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Abstract

A state estimator design is described for discrete time
systems having observably intermittent measurements.
A stationary Markov process is used to model prob-
abilistic measurement losses. The stationarity of the
Markov process suggests an analagous stationary esti-
mator design related to the Markov states. A precom-
putable time-varying state estimator is proposed as an
alternative to Kalman’s optimal time-varying estima-
tion scheme applied to a discrete linear system with
Markovian intermittent measurements. An iterative
scheme to find optimal precomputed estimators is given.
The results here naturally extend to Markovian jump
linear systems.

1 Introduction

Discrete-time linear systems with a time-varying out-
put matrix governed by a random process are consid-
ered. The optimal estimation problem described later
in this paper has a well-known solution: the Time-
Varying Kalman Estimator (TVKE). To implement the
TVKE, real-time computation to update error covari-
ance matrices must be carried out. For the systems
under consideration the time-varying output matrix is
not known a priori, so the TVKE error covariances can-
not be pre-computed. The idea underlying the proposed
design is that expected estimation errors far in the fu-
ture have little dependence on measurement losses far
in the past. Therefore, repeating patterns of measure-
ment loss/reception should correspond to repeated error
covariances maintained by a TVKE.

A pseudo-steady-state (PSS) for an estimator is de-
fined in this paper by a collection of estimation er-
ror covariances paired with patterns of measurement
loss/reception (referred to as measurement modes). The
proposed estimator uses a fixed corrector gain for each
defined measurement mode. For example, associate one
mode with loss and one with reception — one corrector
gain is when a measurement is received(R), and another
when a measurement is lost(L). An extension is to use
four modes. A different corrector gain is used after see-
ing each of the following possible loss/reception (L/R)
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sequences: LL; LR; RL; RR. Note that the gain to be
used at the next instant depends on the current mode
(RR may follow RR or LR, but not LL or RL).

After the effect of initial error covariance assumptions
decays, the performance of these estimators and opti-
mal time-varying Kalman estimators are expected to be
comparable. However, the expected future error covari-
ance (including expectation over possible measurement
loss sequences) for TVKE may not be bounded. In such
cases, PSS estimator designs cannot exist.

Very recently, Allam et. al. remarked that there has not
been much attention paid to the problem of estimation
subject to intermittent measurements [1]. They remark
that sensors in manufacturing systems have been known
to exhibit intermittent behavior. They use the termi-
nology “marked point process” to denote that measure-
ments occur at particular instances. Their approach is
based upon using the entire history of measurements for
estimation, whereas the proposed approach limits the
amount of historical information used at the expense of
optimality.

Intermittent communication processes are common in
distributed control systems communicating over a net-
work, as described by Seiler and Sengupta [7]. They
analyze the effect of communication losses in a coordi-
nated vehicle control problem. Markovian Jump Linear
System descriptions are used in formulating control de-
sign problems as linear matrix inequalities. The Jump
Linear Quadratic Gaussian problem was studied by Ji
and Chizeck [5, 3]. A linear plant subject to measure-
ment losses may be realized as a jump linear system
with known plant modes. The estimation problem in
this paper is closely related to work in [5, 3, 7].

The remainder of the paper is organized as follows:
First, a class communication loss models are defined
in terms of Markov chains. Generic time-varying es-
timation and TVKE are then briefly reviewed. A de-
scription of the proposed multi-modal time-varying es-
timator structure is followed by conditions for when its
application will result in a pseudo-steady-state. An iter-
ative method for finding the set of corrector gains which
minimizes pseudo-steady-state error covariances is then
given with existence/convergence conditions.



2 Communication loss model

Consider information transmitted (perhaps across a
wireless network) in the form of packets at equally
spaced time intervals. Assume the transmission time
is negligible, and that each successive packet can be
immediately classified as received(R) or lost(L). De-
fine © = {1(R),2(L)}. If time is indexed by k, let
the value of 0(k) € © indicate the status of the kth
transmitted packet of information. A sequence (k) for

=0,1,2,... will be called a communication loss pat-
tern. A communication loss process is a probability dis-
tribution on the space of all possible communication loss
patterns.

A Bernoulli process can be used to model communica-
tion losses. Each packet has an independent probability
of being lost. A more sophisticated (and perhaps more
realistic in the case of wireless channels) process should
correlate @(k) with 0(:) for 0 < ¢ < k. The two state
markov chain shown in Figure 1(a) describes correlated
0(k). One state corresponds to communication loss, 2,
and the other to reception, 1, as indicated in the figure.
The probability that a received packet follows a lost
packet (LR) is «, and that it follows a received packet
(RR) isy. A selection of ~y large and « small corresponds
to a scenario where missed communications are likely to
occur in bursts of consecutive losses which themselves
do not occur frequently. Given 6(k), the probability
that 8(k + N) = 2 (Loss) can be computed. Far in the
future, this probability is independent of §(k):

. 1—x

To model more sophisticated loss processes, a Markov
chain with more than two states may be used. Define
the state of a stationary Markov chain, n(k) € N =
{1,...,N,} and the sequence of states visited by the
Markov chain as N}, = {n(0),n(1),... ,n(k)}. A proba-
bility distribution on the state-space, N, is represented
by a row of N,, probabilities summing to 1. The one-step
transition matrix of the markov chain, P = [p;;]i jen,
governs the evolution of probability distributions on N,
and has the following properties: 1) 0 < p;; <1 Vi,j €
N;2)pj=Pr{nk)=j| nk—-1)=i} YVk>0;3)
YjenPij =1 Vi€ N. When P satisfies several stan-
dard conditions (see [9], for instance), a steady-state
probability distribution, v*®, exists such that v**P =
v** and limy,_o Pr{n(k)=j } = v3* Vj € N given
any initial probability distribution for n(0) € N. A
Markov chain will be identified with its one-step transi-
tion matrix, P.

To relate a Markov chain to communication losses, each
state may be identified with loss or reception. The
function g(-) : N' — © is used to represent this rela-
tionship. The sequence of states visited by the markov

process, n(k) € N, defines the sequence of lost packets
as 0(k) = g(n(k)). The ordered pair (g(-), P) which de-
fines communication loss probabilities in this way will
be referred to as a Markovian communication loss pro-
cess.

Several examples are shown in Figure 1(a)-(d). Tran-
sition matrices for (a) and (b) are shown in the fig-
ure in terms of the probabilities o and -y, and can be
constructed with appropriate zero entries for (¢) and
(d). The mapping function value, ¢(i), is inside the
circle denoting state i € N. In chain (b), n(k) = 1
implies that [0(k — 1),0(k)] = [1,1] and n(k) = 2 im-
plies that [6(k—1),0(k)] = [2, 1], differentiating between
a reception following reception and reception following
loss. In chain (c), receptions following one or two losses
(n(k) = 2) are differentiated from receptions following
more than two losses (n(k) = 3), with (n(k) = 1) again
corresponding to a reception following a reception. In
chain (d), n(k) = 2 and n(k) = 3 correspond to a re-
ception following an odd or even number of consecutive
losses, respectively. Thus, this definition of a communi-
cation loss process is quite flexible. Though © has only
two elements, the number of modes which can be used
in the markov chain, N, is not limited. Increased di-
mension of the Markov chain is exploited to increase the
number of different estimator gains to use in our esti-
mator design. Note that for fixed values of o and v the
Markov chains in Figure 1 (a) and (b) impose the same
probability distribution on ©j when initial probability
distributions on A are set to v®. Transition matrices
for (c¢) and (d) can be easily found which preserve this
probability distribution on Oy.

These communication loss processes were constructed
so that n(j), 1 < j < k, can be determined uniquely
from Oj. If this property holds, we refer to (g(-), P)
as an observable pair. This condition allows designs
dependent on N to be used in practice when O, is
available.

3 Time-varying Estimation

Assume a remote sensor is communicating measurement
information over a wireless network. Communication
losses will affect any filtering, estimation, or control
which is based upon these measurements. Here, the
transmitted information is assumed to be the output
of a system for which a state estimator is sought. The
communication losses (also referred to as measurement
losses) are modeled with (g(-), P) as described in the
previous section. In an otherwise standard linear esti-
mation problem, a discrete time-invariant plant with in-
termittent measurements corrupted by white, gaussian,
zero-mean measurement and process noises is modeled



S0 oo

(a) (b)

Figure 1: Markov Chains for communication loss processes

z(k+1) = Az(k)+ Bw(k) (1)
y(k) = Comyx(k) + v(k)
Where 0(k) = g(n(k)), C1 = C (noisy measurement re-

ceived), and Cy = 0 (only noise received). The initial
condition, z(0), is gaussian with mean, x¢, and variance,
My. The probability distribution for n(0) is assumed to
be the steady state distribution, v**, of P. It is assumed
that the estimator is aware of packet losses, 0(k). Fi-
nally, assume that the plant and sensor noise covariance
matrices (W and V') are positive definite. Consider the
following estimation problem:

Given measurements Vi, = {y(0),...,y(k)} and loss
process observations O = {6(0),..., 6(k)} for the
plant (Eq 1), find the state estimate, Z(k), which mini-
mizes:

J= E
Vi,Ok

[ llx(k) = &(k)[I* ] (2)

While studying the Jump Linear Quadratic Gaussian
problem, Ji and Chizeck note that the optimal state es-
timate ( in terms of Eq (2) ) for such systems is obtained
with the time varying Kalman filter [3, 5], derived for
linear, discrete, time-varying plants by Kalman in [6].

The loss process history, O, is known at time k. The
notation used in the optimal Kalman filter design is:

Optimal Estimate: Z(k|j) = E[z(k)|Y;, ©,]

2(klj) = x(k) — &(k[7)
Blz(k|k)a(k|k)"]

= E[z(k + 1|k)2(k + 1]k)T]

Estimation Error:
Error Covariances: Z(k) =
M(k+1)

The state estimate is computed with the following pre-
dictor/corrector equations:

#(k|k) = &(k[k — 1) + F(k) [y(k) — Coy2(k|k — 1)]
a(klk — 1) = Az (k — 1|k — 1) (3)

The Kalman filter uses a time-varying corrector gain,
F(k), computed recursively in real-time, according to

the following relations:

F(k) = M(K)Cyy [Cogey M)y + V| -
Z(k) = M(k) = F(k) | Cogy M)y + V| F ()T

M(k+1) = AZ(k)AT + BWBT

The initial conditions for the predictor states and esti-
mator error covariance are (0] — 1) = z¢ and M(0) =
My respectively.

The Kalman filter is optimal, but can be computation-
ally expensive. An alternative is to use a pre-computed
filter gain. Recall that the prediction error covari-
ance, M(k), for the Kalman filter converges to a con-
stant value if the plant is time invariant and detectable.
This steady state error covariance can be used to pre-
compute a corrector gain and significantly reduce real-
time computation. Unfortunately, the plant with inter-
mittent measurements (Eq 1) is time-varying due to its
dependence on 6(k), and the values of M (k) will typi-
cally not converge.

4 Modal Estimation

To avoid the computational cost of the Kalman Filter,
an estimator is proposed that relies on a finite number
of pre-computed gains. The number of precomputed
gains and when they should be applied is determined
by the measurement loss model, (g(-), P). The proposed
estimator has the following form:

&(k|k) = i‘(klk — 1)+ Fuayly(k) — Cory2(klk — 1)]
2(k|k —1) = Ad(k — 1|k — 1) (4)

Note that the estimator uses the predictor/corrector
form with a time-varying corrector gain. The corrector
gain is chosen from a finite set, {F1,..., Fy, }, based
on the observed state of the markov chain, n(k) (which
corresponds to a measurement loss mode).

The flexibility of the measurement loss process allows us
to design estimators of increasing complexity for a fixed
probability distribution on O. If the communication



loss process is taken as the markov chain in Figure 1(a),
N, = 2 and the estimator in Equation 4 uses two cor-
rector gains, {F, F5}. One corrector gain is used after
a packet receipt (F}) and another after a packet loss
(Fy). For the loss process associated with Figure 1(b),
N, = 4 and the estimator uses one of four corrector
gains, {F1,..., Fy} based on the status of the previous
two measurements.

The size of the prediction error covariance, M(k), is
used to quantify the performance of these state estima-
tors. For the estimation scheme proposed above, the
prediction error covariance evolves as follows:

M(k+ 1) =A(I — Ft)Cogi) )M (k)(I — Fyy(yCory) " A"

+ AF, () VF, 1y A" + BWB" (5)

Note that M (k) will depend upon n(k). This recursion
cannot be used to precompute M(k) since Ny is not
known in advance. A deterministic performance index is
given by the average filter performance, En;, _, [ M(k) ],
which can be pre-computed and used to measure the
performance of an estimator based on a given set of cor-
rector gains, {F1,...,Fy, }. For the remainder of the
paper {F;} will denote a set of corrector gains. Similar
notation will be used for other sets. Notions of opti-
mality for a set of gains, {F}}, are implicitly relative to
estimators with identical structure (meaning the same
measurement modes identify different corrector gains).

Motivated by the desire to analyze the performance of
each corrector gain in a given set, modal covariances are
defined as M;(k) = En,_, [ M(k) | n(k—1) =1 ]. This
is a deterministic quantity. Assuming that the proba-
bility distribution of n(k) is v*® for all k, an average fil-
ter performance can be computed as Epn,_, [ M(k) | =
SN 03 M (k).
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These modal covariances satisfy a recursive relation.
First, denote Pr{ n(k —1) =j | n(k) =1 } by pj;. Us-
ing Bayes’ Rule, p;; = vjspji/vfs. The affine operator
L, (+) is defined for each i € N as (see Eq 5):

Lr, (M) =A(I — FiCy(;)M (I — F;C,yp))" AT
+ AF,VFF AT + BWBT (6)
where F; is the corrector gain, F'(k), used when n(k) =

i. The recursive relation is stated in the following
lemma.

Lemma 1 (L-iteration) Given a fized set of correc-
tor gains, {F;}, the modal covariances satisfy the

following recursion:
Mi(k+1) = Lp, (Mprei(k)) VieN

where My (k) = ij:”lp;‘ij(k) is the expected
value of the prediction error covariance at time k,

conditioned on n(k) = 1.

Proof :

Mi(k+1)= n(lEl) { Nlliz [ M(E+1)| n(k)=1]| n(k)=1 }
(a) _
0 B | B Ten 000 ]| 0 =i |

Nn,
23 pi B[ Lr (M) |l 1) =]

©
9 L, (Myres (1)
Equality (a) follows from the recursion for the error co-
variance (Eq 5) as well as the conditional knowledge
that n(k) = i. Applying the outer conditional expec-
tation and using the previously defined notation for p;;
yields equality (b). Finally, equality (c¢) follows because
Lp, () is affine and Z;V:”l pi; =1 n

4.1 Pseudo-steady-state

Using Lemma 1, pre-computed modal covariances may
be used to judge the performance of the estimator based
on a given {F;}. These modal covariances will converge
to steady state values in some cases. These indicate
average performance of the estimator after a long period
of time. This motivates the next definition.

Definition 1 Given a fized set of corrector gains,
{F;}, {M?*} is a pseudo-steady-state if for any set
of positive semi-definite initial conditions, {M;(0)},
limy oo M;(k) exists and is equal to M3* Vj e N.

The choise of using M;() rather than M ;() to define
the pseudo-steady-state was arbitrary; one can be found
in terms of the other. A steady-state in the usual sense
almost never exists; M(k+ 1) in Eq 5 depends on n(k).
Moreover, the pseudo-steady-state need not exist for a
given set of corrector gains. For example, the modal
covariances may grow unbounded if the corrector gains
are chosen poorly.

The L-iteration is governed by a collection of affine
operators, {Lp, (-)}. Thus the map from {M;(k)} to
{M;(k+1)} is also affine. The linear portion of this op-
erator can be extracted and its spectrum examined. If
its spectral radius is strictly less than 1, then the opera-
tor is invertible and a pseudo-steady state exists for the
given set of corrector gains. This is analysis, however,
and gives no indication of how to synthesize a set of cor-
rector gains such that a pseudo-steady-state exists, let
alone a set of gains which minimizes the pseudo-steady-
state covariances. The following iteration is proposed
to synthesize {F;} indirectly:

Definition 2 The R-iteration is:

M;(k+1) = Ri(Mpre,i(k)) Vie N



where Mprei(k) = ij:"lpijj(k). Ri(-) is defined

for each i € N as:

Ri(M) = AM AT + BWB”

1
T T
— AMCR) (CoMCLy + V) CyyMA

A fixed point of this iteration, {M;®}, is also a fixed
point of the L-iteration when {F;} are taken as follows
(complete the square):

-1
ss ss T
F; = Mprc 1Cg(z) (CQ(Z)Mprc zcg(i) + V) (7)

Monotonicity properties of the operators Lp, () and
Ri(-) as well as relative monotonicity of their respec-
tive iterations are given as Lemmas in the appendix.
These Lemmas are used in the proof of the following
theorem, which establishes a test for existence of {F;}
such that a pseudo-steady-state exists.

Theorem 1 (Existence) Assume (A,B) control-
lable. The R-iteration converges with initial con-
ditions M;(0) = 0 ¥ i € N iff there exists a set of
gains {F;} such that a pseudo-steady-state exists.

Proof («<): Assume that the R-iteration fails to
converge when started from zero initial conditions.
Lemma 2 in the appendix states that this iteration is
monotonically nondecreasing, M;(k + 1) > M;(k) >
0 Vi € N. The R-iteration therefore diverges, and
there exists at least one ¢* € N such that M;-(k) grows
unbounded as k — oo.

Using Lemma 3 in the appendix, the iterates of the L-
iteration for any {F;} are bounded below by the iterates
of the R-iteration started with zero initial conditions.
Therefore, one of the L-iterates diverges, prohibiting the
existence of a pseudo-steady-state for any set of correc-
tor gains, {F;}. ™
Proof (=):  Assume the R-iteration converges to a
limit when started from zero initial conditions. Denote
the limit matrices by M$* = limy_oo M;(k) Vj e N.
{M3*} must be a fixed point of the R-iteration and by
Lemma 2, all of the matrices be positive semidefinite.
Choose {F};} according to Eq 7 using {M;°}.

To complete the proof, it is sufficient to show that a
pseudo-steady-state exists for this set of corrector gains.
Tt is easily shown (completing the square) that {M7*}
is a fixed point for the L-iteration using {F;} and that
each M?® is positive definite (Lemma 4 and the control-
lability assumption).

Let {M;(k)} denote the L-iterates for the corrector
gains in Equation 7. Assume initial conditions for
the L-iteration satisfying 0 < MZ(O) < M Vi o€
N. The L-iterates can be bounded above and below

Vi € N as follows: M;(k) < Ml(k) < Mp®. The
first inequality follows from Lemma 3. The second in-
equality follows through application of Lemma 5 using
{M;(k)} and the L-iteration started at the fixed point
{M?5}. By assumption, limg_oo M;(k) = M and
hence limy,_, oo Mz(kz) = M?s.

Since the limit matrices are positive definite, the above
sandwich argument shows that when the initial condi-
tions deviate from the limit matrices in any negative
semidefinite direction, the L-iteration converges to the
limit matrices. The L-iteration is affine with the set
of symmetric matrices as an invariant set. A negative
semidefinite basis exists for the set of symmetric matri-
ces, therefore the spectral radius of the linear portion
of the L-iteration restricted to symmetric matrices is
strictly less than 1, and the L-iteration will converge to
the given limit matrices for any initial symmetric iter-
ates, satisfying the pseudo-steady-state conditions. m

The gains constructed in the proof of the above theorem
are “optimal” in a certain sense described below. Note
that the R-iteration is a deterministic method for find-
ing these optimal corrector gains, and will fail only if no
set of gains exists. Finally, it follows from the proof that
if a pseudo-steady-state fails to exist, the average filter
performance, Eys, _, [ M(k) ], grows unbounded for any
set of filter gains. In other words, the lack of a pseudo-
steady-state implies that the estimator is unstable, on
average, for any set of filter gains.

Definition 3 The set {F;} is a set of optimal cor-
rector gains if the pseudo-steady state, {M;*®},
exists and for any other set of gains, {F;},
liminfy, M (k) > Mz*Vj e N.

The following theorem is easily proven using Lemma 3.
It states that the gains used in the proof of the previous
theorem are in fact optimal in the sense defined above.

Theorem 2 (Optimality) Assume that the R-
iteration with initial conditions M;(0) =0V i € N
converges to {M7*}. Let Mpre (k) = Zj\]:l pi;M;(k).
The following set of corrector gains is optimal:

Vie N

pre,: pre,:

Fy = M, oy (ot Mo Cliy + V)

This R-iteration based design is used for illustrative ex-
amples in the following section.

5 Examples

The proposed estimator design is applied to a discrete
double integrator system as illustrative example. The
system is considered without control; the estimation er-
ror dynamics and analysis will remain unchanged if con-
trol were to be applied. Different designs corresponding



to the Markov chains in Figure 1 are shown in compar-
ison to the TVKE in simulation. MATLAB was used
to calculate the estimator gains, generate random pro-
cesses, and simulate the various estimation schemes.

The plant data as referred to in Eq 1 is

sloal el

Ci=[10], Cy=[0 0]

The following covariances, describing the process noise,
measurement noise, and initial estimation error are used
to define the estimation problem as in Section 3:

W =0.1,

V = 1.0,

e[ 4]

0 10

Designs are carried out for the different measurement
loss models shown in Figure 1 (models (a), (b), and
(¢)). The same probability distribution on measurement
loss patterns as in model (a) is assumed for models (b)
and (c) in terms of probabilities & = 0.5 and v = 0.7.
The analytical properties of the resulting multi-modal
estimator designs for these three cases are followed by
simulation comparisons for a given ©y.

Design (a) has the following (g(-), P) pair:

re(ii] [28)-[3]

The design results in the following multi-modal gains:

0.745 0
Ei { 0.202 ] { 0 }
TeZ;| 094 431
vi® | 0625  0.375

The trace of Z; is E [ (k|k)"&(k|k) | n(k) =i | which
differs from the trace of M?°. The steady-state proba-
bility distribution on the Markov chain states is {v$*}.
When a measurement is missed, the corrector gain is
zero and the expected estimation error is larger. The
Kalman filter cost (Equation 2) for this estimator, J,
can be computed in terms of the above data as follows:

2
Jo =Y v -TrZ; =220

=1
For design (b),
0.7 0 03 0 (1) 1
p_ |07 0 03 0 w@) | |1
1 0 05 0 05|’ awB) | |2
0 05 0 05 9v(4) 2

Particular realization of noise

» I Pl
o - O 1
Ero ,Q@‘ L8 8 68 , PLCLITA S gggo’
=107} @gg 0 P "0 TOY ey ’g?
102 L~ 8 @% 5 ;i 9%
Averaged over noise realizations
I T
« 3 o ,
82 o 6e 09 %
o] e, .0 6 o8
=118 ege0 Bugggstegs © ©° ° % T
05— : e T S

Time (40 samples)

Figure 2: Simulation results, same measurement pattern;
measurements lost at indicated samples. Leg-
end: o-TVKE, $-(a), O-(b), o-(c)

describe the measurement loss process.
multi-modal design is described by

The resulting

1=1 1=2 1=3 1=4

r 0.576 0.862 0 0

! 0.208 0.202 0 0
TrZ;| 0.759 1.05 1.64 6.72
vi® 0.437 0.188 0.188  0.188

For this estimator, the Kalman filter cost is J, = 2.10,
an improvement relative to design (a), as expected. For
design (c),

07 0 0 03 0 0 9c(1) 1
07 0 0 03 0 0 9c(2) 1
p_ |07 0 0 03 0 0 (3| |1
710 05 0 0 05 0| |g(4]| |2
0 05 0 0 0 05 9c(5) 2
0 0 05 0 0 05 9c(6) 2

The estimator (c¢) has the following properties:
i=1 i =2 1=3 1=4 1=5 1=6
o 0.574 0.775 0.935 0 0 0
‘ 0.208 0.231 0.176 0 0 0
TrZ;| 0.749 0.948 1.14 1.62 3.08 10.2
vi® 0.437 0.141 0.0469 0.188 0.094 0.094

Relative to designs (a) and (b), an improvement in the
Kalman estimation cost is observed: J. = 2.06.

Some results of simulating these estimators are shown in
Figure 2. A single measurement loss pattern was gener-
ated. The results in the top figure correspond to a single
instance of process and measurement noise, drawn from
the appropriate distribution. The results in the bot-
tom figure are averaged over 500 different process and



measurement noise instances using the same measure-
ment loss pattern. The TVKE can be seen to perform
better on average than the other schemes for this par-
ticular sequence of measurement losses. The estimation
errors resulting from the long sequence of consecutive
measurement losses are not shown in the lower graph
(outside axis limits) but are shown on the upper plot.

For the particular instance of process noise shown in the
upper plot, a clear advantage of using TVKE over one
of the multi-modal estimators is apparent only looking
at the errors after a long string of measurement losses.
The TVKE recovers better. In fact, the errors are very
nearly ordered as (a)>(b)>(c)>TVKE during this re-
covery stage. Otherwise, there is not a significant ap-
parent advantage to TVKE in terms of the averaged
errors shown in the lower plot.

A correspondence between the averaged simulated er-
rors and the precomputed expected estimation errors,
Tr Z;, can be seen. For all designs, n(k) = 1 corre-
sponds to the case of several received measurements in
a row. For designs (b) and (c), Tr Z; ~ 0.75 and this
is roughly the best performance we can expect even if
all measurements are received. The averaged estimation
errors in the figure are lower bounded by this value.

6 Conclusions

In this paper, a state estimator design for discrete
time systems having intermittent measurements was de-
scribed. A stationary Markov process was used to model
probabilistic measurement losses. It is assumed that
the measurement losses are observable, i.e. the estima-
tor has access to both the measurement and the state
of the Markov process. A design for a precomputable
time-varying estimator that uses one filter gain for each
state of the Markov process was proposed. An itera-
tive scheme was shown to compute optimal filter gains
for this estimator structure, but the proposed estimator
is sub-optimal when compared to the TVKE. In sum-
mary, estimator performance is sacrificed to alleviate
the real-time computational burden of TVKE. The re-
sults shown here naturally extend to generic Discrete
Time Markovian Jump Linear Systems.
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A Auxiliary Results

Lemma 2 (Monotonicity of R-Iteration) The R-
iteration starting with the initial conditions M;(0) =
0V ieN satisfies M;(k+1) > M;(k) >0 VieN.
Proof : The proof is by induction using the fol-
lowing relation which follows from Lemma 3.1 in [4]:
My > My > 0 implies Rl(Ml) > R,‘(Mg) >0Vie N.
]

Lemma 3 (Minimum Property) Given any set of
corrector gains, {F;}, let {M;(k)} denote the solu-
tion of the L-iteration starting at M;(0) >0 Vi € N.
Let {M;(k)} denote the solution of the R-iteration
starting at M;(0) = 0 Vi € N. Then M;(k) <
M;(k) Vi € N and k.

Proof : This is a generalization of a result by Caines
and Mayne [2] for the standard Riccati equation, the
proof again uses an inductive arguement. ™

Lemma 4 Assume (A, B) controllable. Let {M;} be
a set of positive semi-definite matrices satisfying:

M; = ‘CFZ' (Mpre,i) Vie N (8)
where Myre; = Y0 pijM;. Then M; >0 Vi€ N.

Proof : This is a non-trivial proof. The critical part
of the proof is a generalization of Theorem 4.1 in [8].
The covariances are bounded below by controllability
grammians of a synthetic time varying system. It is
shown that controllability of the synthetic system can be
identified with controllability of the pair (A, B), proving
the lemma. ]

Lemma 5 Given any set of corrector gains, {F;},
let {M;(k)} and {M;(k)} denote solutions of the L-
iteration. Assume their initial conditions satisfy:
0 < M;(0) < M;(0) Vi € N. Then M;(k) < M;(k) Vi €
N and Vk.

Proof: The proof is by induction using the definition
of the L-iteration. u



