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Abstract

Birds in V formations are frequently observed and
two main hypotheses have emerged in the biol-
ogy/ornithology literature to explain this particular ge-
ometry: (i) it offers aerodynamic advantages and (ii)
it is used to improve visual communication. Both ex-
planations require a bird to track its predecessor. Ob-
servations of flocks suggest that this task is difficult
for birds in large formations. In this paper, we ex-
plain this phenomenon using a simple bird model and
systems theory. This result has implications for the
coordinated control of unmanned aerial vehicles. In
particular, predecessor-following is an inherently poor
strategy for formation flight.

1 Introduction

Bird flocks are frequently observed in nature and nu-
merous reasons have been proposed for this behavior.
Flocking may simply be a natural social behavior [1]
or it may be driven by the need to avoid, detect, and
defend against predators [2]. The coordination exhib-
ited in some bird formations suggests additional mo-
tivations. For example, traveling birds are frequently
seen in linear formations such as the V, J, or echelon.
Using the terminology introduced by Heppner [3], the J
and echelon are variants of the V formation where one
leg of the formation is shorter or is missing entirely.
Two predominant hypotheses exist to explain the fre-
quent observation of linear formations. One hypothesis
is that birds gain some aerodynamic advantage when
in a linear formation [4]. The alternative hypothesis is
that visual communication between flock members is
improved leading to enhanced navigation capabilities
[5, 3]. We will give a brief review of these two hypothe-
ses.

An aerodynamic advantage is obtained by flying in
the upwash produced by other birds in the formation
[4, 6, 7, 8]. Specifically, a pair of trailing vortices form
1 to 2 wingspans behind a bird [9, 6]. Based on a fixed-
wing analysis, the distance between these vortices is π

4 b

1This work was supported in part by Office of Naval Research
(ONR) under the grant N00014-99-10756.

WTS

Depth Wingspan, b

Direction 
Of Travel

(π/4) b

Trailing Vortices

Figure 1: Formation Notation

where b is the wingspan of the bird [9, 7, 8] (see Fig-
ure 1). Within the trailing vortices is an area of down-
wash and outside the vortices is an area of upwash. To
obtain maximum lift from this upwash, birds should fly
with a wingtip spacing (WTS) of WTSopt = (π

4−1)× b
2 .

WTSopt < 0 which implies that the bird wings should
overlap to take full advantage of the upwash. The sav-
ings are strongly dependent on lateral position, so a
trailing bird must accurately track WTSopt. On the
other hand, a consequence of Munk’s displacement the-
orem is that the savings are, more or less, independent
of the longitudinal position [4, 7]. Thus a bird for-
mation can be staggered to distribute the load evenly
among its members without affecting the total induced
drag [4, 7]. We should note that these results are based
on a fixed wing analysis. As noted in [10], the results
are likely to be valid for birds with large wing spans and
low wingbeat frequency, for example a Canada Goose
in steady flight.

The visual communication hypothesis postulates that
formation geometry is correlated with retinal features
and the location of the eye on the head [5, 3, 11, 10]. For
example, Heppner [3] speculated that the placement of
the eyes restricts the field of vision and this motivates
the use of a V formation. The enhanced visual commu-
nication may benefit bird flocks in several ways. First,
it may aid migratory navigation by averaging the de-
sired directions of all birds [5]. This ensures the flock
saves time and energy by taking the most direct mi-



gratory route [10]. The enhanced visual communica-
tion may also increase the probability that flocks are
maintained during flight between roosting and forag-
ing areas [12]. This would enable group activities to be
performed at the destination. Finally, the enhanced vi-
sual communication may enable younger birds to learn
about migratory paths and/or traditional roosting and
feeding areas [13].

These two hypotheses lead to different predictions on
the relationships between WTS and depth. The aero-
dynamic advantage hypothesis predicts that WTS will
be close to WTSopt with small variance and a pos-
itive skew (WTS ≥ WTSopt). Furthermore, the
WTS should be uncorrelated with depth [10]. The
visual communication hypothesis predicts that WTS
and depth will be positively correlated to maintain the
optimal angle between birds [10].

Many researchers have observed and studied bird for-
mations with the goal of testing the predictions gener-
ated by these hypotheses [5, 14, 15, 12, 16, 17, 10, 18,
13]. The evidence contained in this body of literature
appears to support the idea that the aerodynamic ad-
vantages may be the dominant factor for some birds,
such as the Canada Goose [16, 10] and the Greylag
Goose [13]. Badgerow [10] argued that biomechanical
reasons make it particularly important for the Canada
Goose to take advantage of the upwash of neighboring
birds. On the other hand, observations of the Pink-
footed Goose, a relatively smaller bird, favor the visual
communication hypothesis [18].

Both hypotheses require a bird to track the lateral posi-
tion of its predecessor. Two observations in this body
of literature imply that this task is difficult for birds
in large formations. First, the distribution of wingtip
spacings within a formation commonly has a large vari-
ation (Table 1). Hainsworth [16] offers anecdotal evi-
dence of this variation:

My observations of flight under windy con-
ditions suggest frequent changes in direction,
propagated ’oscillations’ along the length of V
legs, and a more frequent break-up and refor-
mation of Vs.

Second, the formation size appears to be relatively
small on average. Table 1 gives an estimate of forma-
tion sizes observed in various references. If we assume
that all these formations are Vs, then a typical leg con-
tains only 4-5 birds. Hainsworth [16] noted a further
stratification of formations into smaller sub-formations.

Similar observations appear in the control literature in
the context of vehicle following. The amplification of
disturbances as they propagate down a chain of vehi-
cles, commonly known as string instability, has been

# of Range of Average
Ref. Formations Observed WTS Formation Size

Observed (cm) (No. of Birds)

[16] 8 [-171, 183] 8

[17] 14 [-130, 289] 3

[10] 50 ? Majority
< 12

[18] 54 [-90, 189] 7

[13] 25 [ -100, 160] 11

Table 1: Observed Formation Data (Formation sizes are
only estimates due to the actual data reported
in a given reference)

studied by many researchers, including [19, 20, 21, 22].
String instability limits the sizes of vehicle platoons
and makes it difficult to achieve tight tracking. This
error damping property has been extended to multiple
dimensions [23] and nonlinear systems [24]. In this pa-
per, we derive a general string stability result and use
it to explain the small formations and poor tracking
observed in bird flocks. Previous results have shown
that the predecessor-following strategy is string unsta-
ble for specific control laws. Our result shows that it is
string unstable for any linear controller.

The remainder of this paper has the following struc-
ture: A bird model and notation are given in the next
section. In Section 3, we prove an integral inequality for
the complementary sensitivity function. We apply this
inequality to explain the difficulty birds have maintain-
ing accurate spacing in large formations. In Section 4
we discuss the implications of this result for control.

2 Bird Formation Model

In this section we present a model for a V-formation
of birds. The first step is to define the notation for
the V formation (Section 2.1). Then we describe the
dynamics of an individual bird (Section 2.2).

2.1 Formation Notation

We model each leg of the linear formation as a string of
(N+1) birds. Let p0(t) ∈ R3 denote the Cartesian posi-
tion of the first bird and pi(t) ∈ R3 (1 ≤ i ≤ N) denote
the position of the ith follower bird in the string. De-
fine the tracking errors as: ei(t) = (pi−1(t) + δ)− pi(t)
(1 ≤ i ≤ N) where δ is the desired spacing vector. For
example, if a bird wants to fly two wingspans behind
his predecessor at the optimum wingtip spacing, then
δ = [−2b πb

2 0]. We will assume that the goal of each
follower bird is to force these spacing errors to zero for
an aerodynamic advantage or for visual communica-
tion.



2.2 Individual Bird Model

In this section, we model birds that are attempting to
fly in formation at some steady velocity, vss. Our bird
model consists of the Newtonian equations of motion
and a linear model of the force generation process. In
the process of estimating the power required for flight,
Pennycuick [25] stated the main forces acting on a bird:

• Parasitic drag: This is the force exerted by the air
on the body of a bird, excluding the wings. This
force is given by −CD ‖v‖ v where CD is the drag
coefficient and v is the velocity vector of the bird.

• Weight: This force is given by −mgk̄ where where
m is the mass of the bird, g is the gravitational
constant and k̄ is the unit vector in the z-direction.

• Profile drag: This is the drag exerted by air on
the wings when they are flapped. As a first ap-
proximation, the force is inversely proportional to
the speed: − CP

‖v‖2 v where CP is the profile drag

coefficient.

• Lift and Thrust: The bird is able to generate lift
and thrust by flapping its wings. We denote the
sum of these forces by F .

Let p = [x y z]T be the Cartesian position of the bird.
Newton’s law gives the equations of motion for the bird:

mp̈ = −CD ‖v‖ v − mgk −
CP

‖v‖
2 v + F (1)

We note that to maintain a steady velocity, v = vss,
the lift and thrust must balance all other forces on the
bird: Fss = CD ‖vss‖ vss + mgk + CP

‖vss‖
2 vss

Next we model the force generation process. In a for-
mation, the bird is attempting to track the position of
the preceding bird, modulo some offset. To accomplish
this task, the bird must sense the tracking error, e,
and take some corrective action. We assume the sen-
sory dynamics of the eyes, the tracking algorithm in the
brain, and the flight mechanics of the force generation
can be approximately modeled as a finite dimensional
nonlinear dynamical system:

ż = h1(z, e)

F = h2(z, e)

where z ∈ Rn is the state of the system and e ∈ R3 is
the tracking error. These dynamics from the tracking
error to the actual force generated on the bird are prob-
ably quite complex and the state dimension, n, is pos-
sibly very large. We assume that if there is no tracking
error, the bird generates the necessary force to maintain
the steady velocity: h1(0, 0) = 0 and h2(0, 0) = Fss.

We can now linearize these complex, nonlinear dynam-
ics:

∆ż =

A
︷ ︸︸ ︷
(

∂h1

∂z

)

(0,0)

∆z +

B
︷ ︸︸ ︷
(

∂h1

∂e

)

(0,0)

e

F = Fss +

(
∂h2

∂z

)

(0,0)
︸ ︷︷ ︸

C

∆z +

(
∂h2

∂e

)

(0,0)
︸ ︷︷ ︸

D

e

Thus the overall system dynamics linearized about the
steady state velocity are given by:

p̈ =
1

m
∆F (2)

∆ż = A∆z + Be (3)

∆F = C∆z + De

3 Formation Analysis

In this section we derive a relation for the the spacing
errors in the formation (Section 3.1). We then give a
technical result from systems theory (Section 3.2). We
apply this result to analyze the spacing errors along
one leg of a V formation (Section 3.3). The conclusion
is that tight spacing control is difficult if the predeces-
sor following strategy is employed. We will denote the
spectral radius of a matrix A by ρ[A] and the maximum
singular value by σ̄ (A).

3.1 Formation Spacing Errors

In the Laplace domain, the individual bird model
(Equations 2 and 3) is given by (1 ≤ i ≤ N):

Pi(s) =
1

s2

1

m

[

C (sI − A)
−1

B + D
]

︸ ︷︷ ︸

H(s)

Ei(s) +
pi(0)

s
+

vss

s2

(4)

pi(0) is the initial position of the ith bird and we assume
each bird initially has the steady state velocity, vss.
We assume that the formation starts with zero initial
spacing error: pi(0) = iδ for all i.

Simple algebra using the bird models (Equation 4), ini-
tial conditions, and error definitions gives the following
relations:

Ei(s) = S(s)P0(s) (5)

Ei(s) = T (s)Ei−1(s) for i = 2, . . . , N (6)

where

S(s) :=

[

I +
1

s2
H(s)

]−1

T (s) :=

[

I +
1

s2
H(s)

]−1 [
1

s2
H(s)

]



Equation 5 shows that the transfer function matrix
from P0(s) to E1(s) is the sensitivity function, S(s).
Equation 6 shows that the complementary sensitivity
function governs the propagation of errors along the
arm of the V. Thus S(s) governs the first spacing error
generated by the leader motion, P0(s), and T (s) gov-
erns the propagation of errors away from the leader.

Let ai denote the acceleration of the ith bird. The
acceleration is an indication of the effort required by
the bird to maintain his position in the formation. We
can obtain similar relations for the propagation of this
control effort.

Ai(s) =T (s)Ai−1(s)for i = 1, . . . , N (7)

where A0(s) is the acceleration of the leader.

There is a classical control trade-off between making
σ̄ (S(jω)) and σ̄ (T (jω)) small. Since S(s) + T (s) ≡ I,
we cannot make σ̄ (S(jω)) and σ̄ (T (jω)) simultane-
ously small. Fortunately in the classical systems anal-
ysis the competing objectives occur in different fre-
quency regions. It is typically sufficient for σ̄ (S(jω)) to
be small at low frequencies and σ̄ (T (jω)) to be small at
high frequencies. In the context of Equations 5-6, the
S(s) vs. T (s) trade-off has the interpretation of limit-
ing initial spacing error (making σ̄ (S(jω)) small) and
limiting the propagation of errors (making σ̄ (T (jω))
small). In this case we cannot spread these compet-
ing objectives into different frequency bands. In other
words, we would like σ̄ (T (jω)) < 1 at all frequencies
so that propagating errors are attenuated.

To attenuate propagating errors in the formation, we
require σ̄ (T (jω)) < 1 at all frequencies. Another mea-
sure of error amplification is given by ρ[T (jω)]. The
condition ρ[T (jω)] < 1 ensures the eventual decay of
all errors in the formation. This interpretation follows
because the error propagation (Equation 6) is simply
a discrete system at each fixed frequency. We refer to
[26] for the details.

3.2 Main Result

Unfortunately T (0) = I and thus neither σ̄ (T (jω)) < 1
nor ρ[T (jω)] < 1 holds for all frequencies. The in-
terpretation is that DC errors are propagated without
attenuation. Moreover, the next theorem implies that
there is a frequency and a direction such that error am-
plification occurs. This theorem is a generalization of
a SISO result by Middleton and Goodwin [27, 28]. It
is similar to results obtained by Chen [29, 30].

Theorem 1 Let H(s) be an np × np rational, proper

transfer function matrix and L(s) = 1
s2 H(s) be the

open loop transfer function. If the closed loop system

is stable, then the complementary sensitivity function,

T (s) = [I + L(s)]−1L(s), must satisfy:

∫ ∞

0

log ρ [T (jω)]
dω

ω2
≥ 0 (8)

where log is the natural log.

Proof. This proof is similar to the proof of Theorem
4.1 in [30]. By assumption, T (s) is an np × np matrix
with entries that are analytic and bounded in the open
right half plane. Boyd and Desoer [31] showed that
log ρ [T (s)] is subharmonic and satisfies the Poisson In-
equality for x > 0:

log ρ [T (x)] ≤
1

π

∫ ∞

−∞

log ρ [T (jω)]
xdω

x2 + ω2
(9)

Multiplying Equation 9 by 1/x and taking the limit of
both sides as x → 0 gives inequality (a) below:

lim
x→0

log ρ [T (x)]

x

(a)

≤ lim
x→0

1

π

∫ ∞

−∞

log ρ [T (jω)]
dω

x2 + ω2

(b)
=

1

π

∫ ∞

−∞

log ρ [T (jω)]
dω

ω2
(10)

(c)
=

2

π

∫ ∞

0

log ρ [T (jω)]
dω

ω2

Equality (b) follows by applying the monotone conver-
gence theorem [32] to the positive and negative parts
of the integrand. Equality (c) follows from a conjugate
symmetry property of T (s): ρ [T (−jω)] = ρ [T (jω)].

The proof is concluded by showing
limx→0(1/x) log ρ [T (x)] = 0 and applying the
end-to-end inequality in Equation 10. Since the open
loop transfer function, L(s), has two poles at s = 0,
T (x) can be expanded for sufficiently small x as:

T (x) = I + o(x) where lim
x→0

o(x)

x
= 0 (11)

Thus ρ [T (x)] = 1+o(x) and log ρ [T (x)] = o(x) (where
each o(x) is, in general, a different function with the
same limiting property as in Equation 11). We con-
clude that limx→0(1/x) log ρ [T (x)] = 0 as desired. ¥

We apply this theorem by considering the following sets
of frequencies:

I1 = {ω : ρ [T (jω)] > 1}

I2 = {ω : ρ [T (jω)] = 1}

I3 = {ω : ρ [T (jω)] < 1}

Since log ρ [T (jω)] = 0 if ω ∈ I2, Equation 8 can be
written as:

∫

I1

log ρ [T (jω)]
dω

ω2
≥ −

∫

I3

log ρ [T (jω)]
dω

ω2
(12)



We note that log ρ [T (jω)] < 0 if ω ∈ I3. Moreover,
ρ [T (jω)] → 0 as ω → ∞ and thus I3 is not an empty
set. Consequently, the right side of Equation 12 is
strictly positive and hence I1 is a non-empty set. Con-
tinuity implies that there is an interval of frequencies
where ρ [T (jω)] > 1. Moreover, σ̄ (T (jω)) > 1 at these
frequencies because the maximum singular value upper
bounds the spectral radius. Thus, error amplification
may occur at these frequencies and along particular
spatial directions. In practice, low frequency content
of the error signal is amplified as it propagates.

3.3 Analysis of Spacing Errors

In this section, we summarize the result. The spacing
errors are related by:

Ei(s) = T (s)Ei−1(s) for i = 2, . . . , N

Thus for i > 1, Ei(s) = T i−1(s)E1(s). Furthermore,
by the result in the previous section, there is an inter-
val of frequencies such that ρ [T (jω)] > 1. If the lead
bird performs a nontrivial maneuver, then we can as-
sume, without loss of generality, that E1(jω) 6= 0 in the
given frequency interval. Consequently, |Ei(jω)| → ∞
as i → ∞ at these frequencies. In words, it is pro-
gressively more difficult for birds which are far from
the leader to track the lateral position of the predeces-
sor. Similarly, it is possible to show from Equation 7
that larger accelerations are required for birds that are
far from the leader. This result is independent of the
(A,B,C,D) chosen to represent the force generation
dynamics (Equation 3) and relies only on the presence
of the rigid body dynamics (Equation 2).

4 Implications for control

This result has similar consequences for automated for-
mation flight. Consider a simple control strategy where
each vehicle in a V formation tries to follow its prede-
cessor. Figure 2 loop depicts a feedback loop imple-
menting the predecessor following strategy. The ref-
erence trajectory for the ith vehicle is the position of
the preceding vehicle plus some desired offset, pi−1 +δ.
H(s) represents any actuator dynamics required to gen-
erate a vehicle acceleration. If these dynamics are
nonlinear, then linearization about an operating point
or feedback linearization can be used to obtain lin-
ear actuator dynamics. Kp(s) is any linear, time-
invariant control law. The loop transfer function is
L(s) = 1

s2 H(s)Kp(s). As in the previous section, the
errors propagate via T (s) = [I + L(s)]−1L(s). Theo-
rem 1 can be applied to conclude that the predecessor-
following strategy is string unstable for any linear con-
trol law.

A solution to this problem is to communicate leader
information to all vehicles in the formation. A linear

-pi−1 + δ
e -ei

Kp
-ui

H - 1
s2

-
6

pi

Figure 2: Predecessor Following Feedback Loop

control law using information from the lead and pre-
ceding vehicles is given by:

Ui(s) = Kp(s)Ei(s)+Kl(s)

(

P0(s) − Pi(s) −
(i − 1)δ

s

)

(13)
This controller tries to keep the errors with respect
to the preceding vehicles and with respect to the lead
vehicle small. Intuitively, this control law gives each
vehicle some preview information. In this case, the
errors propagate as follows:

Ei(s) =Tlp(s)Ei−1(s) for i > 2 (14)

where Tlp(s) := [I + H(s) (Kp(s) + Kl(s))]
−1

H(s)Kp(s). Now we can easily design Kl(s) and Kp(s)
so that σ̄ (T (jω)) < 1 for all ω. This ensures that prop-
agating errors are damped out in the formation. More
details, with specific application to unmanned aerial
vehicles, are given in [33].

5 Conclusions

In this paper, we reviewed two main hypotheses from
ornithology that try to explain the reason for birds to
fly in formation. A systems theory approach was used
to show that the birds need to keep the formations
small. If the formations become large, then the birds
at the end of formations will have difficulty keeping
their positions in the formation. The implications of
the result to control of unmanned aerial vehicles were
discussed in brief. It was shown that flying in close
formation is not possible with information only about
the predecessors. However, using communication to
transmit leader state information to all the vehicles in
the formation solves the problem.
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