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Estimation with lossy measurements:
jump estimators for jump systems

S.Craig Smith and Peter Seiler

Abstract

The problem of discrete time state estimation with lossy measurements is considered.

This problem arises, for example, when measurement data is communicated over wireless

channels subject to random interference. We describe the loss probabilities with Markov

chains and model the joint plant / measurement loss process as a Markovian Jump Linear

System. The time-varying Kalman estimator (TVKE) is known to solve a standard optimal

estimation problem for Jump Linear Systems. Though the TVKE is optimal, a simpler

estimator design, which we term a Jump Linear Estimator (JLE), is introduced to cope with

losses. A JLE has predictor/corrector form, but at each time instant selects a corrector gain

from a finite set of precalculated gains. The motivation for the JLE is twofold. First, the

real-time computational cost of the JLE is less than the TVKE. Second, the JLE provides

an upper bound on TVKE performance. In this paper, a special class of JLE, termed Finite

Loss History Estimators (FLHE), which uses a canonical gain selection logic is considered.

A notion of optimality for the FLHE is defined and an optimal synthesis method is given.

In a simulation study for a double integrator system, performances are compared to both

TVKE and theoretical predictions.

I. Introduction

This paper describes a state estimation scheme for discrete time plants with lossy mea-

surements. The key idea inspiring the proposed scheme is that the recent history of lossi-

ness should be sufficient to determine an appropriate corrective action for the estimator.
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We believe the estimation scheme is applicable when real-time data is sent across a lossy

communication channel. Such scenarios might arise in an industrial facility [1] or in the co-

ordinated motion of vehicles [2]. The estimation scheme can be motivated by both practical

and theoretical considerations. Practically, the proposed scheme provides a computationally

inexpensive way to handle lossy measurements. Theoretically, the proposed scheme provides

bounds on the performance of time-varying Kalman estimation (TVKE).

For packet-based transmission of data over a wireless network, radio wave propagation

(e.g. multipath fading) increases bit error rates relative to wired links by several orders of

magnitude. There is an apparent lack (in the systems and control literature) of real-time-

relevant wireless transmission error models, but empirical observations have been used to

develop probabilistic characterizations of packet losses [3]. Markov chains are therefore used

in what follows to describe probabalistic losses. The developed methods are thus generic

to the extent that random processes can be described by Markov chains. The data packets

are assumed to be transmitted at fixed time intervals and subject to transmission errors. It

is also assumed that the transmitted information can be classified as lost (L) or received

(R) at the receiving end of the channel (by virtue of unspecified coding and error correction

algorithms). The real-time knowledge of packet losses is critical to the proposed estimator

design; its actions are based on knowing the recent history of lossiness.

A system with measurement losses of this type can be modeled as a jump system, switch-

ing between modes with and without output. For an otherwise standard state estimation

problem, the time-varying Kalman estimator (TVKE) gives optimal estimates for the states

of this jump linear system. The TVKE will be optimal for all systems with known time-

variation. The systems under consideration, however, are structured in two important ways:

1. The time-variation is not arbitrary – the system switches between two fixed modes.
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2. The mode switching is governed by a random process with known characteristics.

The first feature underscores the combinatorial nature of this estimation problem. The

number of potential loss scenarios which can occur in a finite time interval is an exponential

function of the interval length. The design of a jump linear estimator, discussed in Section IV,

uses the second feature to define optimality in terms of expected estimation errors.

Jump linear systems have been used to describe time-varying delays [4] as well as com-

munication losses without delay [2]. A discussion of the stability of Markovian jump linear

systems including a definition of mean-square stability can be found in [5]. Recently, control

and estimation problems for jump linear systems have been the subject of several studies

(e.g. [6], [7]). The most relevant to our results is the work by Ji and Chizeck on the LQG

problem for Markovian jump linear systems [8], [9]. Optimal estimation for jump linear

systems was part of their discussion of the LQG problem. Though not developed as such,

our main results might readily be considered an extension of their work. The new/different

characteristics of our study of the estimation problem are as follows:

1. Development/presentation is focused on the problem of lossy communication.

2. The steady-state distribution on Markov chain states is used as a fundamental com-

ponent of our formulation.

3. Optimality for what we call Finite Loss History Estimators (FLHEs) is defined and

an iterative synthesis method for optimal FLHEs is described.

4. The idea of “powering-up” the Markov chain to design more complex FLHEs and get

tighter, more detailed bounds on TVKE performance is introduced.

Our results are in the spirit of standard steady-state optimal estimation for discrete LTI

systems. While the estimators we propose are not time-invariant, their time-variation is

related to the time-variation of the plant in a “steady-state” way.

In Section II, a standard estimation problem is revisited in the context of lossy mea-
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surements. Subsequent sections of the paper are, however, organized in a non-standard way.

A simulation example of TVKE applied to a double integrator system with measurement

losses is introduced in Section III. This example is intended to (further) arouse the reader’s

curiosity and facilitate introduction of our design concept in Section IV. There, we introduce

the Jump Linear estimator (JLE) and Finite Loss History Estimator (FLHE), define opti-

mality, and give an optimal synthesis procedure. Then, in Section V, the double integrator

example is revisited, with comparisons of simulation results for FLHE and TVKE. Finally,

our outlook for the future and a summary of the content of this paper are given in Section VI.

A number of technical lemmas, found in Appendix A, were used to prove the main results.

II. A Standard Estimation Problem

In this section, we briefly review a standard estimation result as it applies to the lossy

measurement scenario. This review will serve to introduce some notation and will also

give some context to the results obtained in the following sections. Consider the following

discrete, time-varying system:

x(k + 1) = Ax(k) + Bw(k) y(k) = Cθ(k)x(k) + v(k) (1)

where θ(k) ∈ {L,R} describes the output mode1, with CR = C and CL = 0. The system

is time-varying due only to the dependence of the output equation on θ(k). The initial

condition, x(0), is Gaussian with mean, x0, and variance, M0. The process and sensor noises

are white and Gaussian with covariance matrices given by W > 0 and V > 0 respectively.

The following is a standard quadratic optimal estimation problem:

Problem 1: Given measurements Yk = {y(0), . . . , y(k)} and Θk = {θ(0), . . . , θ(k)} for

1 The system may have multiple outputs, though they will all be lost or received together when this model is used.
Independent loss of multiple outputs can be captured by using more output modes.
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the plant Eq (1), find the state estimate, x̂(k), which minimizes:

JZ(k) = E
[ ‖x(k)− x̂(k)‖2

]
(2)

The time-varying Kalman estimator (TVKE) [10] is the well-known solution to this estima-

tion problem. The following notation is used to describe the TVKE:

Optimal Estimate: x̂(k|j) = E [ x(k) | Yj, Θj ]

Estimation Error: x̃(k|j) = x(k)− x̂(k|j)

Error Covariances: Z(k) = E
[

x̃(k|k)x̃(k|k)T
]

M(k + 1) = E
[

x̃(k + 1|k)x̃(k + 1|k)T
]

For TVKE, the state estimate is computed using a predictor/corrector form:

x̂(k|k) = x̂(k|k − 1) + F (k)
[
y(k)− Cθ(k)x̂(k|k − 1)

]

x̂(k|k − 1) = Ax̂(k − 1|k − 1) (3)

The time-varying corrector gain, F (k), is computed recursively in real-time, as follows:

F (k) = M(k)CT
θ(k)

[
Cθ(k)M(k)CT

θ(k) + V
]−1

(4)

Z(k) = M(k)− F (k)
[
Cθ(k)M(k)CT

θ(k) + V
]
F (k)T (5)

M(k + 1) = AZ(k)AT + BWBT (6)

Initial conditions for the estimator are given by: x̂(0| − 1) = x0 and M(0) = M0.

III. Estimation over a Wireless Network

In this section, TVKE is applied to a system with probabilistic measurement loss. The

system is modeled as a Markovian jump linear system. The simulation results show that

the TVKE corrector gains behave in an approximately jump linear fashion. Presenting
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Fig. 1. Estimation using measurements communicated from a remote sensor

simulation results for the TVKE at this point allows the development of the Jump Linear

Estimator (JLE), and more specifically the Finite Loss History Estimator (FLHE), to be

interpreted in the context of TVKE’s behavior.

Consider the estimation problem depicted in Figure 1. At each sample time, a remote

sensor communicates measurements over a wireless network as packets which may be lost.

The measurement mode of the packet (L-loss or R-reception) is assumed to be available

to the estimator at each time instant. The combined plant/network system viewed by the

estimator is taken as in Eq (1). All assumptions on the plant and disturbances made in

Section II apply in what follows.

The packet loss process can be described with a Markov model [3]. Here, the packet

losses are a random process modeled by the two state Markov chain in Figure 3(a). As

indicated in the figure, the probability of a packet loss after a reception is given by γ while

the probability of a loss following a loss is given by α ( 0 ≤ α, γ ≤ 1). This Markov chain

defines a probability distribution on sequences of θ(k). A network in which packet losses

occur in infrequent but lengthy bursts can be effectively modeled with selections of γ small

and α large. To represent a more complicated loss behavior, a Markov chain with more than

two states can be used.

A double integrator system, of the form in Eq (1), with the following state matrices is
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Fig. 2. Components of the 2× 1 corrector gain used by TVKE when applied to a double integrator system
with lossy measurements.

used as a pedagogical example throughout this paper:

A =


 1 1

0 1


 , B =


 1

1


 CR =

[
1 0

]
, CL =

[
0 0

]
(7)

The following covariances, describing the process noise, measurement noise, and initial esti-

mation error are used:

W = 0.1, V = 1.0, M0 =


 10 0

0 10


 (8)

The two state Markov chain is used to generate a random sequence of measurement loss/reception,

with γ = 0.3 and α = 0.5 (see Figure 3). A TVKE was applied to this system in simulation

(using MATLAB) for 4000 samples. Figure 2 shows a scatter plot of the first vs. second

component of the 2× 1 corrector gains, F (k) used by the TVKE.

The corrector gain is always set to zero when data is lost (θ(k) = L). These zero gains

are not shown in the figure. The first 100 gains are also not shown – they are in some sense

transient behavior of this time varying system, depending more upon initial conditions than

the stochastic disturbances. The clustering of the remaining gains is according to preceding

sequences of loss/receptions. The label RRRR, for example, indicates gains used when the

current reception was preceded by three receptions ([θ(k − 3), θ(k − 2), θ(k − 1), θ(k)] =
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[R,R,R,R]). The bold letter indicates the status of the most recent packet (e.g. LLRR is

two losses followed by two receptions). The gain used by TVKE is not an exact function

of the past four measurement modes. However, knowing the past four measurement modes

does allow an educated guess for the TVKE gain to be made. To some degree then, the

action taken by TVKE is a function of the preceding sequence of loss/reception. This is a

major point of the paper. The proposed estimator design uses this observed characteristic,

though with a formalized approach. In contrast with TVKE, the optimal synthesis of the

proposed estimators depends upon the probability distributions assumed for θ(k).

IV. Jump Linear Estimation

In this section, estimators that reduce real-time computation relative to TVKE by esti-

mating with pre-computed gains are introduced. This reduction in computational require-

ments is accompanied by a sacrifice in performance relative to TVKE. As discussed earlier,

the jump systems under consideration have two features which can be exploited: they have

a finite number of modes (two), and measurement lossiness is governed by a Markov chain.

Based on Figure 2, it seems reasonable that a finite number of gains might be sufficient

to mimic the behavior of the TVKE. The remainder of this section is organized as follows:

First, a generic Jump Linear Estimator (JLE) is described. Then, the restriction to designs

which use a finite history of the loss/reception are introduced, called Finite Loss History

Estimators (FLHEs). A meaningful optimal design problem for FLHEs is then formulated

and solved. Both the optimal estimation problem and solution can be extended to the more

generic JLE structure, but the FLHE design is emphasized to simplify the technical details.
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A. Jump Linear and Finite Loss History Estimators

An estimator of the following form, termed a Jump Linear Estimator, is proposed:

x̂(k|k) = x̂(k|k − 1) + Fn(k)[y(k)− Cθ(k)x̂(k|k − 1)]

x̂(k|k − 1) = Ax̂(k − 1|k − 1) (9)

where n(k) ∈ N = {1, . . . , Nn}. In the remainder of the paper, x̂(k|j) is used to denote the

state estimate at time k using information up until time j (not necessarily using the optimal

TVKE). At each time step, a corrector gain is chosen from a finite set of pre-computed gains,

Fn(k) ∈ F = {F1, . . . , FNn}. Restricted to this structure, the estimator design consists of:

1. Choose number of gains, Nn

2. Assign set of gains, F
3. Describe switching logic used to select among the gains

This is a rich class of estimators and can lead to a variety of designs (a few can be found in

[11]). For the sake of clarity, we consider designs based on a canonical switching logic which

we call “finite loss history”. The corrector gain is selected based on the last r measurement

loss modes, so Nn = 2r. We refer to these designs as Finite Loss History Estimators (FLHE).

Consider a sequence of losses (L) and receptions (R). Let f : {L,R}r → {1, . . . , 2r}
denote a numbering of the 2r possible sequences of length r. The corrector gain logic can be

represented as n(k) = f(Θk−r+1,k) where Θk−r+1,k := [θ(k − r + 1), . . . , θ(k)]. For example,

the following numbering is used when r = 2: f([R, R]) = 1, f([L,R]) = 2, f([R,L]) = 3,

and f([L, L]) = 4. At time k, the precomputed gains F1, F2, F3, and F4 are applied when

[θ(k − 1), θ(k)] = [R, R], [L,R], [R,L], [L,L], respectively. The function f for r = 3 is

given in Appendix B. The numberings assign smaller indices to sequences with more recent

receptions. The length of history used, r, will be referred to as the order of an FLHE.
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While the corrector gain used by TVKE depends on initial conditions and all past history

of θ(k), a FLHE uses a corrector gain dependent only on the past r loss process observations.

Since the number of gains and the switching logic has been predefined as part of the FLHE

structure, design of a FLHE for fixed r consists of computing the set of 2r corrector gains, F .

For simple problems, this might be done by inspecting a scatter plot of the TVKE gains (e.g.

Figure 2). For higher dimensional systems, FLHE gains might be obtained by averaging the

TVKE gains after particular loss process sequences. These ad-hoc design methods, though

potentially practical, will not be pursued further in this paper. Instead, we will formulate

and solve an optimal FLHE problem.

B. An optimal FLHE design problem

In this section, we first formulate a meaningful performance cost for a FLHE. In com-

pleting this task, we also introduce notation and technical results which will be required

later. At first glance, it seems natural to use the cost that was defined in Problem 1:

JZ(k) = E
[ ‖x(k)− x̂(k|k)‖2

]
= Tr [Z(k)] (10)

The second equality follows from the definition of Z(k). Instead, a cost based on the predicted

error covariance will be considered:

JM(k) = E
[ ‖x(k + 1)− x̂(k + 1|k)‖2

]
= Tr [M(k + 1)] (11)

Working with JM(k) simplifies the proofs in the following section. Moreover, an FLHE

design minimizes JZ(k) if and only if it minimizes JM(k), so both costs yield the same

optimal design.

For any FLHE, the predicted error covariance, M(k), evolves as follows:

M(k + 1) = A(I − Fn(k)Cθ(k))M(k)(I − Fn(k)Cθ(k))
T AT + AFn(k)V F T

n(k)A
T + BWBT (12)
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Given the initial condition M(0) = M0, we can compute M(k + 1) by iterating Eq (12)

forward in time. However, this can not be done a-priori because the iteration requires

knowledge of Θk and Nk = {n(0), n(1), . . . , n(k)}. Thus M(k +1) depends on the particular

instantiation of Θk and Nk. Consequently, finding the FLHE that minimizes Tr [M(k + 1)]

is not a well-defined problem.

One way to create a well-defined problem of similar spirit is to consider the average

performance across all sample paths, Tr [ENk
[ M(k + 1) ]]. Given a probability distribution

on Nk, the cost for FLHE can be computed offline2. Fortunately, the probability distribution

on Nk is specified by the probability distribution on θ(k) and the switching logic used by the

estimator. The choice of canonical switching logic implies that the probability distribution

on n(k) = f(Θk−r+1,k) evolves according to a ‘powered up’ Markov chain. Examples of

powered up Markov chains for r = 2, 3 are shown in Figure 3(b)-(c).

The expected Markov chain state at time index k may be described in terms of a

probability distribution on its state space – the aforementioned powered up Markov chains

have 2r states. This distribution is then represented as a row vector with entries vj(k) =

Pr { n(k) = j }, for j ∈ N = {1, . . . , 2r}. The one-step transition matrix of the Markov

chain, P = [pij]i,j∈N , governs the evolution of these probability distributions: v(k + 1) =

v(k)P . The transition matrix, P , has the following properties:

1. 0 ≤ pij ≤ 1 ∀ i, j ∈ N
2. pij = Pr { n(k) = j | n(k − 1) = i } ∀ k > 0

3.
∑

j∈N pij = 1 ∀ i ∈ N .

The entries of the transition matrix corresponding to the Markov chains in Figure 3 can be

written in terms of the probabilities α and γ as given in Appendix B.

2 The identical cost may also be computed offline for TVKE. The computational burdens depend differently on k:
exponential for TVKE and linear for FLHE.
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Fig. 3. Markov chain for communication loss process: r = 1 (a), r = 2 (b) and r = 3 (c)

Using this probability distribution on the sequence n(k) inherited from that on θ(k), we

can expand an expression for E
Nk−1

[ M(k) ] in terms of conditional probabilities as follows:

E
Nk−1

[ M(k) ] =
Nn∑
i=1

ENk−2
[ M(k) | n(k − 1) = i ]︸ ︷︷ ︸

:=Mi(k)

vi(k − 1) (13)

Given a fixed set of corrector gains, the modal covariances defined above, Mi(k), can be

shown to satisfy a recursion (which will be given in Lemma 1).

To define this recursion, we will make use of the following conditional probability:

p∗ij(k) = Pr { n(k − 1) = j | n(k) = i } (a)
=

vj(k − 1)pji

vi(k)
(14)

where equality (a) can be established using Bayes’ Rule.

Define the affine operator AFi
(·) for each i ∈ N as (see Eq (12)):

AFi
(M)

.
=A(I − FiCg(i))M(I − FiCg(i))

T AT + AFiV F T
i AT + BWBT (15)

where g : {1, . . . , 2r} → {L,R} associates the appropriate measurement loss mode with a

state of the Markov chain (See App B for examples). The iteration for the modal covariances

is stated in the following lemma (the A is for affine):

Lemma 1 (A-iteration) Assume a system with measurement losses, and FLHE design

as above, having a fixed set of corrector gains, {Fi}. The modal covariances, Mi(k), satisfy
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the following recursion ∀i ∈ N :

Mi(k + 1) = AFi
(Mpre,i(k)) where Mpre,i(k) :=

Nn∑
j=1

p∗ij(k)Mj(k) (16)

Proof:

Mi(k + 1) = E
n(k−1)

[
E

Nk−2

[ M(k + 1) | n(k) = i ]

∣∣∣∣ n(k) = i

]

(a)
= E

n(k−1)

[
E

Nk−2

[ AFi
(M(k)) ]

∣∣∣∣ n(k) = i

]

(b)
=

Nn∑
j=1

p∗ij(k) E
Nk−2

[ AFi
(M(k)) | n(k − 1) = j ]

(c)
= AFi

(Mpre,i(k))

Equality (a) follows from the error covariance recursion (Eq (12)) and the conditional knowl-

edge that n(k) = i. Applying the outer conditional expectation and using the defined p∗ij(k)

yields equality (b). Equality (c) follows because AFi
(·) is affine and

∑Nn

j=1 p∗ij(k) = 1.

Note the meaning of the iterates Mi(k) and Mpre,i(k):

Mi(k) = E
Nk−2

[ M(k) | n(k − 1) = i ] , Mpre,i(k) = E
Nk−1

[ M(k) | n(k) = i ]

The subscript ‘pre’ is used for the expected prediction error covariance at time k, once

the measurement mode at time k is known. The ‘pre’ refers to these being expected error

covariances prior to corrective action based on the measurement at time k. Since they

are defined after the measurement mode at time k is known, one might prefer that these

covariances were subscripted ‘post’. For no particular reason, we use the former notation.

Given an fixed set of corrector gains, Tr [ENk
[ M(k + 1) ]] at time k can be computed

directly with Eq (13) and the A-iteration. However, minimizing this cost at a particular

time instant, k, does not yield an estimation problem that we feel is of practical interest. We

are interested in the performance of the estimator at all times rather than at a particular

instant. The desired objective is therefore phrased in terms of the limit as k →∞ as follows:



SMITH AND SEILER: ESTIMATION WITH LOSSY MEASUREMENTS 14

Problem 2 (Optimal FLHE) Assume a given plant (as in Eq (1)), associated Markovian

measurement loss structure, and a length r for an FLHE design. If the outputs Yk =

{y(0), . . . , y(k)} and measurement losses Θk = {θ(0), . . . , θ(k)} up until time k are given,

find the set of gains for the given FLHE structure which minimizes:

J∞ = lim
k→∞

Tr

[
E

Nk−1

[ M(k) ]

]
(17)

The limit in this problem formulation is proved to exist when the estimator is stable and

(A,B) is a controllable pair. We will use the following definition of stability:

Definition 1: The estimator is stable if there exists c ∈ R such that:

Tr
[
ENk−1

[ M(k) ]
] ≤ c < ∞ ∀k

A similar definition is given in [12]. The proof which shows that the Problem 2 is well

posed relies on a simplifying assumption for the initial probability distribution on the state

of the Markov chain. Refer to the Markov chains shown in Figure 3. When 0 < α, γ < 1

then the transition matrix, P , satisfies several standard conditions: regularity, aperiodicity,

irreducibility [13]. This guarantees the existence of a unique steady-state probability dis-

tribution, vss, which satisfies vssP = vss and limk→∞ vj(k) = vss
j 6= 0 ∀j ∈ N and ∀vj(0).

Based on the cost given above, the following assumption is made:

Assumption: v(0) = vss

We highlight this assumption because it will be in effect for the remainder of the paper and

has important consequences: v(k) = vss and therefore p∗ij(k) =
vss

j pji

vss
i

for all k (p∗ij denotes

this time invariant p∗ij(k))3. The A-iteration is then linear and time-invariant, simplifying

proofs. This assumption is not expected to be restrictive because J∞ stresses the average

performance as k → ∞, when vj(k) will be close to vss
j . The following theorem establishes

that J∞ is well posed:

3 The probabilities p∗ij are defined differently by Ji and Chizeck in [8], where the calculation is based on a uniform
distribution on the state space rather than the steady-state distribution.
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Theorem 1 (Steady State Modal Covariances) Assume (A,B) controllable. If the FLHE

is stable then limk→∞ Tr

[
E

Nk−1

[ M(k) ]

]
exists.

Proof: The A-iteration (Lemma 1) is governed by a collection of affine operators,

{AFi
(·)}. Thus the map from {Mi(k)} to {Mi(k + 1)} is also affine. The A-iteration is

stable if the spectral radius of its linear part is strictly less than 1.

Let {Mi(k)} be a solution to the A-iteration started with initial conditions Mi(0) =

0 ∀ i ∈ N . By Lemma 2 in Appendix A, the iterates are monotonic: Mi(k +1) ≥ Mi(k) ≥ 0

∀i ∈ N . By Eq (13), Tr
[
ENk−1

[ M(k) ]
] ≥ vss

i Tr [Mi(k)] and thus the assumption of stability

implies that the modal covariances are uniformly bounded. The modal covariances are

bounded, monotonic matrix sequences, hence they must converge to a limit. Denote the

limit matrices by M ss
i

.
= limk→∞ Mi(k) ∀i ∈ N . {M ss

i } must be a fixed point of the A-

iteration and by Lemma 6, each M ss
i is positive definite.

Let {M̃i(k)} denote an alternate solution to the A-iteration with initial conditions satis-

fying 0 ≤ M̃i(0) ≤ M ss
i ∀i ∈ N . These A-iterates can be bounded above and below ∀i ∈ N

as follows: Mi(k) ≤ M̃i(k) ≤ M ss
i . Both inequalities follow from Lemma 3. As shown above,

limk→∞ Mi(k) = M ss
i and hence limk→∞ M̃i(k) = M ss

i .

Since the limit matrices are positive definite, the above sandwich argument shows that

when the initial conditions deviate from the limit matrices in any negative semidefinite

direction, the A-iteration converges to the limit matrices. The set of symmetric matrices

are an invariant set of the A-iteration. Since a negative semidefinite basis exists for the set

of symmetric matrices, the spectral radius of the linear portion of the A-iteration restricted

to symmetric matrices is strictly less than 1 and the A-iteration will converge to the given

limit matrices for any initial symmetric iterates. The theorem now follows from Eq (13).
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C. Synthesis of Optimal FLHE Gains

In this section, the optimal FLHE design problem is solved with an iterative synthesis

of the set of corrector gains. Theorem 2 gives a necessary and sufficient condition for the

existence of a stable FLHE of given order. Assuming a stable FLHE exists, Theorem 3 gives

a construction for a set of FLHE gains which are optimal with respect to the estimation cost,

J∞. This construction follows from the proof of Theorem 2. The proofs of these results rely

heavily on monotonicity and relative ordering properties associated with both the A-iteration

and the R-iteration that is introduced in the following theorem:

Theorem 2 (Existence of Stable FLHE) Assume (A,B) controllable. For each i ∈ N ,

Ri(M)
.
= AMAT + BWBT − AMCT

g(i)

(
Cg(i)MCT

g(i) + V
)−1

Cg(i)MAT

The R-iteration (R is for Riccati) is then defined as:

Mi(k + 1) = Ri(Mpre,i(k)) Mpre,i(k) =
Nn∑
j=1

p∗ijMj(k) ∀i ∈ N (18)

There exists a stable FLHE iff the R-iteration converges.

Proof: (⇐)Assume that the R-iteration fails to converge when started from zero initial

conditions. Lemma 4 in the appendix states that this iteration is monotonically nondecreas-

ing, Mi(k + 1) ≥ Mi(k) ≥ 0 ∀i ∈ N . The R-iteration therefore diverges, and there exists

at least one i∗ ∈ N such that Mi∗(k) grows unbounded as k →∞.

Using Lemma 5 in the appendix, the iterates of the A-iteration for any F are bounded

below by the iterates of the R-iteration started with zero initial conditions. Therefore, one

of the A-iterates diverges. Since Tr
[
ENk−1

[ M(k) ]
] ≥ vss

i Tr [Mi(k)] ∀i, this implies that

JM(k) diverges to infinity. Hence the FLHE with corrector gains given by F is unstable.

Proof: (⇒) Assume the R-iteration converges to a limit when started from zero initial

conditions. Denote the limit matrices by M ss
j

.
= limk→∞ Mj(k) ∀j ∈ N . {M ss

j } must be a
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fixed point of the R-iteration and by Lemma 4, all of the matrices be positive semidefinite.

Choose {Fi} in terms of {M ss
i } as follows:

Fi
.
= M ss

pre,iC
T
g(i)

(
Cg(i)M

ss
pre,iC

T
g(i) + V

)−1
(19)

To complete the proof, this set of gains must be shown to yield a stable FLHE. By completing

the square, {M ss
i } is a fixed point for theA-iteration using F and each M ss

i is positive definite

(Lemma 6 and the controllability assumption).

Let {M̃i(k)} denote the A-iterates for the corrector gains in Eq (19). Assume initial

conditions for the A-iteration satisfying 0 ≤ M̃i(0) ≤ M ss
i ∀i ∈ N . The A-iterates can

be bounded above and below ∀i ∈ N as follows: Mi(k) ≤ M̃i(k) ≤ M ss
i . The first

inequality follows from Lemma 5. The second inequality follows through application of

Lemma 3 using {M̃i(k)} and the A-iteration started at the fixed point {M ss
i }. By assump-

tion, limk→∞ Mi(k) = M ss
i and hence limk→∞ M̃i(k) = M ss

i .

The above sandwiching of iterates leads to the same argument used in the proof of The-

orem 1. The A-iteration will converge to the given limit matrices for any initial symmetric

iterates. By Eq (13), ENk−1
[ M(k) ] is then uniformly bounded and thus the FLHE is stable.

Theorem 3 (Optimality) For a given plant, Markov chain, and order of FLHE, assume

that the R-iteration with initial conditions Mi(0) = 0 ∀ i ∈ N converges to {M ss
i }. Let

Mpre,i(k)
.
=

∑Nn

j=1 p∗ijMj(k) and choose the corrector gains as follows:

Fi
.
= M ss

pre,iC
T
g(i)

(
Cg(i)M

ss
pre,iC

T
g(i) + V

)−1 ∀i ∈ N (20)

These gains are stable and optimal in terms of the cost, J∞. Moreover, for any other set of

stable corrector gains, F̃ , limk→∞ M̃j(k) ≥ M ss
j ∀j ∈ N .

Proof: Stability of the FLHE with the gains defined in Eq (20) follows from the proof

of Theorem 2. It follows from that same proof and Lemma 5 that limk→∞ M̃j(k) ≥ M ss
j



SMITH AND SEILER: ESTIMATION WITH LOSSY MEASUREMENTS 18

∀j ∈ N . The optimality with respect to the cost J∞ follows from Eq (13).

The gains constructed in the proof of Theorem 3 are optimal with respect to J∞. Note

that the R-iteration is a deterministic method for finding these optimal corrector gains, and

will fail only if no set of stable gains exists. In the next section, this R-iteration based design

is used to design an optimal FLHE for the double integrator example.

V. Simulation Study

The estimation problem parameters introduced in Section III are again used in this sec-

tion. The plant is a double integrator, Eq (7), with Markovian measurement losses described

earlier (α = 0.5 and γ = 0.3 in Figure 3). The gains used by TVKE when applied to this

system in simulation were shown in Figure 2. In this section, further simulation results for

TVKE and various FLHEs are used to illustrate the following points:

1. The optimal FLHE corrector gains roughly agree with an intuitive design based on

the TVKE gains in Figure 2.

2. As the amount of loss history, r, used by the FLHE increases, the averaged perfor-

mance becomes more like that of TVKE.

3. There are diminishing returns, in terms of J∞, associated with increasing the amount

of history used by the FLHE.

These are expected to be characteristic of more complex scenarios as well.

Optimal FLHE designs were carried out for this example system with r = 1, r = 2 and

r = 3. For each design, the corresponding Markov chain in Figure 3 was used. Recall that

following a lost measurement, the corrector gain will always be zero. In Figure 4, the optimal

nonzero corrector gains (those which follow receptions) computed for these designs are shown

overlaying the TVKE gains from Figure 2. For r = 1, a single nonzero gain is used whenever

the measurement is received. As shown in the figure, this single gain makes a compromise
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sensor noise and measurement loss.

among all the nonzero gains used by the TVKE. In contrast, the design for r = 2 leads to

two nonzero gains, FLR and FRR. Again, the figure shows that FRR makes a compromise

between all TVKE gains for loss sequences ending with RR. Similar interpretations can be

made for FLR and the four nonzero gains used in the r = 3 design.

In Figure 5, representative time traces of norm squared estimation error are shown using

a logarithmic vertical scale. The reception/loss sequence is indicated on the horizontal axis

with one label per sample instance (‘L’ for loss, ‘R’ for reception). The simulations for the

different estimators are carried out with the same instantiation of measurement loss, process

noise, and measurement noise as well as the same initial conditions. During the long string

of losses (labeled ‘A’), the norm squared error increases at roughly the same rate for all the
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estimators. All estimators are operating in open loop – the corrector gain is zero. This string

of losses is long (six samples) relative to the order of the FLHEs. Referring back to Figure 4,

the TVKE applies a much wider variety of gains following sequences of three or more losses.

Therefore, when receptions follow this long string of losses, it is expected that the FLHE

designs will not recover accurate estimates as quickly as the TVKE. It can also be expected

that higher order FLHE designs will recover faster. While no general conclusions can be

drawn from a single instantiation, Figure 5 does support these expectations. In recovering

from the losses (section labeled ‘B’) the TVKE recovers estimation errors the fastest, followed

by the FLHEs ordered from r = 3 to r = 1.

In the absence of a long string of losses (e.g. the sequence labeled ‘C’) the estimation

errors using FLHE designs for r = 2 and r = 3 are not noticeably larger than those associated

with TVKE. A more precise statement about performance can be made using the average

behavior of the designs. The FLHE design minimizes the size of expected estimation error

covariances: Tr [M ]. For comparison with the TVKE, we will consider Tr [Z] for each FLHE

design. The corresponding modal covariances can be computed using the result of the

iterative design as follows:

Zi = Mi − Fi

[
Cg(i)MiC

T
g(i) + V

]
F T

i for i ∈ N , g(i) ∈ {L,R} (21)

As described later, the results of many simulations, when averaged appropriately, are ex-

pected to generate empirical values which agree with these Zi.

The following mode data indexed by i ∈ {1, . . . , 2r} for FLHE designs with r = 1, 2, 3 is

shown in Tables I, II, and III:

1. The optimal corrector gain, Fi, found from the procedure in Section IV.C.

2. The conditional expected squared estimation error, Tr Zi = E [ ‖x− x̂‖2 | n(k) = i ].

3. The probability, vss
i , of being in state i of the powered up Markov Chain.
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TABLE I
FLHE design for r = 1

R L

Fi

[
0.745
0.202

] [
0
0

]

Tr Zi 0.94 4.31

vss
i 0.625 0.375

TABLE II
FLHE design for r = 2

RR LR RL LL

Fi

[
0.576
0.208

] [
0.862
0.202

] [
0
0

] [
0
0

]

Tr Zi 0.759 1.05 1.64 6.72

vss
i 0.437 0.188 0.188 0.188

The limit of the total cost according to JZ(k) defined in Eq (10) can be computed as follows:

lim
k→∞

JZ(k) =
2r∑
i=1

vss
i Tr Zi =





2.205 for r = 1

2.096 for r = 2

2.069 for r = 3

2.057 for r = 4

2.052 for r = 5

2.049 for r = 6

(22)

This predicted cost decreases as r increases, though the returns diminish for larger r.

The Zi computed from the limits of the R-iteration are compared with averaged data

from MATLAB simulations. The simulation data is averaged as follows to get empirical

estimates of Zi. First, a single instantiation of loss/reception (1000 samples) is generated

using the Markov process. Then the systems (FLHE and TVKE) were simulated with 1000

instantiations of measurement and process noise using the same loss/reception sequence. For

each time instant, the average squared estimation error over the 1000 different realizations

of noise was computed. The average estimation errors were then classified according to finite

loss history (e.g. the error at time 10 is classified as RR when θ(9) = θ(10) = R and r = 2).

The average of estimation errors with the same classification is an empirical estimate of Tr Zi,
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TABLE III
FLHE design for r = 3

RRR LRR RLR LLR

Fi

[
0.559
0.214

] [
0.604
0.197

] [
0.73
0.235

] [
0.906
0.19

]

Tr Zi 0.732 0.791 0.906 1.1

vss
i 0.306 0.131 0.0938 0.0938

RRL LRL RLL LLL

Fi

[
0
0

] [
0
0

] [
0
0

] [
0
0

]

Tr Zi 1.54 1.81 3.08 10.2

vss
i 0.131 0.0563 0.0938 0.0938

denoted Tr Ẑi. Comparison of the estimators using the same instantiation of loss/reception is

meaningful because the distribution on losses was not changed, though powered up Markov

chains might have been used for the design. An instance of loss/reception 1000 samples long

was deemed sufficiently long to capture a significant number of each pattern of loss/reception.

Figure 6 displays the averaged information in three subplots corresponding to r = 1, 2, 3.

The horizontal axis of each subplot is labeled with the 2r finite loss histories corresponding

to the appropriate value of r. The vertical axes use a logarithmic scale. The analytically

computed values of Tr Zi for the optimal FLHE design are shown as circles. Averaged

simulation results grouped by loss history are shown for TVKE (left) and FLHE (right) in

each subplot. The small solid dots are the estimation errors at particular time instances,

averaged over the different realizations of process noise. The horizontal lines indicate the

average of a group of estimation errors, the empirical estimates Tr Ẑi. Therefore, the FLHE

horizontal lines and circles are expected to indicate identical estimation errors.

The same TVKE data (small dots) appears in all the subplots, though grouped dif-

ferently. For example, consider the averaged TVKE error covariances for R in the r = 1

subplot. These points are divided into two groups in the r = 2 subplot: TVKE(RR) and
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Fig. 6. Comparison of TVKE and FLHE (r = 1, 2, 3) performance for one instantiation of measurement loss
and averaged over many instantiations of process and sensor noises.

TVKE(LR). These are the same data points, merely reclassified for comparison with the

r = 2 FLHE. The TVKE Tr Ẑi is below the FLHE Tr Ẑi in every case as expected (TVKE

is optimal). With r = 1, there is a noticeable difference between the performances of the

TVKE and FLHE in the averaged sense (compare the horizontal lines). For r = 2 and 3,

the average performance of the FLHE and TVKE is not as distinguishable.

Though Tr Zi and Tr Ẑi for the FLHE are in close agreement in most cases, there appears

to be a mismatch between Tr Zi (circle) and Tr Ẑi (horizontal line) when i corresponds to a

finite loss histories L, LL, or LLL. This is explained by the finite length (1000 samples) of

our simulations. Rare loss sequences are not included in the simulation, but accounted for

when solving the R-iteration – they occur with a finite though small probability.

Finally, the banding of errors should be noted. This banding agrees with the grouping

of gains seen in Figure 4. These effects are attributed to the combinatorial nature of the

problem. In the r = 1 subplot, the errors associated with (L) form 6 (perhaps 7) identifiable

bands. The lowest of these bands contains the the errors associated with (RL). The remain-
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der of the bands having errors associated with (LL). Similar interpretations are possible

comparing r = 2 to r = 3.

The simulation study results, though simple, encourage us to apply the proposed ideas

in experimental settings.

VI. Conclusions

The Jump Linear Estimator (JLE) is able to deal with dropped measurements in a more

cost effective manner than TVKE. Finite Loss History Estimators (FLHE) were emphasized

as a simple, but useful form of the more generic JLE. The main theoretical results given in

the paper are summarized as follows:

• (Theorem 1) An optimal quadratic estimation problem was shown to be well-posed

for the system with Markovian measurement losses.

• (Theorem 2) The convergence of an iteration was shown to be a necessary and sufficient

condition for the existence of a stable FLHE.

• (Theorem 3) A method of selecting optimal FLHE gains was given.

These results are analogous to standard results for steady-state Kalman estimation of LTI

system states. Several of the Lemmas used in the proofs of the main results are generaliza-

tions of Lemmas used to prove the standard results. In [11], we referred to this generalization

as pseudo-steady-state estimation. If control is collocated with estimation, the control signals

are not subject to losses and state-feedback control can be based upon the state estimates

without loss of stability.

The simulation study illustrated, in the particular example given, that the formalized

approach generated FLHE gains which are intuitive when compared to the actions of TVKE.

Moreover, the predicted and simulated FLHE performance agree and compare favorably with

TVKE considering their relative real-time simplicity.
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The theoretical results extend to more general Markovian Jump Linear Systems through

appropriate modification of theA-iteration andR-iteration. Selected generalizations include:

1) different Markov chains for the loss process, 2) generic jump systems (A,B,C,W, V all vary

with Markov state) [8], and 3) more general switching logic in the JLE (partially described

in [11]). These generalizations do not alter the iterations in a way which interferes with the

proofs of the theorems. These generalizations allow, for example, a scenario where multiple

measurements are independently lost/received to be put in this framework.

The main results lead to several lines of future research. First, the existence of stable

FLHE designs provided a sufficient condition for TVKE stability. A related open ques-

tion is whether or not this is also a necessary condition for TVKE stability. We are only

aware of sufficient conditions applicable to this problem in the literature. Second, the ro-

bustness/sensitivity of the optimal FLHE designs to perturbations of the Markov transition

matrix has not been quantified. This is seen as a valuable area for future investigation be-

cause insensitivity to Markov chain parameters would justify the use of FLHE designs in

scenarios where the probabilities of losses do not admit a stationary Markov chain model.

For example, time-varying probabilities of communication loss are likely if the communicat-

ing agents are in a dynamic environment, as is the case with coordinated vehicle motion

problems. Third, an alternative to actually carrying out the iterations in our development

would be to directly solve the coupled R-iteration equations for a steady state solution. This

is analogous to solving the algebraic Riccati equation for the steady state Kalman estima-

tor, where the eigenvalue decomposition of a Hamiltonian matrix can be used. A similar

approach for the set of coupled algebraic Riccati equations has yet to be found [14], [15].

We were initially motivated to know when the state estimation error using TVKE re-

mains bounded in spite of probabilistic measurement losses. This question remains unan-
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swered, but in attempting to characterize TVKE performance with lossy measurements we

were led to a class of estimators which leverage underlying Markov jump system structure

to achieve comparable estimation to TVKE at a lesser real-time cost. The existence of such

designs is itself a commentary on the problem’s difficulty. In essence, we have endeavored to

capitalize on the structure of the system in forming our estimator, which is philosophically

similar (in a rough analogy) to both internal model and linear-parameter-varying approaches.
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Appendices

A. Auxiliary Results

Lemma 2 (Monotonicity of A-iteration) The A-iteration (Lemma 1) started with initial

conditions Mi(0) = 0 ∀ i ∈ N satisfies Mi(k + 1) ≥ Mi(k) ≥ 0 ∀i ∈ N .

Proof: The proof relies on the following fact which follows from the definition of AFi
(·):

M1 ≥ M2 ≥ 0 ⇒ AFi
(M1) ≥ AFi

(M2) ≥ 0 ∀i ∈ N (23)

The lemma is proved by induction. If Mi(0) = 0 ∀i ∈ N , then Mpre,i(0) = 0 ∀i ∈ N .

Hence Mi(1) = AFiV F T
i AT +BWBT ≥ 0 ∀i ∈ N and the lemma statement holds for k = 0.

Assume the lemma statement holds for k−1: Mi(k) ≥ Mi(k−1) ≥ 0 ∀i ∈ N . It follows that

Mpre,i(k) ≥ Mpre,i(k− 1) ≥ 0 ∀i ∈ N . Using Eq (23), AFi
(Mpre,i(k)) ≥ AFi

(Mpre,i(k − 1)) ≥
0 ∀i ∈ N . The lemma statement therefore holds for k.

Lemma 3 (Ordering of A-iteration) Given any set of corrector gains, F , let {M̃i(k)}
and {Mi(k)} denote solutions of the A-iteration. Assume their initial conditions satisfy:

0 ≤ M̃i(0) ≤ Mi(0) ∀i ∈ N . Then M̃i(k) ≤ Mi(k) ∀i ∈ N and ∀k.

Proof: The proof is by induction. M̃i(k) ≤ Mi(k) ∀i ∈ N holds for k = 0 by the choice of

initial conditions. Assume that it holds for some k ≥ 0. Then M̃pre,i(k) ≤ Mpre,i(k) ∀i ∈ N .

It then follows from the definition of AFi
(·) that AFi

(
M̃pre,i(k)

)
≤ AFi

(Mpre,i(k)) ∀i ∈ N .

Thus M̃i(k + 1) ≤ Mi(k + 1) ∀i ∈ N and the lemma is true by induction.

Lemma 4 (Monotonicity of R-iteration) The R-iteration (Definition 18) started with

initial conditions Mi(0) = 0 ∀ i ∈ N satisfies Mi(k + 1) ≥ Mi(k) ≥ 0 ∀i ∈ N .
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Proof: The proof relies on the following direct application of Lemma 3.1 in [16]:

M1 ≥ M2 ≥ 0 ⇒ Ri(M1) ≥ Ri(M2) ≥ 0 ∀i ∈ N (24)

The lemma is proved by induction. If Mi(0) = 0 ∀i ∈ N , then Mpre,i(0) = 0 ∀i ∈ N .

Hence Mi(1) = BWBT ≥ 0 ∀i ∈ N and the lemma statement holds for k = 0. Assume

the lemma statement holds for k − 1: Mi(k) ≥ Mi(k − 1) ≥ 0 ∀i ∈ N . It follows that

Mpre,i(k) ≥ Mpre,i(k − 1) ≥ 0 ∀i ∈ N . Using Eq (24) Ri(Mpre,i(k)) ≥ Ri(Mpre,i(k − 1)) ≥
0 ∀i ∈ N . The lemma statement therefore holds for k.

Lemma 5 (Minimum Property) Given any set of corrector gains, F , let {Mi(k)} denote

the solution of the A-iteration with initial conditions given by Mi(0) ≥ 0 ∀i ∈ N . Let

{M̃i(k)} denote the solution of the R-iteration starting at M̃i(0) = 0 ∀i ∈ N . Then M̃i(k) ≤
Mi(k) ∀i ∈ N and ∀k.

Proof: This is a generalization of a result by Caines and Mayne [17] for the standard

Riccati equation. For each i ∈ N , AFi
(M) can be rewritten as follows:

AFi
(M) = Ri(M) + A(F̃i − Fi)

(
Cg(i)MCT

g(i) + V
)
(F̃i − Fi)

T AT

where F̃i is defined as: F̃i = MCT
g(i)

(
Cg(i)MCT

g(i) + V
)−1

.

The operator Ri(·) is a minimum in the following sense:

Ri(M) ≤ AFi
(M) ∀i ∈ N (25)

This fact and induction are used to prove the lemma. For the given initial conditions,

M̃i(0) ≤ Mi(0) ∀i ∈ N . Assume the proposed inequality holds for k. Referring to the

definition of the ‘pre’-covariances in Eq (16), M̃pre,i(k) ≤ Mpre,i(k) ∀i ∈ N . The following

inequalities hold ∀i ∈ N :

M̃i(k + 1) = Ri(M̃pre,i(k))
(a)

≤ AFi

(
M̃pre,i(k)

) (b)

≤ AFi
(Mpre,i(k)) = Mi(k + 1) (26)



SMITH AND SEILER: ESTIMATION WITH LOSSY MEASUREMENTS 30

Inequality (a) follows from Eq (25). Inequality (b) is a consequence of an easily verified fact:

M1 ≥ M2 ⇒ AFi
(M1) ≥ AFi

(M2) ∀i ∈ N . The lemma follows by induction.

Lemma 6: Assume (A,B) controllable. Let {M i} be a set of positive semi-definite ma-

trices satisfying:

Mpre,i =
Nn∑
j=1

p∗ijM j and M i = AFi

(
Mpre,i

) ∀i ∈ N (27)

Then M i > 0 for all i ∈ N .

Proof: This is a non-trivial proof. The critical part of the proof is a generalization of

Theorem 4.1 in [18]. The covariances are bounded below by controllability grammians of a

synthetic time varying system. It is shown that controllability of the synthetic system can

be identified with controllability of the pair (A,B), proving the lemma.

Let {Mi(k)} denote the solution of the A-iteration starting with the initial conditions

{M i}. By Eq (27), Mi(k) = M i ∀i ∈ N and ∀k. Using the definition of the A-iteration, this

can be written as an equality for time k + 1 as:

M i = Mi(k + 1) = AiMpre,i(k)AT
i + LiL

T
i (28)

where Ai and Li have been defined as follows:

Ai
.
= A(I − FiCg(i)) LiL

T
i

.
= AFiV F T

i AT + BWBT

Given any ik ∈ N , there exists a set of indices, {i0, . . . , ik−1}, such that {p∗ikik−1
, . . . , p∗i2i1

, p∗i1i0
}

are all strictly positive. We can now use these indices and induction to lower bound M ik :

M ik = Mik(k + 1) ≥
(
p∗ikik−1

· · · p∗i2i1
· p∗i1i0

)
C(k)C(k)T (29)

where C(k)
.
=

[
Lik AikLik−1

. . .
(
AikAik−1

· · ·Ai1

)
Li0

]
. The proof that Eq (29) holds for

k = 0 follows simply from Eq (28). Assume that Eq (29) holds for k. As shown below, it
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must also hold for k + 1:

Mik(k + 1) = AikMpre,ik(k)AT
ik

+ LikL
T
ik

(a)

≥ p∗ikik−1
AikMik−1

(k)AT
ik

+ LikL
T
ik

(b)

≥
(
p∗ikik−1

· · · p∗i1i0

)
AikC(k − 1)C(k − 1)T AT

ik
+ LikL

T
ik

≥
(
p∗ikik−1

· · · p∗i1i0

)
C(k)C(k)T

Inequality (a) uses a lower bound for Mpre,ik(k) and inequality (b) uses the induction as-

sumption. This string of inequalities shows that Eq (29) holds for all k > 0.

Now, let n denote the dimension of the plant matrix, A. To complete the proof, it is

sufficient to show that C(n) is full rank for any set of indices {i0, . . . , in−1}, further implying

that C(n)C(n)T > 0. That M in > 0 ∀in ∈ N follows, using appropriate indices and the lower

bound of Eq (29).

Note that C(n) is the controllability matrix for the following time-varying system:

x(k + 1) = Aikx(k) + Liku(k)

If x(0) = 0, induction can be used to show:

x(n + 1) = C(n)

[
u(n)

...
u(0)

]

The state of this system can be driven from x(0) = 0 to x(n + 1) = xn+1 for any xn+1 ∈ Rn

if and only if rank [C(n)] = n.

The next piece of the proof generalizes Theorem 4.1 of [18]. Let N{X} and R{X} denote

the null and range spaces of a matrix X. For any vector z, zT LikL
T
ik
z = 0 implies that both

zT BWBT z = 0 and zT AFikV F T
ik

AT z = 0. Thus N{Lik} ⊂
(
N

{
W 1/2BT

} ∩ N
{
V 1/2F T

ik
AT

})
.

Taking orthogonal complements gives set containment (a):

R{Lik}
(a)⊃ (

R
{
BW 1/2

} ∪ R
{
AFikV

1/2
}) ⊃ R

{
AFikV

1/2
}
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This implies that R{Lik} ⊃ R
{
AFikV

1/2G
}

for any matrix G. In particular, the choice of

G = V −1/2Cg(ik) leads to the conclusion that R{Lik} ⊃ R
{
AFikCg(ik)

}
. Hence, there must

exist some matrix Kik such that AFikCg(ik) = LikKik . We now use this linear algebra result

to show that C(n) is full rank. Plugging in for Aik , we can rewrite the system dynamics as:

x(k + 1) = A(I − FikCg(ik))x(k) + Liku(k)

By choosing the control law, u(k) = Kikx(k) + Bv(k), these system dynamics become:

x(k + 1) = Ax(k) + Bv(k)

Since (A,B) controllable, we can always choose v(k) to transfer the system from x(0) = 0 to

x(n + 1) = xn+1 for any xn+1 ∈ Rn. Thus C(n) is full rank and the proof is complete.

B. Powered-up Markov Chain Data

The one-step transition matrices and numbering scheme f (which maps sequences of

θ(k) to a Markov state, n(k)), for the Markov chains depicted in Figure 3 are given below.

Also given is the auxillary function g used in writing AFi
(·) and Ri(·). For Markov chain

(a), r = 1:

P1 =
[

1−γ γ
1−α α

]
, [ R

L ]
f−→ [ 1

2 ]
g−→ [ R

L ] (30)

For Markov chain (b), r = 2:

P2 =

[ 1−γ 0 γ 0
1−γ 0 γ 0

0 1−α 0 α
0 1−α 0 α

]
,

[
RR
LR
RL
LL

]
f−→

[
1
2
3
4

]
g−→

[
R
R
L
L

]
(31)

For Markov chain (c), r = 3:

P3 =




1−γ 0 0 0 γ 0 0 0
1−γ 0 0 0 γ 0 0 0

0 1−γ 0 0 0 γ 0 0
0 1−γ 0 0 0 γ 0 0
0 0 1−α 0 0 0 α 0
0 0 1−α 0 0 0 α 0
0 0 0 1−α 0 0 0 α
0 0 0 1−α 0 0 0 α


 ,




RRR
LRR
RLR
LLR
RRL
LRL
RLL
LLL




f−→




1
2
3
4
5
6
7
8


 g−→




R
R
R
R
L
L
L
L


 (32)


