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Abstract

This paper will focus on control of vehicle strings and
the theoretical issues arising from this problem. The
key result is that a control structure where each vehicle
uses only information about its predecessor is funda-
mentally sensitive to disturbances. Specifically, small
disturbances acting on one vehicle can propagate and
have a large effect on another vehicle. A similar, though
less general, result is derived for a control structure
where each vehicle looks at both neighbors.

1 Introduction

The problem, in its most basic form, is to move a col-
lection of vehicles from one point to another point. One
application of this work is an Automated Highway Sys-
tem (AHS) [5] where the goal is to reduce traffic con-
gestion by using closed loop control. To maximize the
traffic throughput, the vehicles travel in closely spaced
platoons (Figure 1). Centralized control is impracti-
cal for medium to large sized platoons. Thus a decen-
tralized controller should be used. Furthermore, treat-
ing the vehicles independently is an unsafe approach
because the inter-vehicle spacings are required to be
small. A reasonable decentralized control strategy is
for each vehicle to use a radar to keep a fixed distance
behind the preceding vehicle (Figure 2). The reference
trajectory for the (i + 1) vehicle is a fixed distance,
d;, behind the preceding vehicle: r;11 = z; — §;. The
feedback loops are coupled and it is possible for distur-
bances acting on one vehicle to propagate and affect
other vehicles in the string. In fact, we show that for
any linear control law, K (s), it is possible for a small
disturbance acting on one vehicle to have an arbitrarily
large effect on another vehicle.

The possibility of disturbance propagation in vehicle
strings has been known for some time. Chu showed
that an infinite string of vehicles could not be stabilized
using the strategy depicted in Figure 2 with a propor-
tional control law [2]. A similar result was shown via
a transfer function analysis [9]. In the early 90s, re-
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Figure 1: An AHS Platoon
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Figure 2: Coupled Feedback Loops

newed interest in AHS spurred further research on the
control of vehicle strings [3, 4, 10, 11, 12, 13, 14]. Swa-
roop developed rigorous definitions of string stability
and relations to error propagation transfer functions
[12]. The research on vehicle strings can be generalized
and studied as a spatially invariant system [1].

To summarize, we note that many researchers have
shown that “string stability” cannot be obtained when
vehicles use only relative spacing information to main-
tain a constant distance behind their predecessor. All of
these results have been for specific control laws. In this
paper we show that if vehicles use only relative spac-
ing information, then we have “string instability” for
any linear controller. This result motivates the need
for communication in a vehicle string and highlights
that ’local’ decentralized controllers may be sensitive
to disturbances.

2 Problem Formulation

The problem is motivated by the control of an AHS
platoon (Figure 1). The platoon is a string of N +
1 vehicles. Let z¢(t) denote the position of the first
car and z;(t) (1 < ¢ < N) denote the position of the
ith follower in the string. Define the vehicle spacing
errors as: e;(t) = x;_1(t) — z;(t) — §;(t) (1 < i < N)
where 0;(t) is the desired vehicle spacing. The goal is
to force these spacing errors to zero and ensure that
small disturbances acting on one vehicle cannot have a
large effect on another vehicle. Before proceeding, we
call attention to some of our assumptions.



Assumption 1: All the vehicles have the same model.
Assumption 2: The vehicle model is linear and SISO.
Assumption 3: All vehicles use the same control law.
Assumption 4: The desired spacing is a constant.

We are more interested in performance at the platoon
level rather than individual vehicle control. Thus As-
sumptions 1 and 2 are reasonable abstractions of the
problem at this scale. Assumption 3 is a simplification
for ease of implementation. Finally, there are a vari-
ety of other spacing laws (see [12]) and the constant
spacing policy is chosen for this analysis.

Given any time-domain signal, z(t), we denote its
Laplace Transform by X(s). Applying the assump-
tions, we can model each vehicle in the Laplace domain
as (assuming the vehicles start from rest):

for1<i<N (1)

where H(s) has two poles at the origin and z;(0) is
the initial position of the i** vehicle. A simple point
mass model for a car is H(s) = % with the vehicle
acceleration as the control input. In general, H(s) can
include actuator dynamics. The spacing error is given
by e;(t) = z;—1(t) — z;(t) — §. We assume the platoon
starts with zero spacing errors and the leader starts at
20(0) = 0. Hence, z;(0) = —id for 0 <i < N.

3 Error Propagation

In this section we give a simple analysis of three decen-
tralized control laws. We will make use of the following
norm: || X (s)|leo 1= sup,er o (X (jw)).

3.1 Predecessor Following
A linear control law based only on relative spacing error
with respect to the predecessor is given by:

Ui(s) = K(s)Ei(s) 2)

We can obtain the spacing error dynamics from Equa-
tions 1, 2 and the platoon initial conditions:

1
:mXo(s) = S(s)
__H(s)K(s)
Eils) =1 H () K(s)
fori=2,...,N

Er(s) Xo(s) ®3)

E;_1(s):=T(s)Ei—1(s) (4)

These equations show that the transfer function from
Xo(s) to Ei(s) is the sensitivity function, S(s). The
transfer function from FE;_;(s) to E;(s) is the comple-
mentary sensitivity function, T'(s). There is a classical
trade-off between making |S(jw)| and |T'(jw)| small.
In the context of Equations 3 and 4, the S(s) vs.
T(s) trade-off has the interpretation of limiting the

first spacing error (making |S(jw)| small) and limit-
ing the propagation of errors (making |T'(jw)| small).
We would like |T'(jw)| < 1 at all frequencies so that
propagating errors are attenuated. In fact, it is not
possible to attenuate propagating errors at all frequen-
cies. Note that if K(s) stabilizes the closed loop, then
H(s)K (s) has two poles at s = 0. Thus 7(0) = 1 and
hence ||T'(s)|lcc > 1. The next theorem implies that the
inequality is strict: ||T°(s)||c > 1. This is a simplified
version of a theorem by Middleton and Goodwin [8, 7].

Theorem 1 Suppose that H(s) is a rational transfer
function with at least two poles at the origin. If the
associated feedback system is stable, then the comple-
mentary sensitivity function must satisfy:

o0 ] d
| mimGe) s 2o (5)

This integral relation is similar to the more common
Bode Sensitivity integral. The integral implies that the
area of error amplification is greater than or equal to
the area of error attenuation. A simple consequence of
this theorem is that for any stabilizing controller, there
exists a frequency, w, such that |T'(jw)| > 1. Figure 3
shows an example of this result. The vehicle model is
a double integrator with first order actuator dynamics
and a lead controller is used to follow the preceding
vehicle:

1 2s+1

He) = Zomrn KO = 0011

(6)
Figure 3 is a plot of |T(jw)| and |S(jw)|. As predicted
by Theorem 1, there is a frequency such that |T'(jw)| >
1. Specifically, || T(s)||co = 1.21 and is achieved at wg =

0.93 rads/sec. Errors acting at this frequency will be
amplified as they propagate.
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Figure 3: Plots of |T'(jw)| and |S(jw)|

We elaborate on this last statement. Consider a 6 car
platoon (N = 5) starting from rest with initial condi-
tions z;(0) = —id for ¢ = 0,...5. The desired spacing



is 6 = bm. The lead vehicle accelerates from rest to 20
m/s over 12 seconds using the following input:

Uo(s) — l2 [e—s _ 6—35 _ e—lls 4 6—133] (7)
In the time domain, this corresponds to a trapezoidal
input with peak acceleration of 2m/s®. The lead vehicle
motion, Xo(s) = H(s)Uy(s), causes an initial spacing
error, Fy(s) = S(s)Xo(s). Figure 4 shows that | E; (jw)|
has substantial low-frequency content. Figure 3 shows
that |T'(jw)| > 1 at low frequencies, so we expect low-
frequency content to be amplified. Figure 4 confirms
that low frequency content is amplified as it propagates
from E;(s) to Es5(s).
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Figure 4: Frequency domain plots of spacing errors with
the predecssor following strategy.

This error amplification can also be interpreted in the
time domain (Figure 5). In this example, the ve-
hicles farthest from the leader experience the largest
peak spacing error. Results on peak error amplifica-
tion can be found in [12]. It also possible to show that
the control effort also propagates via T'(s): U;(s) =
T(s)U;—1(s). The same statements regarding amplifi-
cation of control effort apply here. If more cars are
added to the platoon, then either the actuators on the
trailing cars will saturate or a collision may occur.

3.2 Predecessor and Leader Following
In this section, we add lead vehicle information to the
predecessor-following control law.

Ui(s) = Kp(8) i(s) + Ki(s) (LXO(S) -x@-2) @
This controller tries to keep the errors with respect to
the preceding vehicle and with respect to the lead vehi-
cle small. The leader motion is essentially the reference
for the string. Intuitively, this control law gives each
vehicle some preview information of this reference. As
before, we can obtain the error dynamics:

1
B = TG (") T+ Ky ) 7= Sl Xols)
o HEK) P,
Bi®) = T8 () (56, () + Koy 2 (8) = T(9) B
2<i<N 9)
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Figure 5: Time domain plots of spacing errors with the
predecssor following strategy.

If K;(s) = 0 then these equations reduce to the corre-
sponding equations in the previous section. Note that
we are free from the constraint 7'(0) = 1. For example,
if we choose K;(s) = Kp(s) then T;,(0) = 0.5. More
importantly, we can easily design Kj(s) and K,(s) so
that [[Tip(s) loo < 1.

We compare this strategy to the predecessor follow-
ing strategy described in Section 3.1. We use the
same vehicle model given in Equation 6 and the con-
trol law in Equation 8 with K;(s) = Kp(s) = 1K(s).
Tip(s) = 3T(s), so the peak magnitude is dropped to
[|T1p(8)|lcc = 0.605. Thus all frequency content of prop-
agating errors is attenuated. Figure 6 shows the time
responses for comparison. Figure 6 shows that the spac-
ing errors are attenuated as they propagate down the
chain. Furthermore, it is possible to show that the con-
trol effort will not grow unbounded down the chain.
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Figure 6: Time domain plots of spacing errors with the
predecssor and leader following strategy.

4 Sensitivity to Disturbances

In this section we further the analysis and determine
the effect of disturbances acting on each vehicle.



4.1 Look-ahead
Let us first consider an N + 1 car platoon where each
vehicle has an input reflected disturbance:

Xi(s) =H(s) (Us(s) + Di(s)) + _T“S 1<i<N (10)

We will now derive the closed loop transfer function
matrix from disturbances to errors when each vehicle
uses preceding and lead vehicle information. The it?
spacing error is given by F;(s) = X;_1(s) — X;(s) — 2.
Using the vehicle model (Equation 10), we can write
the spacing error dynamics for the platoon as:

E(s) = Pu(s) [ 20 ] + Pas)T(s) (1)

where we have defined:
E(s) :=[Ey(s)... Ex(s)]", D(s):=[Dy(s)...
Ul(s) := [Us(s)...Un(s)]"

1| —H(s)
0| H(s) —H(s)
Pi1(s) := . . .
L o0 H(s) —H(s)
[ —H(s)
H(s) —H(s)
Pio(s) := . _
L H(s) —H(s)

We assume each vehicle uses the control law given in
Equation 8. This control law can be rewritten in terms
of the platoon spacing errors:

Us(s) = Kp(s)Ei(s) + Ki(s (ZE ) (12)

This form of the control law is strictly for convenience
in the derivation that follows. The vector of platoon
inputs is given by:

U(s) = K(s)E(s) (13)

Ki(s)+Ky(s)
Ki(s)  Ki(s)+Kp(s)

Ki(s) v Ku(s) Ki(s)+Kp(s)

We can eliminate U(s) from Equations 11 and 13 to
obtain the closed loop equation:

B(s) = [(I - Pu(s)K(5) ™ Pua(s)] [ XO((S) ] (14)

Substitute for the matrices (P;1(s), Pi2(s), K(s)):

1
. Typ(s)
Bo)= | . | SuXo(s) - Su() ()
Tip(s)N 1
1
(Tip(s)—1) 1

D(s) (1)

(Tip ()= D)Tip ()N =2 oo (Tip(s)=1) 1

Dy (s)]",

Tip(s) and Spp(s) are as defined in Equation 9. The
transfer function vector from Xy(s) to E(s) agrees
with the analysis Section 3.2. Two cases show the
trade-off between disturbance propagation and safety.
If we use only leader information then Tj,(s) = 0.
There is no disturbance propagation in this case, but
D;(s) affects E;11(s) through S;,(s)H(s). On the
other hand, if we use only preceding vehicle informa-
tion, then the effect of D;(s) on E;i1(s) is through
—(Tip(s) — 1)Sip(s)H(s). Typically, |Tiy(s) — 1] << 1
near w = 0, so the use of preceding vehicle informa-
tion reduces the effect of a disturbance on the spacing
error. The price for this safety is that there always
exists a frequency such that |T},(jw)| > 1. Hence dis-
turbances may amplify as they propagate through the
chain. For example, the effect of Di(s) on Ej(s) is
given by —(Ti,(s) = 1) T} (5)Sip(s)H (s). If |Tpp(w)| > 1,
then this effect is amplified geometrically for increasing
k. The control law proposed in Section 3.2 provides
a compromise to this trade-off. This discussion of dis-
turbance propagation is made rigorous in the ensuing
theorem. The proof makes use of the following lemma:

Lemma 1 Given any complex numbers, a,b € C, de-
fine the following sequence of matrices:

e CN*N  (16)
) ab' b' 1

If la| <1 then 6 (Xn) < 1+1‘—L|L| for all N

Proof. For any matrix, p(4) < ||A||y where p(4) is
the spectral radius and || 4||; is the induced 1-norm [6].
Applying this fact to A = X} Xn gives inequality (a)
in the following upper bound of & (Xy):

(a) . .
7 (Xn)” < I XN XNl < IXN XNl = XN oo | X l1

i)

For all N, || Xn|1 = [|XN|lec = 1+ %' If
la] <1 then ¢ (Xy) <1+ 5 lb‘ " VN. B

Theorem 2 Assume H(s) has 2 poles at the origin
and the closed loop is stable. Let Ty.(s) € CVN*N be
the transfer function matriz from D(s) to E(s) in Equa-
tion 15. If |T1p(s)||lo > 1, then given any M > 0 3N
such that |Tae(s)llc > M. If [|Tip(s)lleo < 1, then
IM > 0 such that || Tge(s)||oo < M VN.

Proof. For the first part of the theorem, there exists
a frequency wp such that |Tj,(jwo)| > 1. Given any
M > 0, choose N to satisfy the following inequality:
M
|S1p(jwo) H (jwo) (Tip (jwo) — 1)

|Tip (jiwo)| V=2 >



There is one technical subtlety in choosing N. The
right side is infinite if H(s) has a zero at s = jwg or
K (s) has a pole at s = jwg. Since H(s) and K (s) have
a finite number of poles and zeros, we can choose wy
such that |T},(jwo)| > 1 and |Si,(jwo)H (jwo)| # O.
Hence the right hand side of the inequality is finite
and it is possible to choose N to satisfy the inequal-
ity. Let e; € RV be the first basis vector. By choice
of N, & (Tac(jwo)) > ||Tac(jwo)erll > M. Hence
ITde(s)lloo = M.

For the second part of the theorem, fix w and define
two complex numbers: a := Tjp(jw) and b := T (jw) —
1. Given these complex numbers, define the sequence
of matrices, Xy, as in Equation 16. We can apply
Lemma 1 to conclude that if |a| < 1 then ¢ (Xn) <

1+ L for all N. Therefore, if |T(jw)| < 1, then the

1—[a]
gain from disturbance to error at the frequency w can
be upper bounded for all N:

& (Tae(j0)) < |Sip () H ()] - (1 + M) a7)

1 — [T (jw)|

By assumption, ||T;,(s)|lcc < 1 and the closed loop is
stable. Closed loop stability implies ||S;,(s)H(s)|leo <
oo. Equation 17 can be applied to upper bound the
peak gain from disturbances to errors uniformly in N:

Tac (@l < IS H e - (14 1O ) < o

As noted in Section 3.1, if we use the predecessor fol-
lowing strategy, then for any stabilizing, linear con-
troller we have ||T;,(s)||cc > 1. From Theorem 2 we
conclude that this strategy will always lack scalabil-
ity because the gain from disturbances to errors grows
without bound as the platoon length grows. However,
if we use leader information, then it is possible to make
[|IT1p(s)|loc < 1. In this case, the theorem states that
the algorithm is scalable because the gain from distur-
bances to errors is uniformly bounded as the platoon
length grows.

The consequence of this theorem is displayed in Fig-
ure 7. The plot shows the disturbance to error gain as
a function of frequency for strategies with (Right sub-
plot) and without (Left subplot) leader information. N
is the number of followers in the platoon. H(s), K(s),
K;(s), and K, (s) are the same as those used in the pre-
vious sections. The right subplot shows that the distur-
bance to error gain is relatively independent of vehicle
size if leader information is used. The left subplot, on
the other hand, shows that if the predecessor following
strategy is used, then the platoon becomes sensitive to
disturbances as N grows.
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Figure 7: ¢ (T4e(jw)) for N = 1,2,5,10. Left: Prede-
cessor following strategy . Right: Leader and predecessor
following strategy.

4.2 Bidirectional

In the previous section, we showed that a vehicle fol-
lowing control law based only on relative spacing error
is not scalable. The algorithm can be made scalable
if all vehicles have knowledge of the lead vehicle mo-
tion. However, the latter algorithm requires a network
to communicate this information to all vehicles while
the former algorithm can be implemented with only
on-board sensors. In this section, we try to construct a
scalable control law that relies only on ’local’ measure-
ments, i.e. no communication is necessary.

We consider platoon controllers which use relative spac-
ing error with respect to adjacent vehicles. In this sec-
tion, vehicles use a bidirectional controller:

Ui(s) = Kyp(s)Ei(s) — Ky (s)Eiy1(s) (18)

Since the last vehicle in the chain does not have a fol-
lower, it uses the control law: Uy(s) = K,(s)En(s).
Piy1, Py5 are as defined previously, but the controller
matrix for the entire platoon, K (s), is given by:

Kp(s) —K;(s)

K (9)
Ky (s)

For this control structure, the closed loop equation from
disturbances to errors is again given by Equation 14.
We will focus on the effect of disturbances which is
given by:

_ a1 _

E(s) = [(1 = Pa(s)K(5)) " Pra(s)| D(s)

= (P5' —K(s)) ' D(s) (19)

B b
HG) |,

The next theorem shows that this strategy also fails to
be scalable for a class of these bidirectional controllers.

where:

Pyl(s) =



n
a
n
a

1,2,5,10

—
a

omax[Tde(jm)] for N:

N
S

>

Theorem 3 Assume H(s) has 2 poles at the origin
and the closed loop is stable. Assume the bidirectional
controller is symmetric: K,(s) = K¢(s) and Ky(s) has
no poles at s = 0. Let Tgo(s) € CN*N be the trans-
fer function matriz from D(s) to E(s) in Equation 19.
Given any M > 0 3N such that || T 4e(s)]|oo > M.

Proof. Given the assumptions in the theorem, the dis-
turbance to error transfer function at s = 0 simplifies

to:
. 1 1 ee 1 .
E(0)=-——=| -. :|D(0)
Ky (0) [ 'i]
Let Uy be the N x N matrix with ones on the up-
per triangle and let ey be the NV th basis vector. Then
7 (Un) > ||[Unen|| = V'N. Given any M, choose N

such that m% > M. For this N, ||T4c(s)||oc >

|Tde(0)| >M. 1

The left subplot of Figure 8 shows an example of the
effect stated in Theorem 3. This plot shows the dis-
turbance to error gain as a function of frequency when
K¢ (s) has no poles at s = 0. The controller is given
by Kp(s) = Ky(s) = gagiy. As predicted by Theo-
rem 3, the steady state gain grows as NV increases. The
right subplot shows the effect of adding an integrator
to the control law: K,(s) = K(s) = %&%. The
integrator causes the steady state gain to be 0 for all
N. However, the peak gain from disturbances to errors
changes greatly as vehicles are added to the platoon.
In this example, the peak gain is actually greater for
N =5 than for N = 10. This behavior is in contrast to
the predecessor/leader following strategy. Using that
strategy, we can be assured that the disturbance to er-
ror gain is relatively independent of platoon size (Right
subplot of Figure 7).

Gain plots for Tde(s) Gain plots for Tde(s)
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Figure 8: & (T4 (jw)) for N = 1,2,5,10. Left: Bidi-
rectional strategy: Ky(s) with no poles at s = 0. Right:
Bidirectional strategy: K(s) with a pole at s = 0.

5 Conclusions

The key point of this paper is that extending single ve-
hicle designs to large platoons can lead to unintended

problems. We demonstrated that some control struc-
tures with only local information fail to be scalable. It
was also shown that the problem can be solved if we
include reference information in the control structure.
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