5.‡

0 2 4 6 8
Time (sec)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
ni

t S
te

p
R

es
po

ns
e

-1 -0.5 0
Real

-1

0

1

Im
ag

0 2 4 6 8 10
Time (sec)

-10

-8

-6

-4

-2

0

2

4

6

8

U
ni

t S
te

p
R

es
po

ns
e

0 0.5 1
Real

-1

0

1

Im
ag

Figure 3.5: Unit step responses for stable (left) and unstable (right) systems. The stable
systems are 1

s+1
, 1.25
s2+s+1.25

, and −s+2
s2+2s+2

. The unstable systems are 1
s−1

, 1.25
s2−s+1.25

, 1
s2+1

, and 1
s
.

Typically a control system is designed to ensure, at a minimum, that the response is stable.

‡BIBO stability means the output remains bounded for all bounded inputs. A system is BIBO unstable if the
output grows unbounded for at least one bounded input. The system ÿ(t) + y(t) = u(t) has a bounded output
for a unit step but it is unstable because the output grows unbounded for the bounded input u(t) = sin(t).

36

Tr Tp Ts

ȳ

y(Tp)

Time (sec)
Figure 3.6: Key features of a stable step response.

Hence we will focus mainly on this case. Figure 3.6 labels several key features for a typical
stable step response. These features are discussed below.

• Final Value: As discussed above, if the system is stable then the step response remains
bounded. In addition, the response converges as t→∞ to a final or steady-state value.
The steady-state value ȳ for a stable step response is obtained by setting all derivatives
of y and u to zero in the ODE. This yields the algebraic relation a0ȳ = b0ū which can be
solved for the steady-state output ȳ := b0

a0
ū.§ Note that yP (t) = ȳ is a particular solution

for a step input u(t) = ū and thus the step response solution is y(t) = ȳ +
∑n

i=1 cie
sit. If

the system is stable then all exponential terms decay to zero and y(t)→ ȳ as t→∞.

• Settling Time: The settling time Ts is the time for the output to converge within ±5%
of the steady-state value. This corresponds to the time it takes to get and stay within
the interval [0.95ȳ, 1.05ȳ]. Slightly different definitions are occasionally used, e.g. 1% or
2% settling times. The settling time is one measure for the system speed of response.

• Peak Overshoot: The step response for 1
s+1

shown in Figure 3.5 smoothly rises to the
final value. However, the other two responses overshoot (exceed) the final value and
oscillate before converging. Roughly, the step response for 1

s+1
is overdamped while the

other two responses are underdamped. These terms will be defined more precisely in
Section 3.6. The peak (maximum) value of the output is y(Tp) where Tp is the peak
time. The peak overshoot is defined as:

Mp =
y(Tp)− ȳ

ȳ
(3.17)

The numerator y(Tp) − ȳ is the amount of overshoot beyond the final value. This is
normalized in the denominator by the final value ȳ so that Mp is unitless. As a result

§The definition of ȳ requires a0 6= 0 in order to be well-defined. If the coefficient of y in the ODE is zero,
i.e. a0 = 0, then characteristic equation has the form ans

n + · · · + a1s = 0. Hence a0 = 0 implies s = 0 is a
root of the characteristic equation and the system is unstable. Conversely if the system is stable then it must
be true that a0 6= 0. Hence ȳ := b0

a0
ū is well-defined for a stable system.

37

of this normalization, MP does not depend on the step magnitude ū. Occasionally the
peak overshoot is expressed as a percent, e.g. 100 ×Mp%. Overdamped responses do
not overshoot the final value and hence Mp is not defined in this case.

• Rise Time: The rise time Tr is the time required for the response to first reach the
steady-state value: y(Tr) = ȳ. This is a measure of the initial speed of response. This is
in contrast to the settling time which requires any oscillations to decay to a small value.
The rise time, as defined here, is not well-defined for overdamped responses. Other
definitions for the rise time are occasionally used, e.g. the time for the output to go from
10% to 90% of the steady state value.

• Undershoot: The step response for −s+2
s+2s+2

shown in Figure 3.5 initially moves negative
before reversing direction toward the final value. The step response shown in Figure 3.6
does not exhibit this undershoot behavior. This tendency to initially move in the wrong
direction is called undershoot. This behavior is associated with derivatives of the input
appearing in a certain form in the ODE. For example, the input of the system −s+2

s+2s+2

enters as −u̇ + 2u. The negative coefficient on u̇ causes this undershoot. This will be
discussed further in Section 3.7. Undershoot is not common but does occur in some
systems. Such behavior introduces challenges in the control design.

A step input is a very simple forcing input. However, the key features defined above
are sufficient to understand the overall performance of simple systems. The following sections
provide more quantitative descriptions for first, second, and higher order systems. In particular,
the characteristics of the system poles (time constant, real/imaginary parts) will be useful to
infer characteristics of the system response (settling time, rise time, overshoot).

38

3.5 First Order Step Response

Summary: The exact step response solution for a first-order system is derived. Then two
key features (settling time, final value) for a stable response are discussed. In particular, the
system has only a single real pole and its associated time constant. The settling time of the
system is approximately three time constants. The final value is computed from a simple
algebraic equation obtained by setting all derivative terms in the ODE to zero.

Consider the following first-order system:

ẏ(t) + a0y(t) = b0u(t) (3.18)

IC: y(0) = 0 (3.19)

The coefficient of ẏ is normalized to simplify the derivation. If a1 6= 1 then the ODE can be
normalized by dividing out a1. This ODE also does not have the term b1u̇(t) and the impact
of this term is discussed in Section 3.7.

Section 3.3.1 provides a procedure to solve for the unit step response (u(t) = 1) of the
first-order ODE given above. First, the characteristic equation s + a0 = 0 has a single root
s = −a0. The remainder of the solution depends on the value of this root:

• s = −a0 < 0 : In this case a0 6= 0 and hence the constant ȳ := b0
a0

is well defined. The
function yP (t) = ȳ is a particular solution for a unit step input u(t) = 1. In addition, the
initial condition can be used to solve for the unknown coefficient in the resulting general
solution. This yields the following forced response solution:

y(t) = ȳ
(
1− est

)
where s = −a0 and ȳ =

b0

a0

. (3.20)

The solution is stable as the only root satisfies s < 0. Two key features of this stable
response are the final (steady-state) value and the settling time. In particular, the
solution y(t) begins at y(0) = y0 and converges exponentially to ȳ as t → ∞. Hence ȳ
is the final value. The 5% settling time is approximately three time constants where the

time constant is τ = 1
|s| =

∣∣∣ 1
a0

∣∣∣. The solution is overdamped and hence neither overshoot

nor rise time are defined.

• s = −a0 > 0: In this case, the solution is again given by Equation 3.20. The main
distinction is that the response is unstable as the only root satisfies s > 0. Hence the
exponential est grows unbounded with time.

• s = −a0 = 0: This implies a0 = 0 which means the ODE is ẏ(t) = b0u(t). A particular
solution for a unit step input is yP (t) = b0t and the general solution is y(t) = yP (t) + c1.
Using the initial condition to solve for c1 yields the forced response solution for s = 0:

y(t) = b0t (3.21)

39

0 0.5 1 1.5 2 2.5 3
Time (sec)

0

0.5

1

1.5

2

U
ni

t S
te

p
R

es
po

ns
e

-4 -2 0
Real

-1

0

1

Im
ag

0 0.5 1 1.5 2 2.5 3
Time (sec)

0

0.5

1

1.5

2

U
ni

t S
te

p
R

es
po

ns
e

-1 0 1
Real

-1

0

1

Im
ag

Figure 3.7: First-order step responses with stable roots (left) and stable/unstable roots (right)

Figure 3.7 shows a collection of unit step responses with y(0) = 0. The left plot shows
stable step responses with a1 = 1 and (a0, b0) = {(4, 4), (2, 2), (1, 1), (0.5, 0.5)}. Each of these
responses corresponds to a steady state value of ȳ = 1. The four responses have stable roots
s = {−4, −2, −1, −0.5} rad

sec
. These correspond to time constants τ = {0.25, 0.5, 1, 2}sec and

settling times 3τ = {0.75, 1.5, 3, 6}sec. The solutions converge more slowly for roots that are
closer to the imaginary axis. The right plot compares three responses with a1 = 1, b0 = 1,
and a0 = {−1, 0, +1}. These three responses have roots s = {+1, 0, −1}. The response
with s = −1 is stable while the responses with s = 0 and s = +1 are unstable. Note that
the unstable responses grow unbounded either linearly (s = 0) or exponentially (s = +1)
with time. These responses demonstrate that the systems with s = 0 and s = +1 are BIBO
unstable, i.e. the responses grow unbounded for the bounded step input.

The derivation given above can be modified to handle a1 6= 0, non-zero initial conditions
y(0) = y0, and non-unit step inputs u(t) = ū for t ≥ 0. For example, if s 6= 0 then the more
general solution to handle these cases is:

y(t) = ȳ
(
1− est

)
+ y0e

st where s = −a0

a1

and ȳ =
b0

a0

ū. (3.22)

This solution starts at y(0) = y0. If the response is stable (s < 0) then it converges to the
steady-state value ȳ. It takes three time constants to converge 95% of the way from y0 to
ȳ. Note that the steady-state value for a stable response is obtained by setting ẏ(t) = 0 and
solving the resulting algebraic equation a0ȳ = b0ū.

40

3.6 Second Order Step Response

Summary: The step response solution for a second-order system is discussed. The solution can
be overdamped (distinct real roots), critically damped (repeated real roots), or underdamped
(complex roots). For stable systems, the solution is typically expressed in terms of the natural
frequency ωn, damping ratio ζ, and damped natural frequency ωd. The overdamped (ζ > 1)
and critically damped (ζ = 1) solutions are similar to a first-order response. The underdamped
response (ζ < 1) has overshoot and oscillations. Simple formulas are given for the settling time,
peak overshoot, and rise time of the underdamped response in terms of ωn, ζ, and ωd.

3.6.1 Overview of Solution

Consider the following second-order system:

ÿ(t) + a1ẏ(t) + a0y(t) = b0u(t) (3.23)

IC: y(0) = 0, ẏ(0) = 0 (3.24)

The coefficient of ÿ is normalized to simplify the derivation. If a2 6= 1 then the ODE can be
normalized by dividing out a2. This ODE also does not have the terms b2ü(t) and b1u̇(t). The
impact of these terms is discussed in Section 3.7.

Section 3.3.1 provides a procedure to solve for the unit step response (u(t) = 1). First, the

characteristic equation s2+a1s+a0 = 0 has two roots s1,2 =
−a1±
√
a21−4a0

2
. The solution depends

on the sign of the discriminant a2
1 − 4a0. The two roots can be distinct real (a2

1 − 4a0 > 0),
repeated real (a2

1 − 4a0 = 0), or complex (a2
1 − 4a0 < 0). In all three cases, the roots have

negative real part and the system is stable if and only if a1 > 0 and a0 > 0.
Unstable step responses can grow unbounded or remain bounded but oscillate, e.g. as

shown in Figure 3.5 (right). As noted previously, control systems are typically designed to
ensure stability. Hence the remainder of the section focuses on the stable case. For stable
systems, the ODE coefficients are typically redefined as a1 := 2ζωn and a2 := ω2

n:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = b0u(t) (3.25)

Here ωn is the natural frequency (rad
sec

) and ζ is the damping ratio (unitless). These new co-
efficients are related to the original coefficients by ωn =

√
a0 and ζ = a1

2
√
a0

. The stability

conditions a1 > 0 and a2 > 0 imply that ωn > 0 and ζ > 0. The two roots can be written as:

s1,2 = −ζωn ± ωn
√
ζ2 − 1 (3.26)

There are again three cases depending on the sign of the discriminant ζ2 − 1:

• Overdamped, ζ > 1: There are two distinct real roots given by Equation 3.26.

• Critically damped, ζ = 1: There are two repeated real roots at s1,2 = −ωn.

• Underdamped, 0 < ζ < 1: There are two complex roots s1,2 = −ζωn ± j ωn
√

1− ζ2

where j :=
√
−1. The real part is −ζωn. The imaginary part ωd := ωn

√
1− ζ2 is called

41

ωn

−ζωn

ωd

−ωd

θ

Real

Im
ag

0 1 2 3 4 5
Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
ni

t S
te

p
R

es
po

ns
e

-10 -6 -3 -1 0
Real

-5
-3

0

3
5

Im
ag

Figure 3.8: Notation for complex roots (left) and stable second-order unit step responses
(right). The stable step responses are shown for 10

s2+11s+10
, 9
s2+6s+9

, and 10
s2+2s+10

.

the damped natural frequency (rad
sec

). The magnitude of each root is given by |s1,2| = ωn.
In addition, the damping ratio satisfies ζ = sin θ. The left subplot of Figure 3.8 shows
these various quantities in the complex plane for a complex pair of roots.

Figure 3.8 (right) shows one unit step response corresponding to each of the three cases above.
The critically damped and overdamped responses both rise uniformly to the final value similar
to a first-order response. The underdamped response has overshoot and oscillations before
settling down. The unit step response solutions are discussed further below. By the principle
of superposition, the response for non-unit step inputs u(t) = ū can be obtained by scaling: if
y(t) is the unit step response then ū · y(t) is the response to a non-unit step u(t) = ū.

3.6.2 Overdamped

The system has two distinct real roots s1 < 0 and s2 < 0. The unit step response is:

y(t) = ȳ

(
1− s2

s2 − s1

es1t +
s1

s2 − s1

es2t
)

where ȳ :=
b0

ω2
n

(3.27)

Appendix 3.8.2 gives a brief derivation of this solution. Both exponentials in the response decay
uniformly to zero and y(t) converges to the final value ȳ. The response neither oscillates nor
overshoots so peak overshoot and rise time are not defined. These features of an overdamped
second-order step response are similar to those of a first-order response. The settling time
is dominated by the “slower” root. Specifically, s1 and s2 have time constants τ1 = 1

|s1| and

τ2 = 1
|s2| . The “slower” root is closer to the imaginary axis and has a larger time constant.

Assume s1 is significantly slower than s2, e.g. τ1 > 10τ2. This inequality implies es2t decays
much more quickly than es1t. It also implies s2

s2−s1 ≈ 1 and s1
s1−s2 ≈ 0. Thus the unit step

response is approximately y(t) ≈ ȳ(1 − e−s1t). To summarize, τ1 > 10τ2 implies the response
is approximately first-order with settling time 3τ1. If both roots have similar time constants
then the actual settling time for the overdamped response will be slightly larger than 3τ1.

42

Example 3.6. Consider the second-order ODE ÿ(t) + 11ẏ(t) + 10y(t) = 10u(t) with corre-
sponding transfer function G(s) = 10

s2+11s+10
. The ODE coefficients are related to the damping

ratio and natural frequency by ω2
n = 10 and 2ζωn = 11. Hence ωn =

√
10 ≈ 3.16 rad

sec
and

ζ = 11
2
√

10
= 1.74. This system is overdamped because ζ > 1. The roots of the characteristic

equation are s1 = −1 and s2 = −10 and the steady-state value for a unit step is ȳ = 1.
The unit step response solution is y(t) = 1 − 10

9
e−t + 1

9
e−10t. This step response is shown in

Figure 3.8 (right). The roots have time constants τ1 = 1sec and τ2 = 1
10
sec. The root s1 = −1

has a much slower response than the root s2 = −10. Thus the response appears similar to the
first order response 1− e−t and has settling time of ≈ 3sec.

As another example, the system G(s) = 1.1
s2+2.1s+1.1

is overdamped and has roots at s1 = −1
and s2 = −1.1. The rough settling time is again 3τ1 = 3sec based on the slower root s1.
However, these two roots have similar time constants. As a result the actual response is closer
to 4.5sec which is slower than given by our rough estimate from the slow root. The actual
settling time was computed via numerical simulation with the step function. 4

3.6.3 Critically Damped

The system has repeated real roots at s1,2 = −ωn < 0 and the unit step response is:

y(t) = ȳ
(
1− (1 + ωnt)e

−ωnt
)

where ȳ :=
b0

ω2
n

(3.28)

Appendix 3.8.2 briefly derives this solution. The critically damped response converges uni-
formly to the final value ȳ and neither oscillates nor overshoots. Thus peak overshoot and rise
time are not defined. The time constant of the repeated roots is τ1,2 = 1

ωn
and the settling time

is roughly 3τ1,2. As noted in the previous subsection, the actual settling time is slightly slower
than this rough estimate when the roots are similar. Note that (1 + ωnt)e

−ωnt ≈ 0.05 when
t = 4.75τ1,2. Hence the actual 5% settling time is ≈ 4.75τ1,2 for repeated roots. However, we
will still use the rough estimate 3τ1,2 for convenience.

Example 3.7. Consider the second-order ODE ÿ(t)+6ẏ(t)+9y(t) = 9u(t) with corresponding
transfer function G(s) = 9

s2+6s+9
. The system is critically damped with ωn =

√
9 = 3 rad

sec
and

ζ = 6
2
√

9
= 1.0. The roots are repeated at s1,2 = −3 and the steady-state value for a unit step

is ȳ = 1. The unit step response, as given above, is y(t) = 1− (1 + 3t)e−3t. This step response
is shown in Figure 3.8 (right). The time constant of the repeated roots is τ1,2 = 1

3
sec and

hence the rough settling time is 3τ1,2 = 1sec. However, the response in Figure 3.8 (right) takes
1.6sec (≈ 4.75τ1,2) to converge within 5%. This demonstrates that repeated roots converge
more slowly than expected by the approximation 3τ1,2. 4

3.6.4 Underdamped

The system has complex roots at s1,2 = −ζωn ± jωd where ωd := ωn
√

1− ζ2. The unit step
response, as derived in Appendix 3.8.2, is given by:

y(t) = ȳ

(
1− e−ζωnt cos(ωdt)− e−ζωnt

ζ√
1− ζ2

sin(ωdt)

)
where ȳ :=

b0

ω2
n

(3.29)

43

This response overshoots and oscillates before converging to the final value ȳ. The features
of the underdamped response depend on the root locations in the complex plane. Figure 3.9
shows several responses with varying real part −ζωn (left) and varying imaginary part ωd
(right). The complex roots come in a conjugate pair and only the root with positive imaginary
part is shown. The settling time is strongly affected by the real part while the rise time is
strongly affected by the imaginary part. Figure 3.10 shows several responses with varying
damping ratio ζ (left) and varying natural frequency ωn (right). As noted previously, the
complex roots have magnitude ωn and ζ = sin θ where θ is the angle of the root from the
imaginary axis (See Figure 3.8). Thus increasing ζ with fixed ωn (left plot) causes the roots
to move along a circle in the complex plane. At ζ = 0, the roots are s1,2 = ±jωn. This is
unstable and the response oscillates. The overshoot decreases significantly as ζ is increased.
The right plot shows increasing ωn with fixed ζ. This causes the roots to move on a line with
fixed angle relative to the imaginary axis. This has a strong affect on settling and rise time.
There are simple formulas that explain the key features of the underdamped responses shown
in Figures 3.9 and 3.10. The following formulas are derived in Appendix 3.8.3:

• Settling Time: The time constant associated with the complex pair is τ1,2 = 1
|Re{s1,2}| =

1
ζωn

. The settling time is approximately 3τ1,2. This behavior is observed in Figure 3.9.
Specifically, the settling time decreases significantly as the real part −ζωn becomes more
negative (left plot) but is not affected by changing the imaginary part ωd (right plot).

• Peak Overshoot: The peak time and value are Tp = π
ωd

and y(Tp) = ȳ(1 + e−ζωnTp).

The peak overshoot is given by Mp = e
− ζ√

1−ζ2
π
. This behavior is observed in Figure 3.10.

Specifically, the overshoot decreases significantly as ζ increases (left plot) but is not
affected by changing the natural frequency ωn (right plot).

• Rise Time: The rise time is Tr =
π
2

+sin−1(ζ)

ωd
. The rise time decreases significantly with

increasing imaginary part ωd as shown in the right plot of Figure 3.9. The dependence

on ζ is more clear by expressing rise time as Tr =
π
2

+sin−1(ζ)

ωn
√

1−ζ2
. This form shows that

increasing ωn decreases rise time. This behaviors is seen in the right plot of Figure 3.10.
The damping ratio ζ affects both the numerator and denominator. The numerator ranges
from π

2
to π as ζ increases from 0 to 1. The dependence in the denominator is the stronger

effect because 1√
1−ζ2

→ ∞ as ζ → 1. In summary, the rise time increases significantly

as ζ increases. This behavior can be seen in the left plot of Figure 3.10.

Example 3.8. Consider the second-order ODE ÿ(t) + 2ẏ(t) + 10y(t) = 10u(t) with transfer
functionG(s) = 10

s2+2s+10
. The system is underdamped with ωn =

√
10 ≈ 3.2 rad

sec
and ζ = 2

2
√

10
=

0.32. The roots of the characteristic equation are s1,2 = −1±3j and the steady-state value for
a unit step is ȳ = 1. The unit step response solution is y(t) = 1−e−t cos(3t)− 1

3
e−t sin(3t). This

step response is shown in Figure 3.8 (right). The roots have time constant τ1,2 = 1sec and the
settling time is ≈ 3sec. The peak time and value are Tp = π

3
and y(Tp) = 1+e−

π
3 ≈ 1.35. Hence

the peak overshoot is Mp = y(Tp)−ȳ
ȳ

= 0.35. The rise time is Tr =
π
2

+sin−1(0.32)

3
≈ 0.63sec. 4

44

0 2 4 6 8 10
Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

U
ni

t S
te

p
R

es
po

ns
e

-1 -0.5 0
Real

0

1

2

Im
ag

0 1 2 3 4 5
Time (sec)

0

0.5

1

1.5

U
ni

t S
te

p
R

es
po

ns
e

-2 -1.5 -1 -0.5 0
Real

0

3

5

Im
ag

Figure 3.9: Underdamped step responses: Left plot has varying real part −ζωn =
{−1,−0.75,−0.5,−0.25} and fixed imaginary part ωd = 2. Right plot has fixed real part
−ζωn = −1 and varying imaginary part ωd = {1, 2, 3, 4}.

0 5 10 15
Time (sec)

0

0.5

1

1.5

2

2.5

U
ni

t S
te

p
R

es
po

ns
e

-1 -0.5 0
Real

0

0.5

1

Im
ag

0 2 4 6 8 10
Time (sec)

0

0.5

1

1.5

U
ni

t S
te

p
R

es
po

ns
e

-1 -0.5 0
Real

0

1

2

Im
ag

Figure 3.10: Underdamped step responses: Left plot has varying ζ = {0, 0.25, 0.5, 0.75, 1} and
fixed ωn = 1. Right plot has fixed ζ = 0.3 and varying ωn = {0.5, 1, 1.5, 2}.

45

3.7 Higher Order Systems

Summary: This section considers the dynamics of an nth order ODE. First, we define the
steady-state (DC) gain of a transfer function. Next the effect of an input derivative term b1u̇(t),
i.e. a zero, is studied. Zeros in the LHP increase the step response overshoot and reduce the
rise time. Zeros in the RHP cause undershoot. Finally, a method is given to construct a first
or second-order ODE to approximate a general nth order ODE.

3.7.1 Steady-state gain

The past few sections have studied the transient response characteristics for first and second
order systems. This section provides some initial results for general nth order systems including
ODEs that contain derivatives of the input. A more complete understanding of general nth

order systems will be given using additional (frequency domain) tools in Chapter 5.
The transfer function corresponding to a general nth order linear ODE is:

G(s) =
bms

m + · · ·+ b1s+ b0

ansn + · · ·+ a1s+ a0

(3.30)

As noted previously, we can gain additional insight into the system dynamics by viewing G as
a complex function. In particular, the value of the transfer function evaluated at s = 0, i.e.
G(0), has importance.

Definition 3.6. The DC gain or steady-state gain of the system is G(0).

The DC gain is simply G(0) = b0
a0

. As discussed in Section 3.4 the step response of a stable

nth order system converges to a final value ȳ = b0
a0
ū. This final value is simply the DC gain

multiplied by the step input size, i.e. ȳ = G(0)ū.
The Matlab command dcgain computes the DC gain of the system. The Matlab command

damp is also useful for higher order systems. It displays a table with the damping ratio, natural
frequency, and time constant associated with each pole. These commands are demonstrated
in the example below. The help and documentation for these functions provides additional
details.

Example 3.9. Various Matlab functions are demonstrated on the third-order system below.

>> G = tf([3042 1014],[1 13 199 507]);

>> zero(G) % Zeros are roots of 3024s+1014 = 0

ans =

-0.3333

>> pole(G) % Poles are roots of s^3+13s^2+199s+507 = 0

ans =

-5.0000 +12.0000i

-5.0000 -12.0000i

46

-3.0000 + 0.0000i

>> damp(G) % Displays additional info for poles

Pole Damping Frequency Time Constant

(rad/seconds) (seconds)

-3.00e+00 1.00e+00 3.00e+00 3.33e-01

-5.00e+00 + 1.20e+01i 3.85e-01 1.30e+01 2.00e-01

-5.00e+00 - 1.20e+01i 3.85e-01 1.30e+01 2.00e-01

>> dcgain(G) % DC gain is G(0)= 1014/507 =2

ans =

2 4

3.7.2 Zeros

Consider the following system given as both an ODE and transfer function:

G(s) =
b1s+ 4

s2 + 2s+ 4
, ÿ(t) + 2ẏ(t) + 4y(t) = b1u̇(t) + 4u(t) (3.31)

This is a second order, underdamped system with ωn = 2 rad
sec

, ζ = 0.5, and DC gain equal to
1. If b1 = 0 then the system has no zeros but if b1 6= 0 then the system has a single zero at
z = − 4

b1
. The poles (roots of the characteristic equation) are s = −1 ± 1.73. The results in

Section 3.6.4 can be used to predict the features of the underdamped unit step response:

• Settling Time: Ts = 1
ζωn
≈ 3sec

• Peak Overshoot: Mp = e
− πζ√

1−ζ2 ≈ 0.16

• Rise Time: Tr =
π
2

+sin−1(ζ)

ωd
≈ 1.21sec

• Final Value: ȳ = G(0) = 1

The effects of the zero can be determined from the solutions of the ODEs with and without
the zero. Specifically, if y0 is the response with b1 = 0 then y1(t) = y0(t)− 1

z
ẏ0(t) is the response

with b1 6= 0. Roughly, this can be shown by noting that if y0 is the response due only to b0u(t)
then b1

b0
ẏ0(t) is the response due only b1u̇(t). Details are given in Appendix 3.8.4. The left plot

of Figure 3.11 shows the response with various values of b1 ≥ 0. The inset diagram shows both
the poles (’x’) and zeros (’o’). All systems have have the same poles and only the pole with
positive imaginary part is shown. The response (blue line) with b1 = 0 (no zero) matches the
second-order predictions given above. The responses with b1 = 0.8, 2, 4, 8 correspond to zeros
at z = −5,−2,−1,−0.5. The effect of the left-half plane (LHP) zero is to increase
overshoot and decrease rise time. The LHP zero has negligible effect on the settling time

47

0 1 2 3 4 5 6
Time (sec)

0

0.5

1

1.5

2

2.5

U
ni

t S
te

p
R

es
po

ns
e

-6 -4 -2 0
Real

0

1

2

Im
ag

0 1 2 3 4 5 6
Time (sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

U
ni

t S
te

p
R

es
po

ns
e

-2 0 2 4 6
Real

0

1

2

Im
ag

Figure 3.11: Unit step responses of G (Equation 3.31). Left plot has b1 = 0, 0.8, 2, 4, 8 and z =
none, −5,−2,−1,−0.5. Right plot has b1 = 0,−0.8,−2,−4,−8 and z = none, 5, 2, 1, 0.5.

and final value. This behavior follows from the relation y1(t) = y0(t) − 1
z
ẏ0(t). Specifically,

y0(t) initially rises quickly and hence ẏ0(t) has a large positive value during this transient. If
z < 0 then y0(t) and −1

z
ẏ0(t) sum together to give a larger overshoot and shorter rise time

in y1(t). However the zero has negligible effect on the settling time and final value because
ẏ0(t)→ 0 as t→∞. The effect on rise time and overshoot is inversely related to z. This effect
is small if the zero is far in the LHP (|z| is large) but increases as the zero moves toward the
imaginary axis. The effect is significant when the zero is within a factor of ≈ 5 of the poles.

The right plot of Figure 3.11 shows the response with various values of b1 ≤ 0. The response
(blue line) with b1 = 0 (no zero) is again shown. The responses with b1 = −0.8,−2,−4,−8
correspond to zeros at z = 5, 2, 1, 0.5. The effect of the right-half plane (RHP) zero
is to cause undershoot, i.e. the response initially goes in the wrong direction.
This behavior can again be explained from the relation y1(t) = y0(t) − 1

z
ẏ0(t). If z > 0 then

−1
z
ẏ0(t) causes a large negative initial transient leading to the undershoot. The RHP zero

again has negligible effect on the settling time and final value because ẏ0(t) → 0 as t → ∞.
The undershoot effect is small if the zero is far in the RHP (|z| is large) but increases as the
zero moves right to left toward the imaginary axis. The effect is significant when the zero is
within a factor of ≈ 5 of the poles.

3.7.3 Low Order Approximations

Many systems can be modeled by first or second order ODEs. This is a key reason for the
detailed analysis of these cases in the previous sections. An understanding of first and second
order systems is useful even when the dynamics are described by a general, nth-order ODE. In
many cases, the nth-order ODE can be accurately approximated by a lower order ODE. As one
case, the overdamped second order system in Example 3.6 has roots at s1 = −1 and s2 = −10.
This second-order system is well-approximated by a first order system with root s1 = −1. The
“fast” root at s2 = −10 tends to slow down the response. However, the root s2 has a small
effect when it is much faster than the slow root (τ2 ≤ 0.1τ1).

48

The following procedure can be used to obtain a low order approximation for a stable
system by removing “fast” dynamics. Consider the nth order system:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = b0u(t) (3.32)

Let {s1, . . . , sn} denote the poles (roots) of the system ordered from slowest to fastest (τ1 ≥
· · · ≥ τn). The “slowest” poles are the dominant dynamics. There are two cases:

1. Slowest root s1 is real: The unit step response solution is y(t) = ȳ + c1e
s1t + c2e

s2t +
· · · cnesnt where ȳ = b0

a0
is the DC gain of the system. Assume s1 is significantly slower than

the remaining poles, e.g. τ1 ≥ 10τ2. Then the exponential terms associated {s2, . . . , sn}
decay faster than es1t. In addition, it can be shown that c1 ≈ −ȳ.¶ Hence, the response
is approximately first order y(t) ≈ ȳ(1− es1t). The low-order model is thus given by:

ẏ(t)− s1y(t) = −s1ȳ u(t) (3.33)

This first-order approximation retains the slow pole at s1 and also has DC gain ȳ = b0
a0

.

2. Slowest roots s1 and s2 are complex: Let ζ and ωn be the damping ratio and natural
frequency of the complex pair s1,2. Assume s1,2 are significantly slower than the remaining
poles, e.g. τ1,2 ≥ 10τ3. Following similar steps as above, a low-order approximation is:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = ω2

nȳ u(t) (3.34)

This second-order approximation retains the slow poles at s1,2 and also has DC gain b0
a0

.

Some care must be taken in applying this procedure. In particular, the neglected “fast”
dynamics can contain significant transients before decaying to zero. Thus it is important to
compare the step responses of the low order and nth order systems to ensure the accuracy of
the approximation. This procedure can be generalized to construct lower order models with
zeros and/or more than two poles. However, this requires additional mathematical tools.

Example 3.10. The system G1(s) = 9×104

3s4+291s3+6270s2+101400s+1.8×105
is fourth-order with DC

gain of 0.5 and poles at s = −2,−10±17.3j,−75. The slow pole at s1 = −2 yields the first order
approximation Glow,1(s) = 1

s+2
. Next, the system G2(s) = 2.7×105

s5+98s4+2194s3+36555s2+107100s+2.7×105

is fifth order with DC gain of 1.0 and poles at s = −1.5 ± 2.6j,−10 ± 17.3j,−75. The slow
complex poles at s1,2 = −1.5± 2.6j have ωn = 3 rad

sec
and ζ = 0.5. This yields the second-order

approximation Glow,2(s) = 9
s2+3s+9

. Figure 3.12 shows that the low-order systems accurately
approximate the step response of their corresponding higher order system. 4

¶ After some algebra, the zero ICs imply c1 = −ȳ ·Πn
k=2

sk
sk−s1 . If s1 is “slow” then sk

sk−s1 ≈ 1 and c1 ≈ −ȳ.

49

0 0.5 1 1.5 2 2.5
Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6
U

ni
t S

te
p

R
es

po
ns

e
G1
Glow,1

0 0.5 1 1.5 2 2.5 3 3.5
Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

U
ni

t S
te

p
R

es
po

ns
e

G2
Glow,2

Figure 3.12: Unit step responses for G1(s)/Glow,1(s) (Left) and G2(s)/Glow,2(s) (Right).

50

3.8 Appendix: Background and Additional Results

Summary: This appendix provides a brief review of complex numbers and complex functions.
Next, the appendix derives the unit step response solution for a stable second order system.
Separate derivations are given for the overdamped, critically damped, and underdamped cases.
The appendix also derives formulas to estimate the settling time, peak overshoot, and rise
time for an underdamped unit step response. Finally, the appendix briefly describes the forced
response solution for an ODE with input derivative term b1u̇(t), i.e. with a single zero.

3.8.1 Complex Numbers and Functions

Let j :=
√
−1 so that j2 = −1. This unit imaginary number is often denoted as i but we’ll use

the notation j. A complex number s ∈ C has the form s = a+jb where a and b are real numbers.
As shown in Figure 3.13, s can be plotted in the complex plane with real part Re{s} = a on
the horizontal axis and imaginary part Im{s} = b on the vertical axis. The magnitude and
phase (angle) of this vector are given by |s| =

√
a2 + b2 and φ = tan−1

(
b
a

)
. The phase is

expressed in units of rads and is also denoted by ∠r. Conversely the real and imaginary parts
can be expressed as a = |s| cosφ and b = |s| sinφ. Thus the complex number can be rewritten
as s = |s| · (cosφ + j sinφ). Euler’s formula for any real number φ is ejφ = cos(φ) + j sin(φ).
This gives rise to the “polar” form for the complex number s = |s|ejφ. The notation ∠s will
often be used to represent the angle φ of a complex number. Finally, the complex conjugate
of s is given by s̄ = a− jb. Note that ss̄ = a2 + b2 = |s|2. This relation can be used to express
fractions of complex numbers in real/imaginary form. For example, 1

s
can be equivalently

written as s̄
ss̄

= a−jb
a2+b2

. Hence Re{1
s
} = a

a2+b2
and Im{1

s
} = −b

a2+b2
.

Example 3.11. The complex number s = 3+4j has magnitude |s| =
√

32 + 42 = 5 and phase
∠s = tan−1(4

3
) = 0.93rads. The polar form is s = 5ej0.93. The complex conjugate is s̄ = 3−4j.

Finally, 1
s

= s̄
|s|2 = 3−4j

25
. Hence Re{1

s
} = 0.12 and Im{1

s
} = −0.16. 4

|s|

a

b

φ

Real

Im
ag

Figure 3.13: Complex number s = a+ jb = |s|ejφ.

51

The polar form can also be used to obtain simple expressions for products of two complex
numbers. Let s1 and s2 be two complex numbers with polar form |s1|ej∠s1 and |s2|ej∠s2 . Their
product is given by s = s1s2 = |s1||s2| ej(∠s1+∠s2). Thus for a product of complex numbers the
phases add, i.e. ∠s = ∠s1 + ∠s2, and the magnitudes multiply, i.e. |s| = |s1||s2|.

Example 3.12. Consider two complex numbers s1 = 3 + 4j and s2 = 12 + 5j. Their product
s = s1s2 can be computed by multiplying the real and imaginary parts:

s = (3 + 4j) · (12 + 5j) = 16 + 63j (3.35)

This product has magnitude |s| = 65 and phase ∠s = tan−1(63
16

) = 1.32rad. This product
can also be computed using the polar form. Specifically, s1 has magnitude |s1| = 5 and
phase ∠s1 = 0.93rads as shown in the previous example. Similarly, s2 has magnitude |s2| =√

122 + 52 = 13 and phase ∠s2 = tan−1(5
12

) = 0.39rads. Thus the product s = s1s2 has
magnitude |s| = 5 · 13 = 65 and phase ∠s = 0.93 + 0.39 = 1.32rad. The polar form for
computing products will be more convenient later in the text. 4

Insight into system dynamics can be gained by viewing the transfer function as a complex
function. Specifically a function G : C → C is a complex function if it takes a complex
number s ∈ C as input and returns a complex number G(s) ∈ C. Thus the input s has both
real/imaginary part (or equivalently magnitude/phase) and the returned value G(s) also has
both real/imaginary part (or magnitude/phase). A simple example is provided below.

Example 3.13. Let G(s) = 1
s−2

be a complex function. The function can be evaluated at

any complex number s. At the particular value s0 = 1 + 5j the function is G(s0) = 1
−1+5j

.

The real and imaginary parts of G(s0) can be computed by multiplying the numerator and
denominator by the conjugate −1− 5j. This yields G(s0) = −1−5j

26
. The magnitude and phase

are |G(s0)| = 1
26

and ∠G(s0) = −1.77rads. Since s and G(s) are both complex numbers it
is difficult to visualize this function. The right plot of Figure 3.14 shows only the magnitude
|G(s)| versus the complex variable s. The vertical axis is |G(s)| while the horizontal axes
are the real and imaginary parts of s. Notice that |G(s)| shoots to infinity when s = 2, i.e
|G(s)| = ∞ when Re{s} = 2 and Im{s} = 0. This plot looks like a tent with a pole placed
at s = 2 holding up the tent. Thus we say that G(s) has a ”pole” at s = 2 as defined more
precisely in Section 3.3.2. 4

3.8.2 Stable Second-Order Step Response Solution

The ODE for stable second-order system can be written as:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = b0u(t) (3.36)

Overdamped

The overdamped case corresponds to ζ > 1 with two distinct roots s1 < 0 and s2 < 0. A
particular solution for a unit step input is ȳ = b0

ω2
n
. Hence the general solution is:

y(t) = ȳ + c1e
s1t + c2e

s2t (3.37)

52

0
2

3

5

|G
(s

)|

2

Imag(s)

0

Real(s)

10

1
0

-2 -1

Figure 3.14: Magnitude of G(s) = 1
s−2

.

The ICs can be used to solve for c1 and c2:

0 = y(0) = ȳ + c1 + c2 (3.38)

0 = ẏ(0) = s1c1 + s2c2 (3.39)

These equations are solved by c1 = −ȳ s2
s2−s1 and c2 = ȳ s1

s2−s1 . Hence the unit step response is:

y(t) = ȳ

(
1− s2

s2 − s1

es1t +
s1

s2 − s1

es2t
)

where ȳ :=
b0

ω2
n

(3.40)

Critically Damped

The critically damped case corresponds to ζ = 1 with two repeated real roots at s1,2 = −ωn.
Sections 3.2 and 3.3 give a general solution procedure for free and forced responses but only for
the case of distinct roots. This procedure must be slightly modified if the system has repeated
roots. In particular, if there are repeated roots at s1,2 = −ωn then the general homogeneous
solution takes the form c1e

−ωnt+c2te
−ωnt. A particular solution for a unit step input is ȳ = b0

ω2
n
.

Hence the general solution is:

y(t) = ȳ + c1e
−ωnt + c2te

−ωnt (3.41)

The ICs can be used to solve for c1 and c2:

0 = y(0) = ȳ + c1 (3.42)

0 = ẏ(0) = −ωnc1 + c2 (3.43)

53

These equations are solved by c1 = −ȳ and c2 = −ωnȳ. Hence the unit step response is:

y(t) = ȳ
(
1− (1 + ωnt)e

−ωnt
)

where ȳ :=
b0

ω2
n

(3.44)

Underdamped

The underdamped case corresponds to 0 < ζ < 1 with complex roots at s1,2 = −ζωn ± jωd
where ωd := ωn

√
1− ζ2. A particular solution for a unit step input is ȳ = b0

ω2
n
. Hence the

general solution is:

y(t) = ȳ + c1e
s1t + c2e

s2t (3.45)

The complex exponential terms can be re-written as real terms as discussed in Section 3.2:

y(t) = ȳ + c̃1e
−ζωnt cos(ωdt) + c̃2e

−ζωnt sin(ωdt) (3.46)

The ICs can be used to solve for c̃1 and c̃2:

0 = y(0) = ȳ + c̃1 (3.47)

0 = ẏ(0) = −ζωnc̃1 + ωdc̃2 (3.48)

These equations are solved by c̃1 = −ȳ and c̃2 = −ȳ ζ√
1−ζ2

. Hence the unit step response is:

y(t) = ȳ

(
1− e−ζωnt cos(ωdt)− e−ζωnt

ζ√
1− ζ2

sin(ωdt)

)
where ȳ :=

b0

ω2
n

(3.49)

3.8.3 Underdamped Step Response Features

This section derives formulas to estimate the settling time, peak overshoot, and rise time for
an underdamped unit step response.

Settling Time

The following trigonometric identity holds for any real numbers c1, c2, and α:

c1 cos(α) + c2 sin(α) =
√
c2

1 + c2
2 cos

(
α− tan−1

(
c2

c1

))
(3.50)

This identity can be used to rewrite the underdamped unit step response (Equation 3.49) in
the following alternative form:

y(t) = ȳ

(
1− e−ζωnt√

1− ζ2
cos (ωdt− θ)

)
where θ := tan−1

(
ζ√

1− ζ2

)
(3.51)

The quantity θ is the same as the angle θ shown in the left subplot of Figure 3.8. The cosine
term oscillates between [−1,+1]. Hence, the underdamped response can never be larger than

54

ȳ

(
1 + e−ζωnt√

1−ζ2

)
and never be smaller than ȳ

(
1− e−ζωnt√

1−ζ2

)
. These two curves form an envelope

that bounds the step response. The upper and lower envelopes converge within ±5% of the
final value ȳ when the following inequality holds:

e−ζωnt ≤ 0.05
√

1− ζ2 (3.52)

For small damping ratios, e.g ζ < 0.5, this inequality holds approximately for t ≥ 3
ζωn

. Recall

that the underdamped roots s1,2 = −ζωn ± jωd have a time constant τ1,2 = 1
ζωn

. Thus the 5%
settling time is approximately 3τ1,2 when ζ < 0.5. The speed of response slows slightly and the
settling time increases for larger values of ζ ∈ [0.5, 1]. In fact, the settling time for a critically
damped system (ζ = 1) is 4.75τ1,2 as discussed in Section 3.6.3. Thus the settling time for an
underdamped system increases to 4.75τ1,2 as ζ → 1. However, we will still use the rough 3τ1,2

approximation for the 5% settling time of an underdamped system for all values of ζ.

Peak Overshoot

The underdamped response rises to the peak value and then oscillates as it decays to the steady-
state value. The local maxima and minima of the response occur at times where ẏ(t) = 0.
Differentiating the underdamped unit step response in Equation 3.49 and simplifying yields:

ẏ(t) = ȳe−ζωnt
ωn√
1− ζ2

sin(ωdt) (3.53)

Hence ẏ(t) = 0 if and only if sin(ωdt) = 0. Thus the local maxima and minima occur when
ωdt = π, 2π, 3π, The largest (global peak) of the step response occurs at the first local
maxima: Tp = π

ωd
. The corresponding peak value is:

y(Tp) = ȳ

(
1 + e

− ζπ√
1−ζ2

)
(3.54)

The peak overshoot is Mp = y(Tp)−ȳ
ȳ

. Substituting the peak value into this formula yields:

Mp = e
− ζπ√

1−ζ2 (3.55)

Rise Time

Substitute y(t) = ȳ into the alternative form for the underdamped solution (Equation 3.51):

ȳ = ȳ

(
1− e−ζωnt√

1− ζ2
cos (ωdt− θ)

)
where θ := tan−1

(
ζ√

1− ζ2

)
(3.56)

After some simplification, the condition for y(t) = ȳ is:

0 = cos (ωdt− θ) (3.57)

Thus y(t) = ȳ for times such that ωdt − θ = π
2
, 3π

2
, The rise time Tr corresponds to the

first time that y(Tr) = ȳ, i.e.:

Tr =
θ + π

2

ωd
(3.58)

55

3.8.4 Forced Response With a Zero

Consider the general nth order system with zero ICs:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t) (3.59)

IC: y(0) = 0; . . . y[n−1](0) = 0 (3.60)

In addition, define two transfer functions:

G0(s) =
b0

ansn + · · ·+ a1s+ a0

(3.61)

G1(s) =
b1s+ b0

ansn + · · ·+ a1s+ a0

(3.62)

G1 is the transfer function associated with the ODE in Equation 3.59. It has a single zero at
z = − b0

b1
. G0 is the transfer function for another system with the same poles but without the

zero. The goal of this section is to related the forced responses of these two systems.
Let u be a differentiable input (not a step) with u(0) = 0. In addition, let y0 and y1 denote

the forced responses of G0 and G1 with this input. Hence the pair (u, y1) satisfy the ODE in
Equation 3.59 while the pair (u, y0) satisfy

any
[n]
0 (t) + an−1y

[n−1]
0 (t) + · · ·+ a1ẏ0(t) + a0y0(t) = b0u(t) (3.63)

Differentiate both sides of Equation 3.63 and multiply by b1
b0

to obtain:

an
dn

dtn

(
b1

b0

ẏ0

)
+ · · · a1

(
b1

b0

ẏ0

)
+ a0

(
b1

b0

ẏ0

)
= b1u̇(t) (3.64)

Sum Equations 3.63 and 3.64 to show that y0(t) + b1
b0
ẏ0 = y0(t) − 1

z
ẏ0(t) satisfies the ODE in

Equation 3.59 associated with G1. Moreover, y0(t)− 1
z
ẏ0(t) satisfies the zero ICs. This follows

because y0 has zero ICs (y0(0) = · · · = y
[n−1]
0 (0) = 0) and it can also be shown that u(0) = 0

implies y[n](0) = 0. Finally, the forced response solution to Equation 3.59 with zero ICs is
unique. Hence y1(t) = y0(t)− 1

z
ẏ0(t).

One remaining technical point to address are the assumptions that u(t) is differentiable
and u(0) = 0. Step inputs jump discontinuously at t = 0 and hence these inputs are not
differentiable. A step input of magnitude ū is handled via the following approximation:

uε(t) =

{
ū
ε
t 0 ≤ t < ε
ū t ≥ ε

(3.65)

For all ε > 0 this function uε(t) is differentiable and satisfies uε(0) = 0. Hence the discussion
above is valid. As ε → 0, the input uε(t) converges to a step input and the outputs converge
to the corresponding step responses. Thus the relation y1(t) = y0(t) − 1

z
ẏ0(t) holds even for

step inputs. Precise details require the use of generalized functions called “distributions”.

56

Chapter 4

PID Control

This chapter covers the basics of proportional-integral-derivative (PID) control. Section 4.1
summarizes the key design issues associated with modeling and control of systems. Section 4.2
describes an open-loop control strategy. This open-loop strategy requires no additional sen-
sors but typically has poor performance. This motivates the use of feedback. Specifically,
Section 4.3 describes a simple feedback strategy known as proportional control. This strategy
computes an error by comparing the desired reference with a measurement of the plant output.
The control command is set proportional to this error. Next, Sections 4.4 and 4.5 describe two
additional feedback strategies known as proportional-integral (PI) and proportional-derivative
(PD) control. Two examples of PID design are given in Section 4.6 Finally, modifications to
basic PID and implementation details are given in Sections 4.7 and 4.8.

57

4.1 Summary of Control Design Issues

Summary: This section summarizes the key design issues associated with modeling and
control of systems. The discussion focuses on a DC motor for concreteness. There are two
important points. First, the models used for control design are often simplified and contain a
variety of inaccuracies including uncertain parameters, unmodeled dynamics, nonlinear effects,
and implementation effects. It is common to design the controller with the simplified model
and then check performance on a more accurate model. Second, the control design involves
many, often conflicting, objectives and hence performance trade-offs are required.

4.1.1 DC Motor Model

This section summarizes the design issues associated with modeling and control. Sections 4.2-
4.4 then study various control strategies for first-order systems. The control design will be
based on the dynamic characteristics of low-order systems as studied in the previous chapter.
As a concrete example, consider a small DC motor driving an inertia as shown in Figure 4.1
(left). The input is the voltage u (V) applied to the motor and the output is the angular
velocity y (rad

sec
) of the motor shaft. The goal is to develop strategies to control the motor

speed using the input voltage. This specific design problem is applicable to DC motors found
in a variety of applications including multicopters or small fixed-wing aircraft. However, the
discussion covers issues that are broadly applicable to most control systems.

0 1 2 3 4 5
Time (sec)

0

500

1000

1500

S
pe

ed
, y

 (
ra

d/
se

c)

u(t)=1V
u(t)=2V

Figure 4.1: Left: Precision Microdrives DC Motor 112-002 with small inertia. Right: Step
responses for “nominal” DC motor model.

The control design will use a model of the DC motor. Modeling the system is an important
step in any control design. As mentioned previously, modeling is a domain specific task,
i.e. it typically requires knowledge specific to an individual field of engineering. Thus we
will not emphasize the motor modeling here but details can be found in Appendix 4.9.1.
These modeling details are not required to understand the control design and can be skipped.

58

Briefly, the motor involves coupled electrical and mechanical (rotational inertia) dynamics.
We’ll assume the electrical dynamics are much faster than the mechanical dynamics. This
leads to a first-order ODE model for the motor:

ẏ(t) + a0 y(t) = b0 u(t) + b0 d(t)

where: a0 = 0.94
1

sec
and b0 = 766.8

rad

sec2 V

(4.1)

The model coefficients a0 and b0 were determined from the specification sheet for a Precision
Microdrives DC Motor 112-002 [14]. In addition, the ODE includes another input d(t) (V)
to model the effects of environmental disturbances. For example, DC motors are used on
multicopters to rotate propellers and generate thrust. This creates a reaction load torque that
opposes the motor shaft rotation. This reaction torque depends on the multicopter velocity and
attitude (angular orientation). Such load torques are difficult to model precisely and instead
the simple disturbance input d(t) (V) is used to capture these effects.

Figure 4.1 (right) shows step responses for the motor model with u(t) = 1V and u(t) = 2V .
The transfer function for the first-order model is G(s) = 766.8

s+0.94
. This has a pole at s1 = −0.94,

time constant τ1 = 1.06 sec, and steady state gain G(0) = 815.7 rad
sec V

. The step response
characteristics in Figure 4.1 agree with these values. Specifically, both responses have a settling
time of 3τ1 = 3.18 sec. Moreover, the final values are G(0) · 1V = 815.7 rad

sec
and G(0) · 2V =

1631.4 rad
sec

for the responses with u(t) = 1V and u(t) = 2V . These responses are labeled as
“nominal” because the first order model was developed under certain approximations. As a
result, the step responses of an actual Precision Microdrives DC Motor 112-002 will likely differ
from these nominal model responses. This is discussed further in the next subsection.

4.1.2 Model Simplifications and Uncertainties

It is important to recognize that the models used for control design are often simplified and
contain a variety of uncertainties/inaccuracies:

• Uncertain Parameters: The ODE coefficients a0 and b0 depend on various param-
eters including motor resistance, inductance, and inertia. The values of a0 and b0

given in Equation 4.1 were computed using typical motor parameter values obtained
from the specification sheet. These parameters can (and do) vary from motor to mo-
tor due to manufacturing tolerances. As a consequence, the ODE coefficients a0 and
b0 will vary with some uncertainty. For example, the left plot of Figure 4.2 shows the
unit step response with the nominal values a0 = 0.94 and b0 = 766.8 (solid blue). It
also shows four additional responses (dashed red) with ±10% variation in these coeffi-
cients: (a0, b0) = {(0.85, 690.1), (0.85, 843.5), (1.03, 690.1), (1.03, 843.5)}. Note the small
change in settling time and the significant effect on the steady state gain.

• Unmodeled Dynamics: The model used for control design typically neglects some
dynamics. In many cases, these unmodeled dynamics are neglected on purpose to simplify
the control design. For example, the first order, linear ODE (Equation 4.1) captures
the dominant rotational inertia dynamics. It neglects the “fast” electrical dynamics.

59

0 1 2 3 4 5
Time (sec)

0

200

400

600

800

1000
S

pe
ed

, y
 (

ra
d/

se
c)

Nominal
+/-10% Variation

0 1 2 3 4 5
Time (sec)

0

200

400

600

800

1000

S
pe

ed
, y

 (
ra

d/
se

c)

Nominal (1st Order)
Second-Order

Figure 4.2: Left: Unit step responses with nominal ODE coefficients and ±10% variation.
Right: Unit step response of nominal first-order response and second-order response.

Appendix 4.9.1 derives a second-order model that captures these unmodeled electrical
dynamics. The transfer function of the second order model is:

G2(s) =
1.23× 10−3

3× 10−10 s2 + 1.6× 10−6 s+ 1.505× 10−6
(4.2)

The right subplot of Figure 4.2 shows the unit step response with the nominal first-order
model (solid blue) and the second order model (dashed red). The responses are almost
identical and cannot be distinguished on the plot. The fast electrical dynamics appear to
be negligible. However, these unmodeled dynamics may impact the system performance
depending the design of the controller.

• Nonlinear Effects: Our linear ODE models also neglect nonlinear effects. For example,
the linear ODE may be an approximation of a nonlinear ODE obtained via linearization
(as discussed in Section 2.2). As another example, the DC motor has a maximum oper-
ating voltage of umax = 3V . The input must saturate (i.e. not exceed) umax otherwise
the motor could be damaged. This saturation is a nonlinear effect that is not included in
the linear ODE model. It is difficult to analyze the effect of such nonlinearities. In many
cases simulations are used to determine their impact on performance. This is discussed
further in Section XXX.

• Implementation Effects: The models used for control design in these notes are in
the form of linear ODEs. The control algorithms designed in the following sections will
also be given in the form of linear ODEs. In most cases the control algorithm must
be implemented on a microprocessor using measurements obtained at specific sampling
intervals. This raises a number of implementation effects that are not captured by our
linear ODE models. These implementation effects can typically be neglected during the
design of the controller. This is discussed further in Section 4.8.

Each of these issues must be considered in the control design. Certain effects may be negligible
for a particular problem while others may be significant. A typical approach is to design the

60

controller using a simplified linear ODE model of the system. The controller is then checked
on a more accurate, higher fidelity model that includes some/all of these additional effects.
For example, the controller performance can be evaluated by simulation using a model that
includes unmodeled dynamics, nonlinear terms, and/or implementation details. In addition,
simulations can be performed with different parameter values, e.g. ±10% variation in ODE
coefficients. We will explore some of these effects further in the DC motor control design.

4.1.3 Control Design Objectives

There are numerous, often conflicting, objectives in the design of most control systems. This
typically necessitates performance trade-offs. This section discusses common objectives in the
context of the DC motor control design problem. For this problem, the goal is to have the
motor speed y(t) follow a desired reference speed r(t). The tracking error is defined to be
e(t) := r(t)−y(t). The steady state (or final value) for the error is denoted ess. Specific design
requirements often include the following:

• Stability: At a minimum, the combination of the controller and the plant should be
(free response and BIBO) stable as defined in Chapter 3.

• Reference Tracking: The controller should be designed so that the system output
tracks the desired reference command. In particular, the system output should follow
reference commands with small overshoot and steady state error. In addition, the system
should respond quickly, i.e. the rise and settling times should be small.

• Disturbance Rejection: The controller should be designed so that disturbances have
small effect on tracking, i.e. result in small errors. For example, the steady state error
due to a constant disturbance should remain within some specified tolerance.

• Actuator Effort: The input should remain within allowable levels. For the DC motor,
the input voltage should satisfy u ∈ [0, umax] = [0V, 3V] to avoid damaging the motor.

• Noise Rejection: In most cases the controller relies on a measurement. It is typically
required that any measurement inaccuracies, e.g. noise, have small effect on tracking.

• Robustness to Model Uncertainty: As noted in the previous section, the model used
for control design is typically simplified. The controller must be robust, i.e. insensitive,
to model errors introduced by this simplified model.

The DC motor control design will explore some of these performance trade-offs. In general the
precise design requirements must be carefully considered. The dominant issues would depend
on the particular problem. For example, model uncertainty may be the dominant issue in one
problem but be less significant in another problem. A specific design example with concrete
performance requirements is given in Section 4.6.

61

4.2 Open-Loop Control

Summary: This section describes an open-loop strategy to control a DC motor. The goal is to
select the input voltage so that the motor maintains a desired speed. The open-loop controller
selects the motor voltage using only the desired motor speed and a model of the motor. This
open-loop strategy requires no additional sensors but has poor disturbance rejection and is
sensitive to model variations.

4.2.1 Open-Loop Design

We’ll consider a simple open-loop control strategy: i) the user specifies the desired motor
speed r(t), and ii) the controller sets the input voltage proportional to the desired speed,
u(t) = Kol r(t) where Kol is a gain to be selected. A key point is that the open-loop controller
is based only on the desired speed and the gain is selected using a model of the motor. A block
diagram for this open-loop strategy is shown in Figure 4.3. The motor itself is modeled by a
first-order system (Equation 4.1) with transfer function G(s) = b0

s+a0
. To model the combined

controller/motor system, substitute u(t) = Kol r(t) into the motor model:

ẏ(t) + a0 y(t) = (b0Kol) r(t) + b0 d(t) (4.3)

This ODE describes the dynamics of the combined open-loop controller/motor from inputs r
and d to output y. The simple open-loop controller does not change the speed of response. In
particular, for any Kol there is a single pole s1 = −a0 with associated time constant τ1 = 1

|a0| .

This is the same as for the motor itself (with no control). Moreover, the open-loop controller
does nothing to reject disturbances, i.e. the steady state gain from d to y is unchanged by Kol.
The beneficial effect of Kol is that, by proper selection, we can ensure y(t) eventually follows
r(t). In particular, the choice Kol = a0

b0
in Equation 4.3 yields a steady state gain equal to one

from r to y. Hence Kol = a0
b0

ensures that y(t)→ r̄ for step reference commands r(t) = r̄. This

open-loop gain simply inverts the motor DC gain: Kol = a0
b0

= 1
G(0)

. Thus perfect knowledge of

the motor DC gain is required to ensure y(t)→ r̄, i.e. the value of G(0) used in the open-loop
controller must exactly match the DC gain of the real motor.

Open-Loop
Control, Kol

DC Motor
G(s)

r u

d

y

Figure 4.3: Block diagram for open-loop control of DC motor.

These results can be confirmed via simulation. The specific values a0 = 0.94 and b0 = 766.8
for the motor model yield a gain Kol = a0

b0
= 0.0012V sec

rad
. The system pole is s1 = −0.94 with

associated settling time 3τ1 = 3.18sec. Figure 4.4 shows the response (open-loop controller
and motor) with IC y(0) = 0 and for two different step reference commands: r(t) = r̄ with
r̄ = 1000 and 2000 rad

sec
. A step disturbance is also applied: d(t) = 0V for t ∈ [0, 5]sec and

d(t) = −0.2V for t ≥ 5sec. The left plot shows the input voltage. The right plot shows

62

0 2 4 6 8 10
Time (sec)

0

0.5

1

1.5

2

2.5

3
In

pu
t u

 (
V

)

0 2 4 6 8 10
Time (sec)

0

500

1000

1500

2000

S
pe

ed
, y

 (
ra

d/
se

c)

Figure 4.4: Step responses for combined open-loop control / motor system with r̄ = 1000 and
2000 rad

sec
and d(t) = −0.2V for t ≥ 5. Left: Input voltage. Right: Motor speed (solid) and

desired speed (dashed).

the resulting motor speed (solid line) and desired speed (dashed line) for each case. In both
cases, y(t) → r̄ for t ≤ 5. The settling time is 3.18sec which is the same as for the motor
itself. The input voltage remains unchanged when the step disturbance occurs at t = 5sec
because the open-loop controller was designed with no knowledge of the disturbance. As a
result, the disturbance causes y(t) to diverge from r(t). The steady state gain from d to y is
b0
a0

= 815.7 rad
secV

. Hence the −0.2V disturbance causes the motor speed to deviate by −163 rad
sec

.
These simulation results also demonstrate the linearity of the model. Both output responses

are simply the the response due only to the command r(t) (with d(t) = 0) plus the response
due only to the disturbance d(t) (with r(t) = 0). Moreover, the output response for t ≤ 5
with r̄ = 2000 rad

sec
is simply twice the response with r̄ = 1000 rad

sec
. Thus multiple simulations at

different values of the reference command and/or disturbance are not required to understand
the controller performance. In most cases, simulations will only be performed at a single
reference command and/or disturbance.

4.2.2 Impact of Model Uncertainty

Section 4.1.2 emphasized that the models used for control design are simplified and contain
inaccuracies. The effects of unmodeled dynamics and uncertain model parameters are briefly
discussed for the DC motor open-loop controller. The DC motor model neglects fast electrical
dynamics. These unmodeled dynamics have negligible impact on the performance of the open-
loop controller and hence no results are shown.

The model parameter variations pose a more significant issue. The open-loop gain Kol =
0.0012 was computed using the nominal ODE coefficients a0 = 0.94 and b0 = 766.8. As
noted in Section 4.1.2 these nominal values were based on the motor specification sheet. The
actual ODE coefficients vary from motor to motor. Figure 4.5 shows the impact of the pa-
rameter variations on the performance of the open-loop control. It shows a step response
with r(t) = 1000 rad

sec
and Kol = 0.0012. The right plot shows the response with nominal DC

63

0 1 2 3 4 5
Time (sec)

0

0.5

1

1.5

2

2.5

3
In

pu
t u

 (
V

)

0 1 2 3 4 5
Time (sec)

0

500

1000

1500

S
pe

ed
, y

 (
ra

d/
se

c)

Nominal
+/-10% Variation
Desired

Figure 4.5: Step responses of open-loop controller/motor for nominal ODE coefficients and
±10% variation. Left: Input voltage. Right: Motor speed (solid) and desired speed (dashed).

motor coefficients (solid blue) and with ±10% variation in the ODE coefficients (dashed red):
(a0, b0) = {(0.85, 690.1), (0.85, 843.5), (1.03, 690.1), (1.03, 843.5)}. Note that Kol = 0.0012 is
the same in all responses and only the ODE coefficients in the DC motor model are changed.
The left plot shows the motor input voltage. This is the same for all responses since the open-
loop controller only depends on r and the (fixed) value of Kol. It is important to emphasize
that the open-loop controller does not change the input voltage based on modeling errors. As
a consequence, the responses with ±10% variation fail to converge to the desired value (some
with larger errors than others).

One solution for parameter variations is to calibrate the open-loop controller for each spe-
cific motor. This would require each individual motor to be experimentally tested to determine
the appropriate values of (a0, b0). The open-loop gain Kol would then be computed for each
specific motor rather than using nominal (typical) values of (a0, b0). Such calibration is used
in some control problems. However, this is generally a more expensive and time-consuming
process than the alternative (feedback designs) to be presented in the next few sections. This
is especially true if the control system needs to work for thousands or millions of motors. In
many cases precise calibration is not possible. In these cases alternative designs based on
feedback measurements (discussed next) are required.

4.2.3 Summary of Open-Loop Performance

In this section we briefly summarize the performance of the open-loop controller with respect
to the design requirements given in Section 4.1.3:

• Stability: The controller/motor combination will be stable for any open-loop gain Kol.
More generally, an open-loop controller cannot change the stability properties of the
plant. Thus an open-loop controller cannot be used to stabilize an unstable plant.

• Reference Tracking: The open-loop strategy u(t) = Kolr(t) ensures tracking of the
desired motor speed in steady state. This requires an accurate estimate for the steady

64

state gain of the motor. The open-loop controller does not change the dynamic char-
acteristics of the motor. It is possible to design more complicated (dynamic) open-loop
strategies that modify the dynamic characteristics. However, this requires even more
accurate models for the dynamics of the system.

• Disturbance Rejection: The open-loop controller has no affect on disturbances. It is
typically true that open-loop controllers have poor disturbance rejection characteristics.

• Actuator Effort: The open-loop controller remains within the allowable actuator limits.
This can generally be achieved by placing simple limits on the reference command.

• Noise Rejection: The open-loop controller does not require any measurements. Hence
sensor noise is not an issue. Moreover, it means the system can be designed more cheaply
as the cost of the sensor is not required.

• Robustness to Model Uncertainty: The open-loop controller requires an accurate
estimate of the model. Hence it is sensitive to variations in the model as discussed in
Section 4.2.2.

In summary, open-loop control can be effective if the plant is stable, the dis-
turbances are small, and the model is accurate. If any of these conditions fails,
then open-loop control will either fail to achieve stability (if the plant is unstable)
or will not provide accurate tracking. Feedback control strategies are described next
that can address unstable plants as well as problems with large disturbances and/or significant
model uncertainty.

65

4.3 Proportional Control

Summary: This section describes a proportional controller for a DC motor. The controller
computes the error between the desired motor speed and the measured motor speed. The
motor voltage is then set proportional to this error. A larger proportional gain will reduce
steady state errors and give a faster response. However, large gains also increase the motor
inputs (possibly beyond the allowable voltage limits). Moreover, unmodeled dynamics will
cause oscillations and overshoot if the gain is selected too large.

4.3.1 Proportional Control Design

We’ll continue with the DC motor control problem introduced in the previous section. This
section will consider a simple closed-loop control strategy known as proportional (P) control :
i) the user specifies the desired motor speed r(t), ii) the tracking error between the desired
and actual speeds e(t) = r(t)− y(t) is computed, and iii) the controller sets the input voltage
proportional to the tracking error, u(t) = Kp (r(t) − y(t)) where Kp is a gain to be selected.
A key point is that the proportional controller requires a sensor to measure the
motor speed. A block diagram for this strategy, shown in Figure 4.6, involves a loop of cause
and effect. In particular, the input voltage u affects the motor speed y and then y is used by
the controller to compute the input voltage u. This is known as closed-loop control because
feeding the measurement back to the controller creates a loop around the plant. The combined
proportional controller and DC motor is referred to as the closed-loop system.

Kp
DC Motor
G(s)

r e u

d

y

−

Proportional Control

Figure 4.6: Block diagram for closed-loop proportional control of DC motor.

To model the closed-loop system, substitute u(t) = Kp (r(t) − y(t)) into the motor model
(Equation 4.1) to obtain the following ODE:

ẏ(t) + a0 y(t) = b0Kp (r(t)− y(t)) + b0 d(t) (4.4)

Bring all terms involving y(t) to the left side. This yields a model for the closed-loop system:

ẏ(t) + (a0 + b0Kp) y(t) = (b0Kp) r(t) + b0 d(t) (4.5)

The closed-loop is modeled by a first-order ODE from inputs r and d to output y. The pole of
the closed-loop system is s1 = −(a0 + b0Kp). Thus the closed-loop is stable if the proportional
gain satisfies a0 + b0Kp > 0. For the remainder of the discussion it will be assumed that
Kp satisfies this condition so that the closed-loop is stable. The closed-loop time constant

66

is τ1 = 1
|a0+b0Kp| . Thus the time constant decreases (faster response) as we increase the gain

Kp. The gain also impacts the tracking and disturbance rejection. Consider the case of a step
reference command r(t) = r̄ and a step disturbance d(t) = d̄. Equation 4.5 is a linear ODE
and hence the response due to both r(t) and d(t) is simply the sum of the responses due to
each individual input. Thus the motor speed converges in steady state to the following:

yss =
b0Kp

a0 + b0Kp

r̄ +
b0

a0 + b0Kp

d̄ (4.6)

This yields the following formula for the steady state error:

ess = r̄ − yss =
a0

a0 + b0Kp

r̄ − b0

a0 + b0Kp

d̄ (4.7)

In general there will be a non-zero steady state error. In other words, the proportional con-
troller does not exactly track the reference command nor does it reject disturbance. However,
the steady state error can be made arbitrarily small by choosing Kp sufficiently large. To
summarize, increasing the gain Kp will decrease the time constant and reduce the
steady state error due to r̄ and/or d̄. This seems to imply that the gain Kp should be cho-
sen to be as large as possible. However, there are additional factors that limit the magnitude
of Kp as discussed below.∗

These results can be confirmed via simulation. For the DC motor, closed-loop stability
requires Kp > −a0

b0
= −0.0012. This is not a significant constraint as Kp > 0 in any practical

design. Figure 4.7 shows the closed-loop response with IC y(0) = 0, step reference command
r(t) = 1000 rad

sec
, and a step disturbance: d(t) = 0V for t ∈ [0, 2]sec and d(t) = −0.2V for

t ≥ 2sec. These simulations are performed with four different proportional gains. The figure
shows: (a) input voltage u, (b) output speed y, (c) tracking error e, and (d) location of
closed-loop poles. Figures 4.7b and 4.7c confirm that larger proportional gains lead to a
faster response and reduce the errors due to both the reference commands and disturbances.
Figures 4.7d shows that the closed-loop pole moves to the left (faster response) as the gain is
increased. This type of plot (location of poles with a varying gain) is called a root locus.

The plot of input voltage (a) shows one drawback of increasing gain. Specifically, in-
creasing the gain also increases the required voltage input especially during the
initial transient response. In fact, the choice Kp = 0.002 is the only response that remains
within the maximum motor voltage limit of umax = 3V . All other responses exceed this limit.
The input voltage at t = 0 can be easily computed. The initial error is e(0) = r̄−y(0) = r̄ and
hence the initial voltage is u(0) = Kpe(0) = Kpr̄. For example, if Kp = 0.002 and r̄ = 1000 rad

sec

then u(0) = 2V . The relation u(0) = Kpr̄ shows that larger values of Kp increase the initial
voltage input. This will typically limit the magnitude of Kp.

∗This discussion is in the context of the DC motor but, for the most part, holds for any first order system.
Some slight changes to the discussion are required if a0 = 0 or b0 < 0. For example, the DC motor has
b0 = 766.8 > 0 and Kp would also be positive in any real design. The time constant decreases as we “increase”
Kp by making it more positive. For some systems the coefficient b0 is negative. If b0 < 0 then the gain Kp

must also be negative so that the product b0Kp remains positive. In this case, the time constant decreases as
we “increase” the magnitude of Kp thus making it more negative. Also note that if a0 = 0 then the system
will have zero steady state error whenever d̄ = 0.

67

0 1 2 3 4
Time (sec)

0

0.5

1

1.5

2

2.5

3
In

pu
t u

 (
V

)

(a) Input voltage, u (V)

0 1 2 3 4
Time (sec)

0

200

400

600

800

1000

1200

S
pe

ed
, y

 (
ra

d/
se

c)

(b) Output speed, y (radsec)

0 1 2 3 4
Time (sec)

0

200

400

600

800

1000

E
rr

or
, e

 (
ra

d/
se

c)

(c) Tracking error, e = r − y (radsec)

-40 -30 -20 -10 0
Real

-1

-0.5

0

0.5

1

Im
ag

Kp = 0.002
Kp = 0.005
Kp = 0.01
Kp = 0.05

(d) Locus of closed-loop poles as gain KP varies.

Figure 4.7: Step responses for closed-loop with r(t) = 1000 rad
sec

and d(t) = −0.2V for t ≥ 2.

4.3.2 Impact of Model Uncertainty

The effects of unmodeled dynamics and uncertain model parameters, introduced in Section 4.1.2,
are briefly discussed for the DC motor proportional controller. First, consider model parameter
variations. These variations have a much smaller effect on the performance of the closed-loop
controller as compared to the open-loop controller. Figure 4.8 shows the response with propor-
tional gain Kp = 0.01 and step command r(t) = 1000 rad

sec
. The right plot shows the response

with nominal DC motor coefficients (a0, b0) = (0.94, 766.8) (solid blue) and with ±10% varia-
tion in the ODE coefficients (dashed red). The left plot shows the motor input voltage. The
effect of parameter variations shows up in the measurement of motor speed. As a result, the
proportional controller is able to respond and counteract these parameter variations. All re-
sponses are quite similar and the performance is not as sensitive to the parameter variations.
Larger proportional gains result in less sensitivity to the variations in the ODE coefficients.
However, larger gains also cause large input voltages that exceed the allowable value umax = 3V

68

0 0.2 0.4 0.6 0.8 1
Time (sec)

0

2

4

6

8

10
In

pu
t u

 (
V

)

0 0.2 0.4 0.6 0.8 1
Time (sec)

0

200

400

600

800

1000

1200

S
pe

ed
, y

 (
ra

d/
se

c)

Nominal
+/-10% Variation
Desired

Figure 4.8: Step responses of closed-loop (proportional controller/motor) for nominal ODE
coefficients and ±10% variation. Proportional gain is Kp = 0.01. Left: Input voltage. Right:
Motor speed (solid) and desired speed (dashed).

as discussed above.
Next, unmodeled dynamics can have a significant impact on the closed-loop performance

for large values of Kp. In particular, the first-order DC motor model neglects fast electrical dy-
namics. Equation 4.2 gives a second-order motor model that includes these electrical dynamics.
Figure 4.9 shows the motor speed output with a proportional controller and the second-order
motor model in Equation 4.2. The response is simulated with r(t) = 1000 rad

sec
and several pro-

portional gains. The response has the expected first-order characteristic for Kp = 1, 1.5, and
2. However, increasing the gain further (Kp = 8 and 16) leads to overshoot and oscillations
but no reduction in the settling time. To understand this behavior, express the second-order
motor model (Equation 4.2) as follows (without the controller and the disturbance):

a2ÿ(t) + a1ẏ(t) + a0 y(t) = b0u(t) (4.8)

where b0 = 0.001227, a2 = 3 × 10−10, a1 = 1.6 × 10−6, and a0 = 1.505 × 10−6. Substitute
u(t) = Kp (r(t) − y(t)) and group all terms involving y(t) to the left side. This yields a
second-order model for the closed-loop that includes the fast electrical dynamics:

a2ÿ(t) + a1ẏ(t) + (a0 + b0Kp) y(t) = (b0Kp) r(t) (4.9)

Divide both sides of this ODE by a2 to put this model in standard second-order form with
damping ratio ζ and natural frequency ωn:

ÿ(t) +
a1

a2︸︷︷︸
:=2ζωn

ẏ(t) +
(a0 + b0Kp)

a2︸ ︷︷ ︸
:=ω2

n

y(t) =
(b0Kp)

a2

r(t) (4.10)

Table 4.1 shows the closed-loop poles, natural frequency, and damping ratio for several values
of Kp. The row for Kp = 0 corresponds to no control and this row gives the poles of the second-
order motor model itself. The remaining rows show that increasing Kp will both increase the

69

0 1 2 3 4 5
Time (sec) #10-3

0

200

400

600

800

1000

1200

1400
S

pe
ed

, y
 (

ra
d/

se
c)

Kp = 1
Kp = 1.5
Kp = 2
Kp = 8
Kp = 16

-6000 -5000 -4000 -3000 -2000 -1000 0
Real

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Im
ag

Kp = 0
Kp = 1
Kp = 1.5
Kp = 2
Kp = 8
Kp = 16

Figure 4.9: Step responses of closed-loop (proportional controller/motor) with second order
model. Left: Motor speed (solid) and desired speed (dashed). Right: Root Locus.

Kp s1,2 ζ ωn

0 -0.94, -5332 37.6 71
1 -930, -4404 1.32 2023

1.5 -1681, -3653 1.08 2478
2 -2667 ± 1036 j 0.93 2861
8 -2667 ± 5061 j 0.47 5720
16 -2667 ± 7637 j 0.33 8089

Table 4.1: Closed-loop poles for several gains Kp using second order motor model.

natural frequency ωn and decrease the damping ratio ζ. The right plot of Figure 4.9 provides
a graphical version of this data in the form of a root locus plot of the closed-loop poles as the
gain Kp is changed. The poles start at (−0.94,−5332) for Kp = 0. Increasing Kp will initially
cause the slow pole to move leftward while the fast pole moves rightward in the complex plane.
This corresponds to speeding up the system response because the slow pole dominates the
response. Eventually the poles join and at −2667 for Kp = 1.7. Further increasing the gain
will cause the two poles to split and follow a vertical line with real part −2667. As a result, the
response becomes oscillatory with more overshoot and no improvement in the settling time if
the gain is increased above Kp = 1.7. To summarize, fast dynamics can typically be neglected
in the design for reasonable values of the gain. However, large values of the proportional
gain will eventually degrade the performance (oscillations and overshoot) with no
improvements in settling time.

4.3.3 Summary of Proportional Control Performance

The proportional controller has the following effects with respect to the design requirements
given in Section 4.1.3:

• Stability: For the DC motor closed-loop stability requires Kp > −a0
b0

= −0.0012. Note

70

that the motor itself (with no control) is stable but that the closed-loop system is un-
stable if Kp < −0.0012. Thus closed-loop control can, if designed poorly, destabilize
a stable plant. Conversely, if the plant (without control) is unstable then a properly
designed feedback controller can be used to obtain a stable closed-loop system. Thus it
is important to distinguish between the stability of the plant (without control) and the
stability of the closed-loop (with feedback control).

• Reference Tracking: The proportional controller does not track the desired motor
speed even if there is no disturbance. However, increasing the gain Kp will decrease the
steady state error due to reference commands. It also decreases the closed-loop time
constant (faster response).

• Disturbance Rejection: Increasing the gain Kp will also decrease the steady state
error due to disturbances.

• Actuator Effort: Large gains Kp will cause the input voltage to exceed the allowable
bounds. The largest inputs tend to occur during the initial transients and this may limit
the choice of the gain Kp.

• Noise Rejection: The proportional controller requires a measurement of motor speed
and sensor noise may be an issue. Generally larger gains tend to amplify noise leading
to degraded performance. This is explored further in Section XXX.

• Robustness to Model Uncertainty: The proportional controller makes the closed-
loop response less sensitive to model parameter variations. However, very large gains
will eventually cause a degradation in performance (overshoot and oscillations) due to
any unmodeled dynamics. For more general systems (higher than first-order), increasing
gains can even cause the closed-loop to become unstable.

In summary, closed-loop proportional control requires trade-offs between refer-
ence tracking, disturbance rejection, speed of response, and sensitivity to param-
eter variations (all of which tend improve with increasing gains) versus actuator
effort, robustness to unmodeled dynamics, and sensor noise (all of which tend to
degrade with increasing gains. The proportional controller only has a single gain Kp that
can be selected and this limits the ability to make these various trade-offs. More advanced
feedback control strategies are described next that include additional dynamics and gains to
improve this trade-off.

71

4.4 Proportional-Integral Control

Summary: This section describes a proportional-integral controller for a DC motor. The
controller computes the motor input voltage using a term proportional to the error and another
term proportional to the integral of the error. The main property of integral control is that
it achieves zero error in steady state. In addition, the initial transient is dominated by the
proportional term while the steady state is dominated by the integral term. Thus the two
terms can be used to provide better trade-offs in the control design.

4.4.1 Proportional-Integral Control Design

The previous section discussed proportional control for the DC motor. Increasing the gain Kp

has several effects including reduced steady state error, faster settling time, and larger control
inputs. However, the proportional control strategy is limiting because a single gain affects
both the transient behavior (e.g. control effort for small t) as well as the steady state behavior
(e.g. error as t → ∞). Conceptually it would be useful to have an alternative strategy with
gains that can be tuned to independently modify the transient and steady state behaviors.
This section introduces such a strategy known as proportional-integral (PI) control : i) the user
specifies the desired motor speed r(t), ii) the tracking error between the desired and actual
speeds e(t) = r(t)− y(t) is computed, and iii) the controller sets the input voltage as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ (4.11)

where Kp and Ki are proportional and integral gains to be selected. A block diagram for the
closed-loop is shown in Figure 4.10.

Kp

∫
Ki

DC Motor
G(s)

r e

d

u y

−

PI Control

Figure 4.10: Block diagram for proportional-integral control of DC motor.

The first (proportional) term in Equation 4.11 reacts to the “present” as measured by the
current error. This term dominates during the initial transient. The second (integral) term
reacts to the “past” as measured by the accumulated integral of the error. This term dominates
in the steady state as t → ∞. The closed-loop simulation shown in Figure 4.11 displays this
behavior. The simulation is performed with the first-order DC motor model (Equation 4.1) and
a PI controller with gains Kp = 0.002 and Ki = 0.001. The simulation uses the IC y(0) = 0,

72

0 5 10 15 20
Time (sec)

0

0.5

1

1.5

2
In

pu
t u

 (
V

)

PI Input (Total)
P-term
I-term

(a) Input voltage, u (V)

0 5 10 15 20
Time (sec)

0

200

400

600

800

1000

1200

S
pe

ed
, y

 (
ra

d/
se

c)

(b) Output speed, y (radsec)

0 5 10 15 20
Time (sec)

0

200

400

600

800

1000

E
rr

or
, e

 (
ra

d/
se

c)

(c) Tracking error, e = r − y (radsec)

-2.5 -2 -1.5 -1 -0.5 0
Real

-1

-0.5

0

0.5

1

Im
ag

Poles
Zero

(d) Closed-loop poles and zero from r to y.

Figure 4.11: Step responses for closed-loop with r(t) = 1000 rad
sec

and d(t) = −0.2V for t ≥ 10.
PI gains are Kp = 0.002 and Ki = 0.001.

step reference command r(t) = 1000 rad
sec

, and a step disturbance: d(t) = 0V for t ∈ [0, 10]sec
and d(t) = −0.2V for t ≥ 10sec. Figure 4.7a shows the control input u (solid blue) along with
the contributions of the proportional (red dotted) and integral (green dash-dotted) terms. At
t = 0, the proportional term is Kpe(0) = Kpr̄ = 2V and the integral term is zero, i.e. the
initial control input is entirely due to the proportional term. As time goes on, the area under
the curve of e(t) vs. t (Figure 4.7c) increases and hence the integral term increases. Eventually
e(t)→ 0 so the control input in steady state is due entirely to the integral term.

To further understand the simulations results shown in Figure 4.11, first note that the PI
controller itself is a dynamical system with inputs (r, y) and output u. It can be expressed as
an ODE by differentiating both sides of Equation 4.11 with respect to time:

u̇(t) = Kpė(t) +Kie(t) (4.12)

To model the closed-loop, differentiate the the motor model ODE (Equation 4.1) and substitute

73

for u̇ using Equation 4.12:

ÿ(t) + a0 ẏ(t) = b0Kpė(t) + b0Kie(t) + b0ḋ(t) (4.13)

Finally, bring all terms involving y(t) to the left side of the ODE:

ÿ(t) + (a0 + b0Kp)︸ ︷︷ ︸
:=2ζωn

ẏ(t) + (b0Ki)︸ ︷︷ ︸
:=ω2

n

y(t) = (b0Kp) ṙ(t) + (b0Ki) r(t) + b0ḋ(t) (4.14)

This is a second-order model for the closed-loop from inputs r and d to output y. Both poles
are in the left half plane if and only if a0 + b0Kp > 0 and b0Ki > 0. For the remainder of the
discussion it is assumed that these conditions are satisfied so that the closed-loop is stable.

The closed-loop transfer function from r to y is:

Tr→y =
(b0Kp)s+ (b0Ki)

s2 + (a0 + b0Kp)s+ (b0Ki)
(4.15)

The closed-loop poles have natural frequency ωn =
√
b0Ki and damping ratio ζ = a0+b0Kp

2
√
b0Ki

. The

second-order response characteristics (rise time, overshoot, settling time) depend on (ωn, ζ) as
discussed in Section 3.6. Increasing Ki will increase ωn, decrease ζ and leave ζωn unchanged.
Thus increasing Ki should reduce damping (causing overshoot / oscillations) but have no effect
on settling time. Moreover, increasing Kp leaves ωn unchanged but increases ζ and ζωn. Thus
increasing Kp should increase damping and reduce settling time. The actual conclusions are
more complicated because the transfer function from r to y has a zero at z = −Ki

Kp
. As discussed

in Section 3.7.2, this zero impacts the initial transient; it tends to cause overshoot and decrease
the rise time. It is difficult to precisely state the effect of the gains Kp and Ki due to this zero.
Hence some trial and error is typically required in selecting these gains. Figure 4.11d shows
the closed-loop pole and zero for the DC motor and PI controller.†

The main benefit of PI control is the impact on tracking and disturbance rejection. Consider
the case of a step reference command r(t) = r̄ and a step disturbance d(t) = d̄. Based on
Equation 4.14, the motor speed converges to yss = r̄, i.e. there is no steady state error for
any values of r̄ and d̄. This behavior is observed in Figures 4.11b and 4.11c. This is a key
property of integral control: If the system converges to a steady state then there
is no error (ess = 0). This property can be shown with the following argument. Assume the
system has reached a steady state at time t0 such that u(t) ≈ uss and e(t) ≈ ess for t ≥ t0.
Based on this approximation the PI control input (Equation 4.11) at time t0 is:

u(t0) ≈ Kpess +Ki

∫ t0

0

e(τ) dτ (4.16)

Similarly, split the integral term to approximate the PI control input for any t ≥ t0 as follows:

u(t) = Kpe(t) +Ki

∫ t0

0

e(τ) dτ +Ki

∫ t

t0

e(τ) dτ

≈
(
Kpess +Ki

∫ t0

0

e(τ) dτ

)
+Kiess · (t− t0)

(4.17)

†This discussion, for the most part, holds for PI control on any first order system. As in the previous
section, some slight changes to the discussion are required for systems with b0 < 0.

74

0 2 4 6 8 10
Time (sec)

0

0.5

1

1.5

2

2.5

3
In

pu
t u

 (
V

)

0 2 4 6 8 10
Time (sec)

0

200

400

600

800

1000

1200

S
pe

ed
, y

 (
ra

d/
se

c) Nominal
+/-10% Variation
Desired

Figure 4.12: Step responses of closed-loop (PI controller/motor) for nominal ODE coefficients
and ±10% variation. PI gains are Kp = 0.002 and Ki = 0.001. Left: Input voltage. Right:
Motor speed (solid) and desired speed (dashed).

The term in parentheses is approximately u(t0) by Equation 4.16. Thus Equation 4.17 can be
rewritten as: Kiess · (t − t0) ≈ u(t) − u(t0). Finally this implies Kiess · (t − t0) ≈ 0 because
u(t) ≈ u(t0). Hence there is no steady state error, ess = 0. This argument is only based
on the existence of a steady state and the use of an integral term in the controller. Thus,
the remarkable property of zero steady state error is general, e.g. it holds for PI control on
higher-order plants and in the presence of constant disturbances.

4.4.2 Impact of Model Uncertainty

The effects of unmodeled dynamics and uncertain model parameters, introduced in Section 4.1.2,
are briefly discussed for the DC motor PI controller. First, consider model parameter vari-
ations. Figure 4.12 shows the response with gains (Kp, Ki) = (0.002, 0.001) and step com-
mand r(t) = 1000 rad

sec
. The right plot shows the response with nominal DC motor coefficients

(a0, b0) = (0.94, 766.8) (solid blue) and with ±10% variation in the ODE coefficients (dashed
red). The left plot shows the motor input voltage. There is a small spread in the motor speed
responses. This demonstrates that the controller reduces sensitivity to model parameter vari-
ations. There are two significant differences between these results and those obtained with the
proportional control (Figure 4.8). First, all motor speed responses in Figure 4.12 converge in
steady-state to the reference command. This is due to the important zero steady state error
property of integral control. In other words, perfect tracking is achieved in steady state as long
as the parameter variations don’t cause instability. Second, the input voltage remains within
the allowable limits umax = 3V . This is achievable because the PI controller has two terms
that can be used to independently tune the transient and steady-state response. In particular,
the PI controller has a proportional gain Kp = 0.002 chosen to ensure that the input voltage
remains within the allowable limits during the initial transient. The integral term causes the
input voltage to converge to the “correct” value required for zero steady-state error.

Next, unmodeled dynamics can have a significant impact on the closed-loop performance

75

for large gains (Kp, Ki). In particular, the first-order DC motor model neglects fast electrical
dynamics. Equation 4.2 gives a second-order motor model that includes these electrical dy-
namics. These fast dynamics can typically be neglected in the design for reasonable values of
the gains. However, large gains will eventually degrade the performance leading to oscillations,
overshoot and even instability. This behavior is similar to that obtained for the proportional
controller in Section 4.3.2 and hence no results are shown.

4.4.3 Summary of Proportional-Integral Control Performance

The PI controller has the following effects on the design requirements given in Section 4.1.3:

• Stability: Closed-loop stability requires a0 + b0Kp > 0 and b0Ki > 0. Again, the
motor itself (with no control) is stable but that the closed-loop system is unstable if the
gains fail to satisfy these conditions. Thus closed-loop control can, if designed poorly,
destabilize a stable plant. Conversely, if the plant (without control) is unstable then a
properly designed feedback controller can be used to obtain a stable closed-loop system.

• Reference Tracking: If the closed-loop is stable then the PI controller perfectly tracks
the desired motor speed in steady state. The closed-loop has two poles that can be
placed arbitrarily in the left half by proper selection of Kp and Ki. Thus the transient
response characteristics (overshoot, rise time, settling time) can be tuned by placing
the poles using the relations derived for second order systems (Section 3.6). The main
complication is that the transfer function from r to y has a zero at −Ki

Kp
. This zero

modifies the transient response characteristics as discussed in Section 3.7.2.

• Disturbance Rejection: If the closed-loop is stable then the PI controller perfectly
rejects any constant disturbance, i.e. constant disturbances cause no steady-state error.

• Actuator Effort: Large gains (Kp, Ki) will cause the input voltage to exceed the allow-
able bounds. The control effort in the initial transient is due entirely to the proportional
term while the control effort in steady-state is entirely due to the integral term. The two
gains allow the controller to be more easily tuned to remain within actuator effort limits.

• Noise Rejection: The PI controller requires a measurement of motor speed and sensor
noise may be an issue. Generally larger gains tend to amplify noise leading to degraded
performance. This is explored further in Section XXX.

• Robustness to Model Uncertainty: The proportional controller makes the closed-
loop response less sensitive to model parameter variations. Moreover, there will be zero
steady-state error even if the parameters vary from their nominal values as long as the
closed-loop is stable. Unmodeled (fast) dynamics will cause performance degradation
(overshoot, oscillations, and even instability) if the gains are selected too large.

The main property of PI control is that it achieves zero error in steady state. The
proportional and integral gains can be tuned to provide better trade-offs than can
be achieved by proportional control.

76

4.5 Proportional-Derivative Control

Summary: This section introduces a second-order model for the directional heading of a
rocket. The dynamics are unstable and cannot be stabilized by either P or PI control. This
motivates the introduction of proportional derivative (PD) control. This controller computes
the input using a term proportional to the error and another term proportional to the derivative
of the error. This strategy is able to stabilize the rocket attitude dynamics. However, a basic
implementation of PD control causes large control inputs when there are step changes in the
reference command. In addition, PD control tends to amplify the effects of sensor noise. It is
typical to implement a “smoothed” derivative term to alleviate these undesired effects.

4.5.1 Rocket Heading Dynamics

Proportional or Proportional-Integral controllers are generally sufficient for the control of first-
order plants. However, additional issues arise for control second (and higher order) plants.
We’ll explore some of these issues using a second order model for the heading, i.e. attitude,
dynamics of a rocket. Rockets require precise control of their heading direction to ensure that
they reach their desired final destination. Figure 4.13 (left) shows a simple diagram showing
the key variables involved in the attitude dynamics. The output is the rocket heading angle
y (rad). Modern rockets control their heading by thrust vectoring (also known as gimballed
thrust) [15]. Specifically, the rocket nozzle can be rotated to change the direction of the thrust
T . The input u (rad) is the angle between the rocket thrust and the centerline of the rocket.
The goal is to control the rocket heading angle y using the input thrust angle u.

T
u

y

0 1 2 3 4 5
Time (sec)

0

1

2

3

4

5

6

A
tti

tu
de

, y
 (

ra
d)

Figure 4.13: Left: Diagram for rocket attitude. Right: Step response for “nominal” rocket
attitude model with u(t) = 0.05rad.

A simple nonlinear model for the rocket attitude dynamics is developed in Appendix 4.9.2
based on the work in [11]. Linearizing around an equilibrium condition with (ȳ, ˙̄y, ū) = (0, 0, 0)

77

yields the following second-order linear ODE model:

ÿ(t) + a1ẏ(t) + a0y(t) = b0 u(t) + b0 d(t)

where: a1 = 0
1

sec
, a0 = −0.12

1

sec2
, and b0 = 6.32

1

sec2

(4.18)

The ODE includes another input d(t) (rad) to model various disturbances acting on the rocket.
This “nominal” model fails to capture uncertainties in the ODE coefficients and also neglects
certain dynamics (e.g. the dynamics of the sloshing in the fuel tank). It is also important to
note that the rocket nozzle can only physically rotate by small angles. It is assumed that the
nozzle angle input saturates at |u| ≤ umax = 0.2rad (≈ 11.5o).

Figure 4.13 (right) shows a step response for the rocket attitude model with u(t) = 0.05rad
and ICs y(0) = ẏ(0) = 0. The transfer function for the second-order model is G(s) = 6.32

s2−0.12
.

This has poles at s1 = −0.346 and s2 = 0.346. Hence, the plant dynamics are unstable due to
the positive root s2. The step response in Figure 4.13 is dominated by a growing exponential
with time constant τ2 = 1

|s2| = 2.89sec corresponding to the positive root.

Consider the use of proportional control for the rocket heading system. Substitute u(t) =
Kp(r(t)− y(t)) into Equation 4.18 and collect all terms involving y(t) on the left side:

ÿ(t) + a1︸︷︷︸
2ζωn

ẏ(t) + (a0 + b0Kp)︸ ︷︷ ︸
ω2
n

y(t) = (b0Kp) r(t) + b0 d(t) (4.19)

The proportional gain affects the natural frequency and does not affect the damping term a1.
For the rocket attitude system a1 = 0 and hence the characteristic equation for the closed-loop
is s2 + (a0 + b0KP) = 0. If a0 + b0Kp < 0 then the closed-loop is unstable with one pole in
the left half of the complex plane (LHP) and one pole in the RHP. If a0 + b0KP ≥ 0 then the
closed-loop is unstable with two poles on the imaginary axis. Thus it is not possible to
stabilize the rocket attitude dynamics using proportional control. It can also be
shown that the rocket attitude dynamics cannot be stabilized by a PI control law.‡

In general, P and PI control cannot stabilize any second-order plant with a1 ≤ 0. Moreover,
P and PI will be ineffective if the plant is stable but with low damping, e.g. a plant with
(a1, a0) = (2, 100) corresponding to (ζ, ωn) = (0.1, 10). For such systems, P and PI are not
able to increase the damping and hence the closed-loop response will be oscillatory with large
overshoot. This motivates the need for the additional control strategy introduced next.

4.5.2 Proportional-Derivative Control Design

This section introduces a strategy known as proportional-derivative (PD) control : i) the user
specifies the desired motor speed r(t), ii) the tracking error between the desired and actual
speeds e(t) = r(t)− y(t) is computed, and iii) the controller sets the input voltage as follows:

u(t) = Kpe(t) +Kdė(t) (4.20)

‡To model the closed-loop with PI control, first differentiate Equation 4.18 and then substitute for u̇ using
the ODE form of a PI controller in Equation 4.12. The closed-loop characteristic equation is s3+(a0+b0Kp)s+
(b0Ki) = 0. The characteristic equation can be factored as (s− p1)(s− p2)(s− p3) = 0 where {p1, p2, p3} are
the poles. Comparing the s2 terms in both forms of the characteristic equation yields −(p1 + p2 + p3) = 0.
This implies that Re{pi} ≥ 0 for at least one pole, i.e. the closed-loop is unstable for any choice of (Ki,Kp).

78

where Kp and Kd are proportional and derivative gains. A block diagram for the closed-loop
is shown in Figure 4.14. The first (proportional) term in Equation 4.20 reacts to the “present”
as measured by the current error. The second (derivative) term reacts to the “future” as
measured by the rate of change of the error. For example, suppose e(t) = 0 and ė(t) > 0 at
some time t. In this case the proportional term Kpe(t) is zero. However, ė(t) > 0 implies the
error is growing and will be positive shortly after t. The derivative term Kdė(t) anticipates
this change and increases u(t) accordingly.§ Conversely, if e(t) = 0 and ė(t) < 0 then the error
is decreasing and will be negative shortly after t. In this case the derivative term anticipates
the change due to ė(t) < 0 and decreases u(t).

Kp

d
dt

Kd

Rocket
G(s)

r e

d

u y

−

PD Control

Figure 4.14: Block diagram for proportional-derivative control of rocket attitude.

A model of the closed-loop system can be used to build on this intuition. Substitute the
PD controller (Equation 4.20) into the model for the rocket heading (Equation 4.18) and bring
all terms involving y to the left side:

ÿ(t) + (a1 + b0Kd)︸ ︷︷ ︸
:=2ζωn

ẏ(t) + (a0 + b0Kp)︸ ︷︷ ︸
:=ω2

n

y(t) = (b0Kd) ṙ(t) + (b0Kp) r(t) + b0d(t) (4.21)

This is a second-order model for the closed-loop from inputs r and d to output y. The gain
Kp affects the natural frequency while Kd affects the damping term. Both poles are in the left
half plane if and only if a1 + b0Kd > 0 and a0 + b0Kp > 0. For the remainder of the discussion
it is assumed that these conditions are satisfied so that the closed-loop is stable.

The closed-loop has two poles that can be placed arbitrarily through proper selection of
(Kp, Kd). In addition, the transfer function from r to y includes a zero at −Kp

Kd
which influences

the response. For example, suppose the PD gains are selected as (Kp, Kd) = (0.75, 0.47). As
a result, the closed-loop poles have the following natural frequency and damping ratio:

ωn =
√
a0 + b0Kp = 2.14sec and ζ =

a1 + b0Kd

2
√
a0 + b0Kp

= 0.7 (4.22)

This corresponds to complex poles at s1,2 = −1.5 ± 1.53j. Section 3.6 relates the second
order step response characteristics to (ωn, ζ). The predicted settling time, rise time, and peak

§This statement assumes Kd > 0 which is the typical case when b0 > 0. If b0 < 0 then typically Kd < 0. In
this case if ė(t) > 0 then the derivative term decreases u(t).

79

overshoot for the closed-loop response are:

ts ≈
3

ζωn
= 2sec, tr =

π
2

+ sin−1(ζ)

ωn
√

1− ζ2
= 1.53sec, and Mp = e−πζ/

√
1−ζ2 = 0.046 (4.23)

For the selected gains, the closed-loop zero is located at −Kp
Kd

= −1.57. This zero is almost the
same as the real part of the poles s1,2. Hence the zero is expected to reduce the rise time and
increase the overshoot compared to the predictions in Equation 4.23.

Figure 4.15 shows results with this PD controller and the rocket attitude model (Equa-
tion 4.18). The simulation uses the ICs ẏ(0) = y(0) = 0, step reference command r(t) = 0.1 rad,
and a step disturbance: d(t) = 0rad for t ∈ [0, 5]sec and d(t) = −0.01rad for t ≥ 5sec. Fig-
ure 4.15b shows the heading angle response. The peak heading angle is yp = 0.123rad and
the heading angle just before the disturbance is y(5) = 0.103rad. Hence the observed peak
overshoot is Mp = 0.123−0.103

0.103
= 0.19. This is significantly larger than the predicted value

Mp = 0.046. Moreover, the observed rise time is approximately tr = 0.55sec. This is signif-
icantly shorter than the predicted value tr = 1.53sec. These deviations from the predictions
are due to the zero at −Kp

Kd
= −1.57 as mentioned above. The observed settling time (before

the disturbance occurs) is close to the predicted value of ts = 2sec. Also note the steady state
error both before and after the disturbance (Figure 4.15c) due to the lack of integral control.

Figure 4.15a shows the control input u (solid blue) along with the proportional (red dotted)
and derivative (green dash-dotted) terms. In steady state ė = 0 and the derivative term has
no impact. However, the derivative term has a significant impact during transients. The inset
diagram shows the signals zoomed for t ≤ 0.1sec. At t = 0, the proportional term is Kpe(0) =
Kpr̄ = 0.0746rad. The derivative term is extremely large and far exceeds the allowable thrust
angle umax = 0.2rad. In theory, the derivative term at t = 0 is Kdė(0) = Kdṙ(0) = ∞
because the desired value steps discontinuously from r(0−) = 0rad to r(0+) = 0.1rad. The
simulation uses a more practical implementation to avoid this infinite transient. Specifically,
it is common to implement a “smoothed” derivative term as Kdv̇(t) where

α1v̇(t) + v(t) = e(t) IC: v(0) = 0 (4.24)

If α1 = 0 then Equation 4.24 simply yields v(t) = e(t) and the derivative term is Kdė(t) as
before. If α1 is “small” then this ODE first smooths the error before differentiating. Specifically,
when e(t) jumps discontinuously at t = 0 then v(t) will respond smoothly with a characteristic
first-order response. Hence v(t) will be differentiable and the derivative term will not be

infinite. The value α1 = 0.01 is used in the simulation. This yields v̇(0) = e(0)
α1

= r̄
α1

= 10. The
resulting derivative term is then Kdv̇(0) = 4.7rad as observed in Figure 4.15a.

4.5.3 Summary of Proportional-Derivative Control Performance

The impact of model uncertainty (parameter variations and unmodeled dynamics) is similar to
the discussions for P/PI control. Hence no additional results are shown for the PD controller.
The PD controller has the following effects on the design requirements in Section 4.1.3:

• Stability: P and PI controllers cannot stabilize a second-order system if a1 ≤ 0. How-
ever, PD control can be used to stabilize such systems. In particular, closed-loop stability
of a second-order system with PD control requires a1 + b0Kd > 0 and a0 + b0Kp > 0.

80

0 2 4 6 8 10
Time (sec)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

In
pu

t u
 (

ra
d)

PD Input (Total)
P-term
D-term

0 0.05 0.1
Time (sec)

0

2

4

In
pu

t u
 (

ra
d)

(a) Input thrust angle, u (rad)

0 2 4 6 8 10
Time (sec)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

H
ea

di
ng

 A
ng

le
, y

 (
ra

d)

(b) Output heading angle, y (rad)

0 2 4 6 8 10
Time (sec)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

E
rr

or
, e

 (
ra

d)

(c) Tracking error, e = r − y (rad)

-2 -1.5 -1 -0.5 0
Real

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
ag

Poles
Zero

(d) Closed-loop poles and zero from r to y.

Figure 4.15: Step responses for closed-loop with r(t) = 0.1 rad and d(t) = −0.01rad for t ≥ 5.
PD gains are Kp = 0.74 and Kd = 0.47.

• Reference Tracking: A PD controller does not perfectly track reference commands
due to the lack of integral control. Increasing Kp will reduce the steady state error
but Kd has no affect on the steady-state. The closed-loop has two poles that can be
placed arbitrarily in the left half by proper selection of Kp and Kd. Thus the transient
response characteristics (overshoot, rise time, settling time) can be tuned by placing
the poles using the relations derived for second order systems (Section 3.6). The main
complication is that the transfer function from r to y has a zero at −Kp

Kd
. This zero

modifies the transient response characteristics as discussed in Section 3.7.2.

• Disturbance Rejection: Again, increasing Kp will decrease the steady-state error due
to constant disturbances but Kd will have no affect on the steady-state.

• Actuator Effort: The derivative term can lead to extremely large control inputs es-
pecially when the error term changes rapidly. It is typical to implement the derivative

81

term using the smoothed derivative in Equation 4.24.

• Noise Rejection: A significant impact of the derivative term is that it tends to
amplify the effect of sensor noise thus degrading performance. This is discussed
further in Section XXX.

• Robustness to Model Uncertainty: The PD controller has similar features with re-
spect to model uncertainty as a proportional control. The proportional term reduces
sensitivity to parameter variations. However large gains can lead to performance degra-
dations due to fast unmodeled dynamics.

The derivative term of a PD controller directly impacts the damping. However,
the derivative term can yield large control inputs during transients and can also
amplify sensor noise.

82

4.6 PID Tuning

Summary: This section focuses on tuning of PID controllers for first and second order systems.
The design requirements are specified in terms of the step response characteristics of the closed-
loop system. The controller gains are tuned by pole placement using two steps. First, the closed
loop poles are selected to satisfy the design requirements using the step response characteristics.
Second, the controller gains are chosen to place the poles at the desired locations.

4.6.1 Approach

Each feedback system has unique design issues. As a result, it is difficult to provide a single
procedure for tuning of PID controllers that will be successful in all cases. The textbook [1] is
a good reference covering many details on PID tuning. This section will focus on tuning for
the special case with plants modeled by first and second order systems. The main design re-
quirements are specified in terms of the step response characteristics of the closed-loop system.
The basic design approach described here is called pole placement. This means
the controller gains can be tuned to place the closed-loop poles anywhere in the
left half plane. The closed loop poles are placed to satisfy the design requirements
using the step response characteristics described in Sections 3.5 and 3.6. The re-
mainder of the section provides examples of this design procedure for first and second order
systems. Procedures to tune PID controllers for higher order systems are given in [1].

4.6.2 PI for First-Order Systems

Consider a plant modeled by the following first-order ODE:

ẏ(t) + a0 y(t) = b0 u(t) + b0 d(t)

where: a0 = 2 and b0 = 3
(4.25)

The plant has a single pole at s = −2 rad
sec

. Thus the plant is stable with time constant τ = 0.5sec
and settling time 3τ = 1.5sec. The design requirements for the controller are:

• Stability: The closed-loop system should be stable.

• Reference Tracking: The error e(t) := r(t) − y(t) should satisfy the steady state
bound |ess| ≤ 0.01 for a unit reference r(t) = 1 rad

sec
with no disturbance d(t) = 0. The

step response should also have peak overshoot Mp ≤ 0.05 and settling time ≤ 0.75sec.

• Disturbance Rejection: The steady state error due to a constant unit disturbance
d(t) = 1 with no reference r(t) = 0 should satisfy |ess| ≤ 0.02.¶

• Actuator Effort: The input should remain within |u(t)| ≤ 10.

¶Note that the requirements for reference tracking and disturbance rejection are written independently with
unit norm inputs. The principle of superposition can be used to bound the error when there are both reference
and disturbance inputs. In particular, if r(t) = r̄ and d(t) = d̄ then the requirements imply |ess| ≤ 0.01r̄+0.02d̄.

83

• Noise Rejection: No requirement involving sensor noise will be considered in this
example. However, noise rejection typically restricts the speed of response. In other
words, noise is typically amplified if the closed-loop settling time is too small. This will
be discussed in more detail later in the course.

• Robustness to Model Uncertainty: As noted previously, the model used for control
design is typically simplified. In this case, assume the first order model neglects “fast”
dynamics. If the closed-loop is too fast then these unmodeled dynamics will degrade
performance. Thus the closed-loop settling time is required to be ≥ 0.1sec.

Proportional control is simple and should be considered as an initial option if the plant
is first-order. However, this approach only has one (proportional) gain that affects both the
settling time and steady state error. The reference tracking requirement will generally require
a large proportional gain. As discussed in Section 4.3.2, large proportional gains may actually
degrade performance due to unmodeled dynamics. In such cases, PI control is a good op-
tion. The proportional and integral terms can be used to independently modify the transient
response (settling time) and steady state tracking.

Based on these considerations a PI controller will be designed for this example system:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ (4.26)

The closed-loop model is derived following similar steps to those in Section 4.4.1: i) Substituting
the control (Equation 4.26) into the plant dynamics (Equation 4.25), ii) Differentiate both sides
of the resulting ODE, and iii) collect all terms involving y(t) on the left side. This yields the
following closed-loop model:

ÿ(t) + (a0 + b0Kp)︸ ︷︷ ︸
:=2ζωn

ẏ(t) + b0Ki︸︷︷︸
:=ω2

n

y(t) = b0Kp ṙ(t) + b0Ki r(t) + b0ḋ(t) (4.27)

Here ζ and ωn are the closed-loop damping ratio and natural frequency. The pole placement
procedure involves selecting the location of the closed-loop poles in order to satisfy the design
requirements. Closed-loop stability is achieved by placing the poles anywhere in the LHP.
Moreover, the use of integral control (and closed-loop stability) implies that e(t) → 0 for
any constant reference and/or disturbance. Hence the steady-state reference tracking and
disturbance rejection requirements are automatically satisfied. Thus the main requirements
involve the peak overshoot Mp ≤ 0.05 and settling time ≤ 0.75sec due to a unit reference.

Section 3.6 discussed the step response features for a second order system (with no zero).
Recall that if the closed-loop has damping ratio ζ ≤ 1 and natural frequency ωn then the closed-
loop has roots at s1,2 = −ζωn ± jωn

√
1− ζ2. The settling time is approximately 3

ζωn
and the

peak overshoot is Mp = exp(− ζ√
1−ζ2

π). The pole placement method is to select the

closed-loop (ωn, ζ) based on the settling time and peak overshoot requirements.

The controller gains can then be computed from Equation 4.27: Ki = ω2
n

b0
and

Kp = 2ζωn−a0
b0

. This discussion focused on the case ζ ≤ 1. Similar results can be obtained if it
is desired to have an overdamped (ζ > 1) closed-loop with two real poles.

84

Results for two different PI control designs are shown in Table 4.2. Both controllers are
designed to just meet the settling time requirement τsettle = 0.75sec. Reducing settling time
further might cause issues with control effort, noise, and/or robustness. The first design
K1(s) is critically damped and hence the estimated overshoot (without the zero) is zero. The
second design K2(s) is underdamped and the estimated overshoot (without the zero) is Mp =
0.046. Overshoot is generally undesirable but a small amount of overshoot has the benefit of
significantly reducing the rise time, e.g. refer back to the right plot of Figure 3.9. Note that
the closed-loop (Equation 4.27) depends on ṙ(t) and, as a result, has a zero at s = −Ki

Kp
. This

zero will reduce the rise time but also cause increase overshoot in both designs. This zero will
likely cause the second design to exceed the overshoot requirement.

Design ζ ωn, rad
sec

Poles, s1,2 Mp τsettle, sec Kp Ki

K1(s) 1 4 -4, -4 0 0.75 2 5.33

K2(s) 0.7 5.71 −4± 4.08j 0.046 0.75 2 10.88

Table 4.2: Data for two PI controllers. Mp and τsettle are estimated neglecting the zero at −Ki
Kp

.

Figure 4.16 shows the closed-loop responses for the two designs with zero ICs, step reference
command r(t) = 4, and a step disturbance: d(t) = 0 for t ∈ [0, 2]sec and d(t) = −2 for t ≥ 2sec.
The right plot shows the output. Note that the use of integral control allows both designs to
converge back to the reference command even after the disturbance occurs. The peak value
for the second design is yp ≈ 4.5. This corresponds to a peak overshoot Mp = 0.125 (= 4.5−4

4
).

As expected, this exceeds the overshoot requirement due to the zero at s = −Ki
Kp

. The left

plot of Figure 4.16 shows the control signal. Both designs remain with the allowable bounds.
If the control exceeded the allowable bounds then the speed of response would likely need
to be reduced. This might need an increase in the required settling time. In general, a
reasonable initial PI design for a first-order system can be obtained by placing
critically damped (ζ = 1) poles. This will result in repeated poles s1,2 = −ωn,−ωn
and the natural frequency can be tuned to set the desired settling time. Some
iteration will be required due to the effect of the closed-loop zero at s = −Ki

Kp
.

4.6.3 PID for Second-Order Systems

Consider a plant modeled by the following second-order ODE:

ÿ(t) + a1ẏ(t) + a0 y(t) = b0 u(t) + b0 d(t)

where: a1 = −2, a0 = 17, and b0 = 17
(4.28)

The plant has a poles in the RHP at s = 1± 4j rad
sec

and is thus unstable. The poles are lightly
damped with natural frequency of 4.1 rad

sec
. The design requirements for the controller are:

• Stability: The closed-loop system should be stable.

85

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)

0

1

2

3

4

5

6

7

8
In

pu
t u

K
1
(s)

K
2
(s)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)

0

1

2

3

4

5

O
ut

pu
t y

K
1
(s)

K
2
(s)

Figure 4.16: Step responses for closed-loop with r(t) = 4 and d(t) = 2 for t ≥ 2. Results shown
for two PI controllers

• Reference Tracking: The error e(t) := r(t) − y(t) should satisfy the steady state
bound |ess| ≤ 0.01 for a unit reference r(t) = 1 rad

sec
with no disturbance d(t) = 0. The

step response should also have peak overshoot Mp ≤ 0.1 and settling time ≤ 0.6sec.

• Disturbance Rejection: The steady state error due to a constant unit disturbance
d(t) = 1 with no reference r(t) = 0 should satisfy |ess| ≤ 0.02.

• Actuator Effort: The input should remain within |u(t)| ≤ 20.

• Noise Rejection: No requirement involving sensor noise will be considered in this
example. However, noise rejection typically restricts the speed of response.

• Robustness to Model Uncertainty: Assume the second order model neglects “fast”
dynamics. If the closed-loop is too fast then these unmodeled dynamics will degrade
performance. Thus the closed-loop settling time is required to be ≥ 0.1sec.

Control is required to stabilize the system, i.e. move the poles from the RHP to the LHP,
and to add damping to the poles. A derivative term is required to meet these objectives for
the example system. Hence a PID controller of the following form will be designed:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ −Kdẏ(t) (4.29)

Note that the derivative term is written as −Kdẏ(t). This avoids differentiating the reference
signal which, for step reference commands, can cause a large spike in the control u(t). If the
plant dynamics are overdamped (or heavily damped) then the derivative term may not be
needed and should be removed to simplify the control design.

The closed-loop model is derived by: i) Substituting the control (Equation 4.29) into the
plant dynamics (Equation 4.28), ii) Differentiating both sides of the resulting ODE, and iii)

86

Collecting all terms involving y(t) on the left side. This yields the following closed-loop model:

y[3](t) + (a1 + b0Kd)ÿ(t) + (a0 + b0Kp)ẏ(t) + (b0Ki)y(t) = b0Kp ṙ(t) + b0Ki r(t) + b0ḋ(t)
(4.30)

Pole placement involves selecting the location of the closed-loop poles in order to satisfy the
design requirements. Closed-loop stability is achieved by placing the poles anywhere in the
LHP. Moreover, the use of integral control (and closed-loop stability) implies that e(t) → 0
for any constant reference and/or disturbance. Hence the steady-state reference tracking and
disturbance rejection requirements are automatically satisfied. Thus the main requirements
involve the peak overshoot Mp ≤ 0.1 and settling time ≤ 0.6sec due to a unit reference.

Assume the closed loop poles are placed at s1,2 = −ζωn ± jωn
√

1− ζ2 and s3 = −p < 0
for some (ωn, ζ, p). Then the closed-loop characteristic equation has the form:

0 = (s2 + 2ζωns+ ω2
n)(s+ p) = s3 + (p+ 2ζωn)s2 + (2ζωnp+ ω2

n)s+ ω2
np (4.31)

Match the coefficients of this desired characteristic equation to the corresponding one for the
closed-loop model in Equation 4.30. This yields the following relations between the PID gains
and the desired closed-loop pole locations:

a1 + b0Kd = p+ 2ζωn

a0 + b0Kp = 2ζωnp+ ω2
n

b0Ki = ω2
np

(4.32)

The closed-loop is third-order but we can still use the results on second order step responses in
Section 3.6 to select initial pole locations. Specifically, select the closed-loop (ωn, ζ) based on
the settling time and peak overshoot requirements. The third pole placed at s = −p will affect
the transient characteristics. As a starting point, it can be selected as p ≥ ωn. The controller
gains can then be computed from the chosen (ωn, ζ, p) using Equation 4.32.

Results for two different PID control designs are shown in Table 4.3. Both controllers are
designed to just meet the settling time requirement τsettle = 0.6sec. Reducing settling time
further might cause issues with control effort, noise, and/or robustness. The first design K1(s)
is critically damped and hence the estimated overshoot (neglecting the zero and extra pole) is
zero. The second design K2(s) is underdamped and the estimated overshoot is Mp = 0.046.
Note that the closed-loop (Equation 4.30) has a zero at s = −Ki

Kp
. This zero will reduce the

rise time but also cause increase overshoot in both designs. However, both designs also have
an extra pole at s = −p. This will tend to slow down the response and partially offset the
effect of the zero. Some iteration may be required in the design due to these additional effects.

Figure 4.17 shows the closed-loop responses for the two designs with zero ICs, step reference
command r(t) = 4, and a step disturbance: d(t) = 0 for t ∈ [0, 2]sec and d(t) = −2 for
t ≥ 2sec. The right plot shows the output. Note that the use of integral control allows both
designs to converge back to the reference command even after the disturbance occurs. The
peak value for the second design is yp ≈ 4.73. This corresponds to a peak overshoot Mp = 0.185
(= 4.73−4

4
). This exceeds the overshoot requirement due to the zero at s = −Ki

Kp
. The left plot

of Figure 4.17 shows the control signal. Both designs remain with the allowable bounds. The
critically damped design has less overshoot but slower rise time (after the reference command)
and slower response to the disturbance. The final gains can be tuned with further iteration.

87

Design ζ ωn, rad
sec

p Poles, s1,2 and s3 Mp τsettle, sec Kp Ki Kd

K1(s) 1 5 5 -5, -5, -5 0 0.6 3.41 7.35 1.0

K2(s) 0.7 7.14 5 −5± 5.10j, −5 0.046 0.6 4.94 15.0 1.0

Table 4.3: Data for two PID controllers. Mp and τsettle are estimated neglecting the zero at
−Ki
Kp

and extra pole at s = −p.

0 1 2 3 4
Time (sec)

-5

0

5

10

15

20

In
pu

t u

K
1
(s)

K
2
(s)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)

0

1

2

3

4

5

O
ut

pu
t y

K
1
(s)

K
2
(s)

Figure 4.17: Step responses for closed-loop with r(t) = 4 and d(t) = 2 for t ≥ 2. Results shown
for two PID controllers

88

4.7 Modifications to Basic PID

Summary: This section describes a few variations to the basic PID algorithm that are useful
in practice. First, actuator saturation can degrade systems that use integral control through
an effect known as windup. Integrator anti-windup strategies are useful to avoid such per-
formance degradation. Second, a PID controller (or its variations) can result in zeros in the
complementary sensitivity (reference to output) transfer function. These zeros can be modi-
fied or completely removed by weighting the reference terms in a PID controller. A particular
instance of this reference weighting is the use of rate feedback for the derivative term.

See notes.

89

4.8 Control Law Implementation

Summary: The controllers designed in this book can be represented by ODEs. It is common
to implement these controllers on a microprocessor. In this case, the control u is recomputed at
specific (discrete) time intervals. The (discrete-time) update equation is chosen to approximate
the properties of the designed (ODE) controller. The approximate update equation can be
implemented on a microprocessor with a few lines of code.

4.8.1 Implementation Architecture

Several variations of PID control have been introduced thus far including P, PI, and PD. These
controllers can be represented by an ODE that relates tracking error e(t) to control u(t). For
example, a PI control is represented by the following ODE:

u̇(t) = Kpė(t) +Kie(t) (4.33)

The corresponding transfer function is K(s) = Kps+Ki
s

. The next few chapters will develop
additional control design methods beyond the PID architecture. These new design methods
also yield controllers that can be represented by an ODE. It is possible to physically implement
such controllers using standard circuit components (resistors, capacitors, inductors, op-amps).
However, it is common to instead implement the control law on a microprocessor.

A simple model for the controller implementation on a microprocessor is shown in Fig-
ure 4.18. This figure also shows several signals involved in the control loop. The control u
is re-computed at specific (discrete) time intervals, e.g. every ∆t = 0.1sec. This consists of
three key steps: 1) Sampling, 2) Difference Equation Update, and 3) Zero-Order Hold (ZOH).
Each of these steps is described in more detail below. The overall approach taken in this book
is referred to as “continuous-time design”: a controller K(s) is designed assuming continuous
time and then an approximation is obtained for implementation. An alternative approach is
to directly design a controller in discrete-time [17]. This “discrete-time design” requires the
plant dynamics G(s) to be approximated by a discrete-time system.

1. Sampling: The output of the plant y(t) is a continuous-time signal, i.e. it is a function
of time t where t is a continuous variable. The microprocessor samples y(t) once every ∆t
seconds to obtain a sequence of measurements: y1 := y(∆t), y2 := y(2∆t), y3 := y(3∆t), etc.
The sampled measurement yk is a discrete-time signal, i.e. it is a function of a time index k
where k = 1, 2, 3, . . . is a positive integer. The value yk := y(k∆t) is the measurement at the
kth time that the microprocessor runs its code. The microprocessor also requires the reference
as a discrete-time signal rk. In many systems the reference is also obtained by sampling, e.g.
the pilot inputs on an airplane are sampled to generate the reference. However, the reference
could simply be stored in memory on the microprocessor. The sampling time ∆t depends on
the particular application but it is assumed to be “fast”. Roughly this means the sampling rate
should be 10× faster than the relevant dynamics. For example, if G(s) has important dynamics
with time constant near 0.5sec then the sampling time should satisfy ∆t ≤ 0.5

10
sec = 50msec.

If the sampling is “fast” then the implemented controller will closely match the behavior of the
continuous-time design K(s). Figure 4.18 shows the output in continuous and discrete time.

90

Kd(z) ZOH G(s)
rk ek uk u(t) y(t)

yk

−

Microprocessor

∆t

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Time, t

O
u
tp

u
t,
y
(t

)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

y1 y2

y3

y4

y5

Time Index, k

O
u
tp

u
t,
y k

0 0.1 0.2 0.3 0.4 0.5
0

2

4

Time, t

C
on

tr
ol

,
u

(t
)

0 1 2 3 4 5
0

2

4

u1
u2

u3

u4

u5

Time Index, k

C
on

tr
ol

,
u
k

Figure 4.18: Discrete-time controller implementation. The signals y(t) and u(t) are in
continuous-time. The signals yk and uk are in discrete-time with sampling time ∆t = 0.1sec.

2. Control Update: The microprocessor uses the sampled measurement yk and reference
command rk to compute the error as ek = rk−yk. The discrete-time control uk is then updated
based on the error ek. The discrete-time update relation, denoted by Kd(z) in Figure 4.18, is
chosen to approximate the behavior of the continuous-time controller K(s). Details on this
discrete-time update process are covered in Section 4.8.2. For now, it is sufficient to provide a
particular example for such an update relation:

uk = uk−1 + 5ek − 4.9ek−1 (4.34)

A relation of this form is called a difference equation. If the previous control uk−1 and error ek−1

are stored in memory then the current control uk can be computed from ek using Equation 4.34.
One possible implementation is demonstrated in the pseudocode below.

91

Initialize: uprev=0, eprev=0

while(1)

Obtain new samples: (r,y)

Compute error: e = r - y

Update control: u = uprev + 5*e - 4.9*eprev

Update previous values: uprev = u, eprev = e

end

3. Zero-order Hold: The microprocessor only updates the control uk when it receives a new
sample (rk, yk). A rule is required to convert the discrete-time signal uk back into a continuous-
time signal u(t). One simple rule is a zero-order hold (ZOH). This rule holds u(t) constant in
between the sample updates:

u(t) = uk for t ∈ [k∆t, (k + 1)∆t) (4.35)

For example, u(t) = u1 for t ∈ [∆t, 2∆t) and u(t) = u2 for t ∈ [2∆t, 3∆t). Figure 4.18 shows
the control signals in both discrete and continuous time. The continuous-time control signal
u(t) has a stair-stepped behavior due to the zero-order hold.

Figure 4.18, as drawn, assumes the microprocessor can instantaneously perform its update
calculations. For example, a measurement y3 sampled at time t = 3∆t immediately yields an
updated control signal u(t) at t = 3∆t. In reality, there will be some amount of computation
delay τdelay. Hence the measurement y3 sampled at t = 3∆t will cause the control signal to
be updated at t = 3∆t + τdelay. Such time delays can degrade control performance and even
cause instability as discussed further in Section 7.5.3.

4.8.2 Control Update

This section focuses on the update equation for the discrete-time control signal uk. In partic-
ular, assume a controller K(s) has been designed in continuous-time. The transfer function
K(s) represents an ODE that relates the continuous-time error e(t) and control u(t). The
main objective is to approximate this continuous-time controller with an update equation that
relates the discrete-time error ek and control uk.

To demonstrate the basic approach, consider a PI controller designed in continuous-time:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ (4.36)

The discrete-time implementation updates the control every ∆t seconds. Thus the objective
is to compute the control uk := u(k∆t) at sample time t = k∆t based on the current error
ek := e(k∆t). In addition, the update equation can also depend on previous samples of the
error and control, e.g. ek−1 and uk−1. To obtain a discrete-time approximation, first note that
the control signals produced by K(s) at consecutive sample times are related by:

u(k∆t)− u ((k − 1)∆t) = Kpe(k∆t)−Kpe ((k − 1)∆t) +Ki

∫ k∆t

(k−1)∆t

e(τ) dτ (4.37)

92

(k-1) " t k " t

Time, t

0

0.5

1

1.5

2

2.5

E
rr

or
, e

(t
)

(k-1) " t k " t

Time, t

0

0.5

1

1.5

2

2.5

E
rr

or
, e

(t
)

e
k-1

e
k

(k-1) " t k " t

Time, t

0

0.5

1

1.5

2

2.5

E
rr

or
, e

(t
)

e
k-1

e
k

Figure 4.19: Integrals: Continuous-time (left), ZOH approximation (middle), and FOH ap-
proximation (right).

The continuous-time signals u and e evaluated at sample times t = (k − 1)∆t and t = k∆t
can be replaced by their discrete-time equivalents, e.g. replace u(k∆t) by uk. The main issue
is that the integral term in Equation 4.37 involves the error signal e(t) for the entire interval
t ∈ [(k − 1)∆t, k∆t). An example of the exact (continuous-time) integral is represented by
the shaded blue area in the left plot of Figure 4.19. The discrete-time update requires an
approximation of this integral using ek and/or ek−1. There are many possible approximations.
Two simple approximations are the zero-order hold (ZOH) and first-order (FOH). A ZOH
treats e(t) as a constant on the interval, e.g. e(t) = ek−1.‖ The ZOH assumption approximates
the integral by the shaded rectangular area as shown in the middle plot of Figure 4.19. A FOH
instead treats e(t) as varying linearly between the samples. This yields a better approximation
for the integral given by the shaded trapezoidal area shown in the right plot of Figure 4.19. The
terminology “zero-order” and “first-order” refer to the fact that a constant and linear relation
are 0th and 1st order polynomials. An update equation for uk is obtained by replacing the
integral Equation 4.37 by one of these approximations. For example, the FOH approximation∫ k∆t

(k−1)∆t
e(τ) dτ ≈ 0.5 · (ek + ek−1) ∆t yields the following relation:

uk = uk−1 +

(
KP +Ki

∆t

2

)
ek −

(
Kp −Ki

∆t

2

)
ek−1 (4.38)

This is a difference equation that approximates the continuous-time controller. The FOH
should be used since it provides a better approximation than a ZOH. There are many other
continuous-to-discrete approximation methods but all provide similar difference equations if
the sampling time ∆t is sufficiently fast.

The Matlab function c2d converts a continuous-time system to a discrete-time approxi-
mation. The syntax is Kd=c2d(K,DeltaT) where K is a continuous-time controller, DeltaT is
the sample time, and Kd is the discrete-time approximation. This default syntax uses a ZOH ap-
proximation. A FOH approximation can be obtained with the syntax Kd=c2d(K,DeltaT,’foh’).
Additional approximation methods are available and details can be found in the help and doc-
umentation. Two simple examples are given at the end of this section.

‖The term ZOH is used in two different ways. It was first introduced for the simple rule to convert the control
from discrete-time uk to continuous-time u(t). Here ZOH refers to an assumption on the continuous-time signal
e(t) that is used to approximate the controller in terms of the discrete-time signal ek.

93

In general, discretizing an nth order ODE yields an nth order difference equation. For
example, discretizing a second-order ODE yields a second-order difference equation:

a2uk+2 + a1uk+1 + a0uk = b2ek+2 + b1ek+1 + b0ek (4.39)

Difference equations can also be compactly denoted using a transfer function notation. The
transfer function associated with Equation 4.39 is:

Kd(z) =
b2z

2 + b1z + b0

a2z2 + a1z + a0

(4.40)

The transfer function is used here simply as a different representation of the difference equation.
The variable “z” corresponds to shifting the discrete-time index by one unit. The transfer
function Kd(s) uses the subscript d to emphasize that it is a discrete-time representation. It
is also important to note that Equation 4.39 can be equivalently written as:

a2uk = −a1uk−1 − a0uk−2 + b2ek + b1ek−1 + b0ek−2 (4.41)

This simply re-defines the time index and re-arranges some terms. The form in Equation 4.39
is more standard. However, the form in Equation 4.41 can be directly interpreted as an update
for uk based on the current error ek as well as the past two values of the control {uk−2, uk−1}
and error {ek−2, ek−1}.
Example 4.1. Consider a continuous-time PI controller with Kp = 5 and Ki = 1. The code
below obtains ZOH and FOH approximations with the sample time ∆t = 0.1sec.

% Construct continuous-time PI controller

>> Kp = 5;

>> Ki = 1;

>> K = tf([Kp Ki],[1 0]);

% ZOH Approximation

>> DeltaT = 0.1;

>> Kd = c2d(K,DeltaT)

Kd =

5 z - 4.9

z - 1

Sample time: 0.1 seconds

Discrete-time transfer function.

% FOH Approximation

>> Kd = c2d(K,DeltaT,’foh’)

Kd =

5.05 z - 4.95

z - 1

Sample time: 0.1 seconds

Discrete-time transfer function.

94

The FOH yields a transfer function Kd(z) that represents the following difference equation:

uk = uk−1 + 5.05ek − 4.95ek−1 (4.42)

This agrees with the FOH approximation given in Equation 4.38. 4

Example 4.2. This example computes a discrete-time approximation for the following second-
order controller:

K(s) =
s2 + 2s+ 3

4s2 + 5s+ 6
(4.43)

The discretization is performed with a sample time ∆t = 0.01sec.

>> K = tf([1 2 3],[4 5 6]);

>> DeltaT = 0.01;

>> Kd = c2d(K,DeltaT,’foh’)

Kd =

0.2509 z^2 - 0.4968 z + 0.246

z^2 - 1.987 z + 0.9876

Sample time: 0.01 seconds

Discrete-time transfer function.

The function yields discrete-time transfer function Kd(z) that represents the following differ-
ence equation:

uk = 1.987uk−1 − 0.9876uk−2 + 0.2509ek − 0.4968ek−1 + 0.246ek−2 (4.44)

4

95

4.9 Appendix: Modeling Details

Summary: This appendix provides details on the models used in this chapter for the DC
motor and rocket attitude dynamics.

4.9.1 DC Motor Model Details

Figure 4.20 shows a simple diagram for a DC motor that includes both the electrical and
mechanical components. The input voltage u (V) causes a current i (Amp) in the electrical
circuit. The current through the motor windings generates a torque TM (Nm) which rotates
the motor shaft and inertia. The output y (rad

sec
) is the rotational speed of the shaft. The

rotation of the motor creates a back EMF, i.e. voltage, e (V) on the circuit. In addition,
there may be a load torque TL (Nm) which tends to decelerate the inertia. For example, if
the motor is used to propel a rotor on multicopter then the aerodynamic forces will generate
an opposing load torque on the motor shaft.

−
+u

R
i

L

+
e
−

J

y, TM TL

Figure 4.20: Diagram for a DC motor driving a rotational inertia.

The dynamic equations for the motor are given by two coupled first-order ODEs:

Jẏ(t) = TM − TL − bc sign(y(t)) (4.45)

u(t)− Ldi
dt

(t)−Ri(t)− e(t) = 0 (4.46)

The first equation is Newton’s second law for rotational systems: rotational inertia J times
angular acceleration ẏ(t) is equal to the sum of the torques on the motor shaft. The term
bcsign(y(t)) represents a Coulomb friction that opposes rotation of the motor shaft. This
friction does not change with the magnitude of the motor speed. A viscous friction term bvy(t)
grows proportional to the motor speed. Viscous friction is neglected here but could be included
in a more detailed model. The second equation is Kirchoff’s voltage law: the sum of voltages
around the circuit is equal to zero. This equation also assumes ideal relationships for the
resistor and capacitor.

For an ideal motor, the back EMF is proportional to motor speed: e(t) = Key(t) where Ke

(V sec
rad

) the back EMF constant. In addition, the motor torque is proportional to the circuit
current: TM(t) = Kti(t) where Kt (Nm

Amp
) is the torque constant. Conservation of power can be

96

used to show that Kt = Ke. In particular, the power balance with y(t) > 0 is:

u(t)i(t) = i(t)2R + L
di

dt
(t) i(t) + bcy(t) + (TM(t)− bc) y(t) (4.47)

The left side is the input electrical power. The first two terms on the right side are the losses
in the resistor and the instantaneous power to the inductor. The remaining two terms are the
mechanical energy losses due to the Coulomb friction and mechanical power output due to the
net torque on the motor shaft. Re-arrange using Kirchoff’s voltage law (Equation 4.46):

e(t)i(t) = TM(t)y(t) (4.48)

Finally, substitute e(t) = Key(t) and TM(t) = Kti(t) to show that Kt = Ke.
The motor model has the five parameters to be identified: J , L, R, bc, and Kt = Ke.

In addition, the input voltage should remain below a maximum operation voltage umax to
avoid damage to the motor. A specification sheet for a motor can be used to estimate typical
values for these parameters. For example, Table 4.4 provides parameter values for a Precision
Microdrives DC Motor 112-002 [14] with a small inertia attached to the motor shaft. The
values for L, R, and umax are directly from the specification sheet. The value for J is estimated
based on the three blade inertia shown in Figure 4.1 (left). The remaining parameters can be
estimated from data in the specification sheet. In particular, the specification sheet provides
data under no load conditions (TL = 0Nm) with the rated voltage urated = 2.4V . For
these conditions the motor converges to a speed yNL = 17000 rpm = 1780 rad

sec
and current

iNL = 0.27Amp. Kirchoff’s voltage law (Equation 4.46) in steady state is:

urated −RiNL −Ke yNL = 0 (4.49)

Use the given no-load data to solve for Ke = 0.0012 V sec
rad

. As derived above, Kt = Ke =
0.0012 V sec

rad
. Newton’s law (Equation 4.45) in steady-state with no load (assuming y(t) > 0) is:

0 = KtiNL − bc (4.50)

Thus the Coulomb friction is bc = 3.3 × 10−4Nm. This friction will be neglected to simplify
the remainder of the discussion but it should be included in a more detailed model.

At this point the model is complete but it takes the form of the two coupled first-order
ODEs in Equations 4.45 and 4.46. It will be useful to combine these into a single second-order
equation. A short-cut will be given later (Section XXX) to simplify some of the required
algebra. For now, the algebra will be cumbersome but straightforward. Specifically, form
L d
dt

(Eq 4.45) +R · (Eq 4.45) to obtain (neglecting Coulomb friction):

J(Lÿ(t) +Rẏ(t)) = Kt

(
L
di

dt
(t) +Ri(t)

)
− LṪL(t)−RTL(t) (4.51)

Use Equation 4.46 to substitute on the right side to obtain:

J(Lÿ(t) +Rẏ(t)) = Kt(u−Key(t))− LṪL(t)−RTL(t) (4.52)

97

Parameter Definition Nominal Value Units

J Inertia 2× 10−6 kg m2

L Inductance 150× 10−6 H

R Resistance 0.8 y

bc Coulomb friction 3.3× 10−4 Nm

Kt Torque constant 1.23× 10−3 Nm
Amp

Ke Back EMF constant 1.23× 10−3 V sec
rad

umax Maximum Voltage 3.0 V

Table 4.4: Parameters for Precision Microdrives DC Motor 112-002 [14] with small inertia.

Collect all terms involving the output y(t) on the left side:

(JL) ÿ(t) + (JR) ẏ(t) + (KtKe)y(t) = Ktu(t)− LṪL(t)−RTL(t) (4.53)

This second-order ODE has two inputs: i) a controllable input u and, ii) a load torque input
TL. For simplicity, gather the terms involving the load torque into a single disturbance d(t) :=
− 1
Kt

(LṪL(t) +RTL(t)). With this definition, the ODE model is:

(JL) ÿ(t) + (JR) ẏ(t) + (KtKe)y(t) = Ktu(t) +Ktd(t) (4.54)

The benefit of this definition is that the ODE from d to y is the same as the ODE from u to y.
Using the nominal parameter values specified in Table 4.4 yields the following motor model:

(3× 10−10) ÿ(t) + (1.6× 10−6) ẏ(t) + (1.51× 10−6) y(t) = (1.23× 10−3)u(t) (4.55)

The corresponding transfer function for this second order model is:

G2(s) =
1.23× 10−3

3× 10−10 s2 + 1.6× 10−6 s+ 1.505× 10−6
(4.56)

This second-order system has a DC gain of G2(0) = 813 rad
sec V

. In addition, the two poles are
at s1 = −0.94 and s2 = −5.33 × 10−3 with corresponding time constants τ1 = −1.06 sec and
τ2 = −1.9× 10−4 sec. The slow pole s1 is much slower than the fast pole s2. Hence, the motor
dynamics are approximately first order with settling time 3.2 sec (= 3τ1). An approximate,
first-order model can be constructed using the procedure described in Section 3.7.3. This pro-
cedure constructs the first-order model with the slow pole at s1 and with DC gain equal G2(0).
A similar first-order approximation can be obtained by setting L = 0 in Equation 4.46. This
neglects the “fast” electrical dynamics and retains the “slower” rotational inertia dynamics.
Setting L = 0 in Equation 4.54 yields the following first-order approximation:

ẏ(t) + 0.94 y(t) = 768.8u(t) + 768.8 d(t) (4.57)

98

4.9.2 Rocket Attitude Model

The free-body diagram in Figure 4.21 below shows the key forces involved in the attitude
control problem. T (N) is the thrust force produced by the engine rocket and Fa (N) is the
aerodynamic force. The rocket attitude, i.e. the heading angle, is denoted by y (rad). The
direction of the thrust can be changed by rotating the rocket nozzle. The input u (rad) is the
angle between the rocket thrust and the centerline of the rocket. The objective is to use the
control input u to ensure that the rocket attitude y tracks some desired reference heading r.

T
u

y
Fa

mg

la

lcg

Figure 4.21: Rocket Free-body Diagram

Table 4.5 shows the key model parameter for the rocket attitude dynamics. Several pa-
rameters for the model are taken from [11]. The model makes several simplifying assumptions,
e.g. it ignores the moments due to the fuel sloshing in the fuel tank. In addition, it assumes
that Fa acts vertically downward as drawn in the diagram. However, the simplified model will
be sufficient to highlight the key issues in attitude control. The rocket attitude dynamics are
given by Newton’s second law for rotational systems. Summing the moments about the center
of gravity gives:

Jÿ(t) = T lcg sinu(t) + Fa (la − lcg) sin y(t) (4.58)

This is a nonlinear ODE due to the sinu and sin y terms. The system has an equilibrium point
at (˙̄y, ȳ, ū) = (0, 0, 0). Linearizing around this trim condition gives the following linear ODE:

Jÿ(t) = T lcgu(t) + Fa (la − lcg) y(t) (4.59)

After plugging in the parameter values from Table 4.5 and re-arranging terms we obtain:

ÿ(t)− 0.1225 y(t) = 6.3163u(t) (4.60)

99

Parameter Definition Nominal Value Units

J Moment of inertia about CG 2.49× 108 kg m2

lcg Length from nozzle to CG 30.48 m

la Length from nozzle to aero. center 33.53 m

T Engine thrust 5.16× 107 N

m Rocket mass 1.456× 106 kg

Fa Aerodynamic force 1× 107 N

Table 4.5: Parameters for Rocket Attitude Dynamics. Several parameters are from [11].

100

Chapter 5

Frequency Response

The previous chapter discussed various versions of PID for the control of first and second order
systems. The designs involved tuning a small number of gains based on relations between the
following properties of the closed-loop system:

• Coefficients of the ODE, e.g. (ζ, ωn)

• Poles/roots of the characteristic equation and their locations in the complex plane

• Transient response characteristics with a specific focus on the step response (rise time,
settling time, and overshoot)

This approach is based in the time-domain, i.e. it focuses on the transient response of the
system. This approach becomes more difficult to apply for higher order systems and/or more
complicated controllers. More advanced design methods are based in the frequency-domain. In
particular, these methods rely on an understanding of the system response to sinusoidal inputs.
This chapter presents the basic tools for understanding the frequency response characteristics.
Subsequent chapters use these tools to develop new control design and analysis methods.

101

5.1 Steady-State Sinusoidal Response

Summary: The transfer function G(s) is used to express the solution of a stable linear
system forced by a sinusoidal input. If the input is u(t) = sin(ωt) then the response satisfies
y(t) → |G(jω)| sin (ωt+ ∠G(jω)) as t → ∞. The output converges to a sinusoid at the same
frequency as the input but with amplitude scaled by |G(jω)| and phase shifted by ∠G(jω).

5.1.1 Revisiting the Transfer Function

The transfer function G(s) has mainly been used as notation for an ODE. However, it will
now play a key role in describing the solution of the ODE forced by a sinusoidal input. In
particular, the sinusoidal solution depends on the transfer function evaluated at a purely
imaginary number s = jω where ω ∈ R is the frequency in rad

sec
. The result G(jω) is a complex

number that can be expressed either in Cartesian form by its real/imaginary parts or in polar
form by its magnitude |G(jω)| and phase ∠G(jω). A simple example demonstrating this
notation is given below. Refer back to Appendix 3.8.1 for a brief review of complex functions.

Example 5.1. G(s) = 2
s+4

is the transfer function for a stable, first order system. The value

at ω = 0 is G(0) = 0.5 which is the DC gain of the system. At the frequency ω = 3 rad
sec

the
function is G(3j) = 2

3j+4
. Multiply the numerator and denominator by the conjugate −3j + 4.

This yields the Cartesian form: G(3j) = 8−6j
25

= 0.32 − 0.24j. The magnitude and phase

are |G(3j)| =
√

0.322 + 0.242 = 0.4 and ∠G(3j) = tan−1
(
−0.24

0.32

)
= −0.64rads. The complex

number G(3j) is shown graphically in the left plot of Figure 5.1 (red x). The plot also shows
G(jω) at several other frequencies (red dots). The corresponding complex numbers are given
in both Cartesian and polar forms (Figure 5.1 on right). The phase is between [−π

2
, 0] for all

frequencies and this corresponds to the points remaining in the fourth quadrant. Note that
G(jω)→ 2

jω
= −2j

ω
as ω →∞. In other words, G(jω) approaches the origin along the negative

imaginary axis as ω →∞. This corresponds to a phase ≈ −π
2

as ω →∞.

−0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

|G(3j)|

Re{G(3j)}

Im{G(3j)}

∠G(3j)

Real

Im
ag

ω G(jω), Cartesian G(jω), Polar

0 0.500 0.500e0j

1 0.471− 0.118j 0.485e−0.245j

2 0.400− 0.200j 0.447e−0.463j

3 0.320− 0.240j 0.400e−0.644j

4 0.250− 0.250j 0.354e−0.785j

6 0.154− 0.231j 0.277e−0.983j

10 0.069− 0.172j 0.186e−1.190j

20 0.019− 0.096j 0.098e−1.373j

∞ 0 0e−
π
2
j

Figure 5.1: Transfer function G(s) = 2
s+4

evaluated at s = jω for several frequencies. Results
are shown in the complex plane (left) and as tabulated data (right). 4

102

5.1.2 Sinusoidal Response for First Order Systems

The term sinusoidal response refers to the forced response of a system with a sinusoidal input,
e.g. u(t) = sin(ωt) or u(t) = cos(ωt) where ω is a given frequency in rad

sec
. The form of the

forced response solution as t → ∞ will be of particular interest. This is typically called the
steady-state sinusoidal response.∗ This section derives the steady-state sinusoidal response
solution for a first order system of the following form:

ẏ(t) + a0y(t) = b0u(t)

IC: y(0) = y0

(5.1)

The corresponding transfer function is G(s) = b0
s+a0

. It is assumed that a0 > 0. This ensures
that the system is (BIBO) stable and hence the response y(t) due to the sinusoidal input
remains bounded. The solution can be derived for u(t) = sin(ωt) or u(t) = cos(ωt). However,
it will simplify the algebra to first derive the forced response solution for the complex sinusoid
u(t) = ejωt. This will yield solutions for both (real) sine and cosine inputs.

The procedure in Section 3.3.1 is applied to solve for the forced response of Equation 5.1
with input u(t) = ejωt. First, the characteristic equation s + a0 = 0 has only a single (real)
root s = −a0. Next, a particular solution yP (t) is found for the forced ODE yielding a general
solution of the form y(t) = yP (t) + c1e

−a0t. Finally, the initial condition y(0) = y0 is used to
solve for the coefficient c1. The system is assumed to be stable (a0 > 0). As a result, the term
c1e
−a0t decays to zero after the settling time 3τ1 = 3

a0
sec. This implies y(t)→ yP (t) as t→∞

and the steady-state sinusoidal response is given by the particular solution. An expression
for yP (t) can be obtained from the method of undetermined coefficients [2, 5]. This method
requires a “guess” at the solution yP (t) of the forced ODE:

ẏP (t) + a0yP (t) = b0e
jωt (5.2)

Assume yP has the same form as the input: yP (t) = cP e
jωt where cP ∈ C is a complex

coefficient to be determined. Substitute this assumed particular solution into Equation 5.2:

(jω + a0)cP e
jωt = b0e

jωt (5.3)

The complex exponential ejωt is nonzero for any value of ω and t. Hence yP (t) = cP e
jωt is a

particular solution if and only if cP = b0
jω+a0

. This yields the important connection back to

the transfer function: cP = G(jω) or, expressed in polar form, cP = |G(jω)|ej∠G(jω). Thus the
steady state sinusoidal response due to the input u(t) = ejωt is given by the particular solution:

yP (t) = |G(jω)|ej(ωt+∠G(jω)) (5.4)

The complex functions (u(t), yP (t)) satisfy the forced ODE in Equation 5.2. To obtain real-
valued solutions, take the imaginary part of the forced ODE:

d

dt
Im{yP (t)}+ a0 Im{yP (t)} = b0Im{ejωt} (5.5)

∗Note that the response is oscillating as t→∞ so it is not “steady” in the sense of being a constant.

103

Thus the real-valued functions (Im{u(t)}, Im{yP (t)}) also satisfy the ODE. Next recall Euler’s
formula (Appendix 3.8.1): ejφ = cos(φ) + j sin(φ) for any real number φ. By Euler’s formula,
the imaginary part of the input is Im{u(t)} = Im{ejωt} = sin(ωt). Similarly the imaginary
part of the particular solution is given by Im{yP (t)} = |G(jω)| sin (ωt+ ∠G(jω)). Putting
together these facts leads to the following conclusion:

Conclusion: Assume the first order system in Equation 5.1 is stable. If the input is u(t) =
sin(ωt) then the response satisfies y(t)→ |G(jω)| sin (ωt+ ∠G(jω)) as t→∞. In other words,
the output is a sinusoid at the same frequency as the input but the amplitude is scaled by
|G(jω)| and the phase is shifted by ∠G(jω).

Similarly, y(t) → |G(jω)| cos (ωt+ ∠G(jω)) if the input is u(t) = cos(ωt). This can be
shown by taking the real parts of the forced ODE in Equation 5.2. It is a key property of
linear systems that the steady-state sinusoidal solution can be expressed in terms of the transfer
function. The next section demonstrates that this holds even for higher order, stable linear
systems. The control analysis and design methods developed in the remainder of the class are
based on this fact.

Example 5.2. Consider the following stable, first order system:

ẏ(t) + 4y(t) = 2u(t)

IC: y(0) = 3
(5.6)

The transfer function for this system is G(s) = 2
s+4

. This is the same transfer function
considered in Example 5.1. Evaluating the transfer function at s = jω yields:

G(jω) =
2

jω + 4
=
−2jω + 8

ω2 + 16
, |G(jω)| =

√
4ω2 + 64

ω2 + 16
, and ∠G(jω) = tan−1

(
−ω

4

)
Thus if u(t) = sin(ωt) then the output converges to the following steady-state response:

yss(t) =

√
4ω2 + 64

ω2 + 16
sin
(
ωt+ tan−1

(
−ω

4

))
(5.7)

As a specific example, if ω = 2 rad
sec

then |G(2j)| = 0.447 and ∠G(2j) = −0.464rads. Thus if
u(t) = sin(2t) then the output converges to yss(t) = 0.447 sin(2t − 0.464). This input/output
pair is shown in the left plot of Figure 5.2. This graph confirms that the output converges
to a sinusoid with amplitude 0.447 after an initial transient. The steady-state output can be
re-written as yss(t) = 0.447 sin (2(t− 0.232)). This implies that the output is shifted to the
right by 0.232sec relative to the input. For example, the input u(t) crosses zero at t = 2πsec
and the output crosses zero at t = 2π + 0.232 ≈ 6.515sec.

As another example, if ω = 4 rad
sec

then |G(4j)| = 0.354 and ∠G(4j) = −0.785rads. Thus if
u(t) = sin(4t) then the output converges to yss(t) = 0.354 sin(4t − 0.785). This input/output
pair is shown in the right plot of Figure 5.2. This graph confirms that the output converges
to a sinusoid with amplitude 0.354 after an initial transient. The steady-state output can be
re-written as yss(t) = 0.354 sin (4(t− 0.196)). This implies that the output is shifted to the
right by 0.196sec relative to the input. For example, the input u(t) crosses zero at t = 2πsec
and the output crosses zero at t = 2π + 0.196 ≈ 6.480sec.

4

104

0 :/2 : 3:/2 2: 5:/2 3:
Time, t (sec)

-1

-0.447

0

0.447

1

1.5
O

ut
pu

t,
y

t = 6.515 u
y

0 :/2 : 3:/2 2: 5:/2 3:
Time, t (sec)

-1

-0.354

0

0.354

1

1.5

O
ut

pu
t,

y

t = 6.480 u
y

Figure 5.2: Response for G(s) = 2
s+4

with input u(t) = sin(ωt). Input frequencies are ω = 2 rad
sec

(left) and ω = 4 rad
sec

(right).

In general the steady-state frequency response can be re-written as:

yss(t) = |G(jω)| sin (ω(t− tshift)) where tshift := −∠G(jω)

ω
(5.8)

If ∠G(jω) < 0 then tshift > 0 represents the amount that the steady-state output is shifted to
the right relative to the input. Thus ∠G(jω) < 0 is called phase lag because the output “lags”
behind the input. Conversely, if ∠G(jω) > 0 then the steady-state output is shifted to the left
relative to the input. Thus ∠G(jω) > 0 is called phase lead because the output “leads” ahead
of the input.

5.1.3 Sinusoidal Response for Higher Order Systems

This section derives the sinusoidal steady-state response for higher order linear systems. The
basic steps are only sketched as they are similar to those used to obtain the solution for a first
order system. Consider the following nth order system:

any
[n](t) + an−1y

[n−1](t) + · · ·+ a1ẏ(t) + a0y(t) = bmu
[m](t) + · · ·+ b1u̇(t) + b0u(t)

IC: y(0) = y0; ẏ(0) = ẏ0; . . . ; y[n−1](0) = y
[n−1]
0

(5.9)

The corresponding transfer function for this system is:

G(s) =
bms

m + · · ·+ b1s+ b0

ansn + · · ·+ a1s+ a0

(5.10)

It is assumed that the system is stable, i.e. all poles are in the LHP. This ensures that the
system is (BIBO) stable and hence the response y(t) due to the sinusoidal input remains
bounded. As before, the solution is first derived for u(t) = ejωt. This will yield solutions for
both (real) sine and cosine inputs.

105

The procedure in Section 3.3.1 is again applied to solve for the forced response of Equa-
tion 5.9 with input u(t) = ejωt. First, the characteristic equation ans

n + · · ·+ a1s+ a0 = 0 has
n roots {s1, . . . , sn}. Next, a particular solution yP (t) is found for the forced ODE yielding
a general solution of the form y(t) = yP (t) +

∑n
i=1 cie

sit. Finally, the initial conditions are
used to solve for the coefficients {c1, . . . , cn}. The system is assumed to be stable (Re{si} < 0
for each i) and hence each term cie

sit decays to zero. The settling time for this decay can be
determined based on the real part of the poles. This implies y(t) → yP (t) as t → ∞ and the
steady-state sinusoidal response is given by the particular solution.

An expression for yP (t) can again be obtained from the method of undetermined coefficients
[2, 5]. This method requires a “guess” at the solution yP (t) of the forced ODE. Assume
yP (t) = cP e

jωt where cP ∈ C is a complex coefficient to be determined. Substitute both this
assumed particular solution as well as u(t) = ejωt into Equation 5.9:

(an (jω)n + · · ·+ a1 (jω) + a0) cP e
jωt = (bm (jω)m + · · ·+ b1 (jω) + b0) ejωt (5.11)

The complex exponential ejωt is nonzero for any value of ω and t. Hence yP (t) = cP e
jωt is a

particular solution if and only if cP = G(jω). Thus the steady state sinusoidal response due
to the input u(t) = ejωt is given by the particular solution:

yP (t) = |G(jω)|ej(ωt+∠G(jω)) (5.12)

The complex functions (u(t), yP (t)) satisfy the forced ODE (Equation 5.9). The remaining
steps to convert this into real-valued solutions are identical to those given in the previous
section. This leads to the similar important conclusion regarding the steady-state sinusoidal
response for higher order systems:

Conclusion: Assume the nth order system in Equation 5.9 is stable. If the input is u(t) =
sin(ωt) then the response satisfies y(t)→ |G(jω)| sin (ωt+ ∠G(jω)) as t→∞. In other words,
the output is a sinusoid at the same frequency as the input but the amplitude is scaled by
|G(jω)| and the phase is shifted by ∠G(jω).

Similarly, y(t)→ |G(jω)| cos (ωt+ ∠G(jω)) if the input is u(t) = cos(ωt). More generally
if u(t) = A sin(ωt+ θ) for some numbers (A, θ) then the steady-state response is

yss(t) = A|G(jω)| sin (ωt+ θ + ∠G(jω)) (5.13)

In other words, the output amplitude is simply the input amplitude multiplied by |G(jω)|.
Moreover, the output phase is simply the input phase plus the additional phase ∠G(jω).

106

5.2 Bode Plots

Summary: A Bode plot consists of two subplots: gain vs. frequency and phase vs. frequency.
Such plots are useful to understand the steady-state response to sinusoids of different frequen-
cies. Several simple examples, including a differentiator and integrator, are given to provide
insight for the data contained in a Bode plot.

5.2.1 An Overview of Bode Plots

A Bode Plot is a common tool used to understand the frequency response of a linear system.
As shown in Section 5.1, the steady-state sinusoidal response of a linear system is described
by the magnitude |G(jω)| and phase ∠G(jω) of the transfer function. It is useful to have
graphical displays of these quantities to understand how the system responds to sinusoids of
different frequencies. A Bode plot, named after Hendrik Bode, consists of two subplots:

• Bode Magnitude (Gain) Plot: This is a plot of gain vs. frequency. The horizontal
axis is ω on a log (base 10) scale in units of rad

sec
. The vertical axis is the gain expressed by

the quantity |G(jω)|dB := 20 log10 |G(jω)|. The subscript dB denotes that this quantity
is the magnitude in units of decibels. The unit decibel, named after Alexander Graham
Bell, was originally used for power measurements in telecommunications systems. Values
in dB can be converted back to actual units by the formula |G(jω)| = 10(|G(jω)|dB/20).
The table below shows some conversions between actual units and dB. Increasing
or decreasing by a multiplicative factor of 10 in actual units corresponds to
increasing or decreasing additively by +20 or −20 in units of dB.

|G(jω)| 0.001 0.01 0.1 0.25 0.5 1√
2

1
√

2 2 4 10 100 1000

|G(jω)|dB -60 -40 -20 -12 -6 -3 0 3 6 12 20 40 60

• Bode Phase Plot: This is a plot of phase vs. frequency. The horizontal axis is ω on a
log (base 10) scale in units of rad

sec
. The vertical axis is the phase ∠G(jω) in degrees.

There are a few important comments regarding these plots. First, the two subplots can
sometimes appear in slightly different forms. For example, the horizontal axis can appear in
units of Hz (cycles

sec
) where 1Hz = 2π rad

sec
. Thus Bode plots should be carefully examined to

determine the precise data and axes being used. Second, the steady-state frequency response
solution was derived in Section 5.1 for stable systems. However, Bode plots can still be drawn
for unstable systems and these will be used later for control design and analysis. Finally, it
takes some effort to become accustomed to the use of log scales and dB units. However, there
are several benefits of generating the gain and phase plots in this way. For example, this format
provides a better display of data across wide ranges of frequency and gain. In addition, the
properties of logarithms will allow these plots to be easily used for control design.

Bode plots can be generated with the Matlab function bode. The syntax is bode(G) where
G is a system. This default syntax generates the gain and phase plots in the form described
above. The alternative syntax [mag,phase,w]=bode(G) returns the magnitude (in actual
units), phase (in degs), and frequency (in rad

sec
). The magnitude in units of dB can then be

107

calculated as magdb = 20*log10(mag). Additional options are available and details can be
found in the help and documentation. A simple example is given below.

Example 5.3. G(s) = 2
s+4

is the transfer function for a stable, first order system. This transfer
function was previously studied in Examples 5.1 and 5.2. The Bode plot for G(s) is shown on
the left of Figure 5.3. A similar plot can be created with the following Matlab commands:

>> G = tf(2,[1 4]);

>> bode(G);

Figure 5.3 also shows the tabulated magnitude (dB) and phase (deg) at several frequencies.
The red circles on the Bode plot correspond to the frequencies ω = 2 and 4 rad

sec
. These are the

input frequencies for the sinusoidal responses shown in Figure 5.2. Both the magnitude (in
dB) and phase are more negative at ω = 4 rad

sec
. This corresponds to a smaller amplitude and

increased phase shift for the response to u(t) = sin(4t) (right plot in Figure 5.2).
The Bode plot provides additional information about the response. For example, at low

frequencies the magnitude and phase satisfy |G(jω)|dB ≈ −6dB and ∠G(jω) ≈ 0degs. Con-
verting the magnitude to actual units yields |G(jω)| ≈ 10−6/20 ≈ 0.5. Hence for low frequencies
the input u(t) = sin(ωt) yields a steady-state output yss(t) ≈ 0.5 sin(ωt). As another example,
|G(jω)|dB → −∞ as ω → ∞. In actual units, this corresponds to |G(jω)| → 0 as ω → ∞.
Thus for high frequencies the input u(t) = sin(ωt) yields an output sinusoid of very small
amplitude. This roughly means that the system does not respond to high frequency sinusoids.

10-1 100 101 102
-40

-20

-6
0

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101 102

Frequency (rad/sec)

-90

-45

0

P
ha

se
 (

de
g)

ω G(jω) |G(jω)|dB ∠G(jω)

(rad
sec

) Polar (dB) (deg)

0 0.500e0j -6.0 0

1 0.485e−0.245j -6.3 -14.0

2 0.447e−0.464j -7.0 -26.6

3 0.400e−0.644j -8.0 -36.9

4 0.354e−0.785j -9.0 -45.0

6 0.277e−0.983j -11.1 -56.3

10 0.186e−1.190j -14.6 -68.2

20 0.098e−1.373j -20.2 -78.7

∞ 0e−
π
2
j −∞ -90

Figure 5.3: Bode plot (left) for G(s) = 2
s+4

and data evaluated at several s = jω (right). The

red circles on the Bode plot highlight the data at ω = 2 and 4 rad
sec

.

4

5.2.2 Bode Plot: Differentiator

This section focuses on a simple system known as a differentiator. The analysis of this system
provides additional insight regarding the graphical data in a Bode plot. It will also be useful

108

to understand the properties of derivative control. Consider the following first order system:

y(t) = u̇(t) (5.14)

The corresponding transfer function is G(s) = s
1

= s.† This system is called a differentiator
because the output is simply the derivative of the input. If u(t) = sin(ωt) then differentiation
yields y(t) = ω cos(ωt). The output can be equivalently written in the form y(t) = ω sin(ωt+π

2
).

Thus the output amplitude is scaled by ω and the phase is shifted by π
2
rad = +90deg. The right

side of Figure 5.4 shows the response for ω = 0.5 and 2 rad
sec

. In both cases the output achieves
its peak one quarter cycle before (= +90deg) the input, i.e the output “leads” the input. Also
note that the output amplitude grows proportional to frequency. Thus the differentiator
“amplifies” sinusoids at higher frequencies.

A Bode plot provides a graphical summary of these results. The frequency response for
the differentiator is G(jω) = jω. This is a positive imaginary number for all values of ω > 0.
Thus the phase is ∠G(jω) = π

2
rad = 90deg for all ω > 0. This agrees with the results above.

Moreover, the magnitude in actual units is |G(jω)| = ω, i.e. magnitude is proportional to
frequency. At frequencies {0.1, 0.5, 1, 2, 10} rad

sec
, the magnitude is {0.1, 0.5, 1, 2, 10} in actual

units and {−20,−6, 0,+6,+20} in dB. The Bode plot for the differentiator shown in Figure 5.4
displays these results. It is common to state that the magnitude plot has a slope of
+20dB per decade. This means increasing by a (multiplicative) factor of 10 on the frequency
axis corresponds to an (additive) increase of 20dB on the magnitude axis. In actual units,
multiplying frequency by a factor of 10 corresponds to multiplying the magnitude by 10.

0.1 0.5 1 2 10
-20

-6
0
6

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

0.1 0.5 1 2 10
Frequency (rad/sec)

0

45

90

135

P
ha

se
 (

de
g)

0 : 2: 3: 4: 5: 6:
Time, t (sec)

-1

-0.5

0

0.5

1

O
ut

pu
t,

y

u, !=0.5
y

0 : 2: 3: 4: 5: 6:
Time, t (sec)

-2

-1

0

1

2

O
ut

pu
t,

y

u, !=2
y

Figure 5.4: Bode plot for a differentiator G(s) = s (left) and frequency responses for ω = 0.5
and 2 rad

sec
(right).

5.2.3 Bode Plot: Integrator

This section focuses on a simple system known as an integrator. Again, the analysis of this
system is intended to provide insight regarding Bode plots. It will also be useful to understand

†The differentiator is non-proper because the ODE contains the first derivative of u but no derivatives of y.
This is the reason the transfer function numerator is a polynomial of higher degree than the denominator.

109

the properties of integral control. Consider the following first order system:

ẏ(t) = u(t) (5.15)

The transfer function is G(s) = 1
s
. This system is an integrator because the output is the

integral of the input: y(t) = y(0) +
∫ t

0
u(τ)d τ . If u(t) = sin(ωt) then integration yields:

y(t) =

(
y(0) +

1

ω

)
− 1

ω
cos(ωt) (5.16)

The integrator has a pole at s = 0 and hence an integrator is an unstable system. Thus the
effect of the initial condition y(0) does not decay as t → ∞. However, if y(0) = − 1

ω
then

y(t) = − 1
ω

cos(ωt). This is a particular solution for Equation 5.15 forced by u(t) = sin(ωt).
This solution can be re-written as y(t) = 1

ω
sin(ωt− π

2
). The amplitude is scaled by 1

ω
and the

phase is shifted by π
2
rad = −90deg. The right side of Figure 5.5 shows the response for ω = 0.5

and 2 rad
sec

. In both cases the output achieves its peak one quarter cycle after (= −90deg) the
input, i.e the output “lags” the input. Also note that the output amplitude is inversely related
to frequency. Thus the integrator “amplifies” sinusoids at lower frequencies.

A Bode plot again provides a graphical summary of these results. The frequency re-
sponse for an integrator is G(jω) = 1

jω
= −j

ω
. This is a negative imaginary number for

all values of ω > 0. Thus the phase is ∠G(jω) = −π
2
rad = −90deg for all ω > 0. The

magnitude in actual units is |G(jω)| = 1
ω

, i.e. magnitude is inversely related to frequency.
At frequencies {0.1, 0.5, 1, 2, 10} rad

sec
, the magnitude is {10, 2, 1, 0.5, 0.1} in actual units and

{+20,+6, 0,−6,−20} in dB. The Bode plot for the integrator shown in Figure 5.5 confirms
these results. It is common to state that this magnitude plot has a slope of −20dB
per decade. This means that increasing by a (multiplicative) factor of 10 on the frequency
axis corresponds to an (additive) decrease of −20dB on the magnitude axis. In actual units,
multiplying frequency by a factor of 10 corresponds to dividing the magnitude by 10.

0.1 0.5 1 2 10
-20

-6
0
6

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

0.1 0.5 1 2 10
Frequency (rad/sec)

-135

-90

-45

0

P
ha

se
 (

de
g)

0 : 2: 3: 4: 5: 6:
Time, t (sec)

-2

-1

0

1

2

O
ut

pu
t,

y

u, !=0.5
y

0 : 2: 3: 4: 5: 6:
Time, t (sec)

-1

-0.5

0

0.5

1

O
ut

pu
t,

y

u, !=2
y

Figure 5.5: Bode plot for an integrator G(s) = 1
s

(left) and frequency responses for ω = 0.5
and 2 rad

sec
(right).

110

5.3 Bode Plots: First Order Systems

Summary: This section focuses on Bode plots for first order systems. A pole defines a corner
frequency for the system. The magnitude plot is flat at low frequencies and rolls off at −20dB
per decade at high frequencies. The phase plot transitions by ±90o near the corner frequency
but the precise details depend on the signs of the ODE coefficients. A first order zero has
similar features but its magnitude plot rolls up at +20dB per decade at high frequencies.

5.3.1 First Order System

The next few sections will briefly describe how to sketch approximate Bode plots by hand.
The actual Bode plot can always be created in Matlab using the command bode. However,
the ability to sketch approximate Bode plots by hand will serve a number of purposes. It will
help connect the Bode plot to properties of the system transfer function including its transient
response characteristics. In addition, the ability to approximately sketch Bode plots will be
used to design more advanced controllers.

To start, consider the following first order system:

ẏ(t) + a0y(t) = b0u(t) (5.17)

The transfer function for this system is G(s) = b0
s+a0

. Assume the system is stable (a0 > 0)
and has positive input gain (b0 > 0). Systems where these sign conditions do not hold are
discussed later in the section. The left side of Figure 5.6 shows the Bode plot for the specific
system G(s) = 2

s+4
. The magnitude is flat at |G(0)|dB = −6dB up to about ω = 4 rad

sec
and then

“rolls off” at -20 dB per decade at higher frequencies. The phase plot transitions from 0o at
low frequencies to −90o at high frequencies. It passes through −45o of phase at ω = 4 rad

sec
.

0.04 0.4 4 40 400

-46

-26

M
ag

ni
tu

de
 (

dB
)

Bode Diagram
-6
-9

0.04 0.4 4 40 400
Frequency (rad/sec)

-90

-45

0

P
ha

se
 (

de
g)

a
0
/100 a

0
/10 a

0
10a

0
100a

0

M
ag

ni
tu

de
 (

dB
)

Bode Diagram
g

g-3

g-20

g-40

a
0
/100 a

0
/10 a

0
10a

0
100a

0

Frequency (rad/sec)

-90

-45

0

P
ha

se
 (

de
g) Approx

Actual

Figure 5.6: Left: Bode plot for G(s) = 2
s+4

. Right: Bode plot for generic first order system

G(s) = b0
s+a0

where a0 > 0 and b0 > 0. The notation g := |G(0)|dB is used on the magnitude
plot. The Bode plot also includes straight-line asymptotic approximations.

In fact every first order system G(s) = b0
s+a0

has similar characteristics when both a0 > 0
and b0 > 0. The right side of Figure 5.6 shows the Bode plot for this general case (dotted

111

blue). It also shows straight-line Bode approximations (solid red). The Bode plot for a general
first order system has the following features:

• Corner Frequency: The magnitude plot roughly begins its high frequency roll-off at
the frequency ω = a0. This is known as the corner frequency. The transfer function at
the corner frequency is G(ja0) = b0

ja0+a0
. This can be rewritten in terms of the DC gain as

G(ja0) = G(0)
j+1

. Thus the magnitude (in actual units) and phase at the corner frequency

are |G(ja0)| = G(0)√
2

and ∠G(ja0) = −π
4
rad = −45o.‡ To convert the magnitude to dB,

recall that log10(c1
c2

) = log10(c1) − log10(c2) for any real numbers c1 and c2. Thus the
magnitude in dB at the corner frequency is:

|G(ja0)|dB = 20 log10

(
G(0)√

2

)
= 20 log10G(0)− 20 log10

√
2

= |G(0)|dB − 3

(5.18)

The equation above uses the fact 20 log10

√
2 ≈ 3. To summarize, the exact phase is −45o

at the corner frequency ω = a0 and the magnitude −3dB below the DC gain. These
features are displayed in both plots in Figure 5.6.

• Low Frequency Approximation: If ω ≤ a0
10

then G(jω) = b0
jω+a0

≈ b0
a0

. Hence the

magnitude and phase satisfy |G(jω)|dB ≈ |G(0)|dB and ∠G(jω) ≈ 0o at low frequencies.

• High Frequency Approximation: If ω ≥ 10a0 then G(jω) = b0
jω+a0

≈ b0
jω

= − b0j
ω

.

Hence the magnitude and phase satisfy |G(jω)|dB ≈
∣∣ b0
ω

∣∣
dB

and ∠G(jω) ≈ −90o at high
frequencies. The magnitude is inversely proportional to frequency ω and hence it rolls
off at −20dB per decade similar to an integrator.

• Middle Frequency Approximation: The middle frequency “straight-line” approxi-
mation connects the low and high frequency approximations. In the magnitude plot, this
corresponds to extending the low and high frequency approximations so they intersect at
the corner frequency. This straight line extension yields the approximate gain of |G(0)|dB
at the corner frequency ω = a0. This approximation is slightly higher than the actual
gain |G(ja0)|dB = |G(0)|dB − 3dB. In the phase plot, the middle frequency approxima-
tion connects 0o of phase at ω = a0

10
to −90o of phase at ω = 10a0. This approximation

passes through the exact phase of ∠G(ja0) = −45o at the corner frequency.§

It is useful to connect these results back to the first order step response response charac-
teristics covered in Section 3.5. Recall that the time constant is τ1 = 1

a0
sec and the settling

time is 3τ1 = 3
a0
sec. Thus increasing a0 corresponds to decreasing settling time, i.e. faster

response. On a Bode plot, increasing a0 corresponds to increasing the corner frequency. Thus

‡At the corner frequency, G(ja0) = G(0)
j+1 ·

−j+1
−j+1 = 0.5G(0) − 0.5G(0)j. Thus the magnitude is |G(ja0)| =

G(0)
√

0.52 + 0.52 = G(0)√
2

. The phase is ∠G(ja0) = tan−1
(
−0.5G(0)
0.5G(0)

)
= tan−1(−1) = −π4 rad.

§The middle frequency phase approximation is a straight line on the log scale. The precise formula is not
particularly important but for completeness it is given by: ∠G(jω) ≈ −90o · log10(ω

0.1a0
)/ log10(10a0

0.1a0
).

112

larger corner frequencies are associated with faster response. Also recall that if u(t) = ū then
the output converges to the steady-state value ȳ = b0

a0
ū = G(0)ū. On a Bode plot, G(0) is the

low frequency approximate gain. Thus the gain for low frequency sinusoids is approximately
the gain observed for step inputs.

Next consider the case where either a0 < 0 and/or b0 < 0. The left side of Figure 5.7
shows Bode plots corresponding to all four combinations for the signs of a0 and b0. Note
that the magnitude plot is identical for all four cases. This is essentially due to the fact that
|jω + 4| = |(jω − 4)|. However, the phase is different for each case. The right side shows a
table of the transfer function and phase evaluated at DC, the corner frequency, and as ω →∞
for each of the four transfer functions. This data can be used to sketch the phase plot. In
particular, the straight line approximation transitions from the low frequency phase to the high
frequency phase as described above. It passes through the exact phase at the corner frequency.

0.04 0.4 4 40 400

-46

-26

M
ag

ni
tu

de
 (

dB
)

Bode Diagram
-6
-9

 2/(s+4)
-2/(s+4)
 2/(s-4)
-2/(s-4)

0.04 0.4 4 40 400
Frequency (rad/sec)

-180
-135

-90
-45

0
45
90

135
180

P
ha

se
 (

de
g)

ω (rad
sec

) 2
jω+4

−2
jω+4

2
jω−4

−2
jω−4

0 0.5 -0.5 -0.5 0.5

G(jω) 4 −j+1
4

j−1
4

−j−1
4

j+1
4

→∞ −2j
ω

2j
ω

−2j
ω

2j
ω

0 0 180 -180 0

∠G(jω) 4 -45 135 -135 45

(deg) →∞ -90 90 -90 90

Figure 5.7: Left: Bode plots for G(s) = ±2
s±4

. The magnitude plots are identical for all four cases
but the phase plots differ. Right: Transfer function and phase evaluated at several s = jω.

5.3.2 First Order Zero

Next consider the following first order system:

a0y(t) = u̇(t) + b0u(t) (5.19)

The transfer function is G(s) = s+b0
a0

. This has a zero at s = −b0 and this defines the corner

frequency ω = |b0| radsec for the system. Analysis of this system is motivated by PD control
which has a similar form. Figure 5.8 shows results for the specific values a0 = ±4 and b0 = ±2.
The magnitude plot is identical for all four cases. In particular, the magnitude is flat at
|G(0)|dB = −6dB up to about ω = 2 rad

sec
and then “rolls up” at +20dB per decade at higher

frequencies. The phase plot depends on the signs of a0 and b0 but in all cases it transitions by
±90o around the frequency ω = 2 rad

sec
. The right side of Figure 5.8 shows a table of the transfer

function and phase evaluated at DC, the corner frequency, and as ω →∞ for each of the four
systems. This data can be used to sketch the phase plot.

113

0.02 0.2 2 20 200

14

34

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

-6
-3

 (s+2)/4
-(s+2)/4
 (s-2)/4
-(s-2)/4

0.02 0.2 2 20 200
Frequency (rad/sec)

-180
-135

-90
-45

0
45
90

135
180

P
ha

se
 (

de
g)

ω (rad
sec

) jω+2
4

jω+2
−4

jω−2
4

jω−2
−4

0 0.5 -0.5 -0.5 0.5

G(jω) 2 2j+1
2

−2j−1
2

2j−1
2

−2j+1
2

→∞ jω
4

−jω
4

jω
4

−jω
4

0 0 -180 180 0

∠G(jω) 2 45 -135 135 -45

(deg) →∞ 90 -90 90 -90

Figure 5.8: Left: Bode plots for G(s) = s±2
±4

. The magnitude plots are identical for all four cases
but the phase plots differ. Right: Transfer function and phase evaluated at several s = jω.

In fact every first order zero G(s) = s+b0
a0

has similar characteristics. Straight-line Bode
approximations can be drawn based on the following features:

• Corner Frequency: The magnitude plot roughly begins its high frequency roll-up at
the corner frequency ω = |b0|. The absolute value is used here to account for both cases

b0 > 0 and b0 < 0. The transfer function at the corner frequency is G(j|b0|) = j|b0|+b0
a0

.
This can be rewritten in terms of the DC gain as G(j|b0|) = G(0) (±j + 1). Thus the
magnitude (in actual units) at the corner frequency is |G(jb0)| = |G(0)|

√
2. To convert

the magnitude to dB, recall that log10(c1c2) = log10(c1) + log10(c2) for any real numbers
c1 and c2. Thus the magnitude in dB at the corner frequency is:

|G(j|b0|)|dB = 20 log10

(
|G(0)|

√
2
)

= 20 log10 |G(0)|+ 20 log10

√
2

= |G(0)|dB + 3
(5.20)

The equation above uses the fact 20 log10

√
2 ≈ 3. Thus the exact magnitude at the

corner frequency is +3dB above the DC gain. The phase depends on the signs of a0 and
b0 as demonstrated by the table in Figure 5.6.

• Low Frequency Approximation: If ω ≤ |b0|
10

then G(jω) = jω+b0
a0
≈ b0

a0
. Hence the

magnitude satisfies |G(jω)|dB ≈ |G(0)|dB at low frequencies. The phase ∠G(jω) ≈ ∠G(0)
which can be 0o or ±180o depending on the signs of a0 and b0.

• High Frequency Approximation: If ω ≥ 10|b0| then G(jω) = jω+b0
a0
≈ jω

a0
. Hence

the magnitude satisfies |G(jω)|dB ≈
∣∣ b0
ω

∣∣
dB

. The magnitude is proportional to frequency
ω and hence it rolls up at +20dB per decade similar to an differentiator. The phase
∠G(jω) ≈ ∠ jω

a0
which can be ±90o depending on the sign of a0.

• Middle Frequency Approximation: The middle frequency “straight-line” approxi-
mation connects the low and high frequency approximations. In the magnitude plot, this

114

corresponds to extending the low and high frequency approximations so they intersect at
the corner frequency. This straight line extension yields the approximate gain of |G(0)|dB
at the corner frequency ω = |b0|. This approximation is slightly lower than the actual
gain |G(j|b0|)|dB = |G(0)|dB + 3dB. In the phase plot, the middle frequency approxima-
tion connects the phases from the low and high frequency approximations. For example,
if both a0 > 0 and b0 > 0 then the the system has 0o of phase at low frequencies and
+90o at high frequencies. The middle frequency approximation connects 0o of phase at
ω = |b0|

10
to +90o of phase at ω = 10|b0|. This approximation passes through the exact

phase of ∠G(j|b0|) = +45o at the corner frequency.¶

¶This middle frequency phase approximation is a straight line on the log scale. The precise formula is not

particularly important but for completeness it is given by: ∠G(jω) ≈ +90o · log10(ω
0.1|b0|)/ log10(10|b0|

0.1|b0|).

115

5.4 Bode Plots: Second Order Systems

Summary: This section focuses on Bode plots for second order systems. A second order
differentiator has +180deg of phase and magnitude slope of +40NdB per decade. A double
integrator has −180deg of phase and magnitude slope of −40NdB per decade. Next, an
underdamped second order system is characterized by its damping ratio ζ and natural frequency
ωn. Such a system has a corner frequency at ωn. The magnitude plot is flat at low frequencies
and rolls off at −40dB per decade at high frequencies. For stable systems with positive input
gain, the phase plot transitions from 0o to −180o. If the system has low damping (ζ � 1) then
it will have a resonant (peak) gain of |G(jωn)| ≈ 1

2ζ
near the natural frequency.

5.4.1 Second Order Differentiator and Integrator

Sections 5.2.2 and 5.2.3 discuss first order differentiators and integrators. This section reviews
similar results for the second order case. First, consider the following second order system:

y(t) = ü(t) (5.21)

The corresponding transfer function is G(s) = s2

1
= s2. This is a second order differentiator

because the output is simply the second-derivative of the input. If u(t) = sin(ωt) then dif-
ferentiating twice yields y(t) = −ω2 sin(ωt) = ω2 sin(ωt + π). Thus the output amplitude is
scaled by ω2 and the phase is shifted by πrad = +180deg. The Bode plot in Figure 5.9 (left)
displays these results. Specifically, the frequency response is G(jω) = (jω)2 = −ω2. This is
a negative real number and hence the phase is ∠G(jω) = +180deg. Moreover, the magni-
tude in actual units is |G(jω)| = ω2. At frequencies {0.1, 0.5, 1, 2, 10} rad

sec
, the magnitude is

{0.01, 0.25, 1, 4, 100} in actual units and {−40,−12, 0,+12,+40} in dB. It is common to state
that the magnitude plot has a slope of +40dB per decade. This means increasing by a (multi-
plicative) factor of 10 on the frequency axis corresponds to an (additive) increase of 40dB on
the magnitude axis. In actual units, multiplying frequency by a factor of 10 corresponds to
multiplying the magnitude by 100. Thus the second order differentiator has a large amplifica-
tion of sinusoids at high frequencies. Generalizing these results, a N th order derivative
G(s) = sN has phase +90Ndeg and magnitude slope of +20NdB per decade.

Similar results can be obtained for a second order integrator:

ÿ(t) = u(t) (5.22)

The transfer function is G(s) = 1
s2

. This system is a second order integrator (also called a
“double integrator”) because the output y(t) is obtained by integrating the input u(t) twice.
Thus if u(t) = sin(ωt) then integrating twice and accounting for ICs y(0) and ẏ(0) yields:

y(t) = y(0) +

(
ẏ(0) +

1

ω

)
t− 1

ω2
sin(ωt) (5.23)

The system has two poles at s = 0 and hence is unstable. Thus the terms involving ICs y(0)
and ẏ(0) do not decay as t → ∞. In fact, one term grows unbounded with time. However, if
y(0) = 0 and ẏ(0) = − 1

ω
then y(t) = − 1

ω2 sin(ωt). This is a particular solution for Equation 5.22

116

0.1 0.5 1 2 10

-40

-12
0

12

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

0.1 0.5 1 2 10
Frequency (rad/sec)

0

90

180
225

P
ha

se
 (

de
g)

0.1 0.5 1 2 10

-40

-12
0

12

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

0.1 0.5 1 2 10
Frequency (rad/sec)

-225
-180

-90

0

P
ha

se
 (

de
g)

Figure 5.9: Bode plots for G(s) = s2 (left) and G(s) = 1
s2

(right).

forced by u(t) = sin(ωt). This solution can be re-written as y(t) = 1
ω2 sin(ωt − π). The

amplitude is scaled by 1
ω2 and the phase is shifted by −πrad = −180deg. The Bode plot for

the integrator shown in Figure 5.9 (right) confirms these results. The frequency response is
G(jω) = 1

(jω)2
= −1

ω2 . This is a negative real number and the phase is ∠G(jω) = −180deg. The

magnitude in actual units is |G(jω)| = 1
ω2 , i.e. magnitude is inversely related to frequency

squared. At frequencies {0.1, 0.5, 1, 2, 10} rad
sec

, the magnitude is {100, 4, 1, 0.25, 0.01} in actual
units and {+40,+12, 0,−12,−40} in dB. It is common to state that this magnitude plot has
a slope of −40dB per decade. This means that increasing by a (multiplicative) factor of 10 on
the frequency axis corresponds to an (additive) decrease of −40dB on the magnitude axis. In
actual units, multiplying frequency by a factor of 10 corresponds to dividing the magnitude by
100. Generalizing these results, a N th order integrator G(s) = 1

sN
has phase −90Ndeg

and magnitude slope of −20NdB per decade.

5.4.2 Underdamped Second Order System

This section will discuss the Bode plot for a stable, underdamped second order system. Recall
from Section 3.6 that the ODE for such a system can be expressed in terms of the damping
ratio ζ and natural frequency ωn:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = b0u(t) (5.24)

The transfer function for this system is G(s) = b0
s2+2ζωns+ω2

n
. In addition, assume the system

has positive input gain (b0 > 0). The left side of Figure 5.10 shows the Bode plot for two
specific cases: (b0, ζ, ωn) = (16, 0.7, 4) and (16, 0.05, 4) corresponding to G(s) = 16

s2+5.6s+16
and

G(s) = 16
s2+0.4s+16

. In both cases the magnitude is flat at |G(0)|dB = 0dB for low frequencies

(ω ≤ 0.4 rad
sec

) and “rolls off” at -40 dB per decade at high frequencies (ω ≥ 40 rad
sec

). The main
distinction is that the lightly damped system (ζ = 0.05) has a large +20dB peak near the
natural frequency. Both phase plots transition from 0o at low frequencies to −180o at high
frequencies. Moreover, both pass through −90o of phase at ω = 4 rad

sec
. The main distinction is

117

that the lightly damped system (ζ = 0.05) has a very sharp phase transition from 0o to −180o.
The system with higher damping (ζ = 0.7) has a much smoother transition.

0.04 0.4 4 40 400

-80
-60
-40
-20

0
20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

1 = 0.70
1 = 0.05

0.04 0.4 4 40 400
Frequency (rad/sec)

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

!
n
/100 !

n
/10 !

n
10!

n
100!

n

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

g
g+20

g-40

g-80

!
n
/100 !

n
/10 !

n
10!

n
100!

n

Frequency (rad/sec)

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Approx
Actual: 1 = 0.70
Actual: 1 = 0.05

Figure 5.10: Left: Bode plots for G(s) = 16
s2+8ζs+16

with ζ = 0.7, 0.05. Right: Bode plot for

generic first order system G(s) = b0
s2+2ζωns+ω2

n
with b0 > 0 and ζ = 0.7, 0.05. The notation g :=

|G(0)|dB is used on the magnitude plot. The Bode plot includes straight-line approximations.

In fact every stable, underdamped second order system G(s) = b0
s2+2ζωns+ω2

n
has similar

characteristics when b0 > 0. The right side of Figure 5.10 shows the Bode plot for this
general case for two different damping ratios (dotted lines). It also shows straight-line Bode
approximations (solid red). The Bode plot for the general case has the following features:

• Corner Frequency: The magnitude plot roughly begins its high frequency roll-off at
ω = ωn. Thus the corner frequency for the underdamped system is the natural frequency.
The transfer function at the corner frequency is G(jωn) = b0

2ζω2
nj

. This can be rewritten

in terms of the DC gain as G(jωn) = −G(0)j
2ζ

. Thus the magnitude (in actual units) and

phase at the corner frequency are |G(jωn)| = G(0)
2ζ

and ∠G(jωn) = −π
2
rad = −90o. The

magnitude in dB at the corner frequency is:

|G(jωn)|dB = 20 log10

(
G(0)

2ζ

)
= |G(0)|dB − 20 log10(2ζ) (5.25)

If ζ = 0.7 then the |G(jωn)|dB ≈ |G(0)|dB − 3dB, i.e. the gain at the corner frequency
is ≈ −3dB below the DC gain. This is similar to the characteristics of a first-order
pole. However, if ζ = 0.05 then |G(jωn)|dB ≈ |G(0)|dB + 20dB. Thus lightly damped
systems (ζ � 1) have a large resonant peak. The precise resonance (peak) frequency is
derived via calculus in Appendix 5.8. Specifically, if ζ < 1√

2
then the peak frequency

is ωp = ωn
√

1− 2ζ2 and the peak gain is |G(jωp)| = |G(0)|
2ζ
√

1−ζ2
. More importantly,

if ζ � 1 then this resonance (peak) frequency is near the natural frequency

ωp ≈ ωn and the peak gain is |G(jωp)| ≈ G(0)
2ζ

. These features are displayed in both
plots in Figure 5.10.

118

• Low Frequency Approximation: If ω ≤ ωn
10

then G(jω) ≈ b0
ω2
n
. Hence the magnitude

and phase satisfy |G(jω)|dB ≈ |G(0)|dB and ∠G(jω) ≈ 0o at low frequencies.

• High Frequency Approximation: If ω ≥ 10ωn then G(jω) ≈ b0
(jω)2

= − b0j
ω2 . Hence

the magnitude and phase satisfy |G(jω)|dB ≈
∣∣ b0
ω2

∣∣
dB

and ∠G(jω) ≈ −180o at high
frequencies. The magnitude is inversely proportional to ω2 and hence it rolls off at
−40dB per decade similar to a double integrator.

• Middle Frequency Approximation: The middle frequency “straight-line” approxi-
mation connects the low and high frequency approximations. In the magnitude plot,
this corresponds to extending the low and high frequency approximations so they inter-
sect at the corner frequency. This straight line extension yields the approximate gain of
|G(0)|dB at the corner frequency ω = ωn. The actual gain at the corner frequency can
be significantly higher than |G(0)|dB if the system is lightly damped. In the phase plot,
the middle frequency approximation connects 0o of phase at ω = ωn

10
to −180o of phase

at ω = 10ωn.‖ This phase approximation is more accurate for highly damped systems.
For lightly damped systems, the phase transitions very sharply from 0o to −180o.

It is useful to connect these results back to the second order step response response char-
acteristics covered in Section 3.6. Recall that the settling time and rise time are given by

Ts ≈ 3
ζωn

and Tr =
π
2

+sin−1(ζ)

ωn
√

1−ζ2
, Thus increasing ωn corresponds to decreasing both settling and

rise times, i.e. faster response. On a Bode plot, increasing ωn corresponds to increasing the
corner frequency. Thus larger corner frequencies are associated with faster response. Also

recall that the peak overshoot is given by Mp = e
− ζ√

1−ζ2π . Decreasing the damping ratio ζ will
increase peak overshoot. It will also increase settling time (slower convergence) and reduce rise
time (faster initial response). The effect of damping ratio on a Bode plot is mainly observed
near the natural frequency. Specifically, small damping ratios yield a large resonant peak on
the magnitude plot and a sharp transition on the phase plot.

Figure 5.11 shows the effect of the resonance peak on the sinusoidal response. The left
plot shows the Bode plot for G(s) = 16

s2+0.4s+16
corresponding to (b0, ζ, ωn)(16, 0.05, 4). This is

the same lightly damped system considered above. It has a peak of +20dB near the natural
frequency and the phase transitions sharply from 0o to −180o. The right plot shows the
response to u(t) = sin(ωt) for ω = 0.4 and 8 rad

sec
. These frequencies are also marked on the

Bode plot. The frequency ω = 8 rad
sec

is beyond the corner frequency yielding |G(j8)| ≈ 0.33(=
−9.5dB) and ∠G(j8) ≈ −180o. Thus the input u(t) = sin(8t) yields an output with amplitude
attenuated (scaled down) by 0.33 as shown in the top right subplot. On the other hand, the
frequency ω4 rad

sec
is at the corner frequency. This is approximately the resonance frequency

yielding a large gain |G(j4)| ≈ 10.0(= +20dB) and phase ∠G(j4) ≈ −90o. Thus the input
u(t) = sin(4t) yields an output with amplitude amplified (scaled up) by 10.0 as shown in the
bottom right subplot. Notice that the two time domain plots have different y-axis limits. The
output amplitude for ω = 4 rad

sec
is significantly larger than for ω = 8 rad

sec
.

‖The middle frequency phase approximation is a straight line on the log scale. The precise formula is not
particularly important but for completeness it is given by: ∠G(jω) ≈ −180o · log10(ω

0.1ωn
)/ log10(10ωn

0.1ωn
).

119

0.04 0.4 4 8 40 400

-80

-40

0
20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

-9.5

0.04 0.4 4 40 400
Frequency (rad/sec)

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

155.5 155.9 156.3 156.7 157.1
Time, t (sec)

-1

0

1

O
ut

pu
t,

y

u, !=8
y

153.9 154.7 155.5 156.3 157.1
Time, t (sec)

-10

-5

0

5

10

O
ut

pu
t,

y

u, !=4
y

Figure 5.11: Bode plot for G(s) = 16
s2+0.4s+16

(left) and frequency responses for ω = 0.4 and

8 rad
sec

(right).

There are several additional cases regarding second order systems. These cases are only
briefly reviewed here. Second order systems with b0 < 0 and/or complex poles in the right
half plane (unstable) have identical magnitude plots to those shown in Figure 5.10. However,
the phase plot will be different if b0 < 0 and/or the system has unstable complex poles.
The correct phase can be found by studying the transfer function at the corner frequency,
low frequency limit, and high frequency limit. Systems can also have second order complex

zeros, e.g. G(s) = s2+2ζωns+ω2
n

a0
. Such zeros have similar characteristics to the first-order case

covered in Section 5.3.2. In the second-order case, the magnitude is roughly flat up to the
corner frequency and then rises at +40dB per decade. If the damping is light ζ � 1 then the
magnitude will have a sharp “notch” (drop in gain) near the corner frequency. Finally, second
order overdamped systems with two real poles are discussed in Section 5.5.3.

120

5.5 Bode Plots: Higher Order Systems

Summary: Consider a system whose transfer function G(s) is expressed as a product of two
terms: G(s) = G1(s)G2(s). The Bode phase plot of G(s) is simply the sum of the phase plots
of G1(s) and G2(s). Similarly, the Bode magnitude plot of G(s) (in dB) is simply the sum of
the magnitude plots of G1(s) and G2(s). This section provides several examples demonstrating
the use of this fact to draw Bode plots for higher order systems.

5.5.1 Products of Transfer Functions

Consider a system whose transfer function G(s) is expressed as a product of two terms: G(s) =
G1(s)G2(s). The response G(jω) at a frequency ω is a complex number given by the product of
the two complex numbers G1(jω) and G2(jω). Recall from Appendix 3.8.1 (and Example 3.12)
that such products can be easily written in polar form. In particular, the product of two
complex numbers is obtained by adding their phases and multiplying their magnitudes. Based
on this fact, the magnitude and phase of G(jω) are given by:

|G(jω)| = |G1(jω)| · |G2(jω)| (5.26)

∠G(jω) = ∠G1(jω) + ∠G2(jω) (5.27)

Next, recall that log10(c1c2) = log10(c1) + log10(c2) for any real numbers c1 and c2. Thus the
magnitude in actual units (Equation 5.26) can be rewritten in dB as follows:

|G(jω)|dB = |G1(jω)|dB + |G2(jω)|dB (5.28)

To summarize, the magnitude (in dB) and phase of G(s) are simply the sum of the magnitudes
(in dB) and phases of G1(s) and G2(s). Therefore the Bode phase plot of G(s) is simply
the sum of the phase plots of G1(s) and G2(s). Similarly, the Bode magnitude plot
of G(s) (in dB) is simply the sum of the magnitude plots of G1(s) and G2(s). This is
a key property that will be used to design more advanced controllers in stages.

Example 5.4. The transfer function G(s) = 10
s

can be expressed as the product of an inte-
grator G1(s) = 1

s
and a (constant) gain G2(s) = 10. The left side of Figure 5.12 shows the

Bode plots for G, G1, and G2. As discussed in Section 5.2.3, the integrator has a magnitude
slope of −20dB per decade and a phase of −90o. Moreover, the integrator has a gain of 1 at
ω = 1 rad

sec
, i.e. |G1(j1)|dB = 0dB. The gain G2(s) = 10 has magnitude of 20dB and phase of

0o at all frequencies. The Bode plot for the product G(s) = G1(s)G2(s) can be obtained by
simply adding the individual plots for G1(s) and G2(s). As a result, the magnitude of G(s)
is shifted upward by +20dB at all frequencies relative to the integrator. The phase of G(s) is
the same as the phase of the integrator because ∠G2(jω) = 0o.

The right side of Figure 5.12 shows a similar example G(s) = −0.1
s

. G(s) is a product of
an integrator G1(s) = 1

s
with gain G2(s) = −0.1. In this case, the gain has magnitude of

20 log10 | − 0.1| = −20dB and phase of +180o at all frequencies. Hence the magnitude of G(s)
is shifted downward by −20dB at all frequencies relative to the integrator. Moreover, the
phase of G(s) is the sum of the −90o of phase from the integrator and the +180o of phase from
the gain. Hence ∠G(jω) = +90o at all frequencies.

4

121

10-1 100 101
-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101

Frequency (rad/sec)

-90

0

90

180

P
ha

se
 (

de
g) G

G1
G2

10-1 100 101
-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101

Frequency (rad/sec)

-90

0

90

180

P
ha

se
 (

de
g) G

G1
G2

Figure 5.12: Bode plots for G1(s), G2(s), and G(s) = G1(s)G2(s).
Left: G1(s) = 1

s
and G2(s) = 10. Right: G1(s) = 1

s
and G2(s) = −0.1.

5.5.2 Lead Controller

Consider the following first-order system with input e(t) and output u(t):

u̇(t) + 2u(t) = 2ė(t) + e(t) (5.29)

The corresponding transfer function is G(s) = 2s+1
s+2

. This is a first-order system with both a
pole and a zero. This system is an instance of a lead controller as will be discussed in Section
XXX. Note that the transfer function can be expressed as the product G(s) = G1(s)G2(s)
where G1(s) = 2s+ 1 and G2(s) = 1

s+2
.

The left side of Figure 5.13 shows the straight-line Bode approximations for G1(s), G2(s),
and G(s). The system G1(s) has a zero at s = −0.5 and a low frequency gain of 1 (= 0dB).
Hence the magnitude plot for G1(s) is 0dB at low frequencies and rolls up at +20dB per decade
above the corner frequency of ω1 := 0.5 rad

sec
. Moreover, the phase plot is 0o at low frequencies

and +90o at high frequencies. It transitions from 0o at 0.05 rad
sec

(= ω1/10) to 90o at 5 rad
sec

(= 10ω1). Similarly, G2(s) has a pole at s = −2 and a low frequency gain of 0.5 (= −6dB).
Hence the magnitude plot for G2(s) is −6dB at low frequencies and rolls off at −20dB per
decade above the corner frequency of ω2 = 2 rad

sec
. The phase plot is 0o at low frequencies and

−90o at high frequencies. It transitions from 0o at 0.2 rad
sec

(= ω2/10) to 90o at 20 rad
sec

(= 10ω2).
The Bode plot for G(s) is obtained by adding the Bode plots for G1(s) and G2(s). As a

result the magnitude of G(s) is −6dB at low frequencies. For ω ∈ [ω1, ω2], G(s) rises at +20dB
per decade due to the zero in G1(s). However, for ω ≥ ω2 the slopes of G1(s) and G2(s) cancel
so that the magnitude of G(s) remains flat at high frequencies. Similar arguments can be
used to generate the phase plot for G(s). The right side of Figure 5.13 shows the straight-
line approximation and exact Bode plot for G(s). The straight-line approximation generated
by adding the Bode plots of G1(s) and G2(s) is reasonably accurate. Note that the phase
of G(s) is positive and the exact phase has a peak ≥ 30o at a frequency of 1 rad

sec
. If this

system (Equation 5.29) is excited by a sinusoidal input e(t) = sinωt then the output sinusoid
will “lead” the input sinusoid due to the positive phase. This is similar to the lead behavior
observed in Figure 5.4 for a differentiator.

122

10-2 10-1 100 101 102
-20

-6
0
6

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

G
G1
G2

10-2 10-1 100 101 102

Frequency (rad/sec)

-90

0
27

90

P
ha

se
 (

de
g)

10-2 10-1 100 101 102
-20

-6
0
6

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Approx
Exact

10-2 10-1 100 101 102

Frequency (rad/sec)

-90

0
27

90

P
ha

se
 (

de
g)

Figure 5.13: Left: Straight-line Bode approximations for G1(s) = 2s + 1, G2(s) = 1
s+2

and
G(s) = G1(s)G2(s). Right: Straight-line approximation and exact Bode for G(s).

5.5.3 Overdamped Second Order System

This section briefly discusses the construction of Bode plots for overdamped second order
systems. Such systems have two real poles. For example, consider the following system with
input u(t) and output y(t):

ÿ(t) + 1.2ẏ(t) + 0.2y(t) = 0.5u(t) (5.30)

The corresponding transfer function is G(s) = 0.5
s2+1.2s+0.2

. This system has natural frequency

ωn =
√

0.2 ≈ 0.45 and damping ζ = 1.2
2ωn
≈ 1.34. The system is overdamped with poles at s =

−1 and s = −0.2. The transfer function can be expressed as the product G(s) = G1(s)G2(s)
where G1(s) = 1

s+0.2
and G2(s) = 0.5

s+1
.

The left side of Figure 5.14 shows the straight-line Bode approximations for G1(s), G2(s),
and G(s). The system G1(s) has a pole at s = −0.2 and a low frequency gain of 5 (= 14dB).
Hence the magnitude plot for G1(s) is 14dB at low frequencies and rolls off at −20dB per
decade above the corner frequency of ω1 := 0.2 rad

sec
. Moreover, the phase plot transitions from

0o at low frequencies to −90o at high frequencies passing through −45o at the corner frequency
ω1. Similarly, G2(s) has a pole at s = −1 and a low frequency gain of 0.5 (= −6dB). Hence
the magnitude plot for G2(s) is −6dB at low frequencies and rolls off at −20dB per decade
above the corner frequency of ω2 = 1 rad

sec
. The phase plot transitions from 0o at low frequencies

to −90o at high frequencies passing through −45o at the corner frequency ω2.
The Bode plot for G(s) is obtained by adding the Bode plots for G1(s) and G2(s). As a

result the magnitude of G(s) is 8dB (= 14dB−6dB) at low frequencies. For ω ∈ [ω1, ω2], G(s)
falls at −20dB per decade due to the pole in G1(s). However, for ω ≥ ω2 the slopes of G1(s) and
G2(s) add so that the magnitude of G(s) falls at −40dB per decade at high frequencies. Similar
arguments can be used to generate the phase plot for G(s). The right side of Figure 5.13 shows
the straight-line approximation and exact Bode plot for G(s). The straight-line approximation
generated by adding the Bode plots of G1(s) and G2(s) is reasonably accurate.

123

10-2 10-1 100 101
-40

-20

-6

14

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

8
G
G1
G2

10-2 10-1 100 101

Frequency (rad/sec)

-150

-100

-50

0

P
ha

se
 (

de
g)

10-2 10-1 100 101
-40

-20

-6

14
M

ag
ni

tu
de

 (
dB

)
Bode Diagram

8

10-2 10-1 100 101

Frequency (rad/sec)

-150

-100

-50

0

P
ha

se
 (

de
g) G Approx.

G Exact

Figure 5.14: Left: Straight-line Bode approximations for G1(s) = 1
s+0.2

, G2(s) = 0.5
s+1

and

G(s) = G1(s)G2(s) = 0.5
s2+1.2s+0.2

. Right: Straight-line approximation and exact Bode for G(s).

124

5.6 Frequency Content of Signals

Summary: The steady-state sinusoidal response for a stable system can be computed using
the transfer function. More generally, if the input is a sum of sinusoids then the steady state
response is given by summing the responses due to each input sinusoid. This result is powerful
because general signals can be expressed as a sum of sinusoids using the Fourier Series. Signals
can then be roughly classified as “low frequency” and “high frequency” based on the Fourier
Series coefficients. The Bode plot can then be used to gain intuition for how the system will
respond to more general low and high frequency signals.

5.6.1 Low and High Frequency Signals

The information in a Bode magnitude and phase plot can be used to compute the steady
state response due to a sinusoidal input. For example, consider the linear system with transfer
function G(s) = 10

s+10
. This first order system has a pole at s1 = −10 and time constant τ1 =

0.1sec. The Bode plot for this system is shown on the left of Figure 5.15. The Bode magnitude
plot for this system has the typical first order characteristics with DC gain G(0) = 1, corner
frequency of 10 rad

sec
, and high frequency roll off of −20 dB per decade. Thus if u(t) = sin(ωt)

and ω � 10 rad
sec

then the steady state response will be yss(t) ≈ u(t). Similarly, if u(t) = sin(ωt)
and ω � 10 rad

sec
then the steady state response will be yss(t) ≈ 0.

10-1 100 101 102 103

-40

-20

-6
0

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101 102 103

Frequency (rad/sec)

-90

-45

0

P
ha

se
 (

de
g)

0 2 4 6 8 10
Time, sec

0

1

2

Input, u
Output, y

0 2 4 6 8 10
Time, sec

-2

0

2

Input, u
Output, y

Figure 5.15: Left: Bode plot for G(s) = 10
s+10

. Right: Response due to a “low frequency” signal
(top) and “high frequency” input (bottom).

The Bode plot can also be used to gain intuition for how the system will respond to more
general signals. The right side of Figure 5.15 shows the response of this system due to two
different input signals. In particular, the top subplot shows the response for the input:

u(t) =


1− cos(0.5πt) t < 2sec
2 t ∈ [2, 8)sec
1 + cos (0.5π(t− 8)) t ∈ [8, 10)
0 t ≥ 10

(5.31)

125

This input signal is slow relative to the system time constant / corner frequency. Thus the
steady-state output is mainly affected by the low frequency characteristics of the system:
|G(jω)| ≈ 1 and phase ∠G(jω) ≈ 0 from the Bode plot. As a result, the output closely follows
the input signal with only a small deviation. In summary, the system G(s) has negligible effect
on the magnitude and phase of “low frequency” signals.

The bottom subplot on the right of Figure 5.15 shows the response for an input generated
by random (unit variance, Gaussian) noise. In this case the input signal changes rapidly. Thus
the steady-state output is mainly affected by the high frequency characteristics of the system:
|G(jω)| ≈ 0 for ω � 10 rad

sec
. As a result, the output of G(s) is not able to follow this rapidly

changing input. Hence the output signal is attenuated, i.e. its magnitude is significantly
reduced, relative to the input. In summary, the system G(s) significantly attenuates such
“high frequency” signals.

This rough terminology of “low frequency” vs. “high frequency” will often be used in
the next few chapters of this text. This section provides a more rigorous foundation for this
terminology.

5.6.2 Superposition for Sinusoidal Inputs

Section 5.1 discussed the steady-state sinusoidal response for a stable system described by a
transfer function G(s). A general version of this result is as follows: If the input is u(t) =
A cos(ωt+ θ) for some numbers (A, θ) then the output response satisfies

y(t)→ A|G(jω)| cos (ωt+ θ + ∠G(jω)) as t→∞ (5.32)

This result is more powerful when extended to inputs that are sums of sinusoids. Specifically,
consider an input given by the sum of Nc cosine terms:

u(t) =
Nc∑
k=1

Ak cos(ωkt+ θk) (5.33)

where {ωk}Nck=1, {Ak}Nck=1, and {θk}Nck=1 describe the frequency, amplitude, and phase of each
cosine term. The general solution of the system G(s) forced by this input is of the form
y(t) = yP (t) +

∑n
i=1 cie

sit where {s1, . . . , sn} are the roots of the characteristic equation.
The system is assumed to be stable and hence

∑n
i=1 cie

sit → 0 as t → ∞ with convergence
dominated by the slowest root. Thus stability implies y(t)→ yP (t) where a particular solution,
extending the procedure in Section 5.1, is given by:

yP (t) =
Nc∑
k=1

Ak|G(jωk)| cos (ωkt+ θk + ∠G(jωk)) (5.34)

In other words, if the input is a sum of sinusoids (Equation 5.33) then the steady
state response (Equation 5.34) is given by summing the responses due to each
input sinusoid. The next example demonstrates this fact.

126

Example 5.5. Consider the system G(s) = 10
s+10

forced by the following input with zero IC:

u(t) = 1.2 + 0.9 cos
(

10t+
π

2

)
+ 0.9 cos

(
100t+

π

6

)
(5.35)

This input signal is shown on the left of Figure 5.16. The first (constant) term can be inter-
preted as a cosine at zero (DC) frequency, i.e. (ω1, A1, θ1) = (0, 1.2, 0). The remaining terms
can be interpreted as low frequency (ω2 = 10) and high frequency (ω3 = 100) components.

The Bode magnitude plot for the system G(s) has the typical first order characteristics (see
right plot in Figure 5.6) with DC gain G(0) = 1, corner frequency of 10 rad

sec
, and high frequency

roll off of −20 dB per decade. The high frequency component (third term) in the input is
well above the corner frequency. Thus it is expected that this term should be attenuated
(magnitude reduced) in the steady-state output of G(s). To verify this expectation, first
evaluate the transfer function at the various frequencies {ωk}3

k=1:

G(0) = 1 G(10) = 0.5− 0.5j = 0.707e−j
π
4 G(100) = 0.01− 0.1j = 0.1e−j1.47 (5.36)

Thus the steady-state solution (Equation 5.34) as t→∞ is:

y(t)→ 1.2 + 0.64 cos
(

10t+
π

4

)
+ 0.09 cos (100t− 0.95) (5.37)

The right side of Figure 5.16 shows this steady state response (blue dashed) along with the
actual system output (red solid). The system G(s) has a single pole at s1 = −10 with cor-
responding time constant of τ1 = 0.1sec. Hence the actual response converges to the steady
state response after the settling time 3τ1 = 0.3sec. As expected the high frequency component
(ω3 = 100) is attenuated in the output, i.e. the amplitude of this term is significantly reduced.
As a consequence, the output is dominated by the constant and low frequency terms.

0 0.5 1 1.5 2 2.5 3
Time, sec

-1

0

1

2

3

u

0 0.5 1 1.5 2 2.5 3
Time, sec

0

0.5

1

1.5

2

y

Actual
Steady-State

Figure 5.16: Left: Signal u(t) consisting of three cosine terms (Equation 5.35). Right: Output
y(t) of linear system G(s) = 10

s+10
due to input u(t) (Equation 5.35) and zero IC. Both actual

response and steady-state sinusoidal response are shown.

4

127

5.6.3 Fourier Series

The previous section demonstrated that if the input is a sum of sinusoids then the steady
state output is simply the sum of the response due to each input term. The result is powerful
because general signals can be decomposed into a sum of sinusoidal components. In particular,
a (real) input signal u(t) defined on a finite time interval [0, T] can be expressed as a Fourier
Series, i.e. as a sum of complex exponentials:

u(t) =
∞∑

k=−∞

Uke
jωkt

where Uk :=
1

T

∫ T

0

u(t)e−jωkt and ωk :=
2πk

T

(5.38)

Uk is the kth (complex) Fourier coefficient and ωk is the kth harmonic frequency. This complex
expansion can be equivalently rewritten with (real) cosine terms:

u(t) =
∞∑
k=0

Ak cos(ωkt+ θk)

where Ak := |Uk| and θk := ∠Uk

(5.39)

There are many technical details omitted in this brief summary of the Fourier Series, e.g.
convergence of the infinite sum of sinusoids. Such details on the Fourier Series (and related
transforms) are beyond the scope of this course but can be found in textbooks on signal
processing, e.g. [19].

The Fourier Series and sinusoidal superposition can be combined to compute the steady
state response for any input signal u(t) defined on [0, T]:∗∗

1. Express u(t) as an infinite sum of cosine terms using the Fourier Series (Equation 5.39).

2. Compute the steady-state output due to the kth input term:

Ak|G(jωk)| cos (ωkt+ θk + ∠G(jωk)) (5.40)

3. By superposition, the total steady-state response as t → ∞ is given by the sum of the
individual responses:

y(t)→
∞∑
k=1

Ak|G(jωk)| cos (ωkt+ θk + ∠G(jωk)) (5.41)

This procedure will give the correct output response in steady-state after the effect of the initial
condition has decayed to zero. We won’t use this formal procedure in the remainder of the

∗∗These steps assume T is “large” so that the output has time to converge to the steady-state response. Here
“large” simply means that T is long relative to the time constants of the system poles so that the homogeneous
term has time to decay,

∑n
i=1 cie

sit → 0

128

text. However, it does motivate the use of informal terms such as “low frequency” and “high
frequency” signals. It also provides additional intuition for how linear systems will respond to
general low and high frequency signals.

As an example, recall the responses for the system G(s) = 10
s+10

shown in Figure 5.15. This
figure includes the response due to the “low frequency” input in Equation 5.31. The “low
frequency” nature of this signal can now be made precise. Specifically, the top left plot of
Figure 5.17 shows the Fourier Series amplitudes for this signal. The amplitudes are essentially
zero above 5 rad

sec
. As a consequence, the linear system G(s) = 10

s+10
, which satisfies G(jω) ≈ 1

below its corner frequency at 10 rad
sec

, has minimal effect on this input signal. The bottom left
plot of Figure 5.17 show the Fourier Series amplitudes for the output response due to this
input. As expected, the output amplitudes are essentially unchanged relative to the input. As
a result, the output signal y(t) closely matches in the input signal u(t) as shown in Figure 5.15.

As another example, Figure 5.15 shows the response of G(s) = 10
s+10

due to a “high fre-
quency” random input. The top right plot of Figure 5.17 shows the Fourier Series amplitudes
for this random signal. Note that the amplitudes are relatively flat all the way beyond 300 rad

sec
.

Thus this random signal has significant high frequency content. The amplitudes at high fre-
quencies are attenuated by G(s) = 10

s+10
because its magnitude rolls off by −20dB per decade

above its corner frequency at 10 rad
sec

. The bottom right plot of Figure 5.17 show the Fourier Se-
ries amplitudes for the output response due to this input. As expected, the output amplitudes
are significantly reduced at high frequencies. As a result, the output signal y(t) is significantly
attenuated relative to the input signal u(t) as shown in Figure 5.15.

Figure 5.17: Fourier Series amplitudes for input and output with low frequency input (left)
and high frequency input (right).

129

5.7 System Identification

Summary: A model for a system can be constructed using experimental input/output data.
This section describes a frequency domain (black-box) approach to system identification. The
steps of this approach are to: i) Force the system with a sinusoid at frequency ωk, ii) Measure
the amplitude and phase of the system output in steady-state, iii) Use this experimental data
to estimate the system frequency response G(jωk) at ωk, iv) Repeat steps i)-iii) at a variety of
frequencies and use the frequency response points to estimate an ODE/transfer function model.
This basic approach can be time consuming as it requires running many experiments, i.e. Steps
i)-iii). Less time-consuming methods for system identification will be briefly discussed.

See notes.

130

5.8 Appendix: Resonance

Summary: This appendix derives the peak gain and resonance frequency for an underdamped
second order system.

The transfer function for a stable, underdamped second-order system is G(s) = b0
s2+2ζωns+ω2

n
.

The precise frequency where this system achieves its peak gain can be determined via calculus.
Briefly, the magnitude (in actual units) at an arbitrary frequency is given by:

|G(jω)| = |b0|√
(ω2

n − ω2)2 + 4ζ2ω2
nω

2
(5.42)

The magnitude achieves its peak value at a frequency where d
dω
|G(jω)| = 0. Differentiating

Equation 5.42 with respect to frequency yields:

d

dω
|G(jω)| = −0.5|b0| (−4ω(ω2

n − ω2) + 8ζ2ω2
nω)

((ω2
n − ω2)2 + 4ζ2ω2

nω
2)1.5 (5.43)

This derivative is equal to zero if and only if:

0 = ω3 + (2ζ2 − 1)ω2
n ω (5.44)

There are two cases depending on the value of ζ:

• 2ζ2 − 1 ≥ 0: In this case ζ ≥ 1√
2
. The peak frequency is ωp = 0 and the peak gain is

|G(0)|. This corresponds to a heavily damped system for which no resonance occurs.

• 2ζ2 − 1 < 0: In this case ζ < 1√
2
. The peak frequency is ωp = ωn

√
1− 2ζ2 and the peak

gain is |G(jωp)| = |G(0)|
2ζ
√

1−ζ2
. This corresponds to a lightly damped system with resonance

at frequency ωp.

131

Chapter 6

Frequency Domain Control Design

This chapter introduces loopshaping for control design. This will allow us to design more
advanced controllers that achieve better performance tradeoffs than possible with PID. The
chapter first uses the transfer function notation to derive models for different system inter-
connections including serial, parallel and feedback connections. This enables the ODEs for
closed-loop systems to be derived using easy algebraic manipulations. The stability of the
feedback system is then discussed and conditions for stability are given. Next, the perfor-
mance conditions for the feedback system are specified in the frequency domain. Most control
design requirements can be specified on either the sensitivity function S(s) = 1

1+G(s)K(s)
or

complementary sensitivity function T (s) = G(s)K(s)
1+G(s)K(s)

. Loopshaping is a design procedure that

focuses on the loop transfer function L(s) = G(s)K(s). First, the requirements on S(s) and
T (s) are translated into related requirements on the loop L(s). Next the controller is designed
in steps to meet the requirements on the loop L(s). Each step uses a specific controller compo-
nent to improve the loop characteristics in the low, middle, or high frequencies. The remainder
of the chapter discusses the effects of various controller components and provides an example
of loopshaping design.

132

6.1 Interconnections of Systems

Summary: This section uses the transfer function notation to derive models for different
system interconnections. The parallel interconnection of G1(s) and G2(s) is given by H(s) =
G1(s) + G2(s). The serial interconnection of G1(s) followed by G2(s) is given by H(s) =
G2(s) · G1(s). Finally, the negative feedback interconnection of G1(s) and G2(s) is given by

H(s) = G1(s)
1+G1(s)G2(s)

. Some care is required with this final expression because it results in a non-
minimal representation. Instead the Matlab command feedback should be used to correctly
compute the (minimal) transfer function for feedback interconnections.

6.1.1 Revisiting the Transfer Function Notation

A model for a feedback system can be obtained by combining models for the plant and
controller. This is relatively easy for first/second order plants and simple PID controllers.
However, the manipulations become cumbersome for higher-order plants and more complex
controllers. Transfer functions can be used to simplify the algebraic manipulations for such
derivations. To demonstrate these manipulations, first consider a general nth order linear ODE:

any
[n](t) + · · ·+ a1ẏ(t) + a0y(t) = bmu

[m](t) + · · ·+ b1u̇(t) + b0u(t) (6.1)

The corresponding transfer function is:

G(s) =
bms

m + · · ·+ b1s+ b0

ansn + · · ·+ a1s+ a0

(6.2)

The transfer function was first introduced as simply another notation for the ODE. In partic-
ular, the numerator and denominator polynomials provide the coefficients for the right (input)
and left (output) sides of the ODE. The kth power of s corresponds, notationally, to the kth

derivative with respect to time. It will be useful to further extend this notation. Let N(s)
and D(s) denote the polynomials in the numerator and denominator of the transfer function:

G(s) = N(s)
D(s)

. The linear ODE can then be denoted as:

(ans
n + · · ·+ a1s+ a0)︸ ︷︷ ︸

:=D(s)

Y (s) = (bms
m + · · ·+ b1s+ b0)︸ ︷︷ ︸

:=N(s)

U(s) (6.3)

The equation D(s)Y (s) = N(s)U(s) is simply a compact notation for the linear ODE (Equa-
tion 6.1) that relates input u to output y.∗ It represents the derivatives in the ODE by
polynomials in s. A useful feature of this notation is that algebraic manipulations involving
differential equations can be equivalently performed using polynomials. Two simple exam-
ples are provided below to demonstrate these manipulations. Further details (including proofs
using linear differential operators) can be found in [7].

∗Again, the Laplace Transform (Appendix 2.4.2) can be used to derive a more formal connection. For
example, if Y (s) is the Laplace transform of y(t) then the Laplace transform of y[k](t) is skY (s) (assuming
zero ICs). This fact can be used to derive Equation 6.3 by taking the Laplace Transform of the ODE in
Equation 6.1. However, the formal connection provided by the Laplace Transform is not needed here.

133

Example 6.1. Consider the following two relations from u(t) to y1(t) and y2(t):

y1(t) = u̇(t) + 4u(t) and y2(t) = 2ü(t)− 5.7u̇(t)− u(t) (6.4)

The sum y(t) = y1(t) + y2(t) is thus given by y(t) = 2ü(t) − 4.7u̇(t) + 3u(t). This can also
be derived using the polynomial representation for differential equations. In particular, the
relations from input u(t) to outputs y1(t) and y2(t) are denoted by:

Y1(s) = (s+ 4)U(s) and Y2(s) = (2s2 − 5.7s− 1)U(s) (6.5)

Summing the polynomials yields Y (s) = Y1(s) + Y2(s) = (2s2 − 4.7s − 1)U(s). This denotes
y(t) = 2ü(t)− 4.7u̇(t) + 3u(t) as derived above. 4

Example 6.2. Consider the following two relations from u(t) to w(t) and from w(t) to y(t):

w(t) = 3u̇(t)− 7u(t) and y(t) = −5ẇ(t) + w(t) (6.6)

A model from u(t) to y(t) can be obtained by substituting w(t) from the first relation into the
second relation. This yields y(t) = −15ü(t) + 38u̇(t) − 7u(t). This can also be derived using
the polynomial representation for the differential equations. In particular, the relations from
u(t) to w(t) and from w(t) to y(t) are denoted by:

W (s) = (3s− 7)U(s) and Y (s) = (−5s+ 1)W (s) (6.7)

Thus Y (s) = (−5s+ 1)(3s− 7)U(s) = (−15s2 + 38s− 7)U(s). This denotes y(t) = −15ü(t) +
38u̇(t)− 7u(t) as derived above. 4

In the first example a sum of two ODEs corresponds to a sum of their polynomial represen-
tations. In the second example a concatentation of one ODE followed by another ODE corre-
sponds to a multiplication of their polynomial representations. These examples are sufficiently
simple that they don’t necessarily demonstrate the utility of the polynomial representation.
For example, only non-proper systems appear in both examples above and no derivatives of
the output y(t) appear in the final result. The remainder of the section derives more general
results involving interconnections of systems described by transfer functions.

6.1.2 Parallel Interconnection

Consider the parallel interconnection of two subsystemsG1(s) andG2(s) as shown in Figure 6.1.
The outputs of the subsystems are summed to obtain y(t) = y1(t) + y2(t). The parallel
interconnection is modeled by the transfer function H(s) = G1(s)+G2(s). An informal
sketch of this result is:

Y (s) = Y1(s) + Y2(s) = (G1(s) +G2(s)) U(s) (6.8)

This result is formally shown in Appendix 6.7.1 using the polynomial representation for ODEs.
Parallel interconnections can be computed in Matlab using + as shown in the example below.

134

G1(s)

G2(s)

u(t)

y1(t)

y2(t)

y(t)

H(s)

Figure 6.1: Parallel Interconnection of G1 and G2.

Example 6.3. Consider the systems G1(s) = 3
s+4

and G2(s) = 5
9s−6

. The parallel intercon-
nection H(s) = G1(s) +G2(s) is given by:

H(s) =
3

s+ 4
+

5

9s− 6
=

3(9s− 6) + 5(s+ 4)

(s+ 4)(9s− 6)
=

32s+ 2

9s2 + 30s− 24

This transfer function denotes the following ODE from input u(t) to output y(t):

9ÿ(t) + 30ẏ(t)− 24y(t) = 32u̇(t) + 2u(t) (6.9)

The same result can be obtained in Matlab:

>> G1 = tf(3,[1 4]);

>> G2 = tf(5,[9 -6]);

>> H = G1+G2

H =

32 s + 2

9 s^2 + 30 s - 24

Deriving the ODE for this parallel interconnection would have been more complicated without
the polynomial representation. 4

6.1.3 Serial (Cascade) Interconnection

Consider the serial (cascade) interconnection of two subsystems G1(s) and G2(s) as shown in
Figure 6.2. The output of G1(s) is connected as the input to G2(s). The serial intercon-
nection is modeled by the transfer function H(s) = G2(s) · G1(s). An informal sketch
of this result is:

Y (s) = G2(s)W (s) = G2(s)G1(s)U(s) (6.10)

This result is formally shown in Appendix 6.7.2 using the polynomial representation for ODEs.
Serial interconnections can be computed in Matlab using * as shown in the example below.

135

G1(s) G2(s)
u(t) w(t) y(t)

H(s)

Figure 6.2: Cascade (Serial) Interconnection of G1 and G2.

Example 6.4. Consider the systems G1(s) = 3
s+4

and G2(s) = 5
9s−6

. The serial interconnection
H(s) = G2(s) ·G1(s) is given by:

H(s) =
5

9s− 6
· 3

s+ 4
=

15

9s2 + 30s− 24

This transfer function denotes the following ODE from input u(t) to output y(t):

9ÿ(t) + 30ẏ(t)− 24y(t) = 15u(t) (6.11)

The same result can be obtained in Matlab:

>> H = G2*G1

H =

15

9 s^2 + 30 s - 24

4

6.1.4 Feedback Interconnection

Consider the negative feedback interconnection of two subsystems G1(s) and G2(s) as shown
in Figure 6.3. G1(s) is said to be in the forward path and G2(s) is in the feedback path.
This is called negative feedback because the output of G2(s) enters the summing junction
with a negative sign so that e(t) = r(t) − w(t). Positive feedback refers to the case where
e(t) = r(t) + w(t).

G1(s)

G2(s)

r(t) e(t) y(t)

−
w(t)

H(s)

Figure 6.3: Negative Feedback Interconnection of G1 and G2.

The transfer function relations in Figure 6.3 are

Y (s) = G1(s) (R(s)−W (s)) (6.12)

W (s) = G2(s)Y (s) (6.13)

136

Eliminating W (s) and solving for Y (s) yields:

Y (s) =
G1(s)

1 +G1(s)G2(s)
R(s) (6.14)

Based on this informal sketch, the negative feedback interconnection is modeled
by the transfer function H(s) = G1(s)

1+G1(s)G2(s)
. A similar derivation for positive feedback

interconnections yields H(s) = G1(s)
1−G1(s)G2(s)

. Some care is required with these expressions be-
cause they are non-minimal as defined in Section 3.3.2, i.e. they contain common poles and
zeros at the same location. In particular, a more formal derivation for the negative feedback
case is given in Appendix 6.7.3 using the polynomial representation for ODEs. The result
(Equation 6.48) involves a more complicated expression for H(s) in terms of the numerator
and denominator polynomials of G1(s) and G2(s). In fact, the transfer function obtained
from Equation 6.14 has common poles and zeros at the roots of D1(s) = 0 where D1(s) is
the denominator polynomial of G1(s). These common poles and zeros must be cancelled to
obtain the correct (minimal) expression for H(s). As a result, negative feedback inter-
connections should not be computed in Matlab using the expression G1/(1+G1*G2).
Instead, they should be computed using the syntax H=feedback(G1,G2). The simpler
expression H(s) = G1(s)

1+G1(s)G2(s)
will often be used with the understanding that this represents

the minimal representation after common poles/zeros have been removed. The example below
demonstrates these issues.

Example 6.5. Consider the systems G1(s) = 3
s+4

and G2(s) = 5
9s−6

. The negative feedback
interconnection can be obtained in Matlab:

>> H = feedback(G1,G2)

H =

27 s - 18

9 s^2 + 30 s - 9

This transfer function denotes the following ODE from input u(t) to output y(t):

9ÿ(t) + 30ẏ(t)− 9y(t) = 27u̇(t)− 18u(t) (6.15)

The formal expression (Equation 6.48) in the appendix is H(s) = D2(s)N1(s)
D2(s)D1(s)+N2(s)N1(s)

. This
yields the same transfer function:

H(s) =
(9s− 6) · 3

(s+ 4)(9s− 6) + 5 · 3
=

27s− 18

9s2 + 30s− 9

Finally, H(s) = G1(s)
1+G1(s)G2(s)

yields the same result but with additional poles and zeros at

the roots of D1(s) = 0 where D1(s) = (s + 4) is the denominator of G1(s). Specifically, this
form for H(s) introduces an additional pole and zero at s = −4. The Matlab commands below
demonstrate this behavior:

137

>> H2 = G1/(1+G1*G2)

H2 =

27 s^2 + 90 s - 72

9 s^3 + 66 s^2 + 111 s - 36

>> pole(H2).’

ans =

-4.0000 -3.6103 0.2770

>> zero(H2).’

ans =

-4.0000 0.6667

Again, this form is non-minimal due to the common pole and zero at s = −4. The minreal

function can be used cancel the common pole and zero to obtain a minimal representation:

>> minreal(H2)

ans =

3 s - 2

s^2 + 3.333 s - 1

This transfer function represents the same system as derived above. Multiply the numerator
and denominator by 9 to show this equivalence. This example emphasizes that feedback
interconnections should be computed in Matlab using the feedback function. 4

138

6.2 Stability of Feedback Systems

Summary: This section considers a generic feedback system with many inputs and outputs.
Two special transfer functions associated with feedback system are the sensitivity S(s) =

1
1+G(s)K(s)

and complementary sensitivity T (s) = G(s)K(s)
1+G(s)K(s)

. The transfer functions S(s) and

T (s) are “complementary” in the sense that S(s) + T (s) = 1 for all s ∈ C. Next, the feedback
system is defined to be stable if every individual input/output transfer function is stable. It is
shown that if the controller K(s) is designed to cancel a RHP pole or zero in the plant G(s)
then the feedback system will be unstable. Hence the controller should never be designed to
have such cancellations. Assuming such a cancellation is avoided, then the feedback system
will be stable if and only if 1 +G(s)K(s) has no zeros in the RHP.

6.2.1 General Feedback System

Chapter 4 presented techniques to design PID controllers for first and second order systems.
The controller is designed to ensure stability, track reference commands, reject disturbances
and be insensitive to sensor noise. Figure 6.4 shows a general feedback system that includes
the signals required to model these issues. The systems include the plant G(s) and controller
K(s). The signals include the reference command r, tracking error e, control command u,
input disturbance d, plant input v, plant output y, sensor noise n, and measured plant output
m. Most applications will have competing design requirements related to the various signals
shown in this generic feedback diagram. The frequency domain procedure, introduced later in
this chapter, will enable better trade-offs in the control design.

K(s) G(s)
r e u

d

v y

−
nm

Figure 6.4: General feedback system

The first step is to notice that there are many different inputs and outputs in Figure 6.4.
Each input / output pair has an associated transfer function that models the dynamics from
the chosen input to output. For example, the transfer function from input r to output y,
denoted by Tr→y(s), can be computed by setting d = 0 and n = 0 in Figure 6.4. In this case

Y (s) = G(s)K(s) (R(s)− Y (s)) and solving for Y (s) yields Tr→y(s) = G(s)K(s)
1+G(s)K(s)

. This result

is a special case of the feedback interconnection discussed in Section 6.1.4 with G(s)K(s) in the
forward path and unity feedback path. As discussed in Section 6.1.4, this should be interpreted
as the minimal transfer function obtained after canceling any common poles and zeros.

The feedback diagram contains three input signals (r, d, n) and five “internal” signals that
can be selected as outputs (e, u, v, y,m). Thus there are a total of 15 (= 3 · 5) possible input
/ output transfer functions. Each possible transfer function can be computed using similar

139

algebraic manipulations as used to compute Tr→y(s). As one additional example, consider the
transfer function from input r to output e, denoted Tr→e(s). Again set d = 0 and n = 0 in
Figure 6.4 so that E(s) = R(s)−Y (s) and Y (s) = G(s)K(s)E(s). Eliminating Y (s) and solving
for E(s) yields Tr→e(s) = 1

1+G(s)K(s)
. This result is a special case of the feedback interconnection

discussed in Section 6.1.4 with unity forward path and G(s)K(s) in the feedback path.
The two transfer functions computed above have special significance. In particular,

S(s) = 1
1+G(s)K(s)

is called the sensitivity transfer function and T (s) = G(s)K(s)
1+G(s)K(s)

is

the complementary sensitivity function.† The name for S(s) arises because this transfer
function is a measure of the sensitivity of the closed-loop to small changes in the plant model
G(s).‡ The two transfer functions S(s) and T (s) will be explored in detail later. For now it
is sufficient to notice that S(s) +T (s) = 1 for all values of s ∈ C. Thus S(s) and T (s)
are “complementary” in the sense that they sum to 1. All 15 possible input / output
transfer functions, computed using similar manipulations as above, can now be expressed in
terms of S and T as shown in the following matrix array:

Y (s)
U(s)
E(s)
M(s)
V (s)

 =


T (s) −T (s) G(s)S(s)

K(s)S(s) −K(s)S(s) −T (s)
S(s) −S(s) −G(s)S(s)
T (s) S(s) G(s)S(s)

K(s)S(s) −K(s)S(s) S(s)


R(s)
N(s)
D(s)

 (6.17)

This array should be interpreted using standard matrix multiplication. For example, the second
output U(s) is given by the second row of the matrix multiplied by the input vector:

U(s) = K(s)S(s)R(s)−K(s)S(s)N(s)− T (s)D(s) (6.18)

This formula is a consequence of the principle of superposition for linear systems (Section 2.1.2).
The individual effects of the inputs (r, n, d) are summed together to determine their combined
effect on the output.

6.2.2 Stability Definition

The primary performance requirement for the controller is that it must ensure that the feedback
system is stable. There are 15 input/output pairs in Equation 6.17. It is possible that some

†The notation T (s) with no subscript will always denote the complementary sensitivity. If a subscript
appears, e.g. Tr→y(s), then it denotes the input and output pair.
‡A brief sketch is as follows. T (s) is the transfer function from reference r(t) to output y(t). A differential

change dG in the plant model causes a differential change dT in T . A measure of the system sensitivity is
dT/T
dG/G . This is the relative change in the closed loop divided by a relative change in the plant dynamics. This

can be rewritten as dT
dG ·

G
T . The derivative is given by:

dT

dG
=

d

dG

[
GK

1 + GK

]
=

K

(1 + GK)2
(6.16)

Subsituting this derivative yields dT
dG ·

G
T = S. In other words, S(s) measures the sensitivity of the closed-loop

(from r to y) to small (differential) changes in the plant model.

140

of these transfer functions are stable and some are unstable. As a specific example, consider
a feedback system with K(s) = 1

s−1
and G(s) = s−1

s+3
. Figure 6.5 shows this system along

with the output y(t) and control u(t) response due to a unit step reference command. These
responses can be understood by examining the appropriate transfer functions. First, a minimal
realization for the product G(s)K(s) is 1

s+3
. Note that K(s) has a RHP pole at s = +1 that

is cancelled by a zero at the same location in G(s). The complementary senstivity function

(from r to y) for this example is T (s) = G(s)K(s)
1+G(s)K(s)

= 1
s+4

. This is a stable first-order system

(one pole at s = −4) with time constant of τ1 = 0.25sec and DC gain of T (0) = 0.25. Thus
a unit step reference r(t) = 1 yields an output response y(t) that converges in steady state to
0.25 with a settling time of 3τ1 = 0.75sec. On the other hand, the transfer function from r to
u is given by Tr→u(s) = K(s)

1+G(s)K(s)
= s+3

(s−1)(s+4)
. This is an unstable system due to the pole at

s = +1. As a consequence, a unit step reference r(t) = 1 causes the control command u(t) to
grow unbounded. All these features are shown in Figure 6.5.

1
s−1

s−1
s+3

r e u y

−
0 1 2 3

0

0.5

1

Time, t

R
ef

er
en

ce
,
r(
t)

0 1 2 3
0

5

10

15

Time, t

C
on

tr
ol

,
u

(t
)

0 1 2 3
0

0.1

0.2

Time, t

O
u
tp

u
t,
y
(t

)

K(s) G(s)

Figure 6.5: Feedback system with RHP pole/zero cancellation between G(s) and K(s)

The behavior shown in Figure 6.5 would be unacceptable in practice even though y(t) has
a stable, first-order response. Specifically, all real systems have saturation limits on the mag-
nitude of the input. At some point the unbounded control signal u(t) in this example will
exceed such limits. The system will either be damaged or the output y(t) will also grow un-
bounded due to the (nonlinear) saturation of the input. Either outcome would be undesirable.
In general, there will be undesirable effects if any of the 15 input / output transfer functions
is unstable. This motivates the following definition for stability of the feedback system.

Definition 6.1. The feedback system is defined to be stable if all possible transfer functions
in the system (r to e, d to u, n to y, etc) are stable.

It is important to note that the stability of the feedback system can be different from the
stability of the individual components G and K. For example, the feedback system can be
unstable even if both G and K are stable. Conversely, the feedback system can be stable even
if G and/or K is unstable.

141

6.2.3 Stability Condition for Feedback Systems

This section derives a simple condition to check for the stability of the feedback system. Based
on Definition 6.1, this requires checking the stability of the 15 transfer functions in Equa-
tion 6.17. This can be done using the equivalent conditions for free (IC) response (Fact 3.1) and
BIBO (Fact 3.2) stability. In other words, each of the 15 transfer functions must be checked to
ensure that all poles lie in the LHP. Upon closer inspection, the array of input/output transfer
functions in Equation 6.17 has only four unique entries (neglecting sign): S(s), T (s), G(s)S(s),
and K(s)S(s). Note that the sign does not affect the stability properties, e.g. S(s) and −S(s)
have the same poles. Hence stability of these four transfer functions is necessary and sufficient
for stability of the feedback system.

The simple stability condition is derived by considering the numerator and denominator
polynomials for the plant and controller:

G(s) =
NG(s)

DG(s)
and K(s) =

NK(s)

DK(s)
(6.19)

Moreover, assume that these are minimal representations for G(s) and K(s). Thus NG(s) and
DG(s) are polynomials with no common roots that can be canceled. Similarly, NK(s) and
DK(s) have no common roots. Minimal realizations for the four main input/output transfer
functions listed above can be expressed in terms of these polynomials:

S(s) =
1

1 + NG(s)NK(s)
DG(s)DK(s)

=
DG(s)DK(s)

DG(s)DK(s) +NG(s)NK(s)

T (s) =

NG(s)NK(s)
DG(s)DK(s)

1 + NG(s)NK(s)
DG(s)DK(s)

=
NG(s)NK(s)

DG(s)DK(s) +NG(s)NK(s)

G(s)S(s) =

NG(s)
DG(s)

1 + NG(s)NK(s)
DG(s)DK(s)

=
NG(s)DK(s)

DG(s)DK(s) +NG(s)NK(s)

K(s)S(s) =

NK(s)
DK(s)

1 + NG(s)NK(s)
DG(s)DK(s)

=
NK(s)DG(s)

DG(s)DK(s) +NG(s)NK(s)

(6.20)

Note that DG(s)DK(s)+NG(s)NK(s) appears in the denominator of all four transfer functions.
The following characteristic equation is key for the stability of the feedback system:

DG(s)DK(s) +NG(s)NK(s) = 0 (6.21)

An important observation is that the feedback system will be unstable if there is
a RHP pole/zero cancellation between G(s) and K(s). One example of this behavior
was given in the previous section. To make this rigorous, consider the case where K(s) has a
pole at s = p0 in the RHP and G(s) has a zero at the same location. Thus both DK(p0) = 0
and NG(p0) = 0 so that p0 is a root of the characteristic equation in Equation 6.21. Moreover,
both NK(p0) 6= 0 and DG(p0) 6= 0 because the representations in Equation 6.19 are assumed
to be minimal. Thus K(s)S(s) has a pole at s = p0 because the denominator is zero and

142

the numerator is non-zero. Hence the feedback system is unstable in this case.§ A similar
argument can be used to show that the feedback system is unstable when G(s) has a pole at
s = p0 in the RHP and K(s) has a zero at the same location. Thus a controller should
never be designed to cancel a RHP pole or zero in the plant as this will result in
an unstable feedback system. The simple stability condition for the feedback system is
now stated in terms of the transfer functions G(s) and K(s).

Fact 6.1. Consider a feedback system where G(s) and K(s) have the minimal realizations
given in Equation 6.19. Moreover, assume there are no RHP pole/zero cancellations in the
product G(s)K(s). Then the feedback system is stable if and only if 1+G(s)K(s) has no RHP
zeros. Equivalently, the feedback system is stable if and only if the sensitivity S(s) is stable.

This fact will be proved by first showing that neither S(s) nor 1 + G(s)K(s) has a RHP
pole/zero cancellation. In particular the sensitivity S(s) is given by (Equation 6.20):

S(s) =
DG(s)DK(s)

DG(s)DK(s) +NG(s)NK(s)
(6.22)

Suppose the numerator of S(s) has a zero at some s = p0 in the RHP. Then either DG(p0) = 0
or DK(p0) = 0. If DG(p0) = 0 then NG(p0) 6= 0 (because the realization of G(s) is assumed to
be minimal) and NK(p0) 6= 0 (because G(s) and K(s) are assumed to have no RHP pole/zero
cancellations). Hence if DG(p0) = 0 then the denominator must be non-zero at s = p0.
Similarly, if DK(p0) = 0 then the denominator must be non-zero at s = p0. Thus S(s) has
no RHP pole/zero cancellations. In fact, the RHP poles of S(s) = 1

1+G(s)K(s)
are precisely the

RHP zeros of 1 +G(s)K(s).
The proof is completed by showing the following statement: The feedback system is unstable

if and only if S(s) is unstable. Two steps are required to show this equivalence:

1. Show that if S(s) is unstable then the feedback system is unstable: The feedback system is
unstable, by definition, if any of the possible input-output transfer functions is unstable.
Hence if S(s), the transfer function from reference to error, is unstable then the feedback
system is unstable.

2. Show that if the feedback system is unstable then S(s) is unstable: If the feedback system
is unstable then at least one of the four transfer functions in Equation 6.20 is unstable.
All four transfer functions have the same denominator and hence this implies that the
characteristic equation (Equation 6.21) has a root at some s = p0 in the RHP. The
denominator of the sensitivity is the characteristic polynomial. As shown above, S(s)
has no RHP pole/zero cancellations and hence |S(p0)| = +∞. Thus if the feedback
system is unstable then S(s) has a pole at s = p0.

§The other three transfer functions in Equation 6.20 are not necessarily unstable because their numerator
may have a zero that cancels the root of the characteristic equation. For example, it was shown in the previous
section that K(s) = 1

s−1 and G(s) = s−1
s+3 causes K(s)S(s) to be unstable while T (s) is stable. However, the

feedback system is still, by definition, unstable if at least one input/output transfer function is unstable.

143

6.3 Frequency Domain Performance Specifications

Summary: Most control design requirements can be specified in the frequency domain as
bounds on the sensitivity S(s) and complementary sensitivity T (s). In particular, good refer-
ence tracking and disturbance rejection require |S(jω)| � 1 at low frequencies. Good rejection
noise rejection requires |T (jω)| � 1 at high frequencies. A rrequirement on the control u(t)
is given by a specific bound on T (s) across all frequencies. Finally, a rule of thumb for good
robustness is to have |S(jω)| ≤ 2.5 for all frequencies.

6.3.1 Revisiting Control Design Objectives

This section revisits the basic control design objectives, originally introduced in Section 4.1.3,
using the generic feedback interconnection in Figure 6.6. In particular, each performance ob-
jective can be stated as a frequency domain requirement on a particular input/output transfer
function. The controller K(s) should be designed to satisfy the following objectives:

• Stability: The previous section focused on stability of the feedback system. At a min-
imum, the feedback system should be stable as defined in Definition 6.1. Fact 6.1 can
be used to check for stability of the feedback system. Specifically, G(s) and K(s) should
have no RHP pole/zero cancellations and S(s) = 1

1+G(s)K(s)
should be stable.

K(s) G(s)
r e u

d

v y

−
nm

Figure 6.6: General feedback system

• Reference Tracking: The controller should be designed so that the system output y(t)
tracks, i.e. closely follows, the reference command r(t). It will be useful to interpret
tracking in terms of the reference to error transfer function. In the absence of noise the
tracking error is given by e(t) = r(t) − y(t). Thus E(s) = S(s)R(s) (Equation 6.17)
where S(s) = 1

1+G(s)K(s)
is the sensitivity. If the reference command is r(t) = A cos(ωt)

then the steady-state tracking error satisfies:

e(t)→ A|S(jω)| cos(ωt+ ∠S(jω)) (6.23)

For example, if |S(jω)| = 0.05 then the error amplitude is only 5% of the reference
amplitude at the frequency ω. Thus good tracking at frequency ω requires |S(jω)| � 1.

• Disturbance Rejection: The controller should be designed so that a disturbance d(t)
has small effect on the output y(t). These signals are related by Y (s) = G(s)S(s)D(s)
(Equation 6.17). Thus rejection of a sinusoidal disturbance d(t) = A cos(ωt) requires

144

|G(jω)S(jω)| to be “small”. One notion of “small” is that the controller should reduce
the effect of disturbance as compared to the performance with no control. In particular, if
there is no control, i.e. K(s) = 0, then the disturbance and output are related by Y (s) =
G(s)D(s). Thus the controller reduces the effect of a disturbance if |G(jω)S(jω)| �
|G(jω)|. In other words, |S(jω)| � 1 implies good disturbance rejection, i.e. that the
effect of the disturbance with control is significantly less than the effect with no control.

• Actuator Effort: The control u(t) should remain within allowable levels. Consider
the relation from reference command to control: U(s) = K(s)S(s)R(s) (Equation 6.17).
This implies that the control effort required to track a reference signal at frequency ω is
determined by |K(jω)S(jω)|. Note that the requirement on actuator effort is not simply
|K(jω)S(jω)| � 1 because some control is required to perform the tracking. To clarify
this statement consider the input required to track a constant reference r̄ in steady-
state. Recall that the DC (steady-state) gain of the plant is G(0) (Section 3.7.1). Thus
if y(t) → r̄ and u(t) → ū then r̄ = G(0)ū. In other words, tracking r̄ in steady-state
(assuming d(t) = 0) requires the control ū = 1

G(0)
r̄. As a consquence, it does not make

sense to require |K(0)S(0)| < 1
G(0)

as this would prevent steady state tracking. More
generally, tracking of dynamic signals requires additional control beyond the steady-state
value. As a rule of thumb, a sensible requirement on reference r(t) to control u(t) is:

|K(jω)S(jω)| ≤ 2.5

|G(0)|
(6.24)

The factor of 2.5 allows for control beyond that required for perfect steady state tracking.
A more convenient form for the actuator requirement is obtained by multiplying Equa-
tion 6.24 by G(s). Note that G(s)K(s)S(s) = G(s)K(s)

1+G(s)K(s)
which is the complementary

sensitivity T (s). Hence the actuator requirement can be rewritten as follows:

|T (jω)| ≤ 2.5

∣∣∣∣G(jω)

G(0)

∣∣∣∣ (6.25)

• Noise Rejection: It is typically required that any measurement inaccuracies, e.g. noise
n(t), have small effect on the output y(t). This input/output pair is related by Y (s) =
−T (s)N(s) (Equation 6.17). If the noise is n(t) = −A cos(ωt) then the steady-state
output (due only to the noise) satisfies y(t) → A|T (jω)| cos(ωt + ∠T (jω)). Thus good
noise rejection at frequency ω requires |T (jω)| � 1. It is also typically required tha the
noise does not cause large control effort. The relation from noise to control is U(s) =
−K(s)S(s)N(s) (Equation 6.17). This is the same as from r(t) to u(t) (except for the
negative sign). Hence Equation 6.25 also ensures reasonable gain from noise to control.

• Robustness to Model Uncertainty: As noted in the previous section, the model used
for control design is typically simplified. The controller must be robust, i.e. insensitive,
to model errors introduced by this simplified model. Frequency domain methods for
robustness analysis will be considered further in Chapter 7. It will be shown that a
rule of thumb for good robustness is to have |S(jω)| ≤ 2.5 for all ω.

145

Good reference tracking and disturbance rejection at a frequency ω both require |S(jω)| �
1. Good noise rejection at a frequency ω requires |T (jω)| � 1. These requirements are in
direct conflict. Specifically, recall that S(jω) + T (jω) = 1 at all frequencies. Hence it is not
possible to make both |S(jω)| and and |T (jω)| small at a specific frequency. This conflict is
resolved by splitting the design objectives based on frequency. Typically, reference commands
and disturbances dominate at low frequencies while noise dominates at high frequencies.

As a concrete example, recall the “low frequency” (Equation 5.31) and “high frequency”
(random) signals discussed in Section 5.6. These signals and their Fourier Series amplitudes are
shown in Figure 6.7. Reference signals tend to have the characteristics of the “low frequency”
signal r(t) shown on the left. In the time domain, such signals tend to be slowly varying,
e.g. smooth transitions between constant values.¶ In the frequency domain, such signals have
significant energy (Fourier Series amplitudes) at low frequencies. The features of a disturbance
signal depend on the specific problem but these signals also tend to be “low frequency”. On
the other hand, noise tends to have the characteristics of the “high frequency” random signal
n(t) shown on the right of Figure 6.7. In the time domain, such signals change rapidly. In
the frequency domain, such signals tend to have roughly constant Fourier Series amplitudes
across all frequencies. Note that the Fourier Series amplitudes for n(t) are large relative to the
amplitudes of n(t) ω ≥ 5 rad

sec
. As a result, the noise dominates at high frequencies.

0 2 4 6 8 10
Time, sec

0

1

2

r

0 5 10 15
Frequency !

k
, rad/sec

0

1

2

A
m

pl
itu

de
s

0 2 4 6 8 10
Time, sec

-2

0

2

n

0 50 100 150 200 250 300
Frequency !

k
, rad/sec

0

0.05

0.1

A
m

pl
itu

de
s

Figure 6.7: Left: Low Frequency signal (Equation 5.31) and its Fourier Series amplitudes.
Right: High frequency (random) signal and its Fourier Series amplitudes.

To summarize, good reference tracking and disturbance rejection (with domi-
nant energy below a frequency ω1) require |S(jω)| � 1 for low frequencies ω ≤ ω1.
Good rejection of “high frequency” noise (with dominant energy above a fre-
quency ω2) requires |T (jω)| � 1 for high frequencies ω ≥ ω2. Finally, a reasonable
requirement on the control u(t) is given by the bound on T (s) in Equation 6.25.

¶The PID design in Chapter 4 considered step reference commands that jumped from one constant value
to another. Step commands are useful for analysis as the system response can be analytically computed using
the techniques in Chapter 3. However, it is typical for the reference command to smoothly transition from one
constant value to another constant value. If the transition time is short then this smooth transition can be
approximated by a step change for the purposes of analysis.

146

6.3.2 Example: Basic Frequency Domain Tradeoffs

This section illustrates the basic S(s) and T (s) tradeoffs using the following simple example:

Plant: ẏ(t) = u(t) Control: u(t) = Kpe(t) (6.26)

The plant is a single integrator with transfer functionG(s) = 1
s
. The controller is a proportional

gain, K(s) = Kp. The sensitivity and complementary sensitivity for this example are:

S(s) =
1

1 +G(s)K(s)
=

s

s+Kp

and T (s) =
G(s)K(s)

1 +G(s)K(s)
=

Kp

s+Kp

(6.27)

The left side of Figure 6.8 shows the Bode magnitude plot for S(s) and T (s) with Kp = 1.
The plot also shows the loop transfer function L(s) = G(s)K(s). There are three frequency
regions of importance:

• Low Frequencies: In this region, the loop gain is large |L(jω)| � 1 and, as a result,
|S(jω)| � 1. The small sensitivity corresponds to good reference tracking and distur-
bance rejection at low frequencies. Another consequence of the large loop gain is that
|T (jω)| ≈ 1. This implies that noise appears in the output with little attenuation, i.e.
there is poor noise rejection at low frequencies. The poor noise rejection is a conse-
quence of the good reference tracking and disturbance rejection obtained by relying on
the feedback measurement at low frequencies.

• High Frequencies: In this region, the loop gain is small |L(jω)| � 1 and, as a result
|T (jω)| � 1. The small complementary sensitivity corresponds to good noise rejection
at high frequencies. Another consequence of the small loop gain is that |S(jω)| ≈ 1.
This implies that both the reference tracking and disturbance rejection are poor in this
frequency range. The poor tracking and disturbance rejection are a consequence of the
good noise rejection obtained by having small feedback at high frequencies.

• Middle Frequencies: The loop transfer function for this simple example has unity gain,
i.e. |L(jωc)| = 1 = 0dB, at a single frequency ωc = Kp = 1 rad

sec
. This frequency defines

the (loop) bandwidth which is a measure of the system speed of response. Note that the
closed-loop (see Equation 6.27) has a single pole s1 = −1 rad

sec
at this same frequency. This

corresponds to a time constant of τ1 = 1sec. More precise definitions of bandwidth will
be given in the next section. It will be shown later that the characteristics of the middle
frequency region impact the stability and robustness of the closed loop.

The right plot of Figure 6.8 shows the output response y(t) (red dashed) due to both a
reference r(t) (blue solid) and noise n(t) input. The reference r(t) and noise n(t) inputs are
given by the “low” and “high” frequency signals shown in Figure 6.7. For Kp = 1 the system
bandwidth, as defined above, is ωc = 1 rad

sec
. This is sufficiently low that most of the noise

is rejected and the output y(t) is fairly smooth. However, the output has a noticeable lag
relative to the reference signal. This is because the reference signal has frequency content in
the 1− 3 rad

sec
range (see Figure 6.7) which is above the system bandwdith.

147

10-2 10-1 100 101 102

Frequency, rad/sec

-40

-20

0

20

40

M
ag

ni
tu

de
, d

B

Low Mid High

|S|
|T|
|L|

0 2 4 6 8 10
Time, sec

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y Reference, r
Output, y

Figure 6.8: Left: Bode magnitude plot of S(s), T (s), and L(s) = G(s)K(s) for G(s) = 1
s

and
K(s) = 1. Right: Time response due to reference r(t) and noise n(t) inputs.

Increasing the proportional gain to KP = 10 yields the results shown in Figure 6.9. The left
plot again shows the Bode magnitude plots for S(s), T (s), and L(s). The larger gain pushes
the system bandwidth to 10 rad

sec
. For this gain the closed-loop (see Equation 6.27) pole is at

s1 = −Kp = −10 rad
sec

with corresponding time constant τ1 = 0.1sec. Thus larger bandwidths
correspond to a faster speed of response. The good tracking and disturbance rejection extends
over a wider “low” frequency region. The disadvantage is that the complementary sensitivity
function has larger gain at high frequencies. This corresponds to degraded noise rejection. The
right plot of Figure 6.9 shows the time domain response due to reference and noise inputs. The
output responds faster to the reference command but is also degraded due to the noise. Both
of these features support the conclusions from the frequency domain plots (better reference
tracking but degraded noise rejection).

10-2 10-1 100 101 102

Frequency, rad/sec

-40

-20

0

20

40

M
ag

ni
tu

de
, d

B

Low Mid High

|S|
|T|
|L|

0 2 4 6 8 10
Time, sec

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y Reference, r
Output, y

Figure 6.9: Left: Bode magnitude plot of S(s), T (s), and L(s) = G(s)K(s) for G(s) = 1
s

and
K(s) = 10. Right: Time response due to reference r(t) and noise n(t) inputs.

148

6.4 Introduction to Loopshaping

Summary: Loopshaping is a design procedure that focuses on the loop transfer function
L(s) = G(s)K(s). Requirements on S(s) and T (s) are translated into related requirements on
the loop L(s). In particular, good reference tracking and disturbance rejection require large
loop gain at low frequencies. Good noise rejection requires small loop gain at high frequencies.
Stability and robustness are associated with a shallow slope in the middle frequencies. The
speed of response is characterized by the system bandwidth as defined by the loop crossover
frequency. In loopshaping, the controller is designed in steps to meet the requirements on the
loop L(s). Each step uses one of the following components: (a) Proportional Gain, (b) Low
Frequency and Integral Boosts, (c) High Frequency Rolloff, and (d) Lead.

6.4.1 Approach

The goal is to design K(s) such that the feedback system is stable. The system should also
satisfy various performance and robustness requirements. Note that each requirement in the
previous section can be specified as a bound on either |S(jω)| or |T (jω)|. The controller K(s)
appears in the denominator of both S(s) and T (s). As a result, it is difficult to design a
controller to directly satisfy the requirements on |S(jω)| and |T (jω)|.

Loopshaping is a design procedure that instead focuses on the loop transfer
function L(s) = G(s)K(s). First, the requirements on S(s) and T (s) are translated
into related requirements on the loop L(s). This is discussed further in Section 6.4.2.
Next the controller is designed in steps to meet the requirements on the loop L(s).
Each step uses a specific controller component to improve the loop characteristics
in the low, middle, or high frequencies. Important components for the control design
are introduced in Section 6.4.3. Note that the loop transfer function L(s) = G(s)K(s) has
a simple (linear) dependence on the controller K(s). This property is useful in the design
procedure as shown in Section 6.6. The overall process described in this chapter closely follows
the notes in [20]. Loopshaping can more easily handle higher order plants than our previous
PID design approach. In addition, it extends naturally to systems with multiple inputs and
multiple outputs. This extension to multiple inputs/outputs is not covered in this text but
details can be found in more advanced textbooks [21,24].

6.4.2 Requirements on Loop L(s) = G(s)K(s)

Section 6.3.1 introduced several performance requirements on |S(jω)| and |T (jω)|. The first
step in loopshaping is to translate these into requirements on the loop transfer function. Fig-
ure 6.10 shows sample performance bounds on |S(jω)|, |T (jω)|, and |L(jω)|. The black dashed
curves in each figure correspond to an example, sensitivity, complementary sensitivity, and loop
transfer functions for the plant G(s) = 1

s2+0.7s+0.01
and controller K(s) = 1. Again, there are

three frequency regions of importance:

• Low Frequencies: The upper left plot of Figure 6.10 shows a sample upper bound
on |S(jω)|. In particular, |S(jω)| ≤ ε1 � 1 for ω ≤ ω1 yields good reference tracking

149

!
1

!
S

0
1

-3
8

|S
|,

dB

!
T

!
2

Frequency, rad/sec

0
2

-3
8

|T
|,

dB

!
1

!
c

!
2

Frequency, rad/sec

0
2

0

1/0
1

|L
|=

|G
K

|,
dB

Figure 6.10: Requirement bounds on |S(jω)| (upper left), |T (jω)| (lower left) and |L(jω)|
(right). All plots show sample result (black dashed) for G(s) = 1

s2+0.7s+0.01
and K(s) = 1.

and disturbance rejection. The sensitivity can be expressed in terms of the loop transfer
function: S(s) = 1

1+L(s)
. Therefore, if |S(jω)| is small then the loop gain |L(jω)| must

be large. Roughly, |S(jω)| ≤ ε1 � 1 is approximately equivalent to |L(jω)| ≥ 1
ε1
� 1.

This lower bound on |L(jω)| for ω ≤ ω1 is shown in the right plot of Figure 6.10. The
plots are drawn for the specific values ε1 = 0.1 = −20dB an 1

ε1
= 10 = +20dB. Typical

requirements would likely be more stringent (smaller value of ε1).

Recall that S(jω) + T (jω) = 1 for all ω. As a result, |S(jω)| � 1 at low frequencies im-
plies |T (jω)| ≈ 1. Thus bounds on |T (jω)| at low frequencies, e.g. actuator requirements,
are typically less important than the bounds on |S(jω)|.

• High Frequencies: The lower left plot of Figure 6.10 shows a sample upper bound
on |T (jω)|. The bound |T (jω)| ≤ ε2 � 1 for ω ≥ ω2 yields good noise rejection. The
complementary sensitivity can also be expressed in terms of the loop transfer function:
T (s) = L(s)

1+L(s)
. Therefore, if |T (jω)| is small then the loop gain |L(jω)| must also be

small. Roughly, |T (jω)| ≤ ε2 � 1 is approximately equivalent to |L(jω)| ≤ ε2 � 1. This
upper bound on |L(jω)| for ω ≥ ω2 is shown in the right plot of Figure 6.10. The plots
are drawn for the specific value ε2 = 0.1 = −20dB. Again, typical requirements would
likely be more stringent (smaller value of ε2).

Note that |T (jω)| � 1 at high frequencies implies |S(jω)| ≈ 1. This again follows from
S(jω) + T (jω) = 1 for all ω. Thus bounds on |S(jω)| at high frequencies are typically
less important than the bounds on |T (jω)|.

• Middle Frequencies: A rule of thumb for good robustness is |S(jω)| ≤ 2.5 ≈ 8dB
as discussed further in Chapter 7. For now it is sufficient to state that this robustness
requirement leads to a corresponding rule of thumb requirement on the loop gain |L(jω)|.
Specifically, the slope of the loop gain should be ≥ −30dB per decade in the middle
frequency region. If the slope is shallow, e.g. −20dB per decade, then the feedback
system will typically be stable with good robustness. If the slope is too steep, e.g.

150

−40dB per decade, then there will be stability or robustness issues. As a result, the loop
gain should not transition too steeply through the middle frequency region. This will
thus require a separation between the low and high frequency regions, i.e. ω1 and ω2

cannot be too close together. These statements will be made more precise in Chapter 7.

One final aspect for discussion is the speed of response. The step response settling time was
previously used to measure the speed of a simple system. An alternative, frequency domain
measure for the speed of response is the “bandwidth”. There are three distinct methods to
measure the bandwidth. First, a loop crossover frequency ωc is defined by |L(jωc)| = 1 =
0dB. Typically there is only a single loop crossover frequency but in some cases there can
be more than one. The loop bandwidth is given by the lowest loop crossover frequency.‖ A
higher bandwidth corresponds to a faster speed of response. A second measure of speed is the
sensitivity bandwidth, denoted ωS. This is defined as the highest frequency such that |S(jω)| ≤

1√
2

= −3dB for all ω ≤ ωS. This is roughly a measure of the frequency range for tracking and
disturbance rejection. The third and final measure of speed is the complementary sensitivity
bandwidth, denoted ωT . This is defined as the lowest frequency such that |T (jω)| ≤ 1√

2
= −3dB

for all ω ≥ ωT . This is roughly a measure of the frequency range for noise rejection. These
three different bandwidths are typically ordered by ωS ≤ ωc ≤ ωT . They are all labelled in
Figure 6.10 for the example system. The loop bandwidth ωc is the most common of these three
bandwidth definitions and will be used most frequently.

To summarize, good reference tracking and disturbance rejection require large
loop gain at low frequencies. Good noise rejection requires small loop gain at
high frequencies. Stability and robustness are associated with a shallow slope in
the middle frequencies. The speed of response is characterized by the system
bandwidth as commonly given by the loop crossover frequency.

6.4.3 Controller Components for Loopshaping

The main components used in the loopshaping design process are: (a) Proportional
Gain, (b) Low Frequency and Integral Boosts, (c) High Frequency Rolloff, and (d)
Lead. Figure 6.11 shows an example Bode magnitude plot (straight-line approximation) for
each of these components. This terminology and the precise form of these components is taken
from [20]. Additional components can be defined but these four components will be sufficient
for most designs. The purpose of each key component is briefly summarized as follows:

• Proportional Gain: The proportional gain Kp has constant magnitude across fre-
quency. The effect of this component is to shift the entire loop shape magnitude up or
down. This will primarily be used to set the crossover frequency of the loop shape.

• Integral Boost: The integral boost is K(s) = s+ω̄
s

where ω̄ is a tunable parameter.
This is used to increase the low frequency gain of the loop shape. The integral boost has
a high frequency gain of |K(∞)| = 1, a pole at s = 0, and a zero at s = −ω̄. The slope

‖The loop bandwidth and loop crossover frequency are the same for systems with only one loop crossover.
This is the typical case.

151

10−1 100 101
−10

0

10

20

30

Frequency, rad/sec

M
ag

n
it

u
d
e,

d
B

Kp = 10

(a)

10−4 10−3 10−2 10−1 100

0

20

40

60

ω̄
β ω̄

Frequency, rad/sec

M
ag

n
it

u
d
e,

d
B

(ω̄, β) = (0.1, 100)
ω̄ = 0.1

(b)

100 101 102
−20

−10

0

10

ω̄

Frequency, rad/sec

M
ag

n
it

u
d
e,

d
B

ω̄ = 10

(c)

10−2 10−1 100 101 102

−20

0

20

ω̄
β ω̄ βω̄

Frequency, rad/sec

M
ag

n
it

u
d
e,

d
B

(ω̄, β) = (1, 10)

(d)

Figure 6.11: Straight-line Bode magnitude approximations for: (a) Proportional Gain, (b) Low
Frequency (solid blue) and Integral (red dashed) Boosts, (c) Rolloff, and (d) Lead.

of the Integral Boost is −20dB per decade for ω ≤ ω̄, i.e the gain increases by a factor
of 10 for every decrease in frequency by a factor of 10. The gain continues to increase
at low frequencies and hence the integral boost has infinite DC gain: |K(0)| = ∞.
These features can be observed in the straight line approximation (dashed red) shown in
Figure 6.11(b). Note that an integral boost corresponds to a PI controller. Specifically,
if U(s) = K(s)E(s) then the input e(t) and output u(t) are related by:

u̇(t) = ė(t) + ω̄e(t) (6.28)

Integrating both sides of this ODE yields:

u(t) = e(t) + ω̄

∫ t

0

e(τ) dτ (6.29)

This has the form of a PI controller with proportional gain of 1 and integral gain of ω̄.

152

• Low Frequency Boost: The low frequency boost is K(s) = s+ω̄
s+ω̄/β

where ω̄ and β are
tunable parameters. This is used to increase the low frequency gain of the loop shape.
This component has a low frequency gain of |K(0)| = β and a high frequency gain of
|K(∞)| = 1. It has a pole at s = − ω̄

β
and a zero at s = −ω̄. These features can be

observed in the straight line approximation (solid blue) shown in Figure 6.11(b). This
component is similar to an integral boost except that the gain “levels off” at |K(0)| = β
for low frequencies ω ≤ ω̄

β
.

• High Frequency Rolloff: The rolloff is K(s) = ω̄
s+ω̄

where ω̄ is a tunable parameter.
This is used to reduce the high frequency gain of the loop. This component has a low
frequency gain of |K(0)| = 1 and a pole at s = −ω̄. The slope of the rolloff is −20dB
per decade for ω ≥ ω̄, i.e the gain decreases by a factor of 10 for increase in frequency
by a factor of 10. The gain continues to decrease at high frequencies. Hence the rolloff
gain goes to zero at high frequencies: |K(jω)| ≈ ω̄

ω
as ω → ∞. These features can be

observed in the straight line approximation shown in Figure 6.11(c).

• Lead: The lead is K(s) = βs+ω̄
s+βω̄

where ω̄ and β are tunable parameters. This is used to
increase the slope of the loop near ω = ω̄. This improves the stability and robustness
properties of the feedback system as discussed in Chapter 7. This component has a low
frequency gain of |K(0)| = β−1 and a high frequency gain of |K(∞)| = β. It has a pole
at s = −βω̄ and a zero at s = − ω̄

β
. These features can be observed in the straight line

approximation shown in Figure 6.11(d).

153

6.5 Effects of Components

Summary: This section demonstrates the effects of the proportional gain, integral boost, and
rolloff components for loopshaping. A proportional gain (greater than 1) increases the loop
magnitude at all frequencies. This will increase the system bandwidth, reduce steady state
error, and increase sensitivity to noise. An integral boost increases the low frequency gain but
leaves the high frequencies unchanged. The use of integral control results in zero steady state
error due to constant reference commands. However, the integral boost has negligible effect on
the bandwidth and sensitivity to noise. Finally, the rolloff decreases the high frequency gain
but leaves the low frequencies unchanged. The rolloff decreases sensitivity to noise but has
negligible effect on bandwidth and steady-state error.

6.5.1 Example System

This section demonstrates the effects of the proportional gain, integral boost, and rolloff com-
ponents for loopshaping. The low frequency boost component has similar effects as the integral
boost and hence will not be considered in detail. The lead component will be discussed in Sec-
tion XXX. Consider the general feedback diagram shown in Figure 6.12.∗∗ For concreteness,
the example will focus on a plant with the following first-order dynamics:

ẏ(t) + 2y(t) = 5u(t) (6.30)

The corresponding transfer function for this system is G(s) = 5
s+2

. The top left subplot
of Figure 6.13 shows the Bode magnitude plot for this system. The system has DC gain
G(0) = 2.5 = 8dB and corner frequency of 2 rad

sec
.

K(s) G(s)
r e u y

−
n

L(s)

Figure 6.12: General feedback system

Next, consider the performance of the (closed-loop) feedback system with this plant G(s)
and a simple proportional gain K(s) = 1. In this case the loop is simply the plant, i.e.
L(s) = G(s). The closed-loop sensitivity and complementary sensitivity are:

S(s) =
1

1 +G(s)
=
s+ 2

s+ 7
and T (s) =

G(s)

1 +G(s)
=

5

s+ 7
(6.31)

∗∗The example will focus on the reference r(t) and noise n(t) inputs. The disturbance d(t) is not included in
the feedback diagram. However, recall that both the reference tracking and disturbance rejection performance
are related to the sensitivity function S(s). Thus the impact of a particular loopshaping component on the
reference tracking will have a similar effect on disturbance rejection.

154

The Bode magnitude plots for S(s) and T (s) are shown in the lower left subplot of Figure 6.13.
The right plot of Figure 6.13 shows the (closed-loop) output response y(t) (black dotted) due
to both a reference r(t) (blue solid) and noise n(t) input. Recall that that the bandwidth of the
feedback system is defined by the loop crossover frequency ωc such that |L(jωc)| = 1 = 0dB.
For K(s) = 1 this is the same frequency ωc such that |G(jωc)| = 1 = 0dB. For the example
system, this crossover occurs at ωc = 4.58 rad

sec
. The output response shown in Figure 6.13

(right) roughly follows the reference command. However, there is a noticeable lag in the
output relative to reference in the initial response (0 ≤ t ≤ 2). Moreover, the output shows a
large steady state error and significant effect from the noise.

Note that the steady-state error due to the reference command can be computed from
the DC gain of the sensitivity S(s). In particular, S(s) = s+2

s+7
is the transfer function from

reference to error. This corresponds to the following closed-loop ODE:

ė(t) + 7e(t) = ṙ(t) + 2r(t) (6.32)

The closed-loop is stable and hence if the reference converges to a constant, r(t) → r̄, then
the error also converges to a constant e(t) → ē. Setting derivatives to zero in Equation 6.32
yields the following steady-state relation: ē = 2

7
r̄ = S(0)r̄. For the example response shown in

Figure 6.13, the reference converges to r̄ = 2. As a result, the error converges to ē = 4
7
≈ 0.57.

This corresponds to a steady state output ȳ = r̄−ē = 1.43. This is the response due only to the
reference and the noise causes some variation around this value. For any stable closed-loop
system, the error due to a constant reference input r̄ converges to ē = S(0)r̄.

10-2 10-1 100 101 102

Frequency, rad/sec

-30

-20

-10

0

10

M
ag

ni
tu

de
, d

B

|G|

10-2 10-1 100 101 102

Frequency, rad/sec

-30

-20

-10

0

10

M
ag

ni
tu

de
, d

B

|S|
|T|

0 2 4 6 8 10 12
Time, sec

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

Reference, r
Output, y

Figure 6.13: Left: Bode magnitude plots for G(s) = 5
s+2

(top), S(s) = 1
1+G(s)

and T (s) = G(s)
1+G(s)

(bottom). Right: Time response of closed-loop with reference r(t) and noise n(t) inputs.

6.5.2 Proportional Gain

This subsection considers the effect of the proportional gain. As a specific example, consider
the gain K(s) = 3 = 9.5dB. Figure 6.14 (left) shows the Bode magnitude plot for G(s), K(s),

155

and L(s) = G(s)K(s). Recall that the following fact regarding magnitudes (in dB):

20 log10 |G(jω)K(jω)| = 20 log10 |G(jω)|+ 20 log10 |K(jω)| (6.33)

In other words, the Bode magnitude plot of L(s) is simply the sum of the Bode magnitude
plots of G(s) and K(s). The proportional gain has constant magnitude across all frequencies.
Hence the effect of this loopshaping component is to shift the loop magnitude by the same
amount at all frequencies. For this example, note that |L(jω)| in Figure 6.14 is simply |G(jω)|
shifted upward by a gain of 3 = 9.5dB.

There are several consequences of this upward shift in the loop gain. First, the DC gain of
the loop increases from G(0) = 2.5 to L(0) = 7.5. As a result the DC gain of the sensitivity is
S(0) = 1

1+L(0)
= 0.12. Thus the steady state error for a reference r̄ = 2 is reduced to ē = 0.24.

Second, the crossover frequency increases from 4.58 rad
sec

for G(s) to 14.87 rad
sec

for L(s). Third, the
high frequency gain is shifted upward by 9.5dB from |G(jω)| to |L(jω)|. These effects appear
in the time responses shown in the right plot of Figure 6.14. This plot shows the time response
of the closed loop with K(s) = 3 (red dashed). For comparison it also shows the time response
of the closed loop with K(s) = 1 (black dotted). The proportional gain K(s) = 3 yields faster
response due to the increased bandwidth, lower steady state error due to the larger loop gain
at DC, and larger sensitivity to noise due to larger loop gain at high frequencies.

10-2 10-1 100 101 102

Frequency, rad/sec

-40

-20

0

20

40

M
ag

ni
tu

de
, d

B

|L|=|GK|
|K|
|G|

0 2 4 6 8 10 12
Time, sec

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

Reference, r
Output, y: L=GK
Output, y: L=G

Figure 6.14: Left: Bode magnitude plots for G(s) = 5
s+2

, K(s) = 3, and L(s) = G(s)K(s).
Right: Time responses of closed-loop with reference r(t) and noise n(t) inputs.

6.5.3 Integral Boost

This subsection considers the effect of the integral boost. As a specific example, consider
the boost with ω̄ = 0.5 rad

sec
, i.e. K(s) = s+0.5

s
. The left plot of Figure 6.15 shows the Bode

magnitude plot for G(s), K(s), and L(s) = G(s)K(s). Again, the Bode magnitude plot of
L(s) is simply the sum of the Bode magnitude plots of G(s) and K(s). The integral boost has
a gain of approximatley 1 = 0dB well above above the corner frequency of ω̄ = 0.5 rad

sec
. As a

result, the integral boost has negligible effect above this corner frequency: |L(jω)| ≈ |G(jω)|

156

for ω ≥ 4ω̄ = 2 rad
sec

. Below the corner frequency the boost has a slope of −20dB per decade.
Thus the boost raises the loop gain by 10 for every decrease in frequency by a factor of 10.
The gain continues to rise at low frequencies.

There are several consequences of the integral boost. First, the DC gain of the loop increases
from G(0) = 2.5 to L(0) =∞. As a result the DC gain of the sensitivity is S(0) = 1

1+L(0)
= 0

and thus the steady state error for a reference r̄ = 2 is ē = 0. The use of integral control
results in zero steady state error due to constant reference commands. Second, the
crossover frequency and the high frequency gain of the loop L(s) = G(s)K(s) are basically the
same as for G(s). This is because the integral boost has gain approximately equal to 1 = 0dB
at high frequencies. These effects appear in the time responses shown in the right plot of
Figure 6.15. This plot shows the time response of the closed loop with K(s) = s+0.5

s
(red

dashed). For comparison the time response of the closed loop with K(s) = 1 (black dotted)
is also shown. The integral boost yields zero steady state error on average (neglecting the
effect of noise). However, the initial transient and the sensitivity to noise are unchanged by
the integral boost. This is because the boost has negligible effect on the bandwidth and high
frequency gain.

10-2 10-1 100 101 102

Frequency, rad/sec

-40

-20

0

20

40

M
ag

ni
tu

de
, d

B

|L|=|GK|
|K|
|G|

0 2 4 6 8 10 12
Time, sec

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

Reference, r
Output, y: L=GK
Output, y: L=G

Figure 6.15: Left: Bode magnitude plots for G(s) = 5
s+2

, K(s) = s+0.5
s

, and L(s) = G(s)K(s).
Right: Time responses of closed-loop with reference r(t) and noise n(t) inputs.

6.5.4 Rolloff

This subsection considers the effect of the high frequency rolloff. As a specific example, consider
the rolloff with ω̄ = 10 rad

sec
, i.e. K(s) = 10

s+10
. The left plot of Figure 6.16 shows the Bode

magnitude plot for G(s), K(s), and L(s) = G(s)K(s). Again, the Bode magnitude plot of
L(s) is simply the sum of the Bode magnitude plots of G(s) and K(s). The rolloff has a gain
approximately equal to 1 = 0dB well below the corner frequency of ω̄ = 10 rad

sec
. As a result,

the integral boost has negligible effect below this corner frequency: |L(jω)| ≈ |G(jω)| for
ω ≤ 0.25ω̄ = 2.5 rad

sec
. Above the corner frequency the rolloff has a slope of −20dB per decade.

Thus the rolloff reduces the loop gain by 10 for every increase in frequency by a factor of 10.

157

There are several consequences of the rolloff. First, the DC gain of the loop is unchanged:
G(0) = L(0) = 2.5 As a result the DC gain of the sensitivity and the steady state error
due to reference commands are unchanged. Second, the crossover frequency is also basically
unchanged because the rolloff has gain approximately equal to 1 = 0dB at low frequencies.
Third, the high frequency gain of the loop L(s) is reduced by the rolloff as compared to G(s).
These effects appear in the time responses shown in the right plot of Figure 6.16. This plot
shows the time response of the closed loop with K(s) = 10

s+10
(red dashed). For comparison the

time response of the closed loop with K(s) = 1 (black dotted) is also shown. The rolloff has
negligible effect on the steady state error and the initial transient response. However, the effect
of the noise is reduced by the rolloff and the output is smoother. The improved noise rejection
can be more easily observed in the inset plot which enlarges the steady-state response.

10-2 10-1 100 101 102

Frequency, rad/sec

-40

-20

0

20

40

M
ag

ni
tu

de
, d

B

|L|=|GK|
|K|
|G|

0 2 4 6 8 10 12
Time, sec

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

Reference, r
Output, y: L=GK
Output, y: L=G

4 6 8 10
Time, sec

1.2

1.4

1.6

O
ut

pu
t,

y

Figure 6.16: Left: Bode magnitude plots for G(s) = 5
s+2

, K(s) = 10
s+10

, and L(s) = G(s)K(s).
Right: Time responses of closed-loop with reference r(t) and noise n(t) inputs.

158

6.6 Loopshaping Design

Summary: Performance specifications include closed loop stability, desired loop crossover
frequency, bounds on |S(jω)| for tracking performance, and bounds on |T (jω)| for noise rejec-
tion. The loopshaping design first converts the bounds on |S(jω)| and |T (jω)| into roughly
equivalent bounds on |L(jω)|. Next, the various controller components are designed in a series
of steps to satisfy these conditions. A reasonable process is to: i) Design a proportional con-
troller to select the desired loop crossover frequency, ii) Use a low frequency or integral boost
to achieve the desired low frequency gain for |L(jω)|, and iii) Use a high frequency roll-off to
achieve the high frequency roll-off for |L(jω)|. A fourth step, discussed in the next chapter,
may be required. This involves designing a lead controller to make the closed-loop more robust
to model uncertainties.

See posted Matlab example.

159

6.7 Appendix: Additional Results

Summary: This appendix provides additional details on the derivations of transfer functions
for various system interconnections.

6.7.1 Derivation for Parallel Interconnections

Consider the parallel interconnection of two subsystems G1(s) = N1(s)
D1(s)

and G2(s) = N2(s)
D2(s)

as

shown in Figure 6.1 (repeated below for convenience). The outputs of the subsystems are
summed to obtain y(t) = y1(t) + y2(t).

G1(s)

G2(s)

u(t)

y1(t)

y2(t)

y(t)

H(s)

Parallel Interconnection of G1 and G2.

The goal is to obtain a model H(s) from input u(t) to output y(t) in terms of the mod-
els for G1(s) and G2(s). The ODEs for the two subsystems have the following polynomial
representations:

D1(s)Y1(s) = N1(s)U(s) (6.34)

D2(s)Y2(s) = N2(s)U(s) (6.35)

To derive a model for the parallel interconnection, first multiply Equation 6.34 by D2(s) and
Equation 6.35 by D1(s):

D2(s)D1(s)Y1(s) = D2(s)N1(s)U(s) (6.36)

D1(s)D2(s)Y2(s) = D1(s)N2(s)U(s) (6.37)

Summing these equations yields:

(D1(s)D2(s)) Y (s) = (D2(s)N1(s) +D1(s)N2(s)) U(s) (6.38)

This result uses the fact that the order of multiplication can be freely interchanged, e.g.
D2(s)D1(s) = D1(s)D2(s). Thus the transfer function for the parallel interconnection is

H(s) =
D2(s)N1(s) +D1(s)N2(s)

D1(s)D2(s)
=
N1(s)

D1(s)
+
N2(s)

D2(s)
(6.39)

The parallel interconnection of G1(s) and G2(s) is modeled by the sum H(s) = G1(s) +G2(s).

160

6.7.2 Derivation for Serial Interconnections

Consider the cascade (serial) interconnection of two subsystems G1(s) = N1(s)
D1(s)

and G2(s) =
N2(s)
D2(s)

as shown in Figure 6.2 (repeated below for convenience). The output of G1(s) is connected

as the input to G2(s).

G1(s) G2(s)
u(t) w(t) y(t)

H(s)

Cascade (Serial) Interconnection of G1 and G2.

The goal is to obtain a model H(s) from input u(t) to output y(t) in terms of the mod-
els for G1(s) and G2(s). The ODEs for the two subsystems have the following polynomial
representations:

D1(s)W (s) = N1(s)U(s) (6.40)

D2(s)Y (s) = N2(s)W (s) (6.41)

To derive a model for the serial interconnection, first multiply Equation 6.41 by D1(s) and
substitute for D1(s)W (s) using Equation 6.40:

D1(s)D2(s)Y (s) = N2(s)D1(s)W (s) = N2(s)N1(s)U(s) (6.42)

This again uses the fact that the order of multiplication can be interechanged, e.g. N2(s)D1(s) =
D1(s)N2(s). Thus the transfer function for the serial interconnection is

H(s) =
N2(s)N1(s)

D2(s)D1(s)
(6.43)

The serial interconnection of G1(s) and G2(s) is modeled by the product H(s) = G2(s) ·G1(s).

6.7.3 Derivation for Negative Feedback Interconnections

Consider the negative feedback interconnection of two subsystems G1(s) = N1(s)
D1(s)

and G2(s) =
N2(s)
D2(s)

as shown in Figure 6.3 (repeated below for convenience).
A polynomial representation for this interconnection is:

D1(s)Y (s) = N1(s) (R(s)−W (s)) (6.44)

D2(s)W (s) = N2(s)Y (s) (6.45)

To derive a model for the interconnection, first multiply Equation 6.44 by D2(s):

D2(s)D1(s)Y (s) = D2(s)N1(s) (R(s)−W (s)) (6.46)

161

G1(s)

G2(s)

r(t) e(t) y(t)

−
w(t)

H(s)

Negative Feedback Interconnection of G1 and G2.

Next, use Equation 6.45 to substitute for D2(s)W (s) and collect all terms involving Y (s):

(D2(s)D1(s) +N2(s)N1(s))Y (s) = D2(s)N1(s)R(s) (6.47)

Thus the transfer function for the feedback interconnection is

H(s) =
D2(s)N1(s)

D2(s)D1(s) +N2(s)N1(s)
(6.48)

The informal sketch in Section 6.1.4 yielded the following form for the transfer function:

H(s) =
G1(s)

1 +G1(s)G2(s)
(6.49)

This expression in Equation 6.49 can be equivalently rewritten as follows:

H(s) =
N1(s)

D1(s)

1

1 + N1(s)N2(s)
D1(s)D2(s)

=
N1(s)

D1(s)

D1(s)D2(s)

D1(s)D2(s) +N1(s)N2(s)

=
D1(s)

D1(s)

N1(s)D2(s)

D1(s)D2(s) +N1(s)N2(s)

This is the same as the result from the formal derivation (Equation 6.48) except for the

additional factor of D1(s)
D1(s)

. Thus G1(s)
1+G1(s)G2(s)

represents the negative feedback interconnection

but with additional poles and zeros at the roots of D1(s) = 0. Canceling these common poles
and zeros yields the correct (minimal) representation.

162

Chapter 7

Stability Margins and Robustness

This chapter introduces techniques to assess the stability and robustness of a feedback system
based on the properties of the loop transfer function L(s). First, Nyquist plots are introduced.
A Nyquist plot is a single plot of the frequency response L(jω). It consists of the imaginary
part Im{L(jω)} on the vertical axis versus the real part Re{L(jω)} on the horizontal axis. The
Nyquist stability theorem relates the stability of the closed-loop to properties of the Nyquist
plot for L(s). Next, various safety factors are introduced to account for model uncertainty
including gain, phase, time delay, and disk margins. Specifically, model uncertanity can cause
the Nyquist curve to change from having the “correct” number of encirclements of the −1 point
(stable closed-loop) to having an “incorrect” number of encirclements (unstable closed-loop).
The robustness margins measure how close the Nyquist plot of the loop L(s) approaches the
critical −1. Finally, a basic result is presented to demonstrate that the loopshaping design
procedure will yield a stable closed-loop with good performance and robustness. The chapter
concludes with additional examples of loopshaping design.

163

7.1 Nyquist Plots

Summary: A Nyquist plot is a single plot of the frequency response G(jω). It consists of
the imaginary part Im{G(jω)} on the vertical axis versus the real part Re{G(jω)} on the
horizontal axis. The convention is to draw this plot for both ω ≥ 0 and ω < 0. Nyquist plots
are used to understand the stability and robustness of a feedback system. Nyquist plots for
first order systems (with or without a zero) are simply circles in the complex plane.

7.1.1 An Overview of Nyquist Plots

A Nyquist Plot is a common tool used to understand the stability and robustness of a feedback
system. As shown in Section 5.1, the steady-state sinusoidal response of a linear system can
be expressed in terms of the magnitude |G(jω)| and phase ∠G(jω) of the transfer function.
Recall that a Bode plot displays both the magnitude and phase versus frequency on two
separate subplots. A Nyquist plot, named after Harry Nyquist, displays the frequency response
information in a different format. It consists of a single plot of the imaginary part Im{G(jω)}
on the vertical axis versus the real part Re{G(jω)} on the horizontal axis. The convention is
to draw the Nyquist plot for both ω ≥ 0 and ω < 0. Nyquist plots can be generated with the
Matlab function nyquist. In particular, the syntax nyquist(G) generates the Nyquist plot of
a system G. The alternative syntax [Gre,Gim,w]=nyquist(G) returns the real part, imaginary
part, and frequency (in rad

sec
). Additional options are available and details can be found in the

help and documentation. A simple example is given below.

Example 7.1. G(s) = 2
s+4

is the transfer function for a stable, first order system. This transfer
function was studied in Example 5.3 and the corresponding Bode plot was shown in Figure 5.3.
The Nyquist plot for G(s) is shown on the left of Figure 7.1. A similar Nyquist plot can be
created with the following Matlab commands:

>> G = tf(2,[1 4]);

>> nyquist(G);

Figure 7.1 also shows the tabulated frequency response data (polar form, real part, and imag-
inary part) at several frequencies. The solid circles on the Nyquist plot highlight the data at
these frequencies. The Nyquist plot for this system consists of a circular loop in the clockwise
direction with the top half (dashed red) corresponding to ω < 0 and the bottom half (solid blue)
corresponding to ω ≥ 0. The curve (for ω < 0) starts at G(−∞) = 0 and moves upward in the
complex plane toward G(−4j) = 0.25 + 0.25j. The curve bends back downward to G(0) = 0.5.
The curve (for ω > 0) continues downward in the complex plane toward G(4j) = 0.25− 0.25j.
The curve finally ends by moving back upward to G(+∞) = 0 as ω → +∞.

4

Note that the curve for ω < 0 is simply the complex conjugate of the curve for ω > 0.
Specifically, if G(jω) = cR + jcI (where cR and cI are the real and imaginary parts) then
G(−jω) = cR − jcI . This property holds for the Nyquist plot of any transfer function.∗ Thus
the Nyquist plot for ω < 0 is simply the mirror image about the real axis of the plot for ω > 0.

∗Consider a generic transfer function G(s) = bms
m+···+b1s+b0

ansn+···+a1s+a0 . Let G(jω) denote the complex conjugate of

164

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Real Part

-0.2

-0.1

0

0.1

0.2

Im
ag

. P
ar

t

Nyquist Diagram

G(0)

G(2j)

G(4j)

G(8j)

G(100j)

G(-2j)

G(-4j)

G(-8j)

G(-100j)
>=0
<0

ω G(jω) Real Imag.

(rad
sec

) Polar Part Part

−∞ 0e
π
2
j 0 0

-100 0.02e1.531j 0.0008 0.02

-8 0.224e1.107j 0.10 0.20

-4 0.354e0.785j 0.25 0.25

-2 0.447e0.464j 0.40 0.20

0 0.500e0j 0.500 0.000

2 0.447e−0.464j 0.40 -0.20

4 0.354e−0.785j 0.25 -0.25

8 0.224e−1.107j 0.10 -0.20

100 0.02e−1.531j 0.0008 -0.02

+∞ 0e−
π
2
j 0 0

Figure 7.1: Nyquist plot (left) for G(s) = 2
s+4

and data evaluated at several s = jω (right).
The solid circles on the Nyquist plot highlight the data at several frequencies.

7.1.2 Nyquist Plots: First-Order Systems

This section will briefly describe how to sketch a Nyquist plot for a first order system. Consider
the following system:

ẏ(t) + a0y(t) = b0u(t) (7.2)

Assume only that a0 6= 0. The transfer function for this system is G(s) = b0
s+a0

. The real and
imaginary parts of the frequency response are:

G(jω) =
b0

jω + a0

· −jω + a0

−jω + a0

=
b0a0

a2
0 + ω2︸ ︷︷ ︸

Re{G(jω)}

+j
−b0ω

a2
0 + ω2︸ ︷︷ ︸

Im{G(jω)}

(7.3)

It can be shown, after some algebraic manipulation, that the real and imaginary parts satisfy
the following equation:(

Re{G(jω)} − b0

2a0

)2

+ Im{G(jω)}2 =

(
b0

2a0

)2

(7.4)

This is the equation for a circle in the complex plane with radius b0
2a0

and center on the real

axis at b0
2a0

. The Nyquist plot circle passes through the following points for ω ≥ 0:

G(jω). Use the fact that the ODE coefficients (a0, . . . , an, b0, . . . , bm) are real numbers to show:

G(jω) =
bm(jω)m + · · ·+ b1(jω) + b0

an(jω)n + · · ·+ a1(jω) + a0
= G(−jω) (7.1)

165

• Low (DC) Frequency: If ω = 0 then G(j0) = b0
a0

. This is a purely real number and
hence G(0) lies on the real axis of the Nyquist plot.

• High Frequency: As ω → +∞, G(jω) ≈ j−b0
ω

. This is purely imaginary. Thus as
ω → +∞ the Nyquist plot G(jω) tends to zero along the negative imaginary axis.

• Corner Frequency: Recall that the corner frequency for this first order system is
ω = |a0| > 0. The Nyquist plot at this frequency is G(j|a0|) = b0

2a0
− j b0

2|a0| .

As noted above, the Nyquist plot for G(s) = b0
s+a0

is a circle. For positive frequencies the circle
passes through the points G(0), G(∞), and G(|a0|j). For negative frequencies, the circle can be
determined by conjugation, i.e. G(−jω) = G(jω). The direction of the curve will be important
when we use the Nyquist plot for stability and robustness analysis. In particular, the Nyquist
curve is oriented moving from ω = −∞ toward ω = +∞. The left plot in Figure 7.2 shows
an example Nyquist curve for G(s) = 2

s−4
. The curve for ω ≥ 0 passes through G(0) = −0.5,

G(j∞) = 0, and G(4j) = −0.25− 0.25j. The curve for ω < 0 is a mirror image about the real
axis. This curve is a circle with a counter-clockwise orientation.

A Nyquist plot is also a circle for a first order system with a zero:

ẏ(t) + a0y(t) = b1u̇(t) + b0u(t) (7.5)

Again, assume only that a0 6= 0. The transfer function for this system is G(s) = b1s+b0
s+a0

. The
frequency response can be written as follows:

G(jω) =
b1(jω + a0) + (b0 − b1a0)

jω + a0

= b1 +
(b0 − b1a0)

jω + a0

(7.6)

The second term has the form of a first-order frequency response with no zero. This term
corresponds to a circle in a Nyquist plot. The first term is a constant that simply shifts the circle
along the real axis. Thus, the Nyquist curve for any first-order system G(s) = b1s+b0

s+a0
(with a0 6= 0) is simply a circle passing through G(0), G(∞) and G(j|a0|). The right
plot in Figure 7.2 shows another example Nyquist curve for G(s) = 3s+5

s−2
. The curve for ω ≥ 0

passes through G(0) = −2.5, G(j∞) = 3, and G(2j) = 0.25− 2.75j. The curve for ω < 0 is a
mirror image about the real axis. This curve is a circle with a counter-clockwise orientation.

166

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
Real Part

-0.2

-0.1

0

0.1

0.2

Im
ag

. P
ar

t

Nyquist Diagram

G(0j)

G(4j)

G(j1)!>=0
!<0

-3 -2 -1 0 1 2 3 4
Real Part

-2

-1

0

1

2

Im
ag

. P
ar

t
Nyquist Diagram

G(0j)

G(2j)

G(j1)!>=0
!<0

Figure 7.2: Nyquist plot for G(s) = 2
s−4

(left) and G(s) = 3s+5
s−2

(right).

167

7.2 Cauchy’s argument principle

Summary: Nyquist plots will be used to state a theorem concerning the stability of a feedback
system. A proper understanding of the Nyquist stability theorem requires one result from
complex analysis: Cauchy’s Argument Principle. This principle states that a transfer function
G(s) evaluated on a simple, closed curve will encircle the origin Nz −Np. Here Np and Nz are
the number of poles and zeros of G(s) that lie inside the closed curve.

Nyquist plots will be used to state a theorem concerning the stability of a feedback system.
A proper understanding of the Nyquist stability theorem requires one result from complex
analysis: Cauchy’s Argument Principle. The basic idea will be sketched in this section but
additional details can be found in textbooks on complex analysis [3]. To begin, let G(s) be
a transfer function for a system. In addition, let Γ be a simple, closed curve in the complex
plane. A “simple” curve is one that does not intersect itself. The notation G(Γ) is the curve
obtained by mapping each complex number s0 ∈ Γ to another complex number G(s0). In
general, G(Γ) will be closed but need not be simple.

As an example, consider the specific curve ΓR defined by three pieces as shown on the left
in Figure 7.3. The first piece (red dotted) starts at s1 = −jR and rises along the imaginary
axis to s2 = 0. The second piece (blue solid) continues along the imaginary axis from s2 = 0 to
s3 = +jR. The third piece (green dashed) follows a semicircular arc of radius R from s3 = +jR
to s4 = +R and back to s1 = −jR. This third piece corresponds to s = Rejφ as φ goes from π

2

to −π
2
. The curve ΓR is shown for the specific value of R = 50. It is a simple, closed curve in

the clockwise direction. The right side of Figure 7.3 shows the mapping G(ΓR) defined with the
transfer function G(s) = 2

s+4
. G(ΓR) is also a closed curve and, for this transfer function, it is

also simple. Note that G(ΓR) is similar to the Nyquist plot of G(s) = 2
s+4

shown in Figure 7.1.
The main difference is that G(ΓR) includes a small indentation (G(s3) to G(s4) to G(s1)) due
to the (green dashed) semicircular piece of ΓR. The radius R = 50 is large and, as a result,
|G(s)| ≈ 0 along this piece. G(ΓR) converges to the Nyquist plot of G(s) as R→∞, .

-20 0 20 40 60 80
Real Part

-50

0

50

Im
ag

. P
ar

t

s
1
 = -jR

s
2
 = 0

s
3
 = +jR

s
4
 = +R

0 0.1 0.2 0.3 0.4 0.5
Real Part

-0.2

-0.1

0

0.1

0.2

Im
ag

. P
ar

t G(s
1
) = 0.003 + 0.040j

G(s
2
) = 0.5

G(s
3
) = 0.003 - 0.040j

G(s
4
) = 0.037

Figure 7.3: A simple, closed curve ΓR defined with R = 50 (left) and its mapping G(ΓR)
defined with G(s) = 2

s+4
(right).

168

Let Np denote the number of poles of G(s) inside the curve Γ.† In addition, let Nz denote
the number of zeros of G(s) inside of Γ. Cauchy’s argument principle can now be stated:

Fact 7.1 (Cauchy’s Argument Principle). Assume Γ does not pass through any poles or zeros of
G(s). Then the closed curve G(Γ) encircles the origin Nz−Np times. If Nz−Np > 0 then G(Γ)
encircles the origin clockwise. If Nz−Np < 0 then G(Γ) encircles the origin counter-clockwise.

Note that if Γ passes through a zero of G(s) then G(Γ) intersects the origin. If Γ passes
through a pole of G(s) then G(Γ) diverges to ∞. Cauchy’s argument principle does not apply
in such cases where Γ passes through a zero or pole of G(s). The proof of Cauchy’s argument
principle can be found in textbooks on complex analysis [3]. A few simple examples will be
given here to demonstrate this principle.

Example 7.2. Figure 7.4 (left) shows the previously defined curve ΓR with R = 2. The
mapping G(ΓR) with G(s) = s − 1 is shown on the right of Figure 7.4. G(ΓR) has the same
shape as ΓR but it is shifted to the left by one unit. For example, s2 = 0 gets mapped to
G(s2) = −1. G(s) has a single zero (s = +1) inside ΓR but no poles inside ΓR. The zero is
labeled by the circle on the left plot of Figure 7.4. Hence (Nz, Np) = (+1, 0) and Cauchy’s
argument principle states that G(ΓR) will encircle the origin once in the clockwise direction
(Nz −Np = 1 > 0).

-1 0 1 2 3
Real Part

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
ag

. P
ar

t

s
1
 = -2j

s
2
 = 0

s
3
 = +2j

s
4
 = +2

-2 -1 0 1 2
Real Part

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
ag

. P
ar

t

G(s
1
) = -1-2j

G(s
2
) = -1

G(s
3
) = -1+2j

G(s
4
) = 1

Figure 7.4: A simple, closed curve ΓR defined with R = 2 (left) and its mapping G(ΓR) defined
with G(s) = s− 1 (right).

4
Example 7.3. Figure 7.5 (left) shows the previously defined curve ΓR with R = 2. The
mapping G(ΓR) with G(s) = s + 1 is shown on the right of Figure 7.5. G(ΓR) has the same
shape as ΓR but it is shifted to the right by one unit. For example, s2 = 0 gets mapped
to G(s2) = +1. G(s) has a single zero (s = −1) but it is outside ΓR. The zero is labeled
by the circle on the left plot of Figure 7.5. Thus G(s) has no zeros or poles inside ΓR,
i.e. (Nz, Np) = (0, 0). By Cauchy’s argument principle, G(ΓR) will not encircle the origin
(Nz −Np = 0).

†Here Γ denotes any simple, closed curve and not necessarily the specific curve ΓR shown in Figure 7.3.

169

-2 -1 0 1 2 3
Real Part

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Im

ag
. P

ar
t

s
1
 = -2j

s
2
 = 0

s
3
 = +2j

s
4
 = +2

0 1 2 3 4
Real Part

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
ag

. P
ar

t

G(s
1
) = 1-2j

G(s
2
) = 1

G(s
3
) = 1+2j

G(s
4
) = 3

Figure 7.5: A simple, closed curve ΓR defined with R = 2 (left) and its mapping G(ΓR) defined
with G(s) = s+ 1 (right).

4

Example 7.4. Figure 7.6 (left) shows the previously defined curve ΓR with R = 3. The
mapping G(ΓR) with G(s) = s2− 3s+ 2 is shown on the right of Figure 7.6. G(ΓR) maps into
a curve that intersects with itself, i.e. G(ΓR) is closed but not simple. The transfer function
can be factored as G(s) = (s − 1)(s − 2) demonstrating that G(s) has zeros at s = +1 and
s = +2. Both zeros are labeled by circles on the left plot of Figure 7.6. Thus G(s) has two
zeros and no poles inside ΓR, i.e. (Nz, Np) = (2, 0). By Cauchy’s argument principle, G(ΓR)
encircles the origin twice in the clockwise direction (Nz −Np = 2 > 0).

-2 0 2 4
Real Part

-3

-2

-1

0

1

2

3

Im
ag

. P
ar

t

s
1
 = -3j

s
2
 = 0

s
3
 = +3j

s
4
 = +3

-15 -10 -5 0 5
Real Part

-10

-5

0

5

10

Im
ag

. P
ar

t

G(s
1
) = -7+9j

G(s
2
) = 2

G(s
3
) = -7-9j

G(s
4
) = 2

Figure 7.6: A simple, closed curve ΓR defined with R = 3 (left) and its mapping G(ΓR) defined
with G(s) = s2 − 3s+ 2 (right).

4

170

Example 7.5. Figure 7.7 (left) shows the previously defined curve ΓR with R = 3. The
mapping G(ΓR) with G(s) = 2s+4

s−1
is shown on the right of Figure 7.7. G(s) has a zero at

s = −2 outside of ΓR. It also has a pole at s = +1 inside of ΓR. The zero and pole are
labeled by a circle and x, respectively, on the left plot of Figure 7.7. Thus (Nz, Np) = (0, 1)
and by Cauchy’s argument principle, G(ΓR) encircles the origin once in the counter-clockwise
direction (Nz −Np = −1 < 0).

-3 -2 -1 0 1 2 3 4
Real Part

-3

-2

-1

0

1

2

3

Im
ag

. P
ar

t

s
1
 = -3j

s
2
 = 0

s
3
 = +3j

s
4
 = +3

-4 -2 0 2 4
Real Part

-4

-3

-2

-1

0

1

2

3

4

Im
ag

. P
ar

t G(s
1
) = 1.4+1.8j

G(s
2
) = -4

G(s
3
) = 1.4-1.8j

G(s
4
) = 5

Figure 7.7: A simple, closed curve ΓR defined with R = 3 (left) and its mapping G(ΓR) defined
with G(s) = 2s+4

s−1
(right).

4

171

7.3 Nyquist Stability Condition

Summary: The value s = −1 in the complex plane is a critical point on a Nyquist plot. The
closed-loop is unstable if the Nyquist curve of the loop L(s) passes through this critical point.
Moreover, the Nyquist theorem states that the closed-loop is stable if and only if the Nyquist
curve of L(s) encircles the s = −1 point the “correct” number of times. The “correct” number
of times is equal to the number of RHP poles of the loop L(s).

7.3.1 The Critical −1 Point

The value s = −1 in the complex plane is a critical point on a Nyquist plot. This subsection
briefly describes a relation between this critical −1 point and closed-loop stability. Consider
the feedback system shown in Figure 7.8. Recall that the zeros of 1 + L(s) are poles of the
closed-loop system (assuming the realization for L(s) is minimal). For example, the sensitivity
function is S(s) = 1

1+L(s)
. If 1 + L(s0) = 0 for some complex s0 then |S(s0)| = ∞, i.e. s0 is a

pole of S(s).

K(s) G(s)
r e u y

−

L(s)

Figure 7.8: General Feedback System

Suppose that the Nyquist curve of the loop L(s) passes through s = −1, i.e. there is some
frequency ω0 such that L(jω0) = −1. This can be rewritten as 1 + L(jω0) = 0. In other
words, 1 +L(s) has a zero at s = jω0 and, by the discussion above, the closed-loop has pole at
s = jω0. Hence if the Nyquist curve of L(s) passes through the critical point s = −1
then the closed-loop has a pole on the imaginary axis and therefore the closed-
loop is unstable. This result can also be interpreted using sinusoidal frequency response.
In particular, L(jω0) = −1 implies that r(t) = 0 and e(t) = cos(ω0t) are a (steady-state)
solution for the feedback system. This follows because L(jω0) = −1 means |L(jω0)| = 1 and
∠L(jω0) = π rad. Hence e(t) = cos(ω0t) causes the steady state output y(t) = cos(ω0t+ π) =
− cos(ω0t). This output, through negative feedback, satisfies e(t) = −y(t), i.e. e(t) and y(t)
can be in a sustained oscillation even if r(t) = 0. As noted above |L(jω0)| = −1 also means
that |S(jω0)| = ∞. In other words, the transfer function from reference to error S(s) has
infinite gain at frequency ω0. This infinite gain can be related to sinusoidal response solution
with r(0) = 0 and e(t) = cos(ω0t). Specifically, the reference can be interpreted as a sinusoid
with amplitude zero, i.e. r(t) = 0 cos(ω0t), while the error is a sinusoid with amplitude one,
i.e. e(t) = 1 cos(ω0t)). Hence the gain from reference to error at frequency ω0 is infinite (= 1

0
)

as predicted by |S(jω0)| =∞.

172

7.3.2 Nyquist Theorem

The value s = −1 also plays a critical role in the Nyquist stability condition. Consider the
feedback system shown in Figure 7.8. Recall that the feedback system is defined to be stable if
all possible transfer functions in the system (r to e, etc) are stable (Definition 6.1). Moreover,
recall that the feedback system is unstable if there is a RHP pole/zero cancellation between
G(s) and K(s) (Section 6.2.3). Thus for the remainder of the section it is assumed that there
are no such RHP pole/zero cancellations in the loop transfer function L(s) = G(s)K(s). With
this assumption, the feedback system is stable if and only if 1 + G(s)K(s) has no zeros in
the RHP (Fact 6.1). The Nyquist theorem, given below, provides a condition for stability of
the closed-loop system in terms of the Nyquist plot of the (open) loop L(s). The following
notation is used to state the Nyquist theorem:

• PCL: This denotes the number of poles of the closed-loop system in the RHP (including
the imaginary axis).

• POL : This denotes the number of poles of the open-loop transfer function L(s) in the
RHP (including the imaginary axis).

• NCCW : This denotes the number of times the Nyquist curve of L(s) encircles the critical
−1 point in the counter-clockwise direction.

The Nyquist theorem is first stated for the simpler case where L(s) has no poles on the
imaginary axis.

Fact 7.2 (Nyquist Theorem). Assume L(s) has no poles on the imaginary axis. Then PCL =
POL −NCCW . Thus the closed-loop is stable (PCL = 0) if and only if NCCW = POL.

The benefit of the Nyquist condition is that closed-loop stability can be determined from
a Nyquist plot of the open loop transfer function L(s). This will be useful for control design
via the loopshaping process.

The proof of the Nyquist theorem follows from an application of Cauchy’s argument prin-
ciple. Define the transfer function H(s) = 1 + L(s) and consider the simple, closed curve ΓR
shown on the left in Figure 7.3. Let Np and Nz denote the number of poles and zeros of H(s)
inside the curve ΓR. Cauchy’s argument principle states that H(ΓR) has Nz −Np (clockwise)
encirclements of the origin. The sign convention can be flipped to equivalently state this prin-
ciple as: H(ΓR) has Np −Nz (counter-clockwise) encirclements of the origin. Three relations
are needed to complete the proof:

1. First, note that L(s) = H(s)− 1 so that L(ΓR) is the curve H(ΓR) shifted to the left by
one unit. Thus H(ΓR) encircles the origin counter-clockwise if and only if L(ΓR) encircles
−1 counter-clockwise. As R→∞, L(ΓR) converges to the Nyquist curve of L(s). Hence
Cauchy’s argument principle implies NCCW = Np −Nz.

2. Next, note that ΓR contains the entire RHP as R → ∞. Hence if R is sufficiently large
then the RHP zeros of H(s) = 1 + L(s) are precisely the closed-loop RHP poles, i.e.
Nz = PCL.

173

3. Finally, the RHP poles of H(s) are precisely the RHP poles of the open-loop L(s), i.e.
Np = POL. This follows because L(s) has no RHP pole/zero cancellations and hence
|H(s0)| =∞ at some so in the RHP if and only if |L(s0)| =∞.

Combining these three relations yields: NCCW = POL − PCL. This can be re-arranged to
conclude PCL = POL −NCCW .

Several examples are given next to demonstrate the Nyquist stability theorem.

Example 7.6. The left plot of Figure 7.9 shows the Nyquist plots for L1(s) = 2
s+4

and

L2(s) = −2s+2
s+4

. The loop transfer function L1(s) is stable so POL = 0. The Nyquist curve
for L1(s) does not encircle the critical −1 point. Hence NCCW = 0 and by the Nyquist
theorem PCL = POL − NCCW = 0. Thus the feedback system with L1(s) is stable. This
result can be verified by directly computing a closed-loop transfer function. For example,
S1(s) = 1

1+L1(s)
= s+4

s+6
is stable.

The loop transfer function L2(s) is also stable so POL = 0. In addition, the Nyquist curve
for L2(s) encircles the critical −1 point once in the clockwise direction. Hence NCCW = −1 and
by the Nyquist theorem PCL = POL−NCCW = +1. Thus the feedback system with loop L2(s)
has one pole in the RHP and is unstable. This result can be verified by directly computing a
closed-loop transfer function. For example, S2(s) = 1

1+L2(s)
= −s−4

s−6
has one pole in the RHP

as predicted.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

L1
L2

-2.5 -2 -1.5 -1 -0.5 0 0.5
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

L3
L4

Figure 7.9: Left: Nyquist plots for L1(s) = 2
s+4

and L2(s) = −2s+2
s+4

. Right: Nyquist plots for

L3(s) = 2
s−4

and L4(s) = 8
s−4

.

4

Example 7.7. The right plot of Figure 7.9 shows the Nyquist plots for L3(s) = 2
s−4

and

L4(s) = 8
s−4

. The loop transfer function L3(s) is unstable with a single pole in the RHP
(POL = 1). The Nyquist curve for L3(s) does not encircle the critical −1 point. Hence
NCCW = 0 and by the Nyquist theorem PCL = POL − NCCW = 1. Thus the feedback system
with L3(s) is unstable. This result can be verified by directly computing a closed-loop transfer
function. For example, S3(s) = 1

1+L3(s)
= s−4

s−2
has one pole in the RHP as predicted.

174

The loop transfer function L4(s) is also unstable with a single pole in the RHP (POL = 1).
In addition, the Nyquist curve for L4(s) encircles the critical −1 point once in the counter
clockwise direction. Hence NCCW = 1 and by the Nyquist theorem PCL = POL −NCCW = 0.
Thus the feedback system with L4(s) has no poles in the RHP and is stable. This result can
be verified by directly computation. For example, S4(s) = 1

1+L4(s)
= s−4

s+4
is stable. 4

Example 7.8. The left plot of Figure 7.10 shows the Nyquist plot for the higher order system
L5(s) = 2

s−1
· 100
s2+5s+100

. This loop transfer function is unstable with a single pole in the RHP
(POL = 1). The Nyquist curve for L5(s) encircles the critical −1 point once in the counter
clockwise direction. Hence NCCW = 1 and by the Nyquist theorem PCL = POL −NCCW = 0.
Thus the feedback system with L5(s) is stable.

The right plot of Figure 7.10 shows another Nyquist plot for the higher order system
L6(s) = 1

(s+1)5
. This loop transfer function is stable (POL = 0). The Nyquist curve for

L6(s) does not encircle the critical −1 point. Hence NCCW = 0 and by the Nyquist theorem
PCL = POL −NCCW = 0. Thus the feedback system with L6(s) is stable.

-2 -1.5 -1 -0.5 0
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

-0.5 0 0.5 1
Real Part

-0.5

0

0.5

Im
ag

. P
ar

t
Nyquist Diagram

Figure 7.10: Nyquist plots for L5(s) = 2
s−1
· 100
s2+5s+100

(left) and L6(s) = 1
(s+1)5

(right).

4

7.3.3 Extended Nyquist Theorem

The Nyquist theorem (Fact 7.2) was stated above under the assumption that L(s) has no
poles on the imaginary axis. This subsection will extend the result for the case where L(s)
has imaginary axis poles. This is an important extension. For example, the use of integral
control leads to a loop L(s) with a pole at s = 0. The main technical issue is that the Nyquist
plot diverges to infinity if L(s) has a pole on the imaginary axis. As a consequence, Cauchy’s
Argument Principle (Fact 7.1) cannot be applied. Specifically, the proof of the Nyquist theorem
given above (assuming L(s) has no poles on the imaginary axis) uses the simple, closed curve
ΓR shown on the left of Figure 7.3. If L(s) has imaginary axis poles then the simple, closed
curve used for analysis must be slightly perturbed (modified) to avoid these imaginary axis

175

poles. The nyquist command in Matlab will not perform the required perturbations. In
other words, if L(s) has a pole on the imaginary axis then nyquist will show a Nyquist curve
diverging to infinity. It is up to the user to understand how this curve should be modified
using the perturbation described below (or any other similar perturbation).

There are many ways to perform such perturbations. The analysis here will be performed
using a perturbed curve ΓR,ε defined by three pieces as shown on the left in Figure 7.11. The
perturbed curve ΓR,ε is simply ΓR shifted by ε along the real axis. The curve ΓR,ε is shown
for the specific values of R = 1.5 and ε = −0.1. In this case the perturbed curve is shifted
left by 0.1 since ε < 0. The right side of Figure 7.11 shows the curve L(ΓR,ε) defined with
the transfer function L(s) = 1

s
. The curve loops counter clockwise touching the negative real

axis at L(s2) = 1
ε

= −10. As ε → 0, the curve ΓR,ε converges to ΓR. Hence L(ΓR,ε) grows
unbounded as ε→ 0 due to the pole at s = 0.

-1 -0.5 0 0.5 1 1.5 2 2.5
Real Part

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

. P
ar

t

s
1
 = 0-jR

s
2
 = 0

s
3
 = 0+jR

s
4
 = 0+R

-10 -8 -6 -4 -2 0 2 4
Real Part

-5

0

5

Im
ag

. P
ar

t L(s
1
) = -0.04+0.66j

L(s
2
) = -10

L(s
3
) = -0.04-0.66j

L(s
4
) = 0.71

Figure 7.11: A simple, closed curve ΓR,ε defined with (R, ε) = (1.5,−0.1) (left) and its mapping
L(ΓR,ε) defined with L(s) = 1

s
(right).

The following notation is used to state the extended Nyquist theorem:

• PCL(ε): This denotes the number of poles of the closed-loop system with real part ≥ ε.

• POL(ε) : This denotes the number of poles of the open-loop transfer function L(s) with
real part ≥ ε.

• NCCW (ε): This denotes the number of times the Nyquist curve L(ε + jω) encircles the
critical−1 point in the counter-clockwise direction. Note that the Nyquist curve L(ε+jω)
corresponds to L(ΓR,ε) as R→∞.

The Nyquist theorem is stated next in a form that can be applied for loops L(s) with poles on
the imaginary axis.

Fact 7.3 (Extended Nyquist Theorem). Assume L(s) has no poles with real part equal to ε.
Then PCL(ε) = POL(ε)−NCCW (ε). Thus PCL(ε) = 0 if and only if NCCW (ε) = POL(ε).

176

The initial Nyquist theorem (Fact 7.2) is a special case of this extended Nyquist theorem
when ε = 0. The proof of this extended Nyquist theorem is similar to the one given above
for the basic Nyquist theorem. It follows from Cauchy’s Argument Principle using the the
transfer function H(s) = 1 + L(s) and the simple, closed curve ΓR,ε. If L(s) has poles on the
imaginary axis then the extended Nyquist theorem should be applied for some “small” ε < 0.
Note that ΓR,ε converges to Re{s} ≥ ε as R → ∞ and this contains the RHP if ε < 0. Thus
if NCCW (ε) = POL(ε) and ε < 0 then PCL(ε) = 0 by the extended Nyquist theorem. In this
case the closed-loop contains no poles in RHP and hence the closed-loop is stable. The next
example demonstrates this result.

Example 7.9. Consider the loop transfer function L(s) = 1
s
. Figure 7.12 shows the curve

L(ε + jω) for ε = −0.1. This curve corresponds to L(ΓR,ε) as R → ∞. The loop L(s) has
a single pole at s = 0 which lies within ΓR,ε, i.e. POL(ε) = 1. In addition, the Nyquist
curve L(ε + jω) encircles the critical −1 point once in the counter clockwise direction, i.e.
NCCW (ε) = 1. By the extended Nyquist theorem PCL(ε) = POL(ε) − NCCW (ε) = 0. Thus
the feedback system with L(s) = 1

s
has no poles with real part ≥ ε = −0.1. This implies

the closed-loop has no poles in the RHP (including the imaginary axis) and hence it is stable.
This result can be verified by directly computing a closed-loop transfer function. For example,
S(s) = 1

1+L(s)
= s

s+1
has one pole at s = −1 and is stable.

-12 -10 -8 -6 -4 -2 0 2
Real Part

-5

0

5

Im
ag

. P
ar

t

Nyquist Diagram

Figure 7.12: Nyquist plot for L(s) = 1
s

along s = ε+ jω with ε = −0.1.

4

177

7.4 Gain Margins

Summary: This section discusses one a safety factor called the gain margin to account for
model uncertainty. The gain margin is the amount of allowable variation in the gain of the
plant before the closed-loop becomes unstable. As a rule of thumb, the closed-loop should
remain stable for gain variations in the range [0.5, 2] (= ±6dB). It is shown that a (positive)
gain variation g0 causes a closed-loop pole at s = ±jω0 if and only if L(jω0) = − 1

g0
. Based on

this fact, Bode plots can be used to quickly determine the gain margin of a system.

7.4.1 Gain Margin Definition

As discussed previously, the model used for control design is only an approximation for the
“real” dynamics of the plant. Control engineers have developed different types of “safety
factors” to account for the mismatch between the design model and the dynamics of the
real system. This section will discuss one type of safety factor called the gain margin. The
gain margin is the amount of allowable variation in the gain of the plant before the closed-loop
becomes unstable. To make this concrete, consider the feedback diagram shown in Figure 7.13.
G(s) is the “nominal” model used to design the controller K(s). The constant g is introduced
to represent variations in the gain of the plant dynamics. In other words, the model used
for design is G(s) but the real dynamics might have a different gain as represented by gG(s).
Typically we assume that the gain of the design model at least has the correct sign and hence
only positive gain variations g > 0 are of interest. The loop transfer function, including this
gain variation, is given by Lg(s) = gG(s)K(s). Note that the nominal loop transfer function
corresponds to g = 1 and this is denoted as L(s) = G(s)K(s).

K(s) g G(s)
r e u y

−

Lg(s) = gG(s)K(s)

Figure 7.13: Feedback system including gain variation g in the plant.

Assume that the controller has been designed to stabilize the nominal design model G(s),
i.e. the closed-loop system is stable for g = 1. The closed-loop system may become unstable as
the gain g is varied (either increased or decreased from g = 1). The gain margin specifies the
minimum and maximum variation for which the closed-loop remains stable as defined below.

Definition 7.1 (Gain Margin). The gain margin consists of an upper limit ḡ ≥ 1 and a lower
limit g ≤ 1 such that:

1. the closed-loop is stable for all positive gain variations g in the range g < g < ḡ, and

2. the closed-loop is unstable for gain variations g = ḡ (if ḡ < ∞) and also unstable for
gain variations g = g (if g > 0).

178

Thus the gain margins ḡ and g correspond to the variations that lie at the boundary between
stable and unstable closed-loops. In some cases the closed-loop remains stable for arbitrarily
large increases and/or decreases in the gain g. The upper limit is ḡ = +∞ if the closed-loop
remains stable for any gain g > 1. The lower limit is g = 0 if the closed-loop remains stable
for any positive gain g < 1. As a rule of thumb, the gain margin limits should satisfy
ḡ > 2 and g < 2 for good robustness to model uncertainty. This is frequently stated

as ±6dB of required gain margin for good robustness.‡ This rule of thumb is a good
starting point but requirements may differ slightly depending on the specific problem.

Example 7.10. Consider a feedback system with nominal plant model G(s) = 1
s3+2s2+3s+1

and

controller K(s) = 2. The nominal loop transfer function is L(s) = G(s)K(s) = 2
s3+2s2+3s+1

.

The nominal sensitivity function is thus S(s) = 1
1+L(s)

= s3+2s2+3s+1
s3+2s2+3s+3

. The poles of S(s) are

s1,2 = −0.30± 1.44j and s3 = −1.39. All poles of S(s) are in the left half plane and hence the
nominal closed-loop is stable (Fact 6.1).

The left plot in Figure 7.14 shows the locus of closed-loop poles, i.e. poles of Sg(s) = 1
1+gL(s)

,
as the gain g varies continuously in the range 0 ≤ g ≤ 8. The closed-loop poles are marked
for the specific values of g = {0, 1, 2.5, 8} and are also shown in the table in Figure 7.14.
There are several items to note. First, the poles of the “nominal” sensitivity function S(s)
(given above) correspond to the case g = 1. Second, the poles remain in the LHP for any
non-negative gain satisfying g < 1. In fact, as g → 0 the closed-loop poles converge to those of
L(s). Third, two closed-loop poles cross into the RHP as the gain g is increased above 1. The
locus would continue for g →∞ but is only drawn for variations up to g = 8. If g = 2.5 then
the closed-loop is unstable with poles on the imaginary axis at s1,2 = ±1.73j. The closed-loop
is unstable if g ≥ 2.5 and stable for non-negative gains g < 2.5. Based on this discussion, the
upper and lower gain margins for this system are ḡ = 2.5 ≈ +8dB and g = 0.

4

Example 7.11. Next consider a feedback system with nominal plant model G(s) = 1
s3+2s2+3s−1

and controller K(s) = 2. The nominal loop transfer function is L(s) = G(s)K(s) = 2
s3+2s2+3s−1

.
Note that L(s) is unstable in this case because it has one pole at s = 0.28 in the RHP. The
nominal sensitivity function in this case is S(s) = 1

1+L(s)
= s3+2s2+3s−1

s3+2s2+3s+3
. The poles of S(s) are

s1,2 = −0.78± 1.31j and s3 = −0.43. All poles of S(s) are in the left half plane and hence the
nominal closed-loop is stable (Fact 6.1).

The left plot in Figure 7.15 shows the locus of closed-loop poles, i.e. poles of Sg(s) = 1
1+gL(s)

,
as the gain g varies continuously in the range 0 ≤ g ≤ 8. The closed-loop poles are marked
for the specific values of g = {0, 0.5, 1, 3.5, 8} and are also shown in the table in Figure 7.15.
There are several items to note. First, the poles of the “nominal” sensitivity function (given
above) correspond to the case g = 1. Second, one of the closed-loop poles crosses into the RHP
as the gain g is decreased below 1. If g = 0.5 then the closed-loop is unstable with a pole on
the imaginary axis at s3 = 0. Thus the closed-loop is unstable for positive gains g ≤ 0.5 and
stable if 0.5 < g ≤ 1. Third, two closed-loop poles cross into the RHP as the gain g is increased
above 1. The locus would continue for g → ∞ but is only drawn for variations up to g = 8.
If g = 3.5 then the closed-loop is unstable with poles on the imaginary axis at s1,2 = ±1.73j.

‡Recall that ḡ = +6dB corresponds to an actual upper gain margin of ḡ = +2. Similarly, g = −6dB
corresponds to an actual lower gain margin of g = 0.5.

179

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Real Part

-2

-1

0

1

2

Im
ag

. P
ar

t

g<1
g>1

g Pole 1 Pole 2 Pole 3

0.0 -0.78 + 1.31j -0.78 - 1.31j -0.43

1.0 -0.30 + 1.44j -0.30 - 1.44j -1.39

2.5 +1.73j -1.73j -2.00

8.0 0.47 + 2.36j 0.47 - 2.36j -2.94

Figure 7.14: Left: Locus of closed-loop poles, i.e. poles of Sg(s) = 1
1+gL(s)

, as constant gain g

varies from g = 0 to g = 8. The locus is drawn using the nominal loop L(s) = 2
s3+2s2+3s+1

.
Right: Table of closed-loop pole locations for specific values of g.

Thus closed-loop is unstable if g ≥ 3.5 and stable if 1 ≤ g < 3.5. Based on this discussion, the
upper and lower gain margins for this system are ḡ = 3.5 ≈ +10.9dB and g = 0.5 ≈ −6dB.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
Real Part

-2

-1

0

1

2

Im
ag

. P
ar

t

g<1
g>1

g Pole 1 Pole 2 Pole 3

0.0 -1.14 + 1.53j -1.14 - 1.53j 0.28

0.5 -1.0 + 1.41j -1.0 - 1.41j 0

1.0 -0.78 + 1.31j -0.78 - 1.31j -0.43

3.5 +1.73j - 1.73j -2

8.0 0.41 + 2.27j 0.41 - 2.27j -2.82

Figure 7.15: Left: Locus of closed-loop poles, i.e. poles of Sg(s) = 1
1+gL(s)

, as constant gain g

varies from g = 0 to g = 8. The locus is drawn using the nominal loop L(s) = 2
s3+2s2+3s−1

.
Right: Table of closed-loop pole locations for specific values of g. 4

7.4.2 Connection to Bode Plots

This subsection discusses the use of Bode plots to quickly determine the gain margin of a
system. Assume the nominal closed-loop is stable, i.e. all poles are in the LHP. The gain
variations g cause the closed-loop poles to move continuously in the complex plane as observed
in Examples 7.10 and 7.11. It is possible for the closed-loop poles to move into the RHP

180

(unstable closed loop) if the gain g is increased or decreased by a sufficiently large amount.
The critical gains are values of g for which the closed-loop poles are on the imaginary axis.
These gains mark the transition as poles move from the LHP (stable) into the RHP (unstable).
To be concrete, a critical gain g0 causes the closed-loop to have a pole on the imaginary axis
s = ±jω0 for some frequency ω0 ≥ 0. Thus the sensitivity Sg0(s) = 1

1+g0L(s)
has poles at

s = ±jω0 which is equivalent to 1 + g0L(jω0) = 0 (Fact 6.1). To summarize, a (positive)
gain variation g0 causes a closed-loop pole at s = ±jω0 if and only if L(jω0) = − 1

g0
.

The condition for critical gains can be used to calculate the gain margin directly from the
Bode plot of L(s). Specifically, the condition L(jω0) = − 1

g0
for some positive gain g0 implies

that ∠L(jω0) = ±180deg. The gain margins are computed from a Bode plot as follows:

1. Identify the frequencies {ω1, . . . , ωN} where ∠L(jωi) = ±180deg. These are called the
phase crossing frequencies or gain margin frequencies. There may be zero, one, or many
gain margin frequencies.

2. The associated critical gain for each frequency ωi is gi = 1
|L(jωi)| (i = 1, . . . , N). This

critical gain gi results in a closed-loop pole at s = ±jωi.

3. The upper gain margin ḡ is the smallest of the critical gains above 1. The lower gain
margin g is the largest of the critical gains below 1. For example if the nominal closed-
loop is stable and the critical gains are {0.4, 0.8, 1.5, 2.0} then the closed-loop is stable
for all gains in the range g = 0.8 < g < 1.5 = ḡ.

Example 7.12. The left side of Figure 7.16 shows the Bode plot for L(s) = 2
s3+2s2+3s+1

.
This is the same loop transfer function studied in Example 7.10. The Bode plot has a single
gain margin frequency at ω1 = 1.73rad/sec. This frequency is marked in both the phase
and magnitude plot. The magnitude at this frequency is |L(jω1)| = −8dB = 0.4. The
corresponding critical gain is g1 = 1

|L(jω1)| = 2.5. Thus the gain g1 = 2.5 causes the closed-loop
to have poles at s = ±1.73j. The gain margins are ḡ = 2.5 and g = 0. These results agree
with those given in Example 7.10.

The right side of Figure 7.16 shows the Bode plot for L(s) = 2
s3+2s2+3s−1

. This is the same
loop transfer function studied in Example 7.11. The Bode plot has two gain margin frequencies
at ω1 = 1.73rad/sec and ω2 = 0rad/sec. The first frequency is marked in both the phase and
magnitude plot. The magnitude at the first gain margin frequency is |L(jω1)| = −10.9dB ≈
0.29. The corresponding critical gain is g1 = 1

|L(jω1)| = 3.5. Thus the first critical gain g1 = 3.5
causes the closed-loop to have poles at s = ±1.73j. The magnitude at the second gain margin
frequency is |L(jω2)| = +6dB ≈ 2. The corresponding critical gain is g2 = 1

|L(jω2)| = 0.5. Thus
the second critical gain g2 = 0.5 causes the closed-loop to have a pole at s = 0. Based on
these results, the gain margins are ḡ = 3.5 and g = 0.5. These results agree with those given
in Example 7.11.

4

181

10-1 100 101
-40

-20
-8
0

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101

Frequency (rad/sec)

-270

-180

-90

0

P
ha

se
 (

de
g)

10-2 10-1 100 101
-40

-20
-10.9

0
6

20
M

ag
ni

tu
de

 (
dB

)
Bode Diagram

10-2 10-1 100 101

Frequency (rad/sec)

-270

-180

-90

0

P
ha

se
 (

de
g)

Figure 7.16: Bode plot for L(s) = 2
s3+2s2+3s+1

(left) and L(s) = 2
s3+2s2+3s−1

(right). Gain
margin frequencies are marked in both cases.

182

7.5 Phase and Time Delay Margins

Summary: Control systems must be designed to tolerate a small amount of time delays.
This motivates a safety factor called the phase margin. The phase margin is the amount of
allowable variation in the phase of the plant before the closed-loop becomes unstable. As a rule
of thumb, the closed-loop should remain stable for phase variations in the range [−45,+45]deg.
It is shown that a phase variation θ0 causes a closed-loop pole at s = jω0 if and only if
e−jθ0L(jω0) = −1. Based on this fact, Bode plots can be used to quickly determine the phase
margin of a system. Time delay margins can also be computed.

7.5.1 Time Delays

Control laws are typically implemented on an embedded processor as discussed in Section 4.8.
The computations take a certain amount of time and this introduces a delay in the feedback
loop. A simple model for this effect is a pure time delay τd as shown on the left of Figure 7.17.
The right plot in Figure 7.17 shows an example pair of input/output signals for the delay. The
input signal is u(t) = sin(2t) and the time delay is τd = 0.7sec. The output signal is simply
shifted to the right (delayed): v(t) = u(t − τd) = sin(2(t − 0.7)) (for t ≥ τd). Note that v(t)
has the same amplitude as u(t) but with an additional phase shift. In general, the response
of a delay τd to an input u(t) = sin(ωt) is given by the output v(t) = sin(ωt − ωτd). Thus
the frequency response of a delay τd has magnitude equal to one at all frequencies because the
output amplitude is the same as the input amplitude. Moreover, the frequency response of the
delay has phase equal to −ωτd. This magnitude and phase correspond to the complex number
e−jωτd , i.e. the frequency response of a delay τd is given by e−jωτd . As notation, the delay is
represented by the corresponding complex function e−sτd . The control law must be designed
to ensure robustness to such delays.

K(s) e−sτd

Delay, τd

G(s)
r e u v y

−

0 1 2 3 4
Time, t

-1

-0.5

0

0.5

1

u(
t)

 a
nd

 v
(t

)

u
v

Figure 7.17: Feedback system with time delay τd (left) and an example input/output pair for
time delay (right).

183

7.5.2 Phase Margins

This section will discuss another type of safety factor called the phase margin. The phase
margin is the amount of allowable variation in the phase of the plant before the closed-loop
becomes unstable. To make this concrete, consider the feedback diagram shown in Figure 7.18.
Again, G(s) is the “nominal” model used to design the controller K(s). The complex number
e−jθ is introduced to represent phase variations in the plant dynamics. The loop transfer
function, including this phase variation, is given by Lθ(s) = e−jθG(s)K(s). Note that the
nominal loop transfer function corresponds to θ = 0 and this is denoted as L(s) = G(s)K(s).
The term phase variation arises because ∠Lθ(jω) = ∠L(jω) − θ, i.e. θ modifies the angle
(phase) of the dynamics. As discussed in the previous subsection, phase variations can occur
due to time delays in the feedback loop. Sufficient phase margin is required to ensure that
such delays do not destabilize the system.

K(s) e−jθ G(s)
r e u y

−

Lθ(s) = e−jθG(s)K(s)

Figure 7.18: Feedback system including phase variation e−jθ in the plant.

Assume that the controller has been designed to stabilize the nominal design model G(s),
i.e. the closed-loop system is stable for θ = 0. The phase variations will cause the closed-
loop poles to move continuously in the complex plane. It is possible for the closed-loop poles
to move into the RHP (unstable closed loop) if the phase θ is increased or decreased by a
sufficiently large amount. The critical phases are values for which the closed-loop poles are on
the imaginary axis. These phases mark the transition as poles move from the LHP (stable) into
the RHP (unstable). In particular, a critical phase θ0 causes the closed-loop to have a pole on
the imaginary axis s = jω0 for some frequency ω0 ≥ 0. Thus the sensitivity Sθ0(s) = 1

1+e−jθ0L(s)

has a pole s = jω0 which is equivalent to 1 + e−jθ0L(jω0) = 0 (Fact 6.1). To summarize, a
phase variation θ0 causes a closed-loop pole at s = jω0 if and only if e−jθ0L(jω0) = −1.

Two additional facts are required before stating the formal phase margin definition. First,
complex numbers repeat with every 360deg (= 2π) change in phase, i.e. ejθ = ejθ+2π. Thus
only phases in the range −180deg ≤ θ ≤ 180deg need to be considered. Second, positive
and negative phase variations have a similar effect. Specifically, the complex conjugate of a
transfer function L(jω) is L(−jω) as discussed in Section 7.1. Therefore the complex conjugate
of e−jθ0L(jω0) = −1 is ejθ0L(−jω0) = −1. Thus θ0 is a critical phase causing a closed loop pole
at s = jω0 if and only if −θ0 is a critical phase causing a closed-loop pole at s = −jω0. Either
sign of critical phase will cause instability. Based on these facts, the phase margin specifies
the maximum variation for which the closed-loop remains stable as defined below.

Definition 7.2 (Phase Margin). The phase margin consists of an upper limit θ̄ ≥ 0 such that:

184

1. the closed-loop is stable for all phase variations θ in the range −θ̄ < θ < θ̄, and

2. the closed-loop is unstable for θ = θ̄ (if θ̄ <∞).

The phase margin θ̄ corresponds to the variation that lies at the boundary between stable
and unstable closed-loops. In some cases the closed-loop remains stable for all phases in the
range 0 ≤ θ ≤ 180deg. In this case, the upper limit is defined to be θ̄ = +∞. As a rule
of thumb, the phase margin limit should satisfy θ̄ > 45deg for good robustness to
model uncertainty. This is frequently stated as ±45deg of required phase margin
for good robustness. This rule of thumb is a good starting point but requirements may
differ slightly depending on the specific problem.

The condition for critical phases can be used to calculate the phase margin directly from
the Bode plot of L(s). Specifically, the condition e−jθ0L(jω0) = −1 for some phase θ0 implies
that |L(jω0)| = 1 = 0dB. The phase margins are computed from a Bode plot as follows:

1. Identify the frequencies {ω1, . . . , ωN} where |L(jω0)| = 1 = 0dB. These are called the
gain crossing frequencies or phase margin frequencies. There may be zero, one, or many
phase margin frequencies.

2. The critical phase for each frequency ωi satisfies −θi + ∠L(jωi) = −180deg. Thus the
critical phases are θi = ∠L(jωi) + 180deg (i = 1, . . . , N). To perform this calculation,
first express ∠L(jωi) in the interval [0,−360]deg by adding or subtracting factors of
360deg. This yields a critical phase θi in the range [−180,+180]deg and results in a
closed-loop pole at s = jωi. As an example, if ∠L(jωi) = −135deg then the critical
phase is θi = −135 + 180 = 45deg.

3. The phase margin θ̄ is the smallest (in magnitude) critical phase, i.e. it is the smallest
value of |θi| for i = 1, . . . , N .

Example 7.13. The left side of Figure 7.19 shows the Bode plot for L(s) = 2
s3+2s2+3s+1

. This is
the same loop transfer function studied in Examples 7.10 and 7.12. The Bode plot has a single
phase margin frequency at ω1 = 0.86rad/sec. This frequency is marked in both the phase and
magnitude plot. The phase at this frequency is ∠L(jω1) = −103.7deg. The corresponding
critical phase is θ1 = ∠L(jω1) + 180deg = 76.3deg. Thus the phase θ1 = 76.3deg causes the
closed-loop to have a pole at s = 0.86j. The phase margin is θ̄ = 76.3deg.

The right side of Figure 7.19 shows the Bode plot for L(s) = 2
s3+2s2+3s−1

. This is the
same loop transfer function studied in Examples 7.11 and 7.12. The Bode plot has a single
phase margin frequency at ω1 = 0.49rad/sec. This frequency is marked in both the phase and
magnitude plot. The phase at this frequency is ∠L(jω1) = −137.6deg. The corresponding
critical phase is θ1 = ∠L(jω1) + 180deg = 42.4deg. Thus the phase θ1 = 42.4deg causes the
closed-loop to have a pole at s = 0.49j. The phase margin is θ̄ = 42.4deg.

4

7.5.3 Time Delay Margin

As discussed in Section 7.5.1, a pure time delay τd has the frequency response e−jωτd . For
a fixed frequency this introduces a phase variation e−jθ with θ = ωτd. Thus the time delay
margin can be computed from the phase margin as follows:

185

10-1 100 101
-40

-20
-8
0

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101

Frequency (rad/sec)

-270

-180

-90

0

P
ha

se
 (

de
g)

10-1 100 101
-40

-20
-8
0

20

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

10-1 100 101

Frequency (rad/sec)

-270

-180

-90

0

P
ha

se
 (

de
g)

Figure 7.19: Bode plot for L(s) = 2
s3+2s2+3s+1

(left) and L(s) = 2
s3+2s2+3s−1

(right). Phase
margin frequencies are marked in both cases.

1. Identify the phase margin frequencies {ω1, . . . , ωN} and corresponding critical phases
{θ1, . . . , θN} from a Bode plot as described in Section 7.5.2.

2. The critical delays are given by τd,i =
∣∣∣ θiωi ∣∣∣ > 0 for i = 1, . . . , N .

3. The time delay margin τ̄d is the smallest critical delay.

Time delays can be modeled and simulated in two ways in Matlab. In Simulink there is a
transport delay block. At the command line, it is possible to specify that a transfer function
has either an input or output delay. For example, the code G.InputDelay = 0.7 specifies that
the transfer function G has a 0.7sec delay at the input. The next example provides simulation
results for systems with a delay using the command line approach.

Example 7.14. Example 7.13 computed the phase margin with the loop L(s) = 2
s3+2s2+3s+1

as 76.3deg = 1.33rad. The corresponding phase margin frequency was 0.86rad/sec. Thus the
delay margin is 1.55sec (= 1.33/0.86) with the same frequency. The left plot of Figure 7.20
shows the step response for the closed-loop (reference to output) with the delay equal to the
margin 1.55sec. The step responses oscillates with a frequency of 0.86rad/sec as expected.

Example 7.13 also computed the phase margin with the loop L(s) = 2
s3+2s2+3s−1

as 42.4deg =
0.74rad. The corresponding phase margin frequency was 0.49rad/sec. Thus the delay margin
is 1.51sec (= 0.74/0.49) with the same frequency. The right plot of Figure 7.20 shows the step
response for the closed-loop (reference to output) with the delay equal to the margin 1.51sec.
The step responses oscillates with a frequency of 0.49rad/sec as expected.

4

186

0 5 10 15 20 25 30
Time, sec

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

0 10 20 30 40
Time, sec

-1

0

1

2

3

4

5

y

Figure 7.20: Step responses for closed-loop (reference to output) for L(s) = 2
s3+2s2+3s+1

with

delay of 1.55sec (left) and L(s) = 2
s3+2s2+3s−1

with delay of 1.52sec (right).

187

7.6 Disk Margins

Summary: Nyquist plots provide another interpretation for gain and phase margins. Specifi-
cally, gain and phase variations can cause the Nyquist curve to change from having the “correct”
number of encirclements of the −1 point (stable closed-loop) to having an “incorrect” number
of encirclements (unstable closed-loop). These two margins measure how close the Nyquist
plot of the loop L(s) approaches the critical −1 point along two particular directions. Another
robustness margin is obtained by directly considering the minimum distance dmin between
L(jω) and the critical −1 point. As a rule of thumb, dmin ≥ 0.4 will provide good robustness
margins. This corresponds to |S(jω)| ≤ 2.5 for all ω. This rule of thumb implies that the
Nyquist plot of L(jω) does not enter a disk of radius 0. centered at −1. The requirement
dmin ≥ 0.4 is called a disk margin based on this graphical interpretation.

7.6.1 Gain/Phase Margins: Connection to Nyquist Plots

Nyquist plots provide another interpretation for gain and phase margins. Consider the (nom-
inal) loop L(s) = 2

s3+2s2+3s−1
which was studied in previous subsections. The poles of L(s)

are at s1,2 = −1.14 ± 1.53j and s3 = 0.28. Thus L(s) is unstable with a single pole in the
RHP (POL = 1). The Nyquist curve of L(s), shown on the left of Figure 7.21, has a single
counterclockwise encirclement of the critical −1 point (NCCW = 1). By the Nyquist Theorem
(Fact 7.2), the (nominal) closed-loop has PCL = POL−NCCW = 0 poles in the RHP and hence
the closed-loop is stable. This can be verified by directly computing the (nominal) sensitiv-
ity function: S(s) = 1

1+L(s)
= s3+2s2+3s−1

s3+2s2+3s+3
. The poles of S(s) are s1,2 = −0.78 ± 1.31j and

s3 = −0.43. All poles of S(s) are in the left half plane and the nominal closed-loop is stable
as predicted by the Nyquist theorem.

-1.5 -1 -0.5 0 0.5 1
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

L(0) L(1.73j)

L(-0.49j)

L(0.49j)
Nyquist for L
Unit Disk

ω G(jω) Real Imag.

(rad
sec

) Polar Part Part

-0.49 1.0e2.41j -0.74 0.67

0 2.0e−πj -2.0 0.0

0.49 1.0e−2.41j -0.74 -0.67

1.73 0.29e−πj -0.29 0.0

Figure 7.21: Nyquist plot (left) for L(s) = 2
s3+2s2+3s−1

and data evaluated at several s = jω
(right). The solid circles on the Nyquist plot highlight the data at several frequencies.

188

Recall that a (positive) gain variation g0 causes a closed-loop pole at s = ±jω0 if and
only if L(jω0) = − 1

g0
. This condition implies that ∠L(jω0) = ±180deg, i.e. L(jω0) is a real,

negative number. The Nyquist curve shown in Figure 7.21 has two frequencies where L(jω) is
a real negative number: ω1 = 1.73rad/sec and ω2 = 0rad/sec. Both frequencies are marked on
the Nyquist plot and the corresponding frequency response is given in the table on the right
of Figure 7.21. The magnitude at the first gain margin frequency is |L(jω1)| ≈ 0.29 and the
corresponding critical gain is g1 = 1

|L(jω1)| = 3.5. The magnitude at the second gain margin

frequency is |L(jω2)| = 2.0 and the corresponding critical gain is g2 = 1
|L(jω2)| = 0.5. Based on

these results, the gain margins are ḡ = 3.5 and g = 0.5. These results agree with those given
in Examples 7.11 and 7.12.

Next, recall that a phase variation θ0 causes a closed-loop pole at s = jω0 if and only if
e−jθ0L(jω0) = −1. This condition implies that |L(jω0)| = 1, i.e. L(jω0) intersects the disk
of radius one centered at the origin (unit disk). The Nyquist curve shown in Figure 7.21 has
one positive frequency where L(jω) has magnitude equal to one: ω1 = 0.49rad/sec. This
frequency is marked on the Nyquist plot and the corresponding frequency response is given in
the table on the right of Figure 7.21. The phase at the phase margin frequency is ∠L(jω1) =
−2.41rad ≈ −137.6deg. The corresponding critical phase is θ1 = ∠L(jω1)+180deg = 42.4deg.
Thus the phase margin is θ̄ = 42.4deg. Recall that there is a symmetry in phase margins,
i.e θ1 > 0 causes an instability if and only if −θ1 causes instability. This symmetry appears
on the Nyquist plot at the negative frequency −0.49rad/sec. Specifically |L(−0.49j)| also has
magnitude equal to one and the phase at this frequency is ∠L(−0.49j) = 2.41rad ≈ 137.6deg.
This yields a critical phase of −42.4deg. Thus the phase margin is θ̄ = 42.4deg and the closed-
loop is stable for all phase variations in the range −θ̄ < θ < θ̄. These results agree with those
given in Example 7.13.

The gain and phase margins mark the boundary between stable and unstable closed-loops.
For example, a critical gain gi causes the closed-loop to have a pole on the imaginary axis at s =
±jωi. This is equivalent to giL(jω0) = −1, i.e. the Nyquist curve of giL(jω0) passes through
the critical −1 point. The left plot of Figure 7.22 shows the Nyquist curve for the nominal
loop L(s) = 2

s3+2s2+3s−1
(blue) and the loop with the lower gain margin gL(s) = 0.5L(s) (red

dashed). The nominal loop has a single counter-clockwise encirclement of −1 as discussed
above (NCCW = +1). This is the “correct” number of encirclements for closed-loop stability.
The Nyquist curve shrinks as the gain is reduced until the curve gL(s) just passes through the
−1 point. This indicates that the closed-loop has a pole at s = jω2 = 0rad/sec. If the gain is
reduced further (g < g) then the Nyquist curve of gL(s) will no longer encircle the −1 point
(NCCW = 0) indicating an unstable closed-loop (PCL = POL − NCCW = 1). The right plot of
Figure 7.22 shows similar results using the Nyquist curve for the nominal loop L(s) (blue) and
the loop with the upper gain margin ḡL(s) = 3.5L(s) (red dashed). The Nyquist curve grows as
the gain is increased until the curve ḡL(s) just passes through the −1 point. This indicates that
the closed-loop has a pole at s = jω1 = 1.73rad/sec. If the gain is increased further (g > ḡ)
then the Nyquist curve of gL(s) will encircle the −1 point once in the clockwise direction
(NCCW = −1) indicating an unstable closed-loop (PCL = POL −NCCW = +2). Similar results
can be obtained for phase margins, i.e. the phase margin θ̄ causes the Nyquist curve e±jθ̄L(s)
to pass through the critical −1 point indicating the transition from stable to unstable. To

189

summarize, gain and phase variations can cause the Nyquist curve to change from
having the “correct” number of encirclements of the −1 point (stable closed-loop)
to having an “incorrect” number of encirclements (unstable closed-loop).

-2 -1.5 -1 -0.5 0 0.5 1
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

Nyquist for L
Nyquist for 0.5*L
Unit Disk

-7 -6 -5 -4 -3 -2 -1 0 1
Real Part

-3

-2

-1

0

1

2

3

Im
ag

. P
ar

t

Nyquist Diagram

Nyquist for L
Nyquist for 3.5*L
Unit Disk

Figure 7.22: Left: Nyquist plot for L(s) = 2
s3+2s2+3s−1

and 0.5L(s).
Right: Nyquist plot for L(s) and 3.5L(s).

7.6.2 Disk Margins

Robustness margins measure how close the Nyquist plot of the (nominal) loop L(s) = G(s)K(s)
approaches the critical −1 point. It is assumed that the controller K(s) has been designed so
that the Nyquist curve of L(s) encircles −1 the “correct” number of times to ensure closed-
loop stability. However, if the Nyquist plot of L(s) comes “near” to the −1 point then small
variations in the model G(s) can cause L(jω) to pass through -1 or to have the wrong number
of number of encirclements of −1. Both situations would imply that the closed-loop is unstable.
The classical gain and phase margins measure how close L(jω) comes to the critical −1 point
along two specific directions. Specifically, gain margins measure the closeness between L(jω)
and −1 along the negative real axis. Phase margins measure the closeness between L(jω) and
−1 along a circle of radius 1. These two directions are highlighted by red arrows on the left
plot of Figure 7.23.

Another robustness margin is obtained by directly considering the distance between L(jω)
and the critical −1 point. Specifically, the right plot of Figure 7.23 shows the vectors −1 and
L(jω) (black dotted). The vector between −1 and L(jω) is given by 1 + L(jω) (red solid).
The minimum distance between the Nyquist plot L(jω) to −1 is a good robustness measure.
This distance is given by:

dmin := min
ω
|1 + L(jω)| (7.7)

If this minimum distance dmin is small then small variations (gain and/or phase) in the plant
model can cause L(jω) to pass through −1 or cause L(jω) to have the wrong number of

190

encirclements. Again, both cases would imply that the closed-loop is unstable. We can connect
this metric to the sensitivity function S(s) = 1

1+L(s)
as follows:

1

dmin
= max

ω
|S(jω)| (7.8)

Thus a large peak value of |S(jω)| corresponds to poor robustness, i.e. L(jω) comes near to
−1. Conversely, good robustness is ensured by small peak values of |S(jω)|, i.e. L(jω) does
not come near to −1.

-2 -1.5 -1 -0.5 0 0.5
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

Nyquist for L
Unit Disk

-2 -1.5 -1 -0.5 0
Real Part

-0.5

0

0.5

Im
ag

. P
ar

t

Nyquist Diagram

-1

L(j)
1+L(j)

Figure 7.23: Left: Gain and Phase Margins measure the distance between L(jω) and −1 along
the red directions. Right: Actual distance between L(jω) and −1 is given by |1 + L(jω)|.

As a rule of thumb, dmin ≥ 0.4 will provide good robustness margins. This
corresponds to |S(jω)| ≤ 2.5 for all ω. This rule of thumb implies that the distance
from the Nyquist curve L(jω) to −1 is at least 0.4. In other words, the Nyquist
plot of L(jω) does not enter a disk of radius 0. centered at −1. This disk is shown
(shaded green) in Figure 7.24. The requirement dmin ≥ 0.4 is called a disk margin
based on this graphical interpretation. The disk margins can be related to the classical
gain/phase margins. Specifically, if L(s) achieves a disk margin dmin ≥ 0.4 then the Nyquist
curve does not intersect the interval [−1.4,−0.6]. This implies that the system achieves gain
margins of at least g ≤ 1

1.4
≈ 0.71 and ḡ ≥ 1

0.6
≈ 1.67. Moreover, if L(s) achieves a disk

margin dmin ≥ 0.4 then the Nyquist curve does not intersect the unit disk along the arc
from −1 to −0.92 − 0.39j. This implies that the system achieves a phase margin of at least
θ̄ ≥ tan−1(0.39

0.92
≈ 0.4rad ≈ 23deg). These classical margins are slightly less than our previous

rules of thumb of ±6dB (g ≤ 0.5 and ḡ ≥ 2) of gain margin and ±45deg of phase margins.

However, the values g ≤ 0.71, ḡ ≥ 1.67, and θ̄ ≥ 23deg are minimum bounds ensured by
dmin ≥ 0.4 and the actual margins are typically better than these minimums.

191

-1.5 -1 -0.5 0 0.5 1
Real Part

-1

-0.5

0

0.5

1

Im
ag

. P
ar

t

Nyquist Diagram

-0.6-1.4

-0.92+0.39j

-0.92-0.39j

Figure 7.24: Disk Margin with dmin = 0.4.

192

7.7 Basic Loopshaping Theorem

Summary: This section presents a basic result to demonstrate that the loopshaping design
procedure will yield a stable closed-loop with good performance and robustness. The result
is based on the Nyquist theorem and the Bode Gain/Phase formula. The Bode Gain/Phase
formula, presented in this section, connects the magnitude and phase plots for a transfer
function with all poles and zeros in the LHP. This formula provides insight into the relation
between the slope of |L(jω)| near crossover and the stability/robustness of the closed-loop
system.

See posted notes.

193

7.8 Lead Control

Summary: The feedback system will have poor robustness margins if the slope of |L(jω)| is
too steep (< −30dB/dec) near the loop cross-over frequency. The Bode gain/phase formula
can be used to make this statement more concrete. Specifically, if the slope of |L(jω) is
> −30dB/dec then, under some additional technical assumptions on L, the phase margin will
be at least 45deg. A lead controller can be used to increase the slope (make it more shallow)
near crossover and hence increase the phase margin. An example loopshaping design using
lead control is provided in this section.

See posted notes.

194

7.9 Loopshaping Design

Summary: Performance specifications include closed loop stability, desired loop crossover
frequency, bounds on |S(jω)| for tracking performance, and bounds on |T (jω)| for noise rejec-
tion. The loopshaping design first converts the bounds on |S(jω)| and |T (jω)| into roughly
equivalent bounds on |L(jω)|. Next, the various controller components are designed in a series
of steps to satisfy these conditions. A reasonable process is to: i) Design a proportional con-
troller to select the desired loop crossover frequency, ii) Use a low frequency or integral boost
to achieve the desired low frequency gain for |L(jω)|, and iii) Use a high frequency roll-off to
achieve the high frequency roll-off for |L(jω)|. A fourth step, discussed in this chapter, may
be required. This involves designing a lead controller to make the closed-loop more robust to
model uncertainties.

See posted Matlab example.

195

Bibliography

[1] K. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning. The Instru-
mentation, Systems, and Automation Society, 2nd edition, 1995.

[2] W. E. Boyce and R.C. DiPrima. Elementary Differential Equations and Boundary Value
Problems. Wiley, 2008.

[3] J.W. Brown and R.V. Churchill. Complex Variables and Applications. McGraw-Hill
Education, ninth edition, 2013.

[4] C.-T. Chen. Linear System Theory and Design. Oxford University Press, 1998.

[5] C.H. Edwards and D.E. Penney. Differential Equations and Linear Algebra. Pearson,
2008.

[6] G. Franklin, J. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems.
Pearson, 2014.

[7] K. Hedrick, A. Packard, R. Horowitz, K. Poolla, and F. Borrelli. Me 132: Dynamic
systems and feedback (class notes). University of California, Berkeley, Fall 2010.

[8] J.P. Hespanha. Linear SYstems Theory. Princeton University Press, 2009.

[9] J.K.Hedrick, D. Godbole, R. Rajamani, and P. Seiler. Stop and go cruise control, 1999.

[10] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[11] K. Krishnaswamy and D. Bugajski. Inversion based multibody control: Launch vehicle
with fuel slosh. In AIAA Guidance, Navigation and Control Conference, pages AIAA
2005–6149, 2005.

[12] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.

[13] By Matthias93 (Own work) [Public domain], via Wikimedia Commons, 2010.

[14] Precision Microdrives. DC motor model 112-002 product data sheet.
wwww.precisionmicrodrives.com, 2016.

[15] NASA. Gimbaled thrust. http://microgravity.grc.nasa.gov/education/rocket/gimbaled.html,
2016.

196

[16] N. Nise. Control Systems Engineering. Wiley, 2015.

[17] K. Ogata. Discrete-Time Control Systems. Pearson, 2nd edition, 1995.

[18] K. Ogata. Modern Control Engineering. Pearson, 2009.

[19] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Prentice Hall, 3rd
edition, 2009.

[20] A. Packard. Notes on loopshaping. University of California, Berkeley, 2011.

[21] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design.
John Wiley, 2nd edition, 2005.

[22] M.E. Taylor. Introduction to Differential Equations. American Mathematical Society,
2011.

[23] J.Y. Wong. Theory of Ground Vehicles. Wiley, 2008.

[24] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, 1st
edition, 1995.

197

	Introduction
	Applications
	Terminology and Block Diagrams

	Modeling
	Modeling with Ordinary Differential Equations
	Linear and Nonlinear ODE Models
	Principle of Superposition

	Equilibrium Points and Linearization
	Alternative Model Representations
	Transfer Functions
	Linear State-Space
	Nonlinear State-Space

	Appendix: Background and Additional Results
	Taylor Series
	Laplace Transform
	State-Space to Transfer Function
	Jacobian Linearization

	System Response
	Numerical Simulation
	Numerical Integration
	Command Line Functions
	Simulink

	Free (Initial Condition) Response
	Free Response Solution
	Stability
	Time Constant

	Forced Response
	Forced Response Solution
	Minimal Realizations
	Stability

	Step Response
	First Order Step Response
	Second Order Step Response
	Overview of Solution
	Overdamped
	Critically Damped
	Underdamped

	Higher Order Systems
	Steady-state gain
	Zeros
	Low Order Approximations

	Appendix: Background and Additional Results
	Complex Numbers and Functions
	Stable Second-Order Step Response Solution
	Underdamped Step Response Features
	Forced Response With a Zero

	PID Control
	Summary of Control Design Issues
	DC Motor Model
	Model Simplifications and Uncertainties
	Control Design Objectives

	Open-Loop Control
	Open-Loop Design
	Impact of Model Uncertainty
	Summary of Open-Loop Performance

	Proportional Control
	Proportional Control Design
	Impact of Model Uncertainty
	Summary of Proportional Control Performance

	Proportional-Integral Control
	Proportional-Integral Control Design
	Impact of Model Uncertainty
	Summary of Proportional-Integral Control Performance

	Proportional-Derivative Control
	Rocket Heading Dynamics
	Proportional-Derivative Control Design
	Summary of Proportional-Derivative Control Performance

	PID Tuning
	Approach
	PI for First-Order Systems
	PID for Second-Order Systems

	Modifications to Basic PID
	Control Law Implementation
	Implementation Architecture
	Control Update

	Appendix: Modeling Details
	DC Motor Model Details
	Rocket Attitude Model

	Frequency Response
	Steady-State Sinusoidal Response
	Revisiting the Transfer Function
	Sinusoidal Response for First Order Systems
	Sinusoidal Response for Higher Order Systems

	Bode Plots
	An Overview of Bode Plots
	Bode Plot: Differentiator
	Bode Plot: Integrator

	Bode Plots: First Order Systems
	First Order System
	First Order Zero

	Bode Plots: Second Order Systems
	Second Order Differentiator and Integrator
	Underdamped Second Order System

	Bode Plots: Higher Order Systems
	Products of Transfer Functions
	Lead Controller
	Overdamped Second Order System

	Frequency Content of Signals
	Low and High Frequency Signals
	Superposition for Sinusoidal Inputs
	Fourier Series

	System Identification
	Appendix: Resonance

	Frequency Domain Control Design
	Interconnections of Systems
	Revisiting the Transfer Function Notation
	Parallel Interconnection
	Serial (Cascade) Interconnection
	Feedback Interconnection

	Stability of Feedback Systems
	General Feedback System
	Stability Definition
	Stability Condition for Feedback Systems

	Frequency Domain Performance Specifications
	Revisiting Control Design Objectives
	Example: Basic Frequency Domain Tradeoffs

	Introduction to Loopshaping
	Approach
	Requirements on Loop L(s)=G(s)K(s)
	Controller Components for Loopshaping

	Effects of Components
	Example System
	Proportional Gain
	Integral Boost
	Rolloff

	Loopshaping Design
	Appendix: Additional Results
	Derivation for Parallel Interconnections
	Derivation for Serial Interconnections
	Derivation for Negative Feedback Interconnections

	Stability Margins and Robustness
	Nyquist Plots
	An Overview of Nyquist Plots
	Nyquist Plots: First-Order Systems

	Cauchy's argument principle
	Nyquist Stability Condition
	The Critical -1 Point
	Nyquist Theorem
	Extended Nyquist Theorem

	Gain Margins
	Gain Margin Definition
	Connection to Bode Plots

	Phase and Time Delay Margins
	Time Delays
	Phase Margins
	Time Delay Margin

	Disk Margins
	Gain/Phase Margins: Connection to Nyquist Plots
	Disk Margins

	Basic Loopshaping Theorem
	Lead Control
	Loopshaping Design

