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the effect of the ratio of SPs on overall perfor-
mance. We have conducted a set of experiments 
to examine this point and our results are reported 
in Figure 5. The interesting result we observe is 
that as far as the DPs are concerened, when we 
have 15% or 20% of SPs we have achieved the ma-
jor gain in delay reduction. Going beyond those 
values does not significantly reduce the delay for 
DPs. 

Figure 5: Average round-trip delay for smart (top) 
and dumb (bottom) packets, and average 
delay for all packets (center) as a function 
of the percentage of smart packets. These 
experimental results were obtained while 
links cpn10-cpn2, cpn2-cpn4 and cpn4-
cpn5 were loaded with obstructing traffic. 

6 Conclusions 

We have summarized the basic principles of CPN. 
Then we have derived analytical results for best 
and worst case performance of one particular class 
of packets: the smart packets. We then describe 
in some detail the design and implementation of a 
test-bed network. Finally we have provided mea-
surement data on the test-bed to illustrate the 
capacity of the network to adapt to changes in 
traffic load and to failures of links. Measurements 
have also been reported to evaluate the impact of 
the ratio of smart packets on the end-to-end delay 
experienced by all of the packets. 
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1 Introduction 

Intuitively mesh stability is the property of damp-
ing disturbances as they travel away from the 
source in an interconnected system [8]. In this 
paper we will give a general methodology for de-
signing mesh stable controllers for interconnected 
systems where the subsystems have linear dynam-
ics. In particular, the procedure will be applied to 
a linear helicopter model [9]. 

Section 2 outlines some background material and 
definitions we will use. Section 3 explains the lin-
ear transfer function model for the helicopter which 
is obtained by performing system identification ex-
periments on a Yamaha R-50 crop dusting model 
helicopter [9]. We then describe a controller which 
stabilizes the linear helicopter dynamics. Section 4 
proposes a mesh controller structure. Some advan-
tages of the proposed structure over the previous 
mesh controller design models [6] are (a) it is ap-
plicable to a relatively general error propagation 
dynamics and (b) it leads to an inherently mesh 
stable cluster controllers. An algorithm for the de-
sign is presented. At last, we show the simulations 
with three helicopters flying as a string. 

2 Background 

In this paper we consider a string of helicopters. 
For notational details when the helicopters are in 
two dimensional formation refer to [8, 10]. 

Connective stability in one dimension is called 
string stability and has been studied [4], [6], and 
[7]. For string stability, we would like the max-
imum spacing error to decrease as it propagates 
down the chain. We will use the following norm 
definitions: Ilf01100 = suPt>o If(t)1 and  
fr I f (r)ldr . If ei and ei+i are the errors at the 

ith  and i + lth vehicle in the chain, then we need 

IIEi+11100 < iifilico for string stability. 
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From linear system theory [2], if y = h* u, then we 
have the following relationship: 

Ily(t)110  < Ilh(t)Il i  Ilu(t)110. 	(1) 

Using a sliding control law, Hedrick and Swaroop 
[4] found an LTI convolution kernel, h(t), which 
relates the errors in a vehicle following chain by: 
Ei+.1  = h * ei. Thus string stability of the chain of 
vehicles can be determined by analyzing the one-
norm of the error propagation impulse response, 
h(t). Since this norm represents the maximum am-
plification of any error as it propagates down the 
chain, it provides a useful metric for string stability. 
If this norm is less than one, then all input errors 
will be attenuated in the oo-norm sense as they 
propagate down the chain. If this norm is greater 
than one, then the system is string unstable and 
there exists an input error which will be amplified 
as it propagates. 

If h(t) does not change sign, the string stability 
condition, lih(t)111  < 1, is equivalent to the follow-
ing frequency domain condition: The magnitude of 
the associated transfer function, H(jw), should be 
less than one at all frequencies, i.e. II H(jw)il 00 < 1. 
In [4], they found that the sliding control law re-
sulted in a string stable system if reference vehicle 
information was used. 

The SISO input/output norm results are easily gen- 
eralized to the MIMO case. Let f : R+ 	lir and 

define 11f011. = maxi suPt>o ifi(t)i• If h(t)  is the 
convolution kernel for an n-input, n-output MIMO 
system, and y = h * u, then the input-output rela-
tionship is given by [2]: 

110)11. < (rnxEllho(t)111) 
J.1 

This can also be related to an equivalent frequency 
domain condition if none of the entries of the convo-
lution kernel changes sign. Let H(jw) be the n x n 
transfer function matrix for the LTI system given 
by h(t). If none of the h,3  (t) change sign, then: 

110)11. 	(rnrcE1111.0(iw)11.) • Ilu(t)II. (3) 
.i=1 

Mesh Stability of Helicopters 

Karl Hedrick, Aniruddha Pant, Pete Seiler' 

n 

• Ilu(t)11,, 	(2) 



K(s) 

)( I XO_ptly Regulated 

169 

Helicopter 

Desirei 
Spadnie 

XO_Lead 

Desired 

spacing  

168 	 Proceedings of the Eleventh Yale Workshop on Adaptive and Learning Systems  

For the problem under consideration, H(s) E Clx4 . 
The inputs are the desired Cartesian positions and 
yaw of the helicopter. The outputs are the realized 
Cartesian positions and yaw of the helicopter 

3 Regulated Helicopter Model 

In this section we briefly describe a linear model for 
a Yamaha R-50 agricultural helicopter [9]. We then 
describe the linear controller which is used to track 
desired position trajectories. The linear model is 
given by: 

1 = At-  + Bfi 

where the state and input vectors are given by: 

= 	[uvpq 4)0 a18b1.8wrrfb]T  
= [ua„ ub„ uem  uerr 

u,v,w are the x,y,z body-fixed velocities, respec-
tively. 4), 0 are the roll and pitch of the helicopter 
while p, q are the roll and pitch rate. r is the yaw 
rate. a18, b18, and r ft, are actuator states. The first 
two inputs, ua„ and ua„ , control the flapping co-
efficients of the helicopter. These inputs primarily 
control the pitch and roll of the helicopter. The 
final two inputs, ueM  and ue7., control the main 
rotor thrust and tail rotor thrust. A predictor-error 
method was used to obtain the parameters in the 
A,B matrices from experimental input-output data. 
We refer the interested reader to [9] for additional 
modeling details. We note that if the helicopter 
remains close to hovering, we can treat the x,y,z 
body-fixed velocities as global x,y,z velocities. In-
tegration of these variables will then yield global 
position. Similarly, integration of the body-fixed 
yaw rate will yield the global heading if the heli-
copter is close to hovering. 

A control law was designed by Shim [9] to stabilize 
the helicopter dynamics and steer the vehicle along 
a desired trajectory. The desired trajectory is given 
by: 

rd  = [xd Yd Zd (I]T 	(4) 

Thus the goal is to force yi  = [x y z TJT = Ci± 
to track rd . In words, we are trying to steer the 
helicopter along a desired position and heading tra-
jectory. This goal is accomplished using 4 propor-
tional derivative controllers. Specifically, u„„ is 
strongly coupled to the global y position. Similarly, 
ub„ , ue,„ , ue.i. are strongly coupled to global x, 
global z, and global heading, respectively. The four 
proportional derivative controllers were designed to 

------------------- 
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Figure 1: 1: Desired Trajectory 

control each loop. The final control law had the fol-
lowing state space form: 

	

= K1 C2t + K2 rd 	 (5) 

The closed loop model is then given by: 

= (A - BK1 C2)±.  + BK2rd 
Yi = C1± 

This closed loop system has 4 inputs and 4 outputs. 
It can be represented in transfer function form as: 

	

Y1 (s) = H(s)Rd(s) 	 (6) 

Ideally this transfer function would be diagonal, 
but in reality there is coupling between the four 
modes which may degrade performance. 

4 Proposed Structure for Mesh Controller 

In this section we propose a structure for designing 
mesh controllers for the helicopters. The lowercase 
letters represent variables which are functions of 
time. The corresponding uppercase letters repre-
sent Laplace transforms of the time functions, e.g. 
X(s) = G(x(t)). The procedure we describe pro-
duces inherently mesh stable controllers. This is 
an improvement on the previous design techniques 
where the controllers are designed and then checked 
for mesh stability. We consider three helicopters 
following the previous one, see figure 1. The mesh 
controller design structure is shown in the figure 
2. The block Regulated Helicopter represents the 
stabilized dynamics of a helicopter. The tracking 
controller for an individual helicopter is designed 
as explained in Section 3. We assume that the 
regulated helicopter follows the desired trajectory 
faithfully. In the previous section we designed the 
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following MIMO transfer function relation, 

Xi  = H(s)Xid 	 (7) 

Note that the notation has been changed slightly, in 
the previous section this equation was represented 

as, Yi (s) = H(s)Rd(s). Here Xi E Ci  are the reg-
ulated outputs of the helicopter i.e. longitudinal, 
lateral, vertical positions and yaw. In addition we 
assume that H(0) = 14 ,<4 ; in other words, there 
is no steady state error between the desired and 
actual position. Define: 

xiPd  := xi- - 	Xid := 	— i • 

:= xPid  - si 	ei  := xid  - X- 

Here xfd , xlid  are the desired positions of ith  vehicle 
with respect to the preceding and the leader vehicle 
respectively. ef , ei are the corresponding errors. 
For a safe formation flight ell are the critical errors 
to protect against a crash. However it has been 
shown [8] that if we design controllers based only 
the preceding error information, then we get error 
amplification as we go down the chain. So taking a 
cue from that work we implement Xid as, see figure 

2. 

Xid = p (K(s)Er + Xrd) + (1  - p) (K (s)El + Xlid) 
(8) 

If we assume that K(s) = 04 x 4 then the above ex-
pression is easy to interpret. It says the desired 
position of a helicopter is convex combination of 
its desired position with respect to leader and pre-
ceding helicopters. Here, p represents the coupling 
to the preceding vehicle. As stated above we would 
like p as large as possible for safety. Using the above 
definitions we get following relations which will be 
used in further simplification. 

ei_ i  - ei  = -ei 

Xr 1,d — Xrd = Xi-2  — Xi-1  

X1-1,d — 	= 

The error satisfies, 

Er = H (Xi-id - Xi,d — 6) 

Note that here we have made use of the fact 
H(s)6 = 8 as 6 is assumed to be constant and 
H(0) = I. Substituting the desired positions 
from equation 8 and simplifying using the identities 
above we get, 

Ep = H[p(K (E2_ 1  - Ei) + (Xi-2  - Xi-1)) + 
(1- p)(-KEi + 6) - 6] 

Mesh Controlkr 

Figure 2: Mesh Controller Structure 

Simplifying further one gets: 

EP = p[I + HK]-1[H + HK] 
	

(9) 

Define: 

G(s) := [I + Hif]-1[H + HK] 	(10) 

Note that G(s) e C4x4 , Vs E C. Now suppose 
g(t) :118. 	1184 x 4  is the impulse response of the in- 
dividual transfer function entries of G(s). From 

input-output      irelationplies 
that
in  	ie sectionjH5 1e,ei  o.  27 know_ e  ithat..  

PlIg(t)111 5.implies 
we have string stability. Using this information, 
we can see that we have two degrees of freedom for 
design of mesh controller, K(s) and p. 

5 Robustness to Disturbances 

The analysis of the previous section assumes a lin-
ear model for the regulated helicopter as well as 
perfect tracking of the desired position command 
at steady state. In reality, the helicopter dynam-
ics are nonlinear and the assumption of linearity is 
only justified by a small operating range or a feed-
back linearizing controller at the regulation layer. 
However, the regulation layer cannot achieve per-
fect tracking of the desired profile generated by 
the mesh controller. Furthermore, external distur-
bances acting on the UAVs, such as wind gusts, will 
cause additional errors. In this section, we justify 
the two-layer control structure. We will show that a 
mesh stable controller leads to the additional prop-
erty that the effect of any such disturbances will be 
damped out as they propagate. Consider the regu-
lated helicopter model with a disturbance reflected 
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at the output: 

X, = H(s)Xid  + D1(s) 	(11) 

The helicopter position consists of the desired part 
tracked by the regulated helicopter plus a term, 
di , representing external disturbances and imper-
fect tracking of the regulation layer. We use the 
same mesh controller given in Equation 8. 

Using analysis entirely analogous to the preceding 
section, we obtain the following relation: 

Ei(s) = pG (s)Ei _i  (s) + (s)(D (s) - D (s)) (12) 

where pG(s) is given in Equation 10 and G(s) = 
[I + HK]-1. Equation 12 shows that the ith  error 
consists of a term which is propagated, via pG(s), 
from other errors in the string. The ith  error also 
contains a term due to variations in the distur-
bances acting on the helicopters of the string. Note 
that if there is a disturbance which acts uniformly 
on the string, ct, 	d Vi, then the second term of 
Equation 12 is small. 

It is reasonable to expect large disturbances will 
occasionally act on one portion of the string. The 
relation given above implicitly shows that the ef-
fect of disturbances on other members of the mesh 
is also propagated via pG(s). Suppose that there 
is a large wind gust acting on the second (i = 2) 
helicopter and other disturbances are negligible. 
The disturbance affects the error, E2, through the 
transfer function G: E2 = pGE1  + GD2. However, 
it propagates to to other errors though pG. It is 
easy to show that for i > 2, Ei = (pG)i72E2  + 
(pG)173  0-  D3. 

Without being too rigorous, we note that IIpGIIoo < 
1 when the mesh stable controller is used. This 
causes the magnitude of (pG)I.7 3  to geometrically 
decay with i at each frequency. Thus disturbances 
acting on the string will decay as they propa-
gate. If a mesh unstable controller is used, then 
11PGiloo > 1. This mesh unstable controller causes 
the magnitude of (pG)27 3  to geometrically grow 
with i at some frequency. In this simple example, 
if the disturbance acting on the second helicopter 
has the right frequency, it's amplitude will grow ge-
ometrically down the string. For a large string, the 
result could be catastrophic. 

In summary, the results above can be generalized 
to random disturbances propagating in the string. 
The key point is that we designed the mesh con-
troller under the assumption of a linearized regu-
lated helicopter with perfect steady state tracking. 

Open bop ob cloeel bop TO 

Frequency 

Figure 3: Mesh controller design 

In reality, the regulated helicopter is not linear. 
Furthermore, external disturbances may cause ad-
ditional errors. However, this analysis shows that 
errors caused by these effects are damped out as 
they propagate away from the source. If we use a 
mesh unstable controller, it is possible for distur-
bances to act at the proper frequency and amplify 
as they propagate. 

6 Design Procedure 

To design mesh controllers following is the proce-
dure, 

• Design K(s) so that 11G(jod)IL is minimum 
and G(s) is stable. 

• Denote the minimal value obtain in step 1 as 
v i.e v := 11g(t)111. 

• Select p < 

The design for the x-component of the transfer 
function matrix H(s) is shown in the figure 3. Gen-
erally it was observed that after the 11H(jw)11. 
design, the closed loop transfer function G(s) 
had overdamped characteristics so 11H(jw)1100  
ljg(t)111. If K(s) = 0 then G(s) = H(s). Note that 
H(s) has a peak magnitude of 1.2 at 0.5 rad/s. So 
we need p < 112  to attenuate all disturbances. On 
the other hand if we use the design procedure given 
above then IIG(jw)II. 	1. The disturbances will 
be attenuated if p < 1. As a result we have ob-
tained mesh stability with a higher coupling to the 
preceding vehicle. 

Figure 4: Error Propagation 

7 Results and Simulations 

In this section we will present results of simulations 
performed using the theory presented in previous 
sections. As a first cut K(s) was assumed to be 
zero. The error propagation characteristics for dif-
ferent values of p are shown in figure 4. We can see 
that for p = 1, the maximum of the error for the 
second vehicle e2  is greater greater than the max-
imum of the error for the first follower el . This 
is consistent with our theoretical result which says 
that the vehicle following based on only preceding 
vehicle information implies string instability. On 
the other hand for the other subplots in the fig-
ure we can see that the second error is lower than 
the first error and thus we have the error damping 
characteristic. It should be noted however that for 
formation safety one would want the controller as 
strongly connected to the closest vehicles as possi-
ble i.e. p should be as high as possible as long as 
we are string stable. 

8 Conclusions 

We proposed a general structure for designing mesh 
controllers for formation flying. The mesh stability 
property of the structure was demonstrated using 
linear transfer function theory as well as a simple 
simulation experiment. In future, we expect to per-
form experimental testing of the ideas presented in 
this paper. 
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