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Abstract

In this paper we present a new lower bound algorithm
for real and mixed µ problems. The basic idea of this
algorithm is to use a related worst-case gain problem
to compute the real blocks and, if the block structure
is mixed, the standard power iteration to compute the
complex blocks. Initial numerical tests indicate that the
algorithm is fast and provides good bounds for both real
and mixed µ problems of small to moderate size.

1 Introduction

The structured singular value µ, introduced by Doyle [8],
can be used to analyze the robustness of linear systems
subject to structured uncertainty. It is assumed that the
reader is familiar with the engineering motivation for µ
(see [1, 19, 11] and references therein for some discussion).
It is known that computing µ is NP Hard [4, 7] and for the
pure real case, even computing upper bounds with certain
desirable properties is NP Hard [12]. Thus there has been
extensive research into computational algorithms which
are fast and provide good lower/upper bounds for most
problems of engineering interest. This paper will discuss
an algorithm to compute lower bounds for µ.

For the pure complex µ problem, the power iteration
[19, 20] provides good lower bounds and it is quite fast
since it relies only on matrix-vector products. The power
iteration was extended to mixed µ problems in [26, 27, 29].
Unfortunately this algorithm may fail to converge; a prob-
lem which is more common for purely real uncertainty
structures [15, 24, 25]. There has been extensive research
on alternative lower bound algorithms to address these
issues [3, 5, 6, 9, 13, 14, 15, 16, 17, 22, 23, 24].

For the pure real case, there are fundamental difficulties
including the fact that real µ can be a discontinous func-
tion of the problem data [2, 21]. However, there are real
µ problems of engineering interest which are well-posed.
Most existing algorithms to solve these problems have a
computational cost which grows exponentially with the
problem size [5, 6, 9, 22] and hence they are only suitable
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for small numbers of real parameters. A less computa-
tionally intensive approach is to regularize the problem
and use the standard mixed µ power iteration. The reg-
ularization is typically accomplished by adding a small
amount of complex uncertainty to each uncertain real
parameter[21].

This paper describes a polynomial-time lower bound
algorithm which can be applied to both pure real and
mixed µ problems. We refer to this lower bound algorithm
as the Gain-Based Algorithm (GBA). The basic idea of
the GBA is to use a related worst-case gain problem to
compute the real blocks of the perturbation. For mixed
µ problems, the standard power iteration is then used to
compute the complex blocks since it is fast and has good
convergence characteristics for complex µ problems. The
GBA uses the wrap-in reals idea which exists in [24, 15]
but with two main distinctions. First, the use of the
worst-case gain problem to compute the real blocks is
a new approach. Second, we do not wrap in the real
blocks within the power iteration. Instead, the real block
is computed from scratch for each step of the GBA and
then held fixed throughout the complex power iteration.

The GBA seems to have better convergence properties
than the standard power iteration on real µ and certain
classes mixed µ problems. We believe this is because the
GBA implicitly regularizes the problem by adding a small
complex scalar to one entry of the data matrix (as de-
scribed in Section 3.1). Moreover, the GBA makes several
attempts (Ntry) to find a good lower bound and Ntry can
be used to trade off computation time with the quality of
the lower bound.

2 Notation

Let M ∈ C
(n+m)×(n+m) and ∆ ∈ C

n×n be given and
partition M :=

[

M11 M12

M21 M22

]

with M11 ∈ C
n×n and M22 ∈

C
m×m. If I−M11∆ is invertible, then we define Fu(M,∆)

as the linear fractional transformation obtained by closing
∆ around the upper channels of M :

Fu(M,∆) := M22 + M21∆(I − M11∆)
−1

M12

We also let σ̄ (M) and σ (M) denote the maximum and
minimum singular values of the matrix M , respectively.

The notation used in this paper for the structured sin-
gular value, i.e. µ, is standard. We’ll consider block



structures consisting of r repeated real scalar blocks, c
repeated complex scalar blocks, and f square full com-
plex blocks. The restriction to square full blocks is for
notational simplicity and the lower bound algorithm de-
scribed in this paper can be extended to non-square full
blocks. Given positive integers k1, k2, . . . , kr+c+f define
the following sets of block structured matrices:

∆R := {∆ = blockdiag(δ1Ik1
, . . . , δrIkr

) : δi ∈ R}

∆C :=
{

∆ = blockdiag(δ1Ikr+1
, . . . , δcIkr+c

,∆1, . . . ,∆f ) :

δi ∈ C, ∆i ∈ C
kr+c+i×kr+c+i

}

∆ := {∆ = blockdiag(∆R,∆C) : ∆R ∈ ∆R, ∆C ∈ ∆C}

∆R, ∆C , and ∆ are pure real, pure complex, and mixed
real/complex block structures, respectively. The ma-
trices in ∆R, ∆C , and ∆ have respective dimensions
nR × nR, nC × nC , and n × n where nR :=

∑r
i=1 ki,

nC :=
∑c+f

i=1 kr+i, and n := nR + nC .
The next definition, originally given by Doyle [8] for the

pure complex case, is for µ in terms of the block structure
defined by the set ∆. However, it also applies to other
block structures such as the pure real (µ∆R

) and pure
complex (µ∆C

) cases.

Definition 1 [8] The structured singular value of M ∈
C

n×n with respect to ∆, denoted µ∆(M), is defined as

µ∆(M) :=

(

min
∆∈∆

{σ̄ (∆) : det(I − M∆) = 0}

)−1

(1)

if ∃∆ ∈ ∆ such that det(I − M∆) = 0 and otherwise
µ∆(M) := 0.

3 Gain-Based Algorithm (GBA)

In this section, we first introduce the GBA for pure real
µ problems (Section 3.1) and then for mixed-µ problems
(Section 3.2). The GBA proposed in Section 3.2 defaults
to the standard power iteration for pure complex µ prob-
lems and to the GBA described in Section 3.1 for pure
real µ problems.

3.1 Real µ GBA

Assume MR ∈ C
nR×nR . In this section we address the

problem of computing lower bounds for the pure real
problem µ∆R

(MR). It follows directly from the definition
of µ that any ∆R ∈ ∆R which satisfies det(I−M∆R) = 0
yields a lower bound:

∆R ∈ ∆R, det(I − M∆R) = 0 ⇒
1

σ̄ (∆R)
≤ µ∆R

(MR)

Thus lower bounds for µ∆R
(MR) can be computed by

searching for a ∆R ∈ ∆R which causes the following

∆R

MR

z- w

�

Figure 1: MR-∆R Loop
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Figure 2: MR-∆R Loop With d-to-e Channels

equations to have a non-zero solution: z = MRw and
w = ∆Rz. These equations are represented by the
MR − ∆R loop in Figure 1. The basic intuition for the
GBA is to recast this problem into a related worst-case
disturbance-to-error problem, shown in Figure 2. In this
figure, we have inserted a disturbance at the output of
MR and pulled off an error at the input to ∆R. ik de-
notes the kth standard basis vector in R

nR and d/e denote
scalar disturbance/error signals. Note that the scalar dis-
turbance is only inserted in the kth channel and the scalar
error is only pulled off the kth channel.

If det(I − MR∆R) 6= 0 then the system with input d
and output e can be written as:

e = Fu(M̃R,∆R)d

=
[

1 + iTk MR∆R(I − MR∆R)−1ik
]

d

=
[

iTk (I − MR∆R)−1ik
]

d

where M̃R :=
[

MR ik

iT
k MR 1

]

. If we find a ∆R ∈ ∆R such

that the gain from d to e is large then I − MR∆R will
be close to singularity. The precise statement is that
σ̄

(

iTk (I − MR∆R)−1ik
)

≥ γ implies σ (I − MR∆R) ≤ 1
γ .

Moreover, if we find ∆R ∈ ∆R such that the gain from d
to e is infinite then ∆R satisfies det(I −MR∆R) = 0 and
hence 1

σ̄(∆R) is a true lower bound on µ∆R
(MR). For nu-

merical reasons, we’ll restrict our search for ∆R’s which
yield a large gain from d to e.

Given an estimated value for the lower bound, lbtry,
we’d like to solve the following problem:

max
∆R∈∆R,σ̄(∆R)≤1/lbtry

σ̄
(

Fu(M̃R,∆R)
)

(2)



If the maximum gain is sufficiently large then we’ll use the
maximizer, ∆R,opt, to compute a lower bound on µ∆R

.
Restricting the search to σ̄ (∆R) ≤ 1/lbtry ensures that
∆R,opt will yield a lower bound which is ≥ lbtry.

Equation 2 is in the form of a worst case perfor-
mance problem. The lower bound algorithm introduced
by Packard, et. al. [18] for worst-case performance assess-
ment will be used to ”solve” this problem. The algorithm
is an ascent method which returns a lower bound on the
maximum. Specifically, Packard, et. al. use an exact
maximization for the single parameter problem (nR = 1)
and an iterative coordinatewise maximization for the gen-
eral case (nR > 1). The exact maximization along each
coordinate is computed by mimicking the Hamiltonian
methods for state-space H∞ norm calculation. The lower
bound algorithm in [18] is presented for σ̄ (∆R) ≤ 1. This
is without loss of generality since the perturbation can be
normalized as shown in Section 3.3 of [18].

The Gain-Based Algorithm (GBA) to compute real µ
lower bounds is presented in Table 1. The GBA assumes
that upper/lower bounds (ub/lb) on µ∆R

(MR) as well as
a perturbation (∆R) achieving lb are given. The lower
bound can simply be initialized to lb = 0 and ∆R = 0nR

.
Alternatively, the lower bound and perturbation from the
standard power iteration can be used. However, the stan-
dard power iteration rarely converges for pure real µ prob-
lems and our experience is that it is not worth the com-
putational effort. The upper bound can be computed
via standard methods, e.g. via the LMI [10] or Balanced
[28, 29] form. The GBA attempts to solve Equation 2 up
to Ntry times using the worst case gain lower bound by
Packard, et. al. [18]. Since the value of µ∆R

(MR) is un-
known, lbtry is adaptively chosen at each iteration based
on the success or failure of the worst-case gain search.
The upper/lower bounds are used to obtain good esti-
mates for lbtry. The choice of the channel, k, to insert d
and pull off e is cycled through all possible choices. The
performance of the GBA is discussed in Section 4.

The GBA returns perturbations which satisfy |det(I −
MR∆R)| < tolreal, i.e. they do not strictly cause singu-
larity. We now show that the use of the worst-case gain
problem can be viewed as a form of regularizing the prob-
lem. The ∆R returned by the GBA achieved a large gain,

σ̄
(

Fu(M̃R,∆R)
)

≥ γlarge, on one of the output chan-

nels of MR, denoted kbad. Therefore there exists δ ∈ C

with |δ| ≤ 1/γlarge such that det(I − M̃R∆̃R) = 0 where

∆̃R := blockdiag(∆R, δ). This fact can be simplified via
a nonsingular transformation:

det(I − M̃R∆̃R) = 0 ⇔ det
([

I 0
iT
k −1

]

(I − M̃R∆̃R)
)

= 0

⇔ det
([

I−MR∆R −δik

iT
k −1

])

= 0

⇔ det
(

I − MR∆R − δikiTk
)

= 0

Thus a small complex perturbation to the (k,k) diago-

Given : MR ∈ C
nR×nR , ∆R ∈ ∆R, lb, ub

Initialize : lbfac = 3/4, cnt = 1
while cnt ≤ Ntry AND lb < ub · tolstop

lbtry = lb + lbfac · (ub − lb)
k := mod (cnt − 1, nR) + 1a

M̃R :=

[

MR ik
iTk MR 1

]

∆R,try := arg max
∆R∈∆R, σ̄(∆R)≤1/lbtry

‖Fu(M̃R,∆R)‖b

if |det(I − MR∆R,try)| < tolreal
c

lb = 1
σ̄(∆R,try)

∆R = ∆R,try

lbfac := 1/2
else

lbfac := max(1/32, lbfac/2)
end

cnt = cnt + 1
end

Table 1: The GBA for Real µ Lower Bounds

amod denotes the modulus after division. Thus, k counts up
from 1 to nR and then rolls back to 1.

bThe algorithm in [18] is used to solve this maximization.
∆R,try need not be the maximizer, i.e. it is sufficient for ∆R,try

to yield a lower bound on the maximal cost.
cThe minimum singular value or inverse condition number can

also be used to check for singularity of I − MR∆R,try .

nal entry of magnitude ≤ 1/γlarge will cause I − MR∆R

to become singular. The complex perturbation can be
interpreted as a regularization to the problem and the al-
gorithm attempts to minimize the amount of complexity
needed to achieve singularity.

3.2 Mixed µ GBA

Assume M ∈ C
n×n and partition M conformably with

the real and complex blocks of ∆, M :=
[

MR MRC

MCR MC

]

where MR ∈ C
nR×nR and MC ∈ C

nC×nC . In this section
we address the problem of computing lower bounds for
the mixed µ problem µ∆(M). The GBA for mixed µ
problems is presented in Table 2. The GBA makes up
to Ntry attempts to find a good lower bound with lbtry

being updated adaptively. For mixed-µ problems, the
power iteration may not converge but it always returns a
perturbation which causes det(I − M∆) = 0. It is worth
the computational effort to run the power iteration first
and use the lower bound and perturbation it returns to
initialize lb and ∆ ∈ ∆ in the GBA for mixed µ problems.

For each attempt of the GBA, the related worst-case
gain problem (Figure 2) is used to compute the real
block of the perturbation. If the real block alone causes
singularity then it is used to compute a valid lower
bound. We can always use the complex blocks to en-
sure det(I −M∆) = 0 within numerical tolerance. Hence



Given : M :=
[

MR MRC

MCR MC

]

∈ C
n×n, ∆ ∈ ∆, lb, ub

Initialize : lbfac = 3/4, cnt = 1
while cnt ≤ Ntry AND lb < ub · tolstop

lbtry = lb + lbfac · (ub − lb)
k := mod (cnt − 1, nR) + 1

M̃R :=

[

MR ik
iTk MR 1

]

∆R,try := arg max
∆R∈∆R, σ̄(∆R)≤1/lbtry

‖Fu(M̃R,∆R)‖

if |det(I − MR∆R,try)| < tolcomplex

lb = 1
σ̄(∆R,try)

∆ = blockdiag(∆R,try, 0)
lbfac := 1/2

else

M̃C := Fu(M,∆R)

Power Iteration on M̃C to find ∆C,try ∈ ∆C
a

∆try := blockdiag(∆R,try,∆C,try)
if |det(I − M∆try)| < tolcomplex AND 1

σ̄(∆try) ≥ lb

lb = 1
σ̄(∆try)

∆ = ∆try

lbfac := 1/2
else

lbfac := max(1/32, lbfac/2)
end

end

cnt = cnt + 1
end

Table 2: The GBA for Mixed µ Lower Bounds

aSee [19, 20] for the details on the power iteration.

we can set tolcomplex to be a small factor above numer-
ical tolerance, e.g. 100∗eps. The main point is that
the mixed µ GBA, unlike the real-µ GBA presented in
the previous section, returns perturbations which strictly
cause det(I − M∆) = 0 within numerical errors.

If the real block does not cause singularity, then it is
wrapped into M to form M̃C . The standard power itera-
tion [19, 20] is run on M̃C to compute the complex block,
∆C ∈ ∆C . A perturbation, ∆ ∈ ∆, is then formed
from the real/complex blocks and stored if it increases
the current lower bound. Even though lbtry is chosen
to be strictly larger than the current lower bound, the
perturbation ∆ might not increase the lower bound. In
particular, if the norm of the complex block is too large
(σ̄ (∆C) > 1/lb), then the perturbation will not improve
the lower bound. It seems that the adaptive selection of
lbtry naturally balances the norms of the real and com-
plex blocks. If lbtry is too large, then we will be overly
restricting our search for ∆R. As a result the gain of
Fu(MR,∆R) may not be very large and hence it will take
a larger norm complex block to make the loop singular.
If this larger norm complex block causes ∆ to achieve a

lower bound less than lbtry then lbtry will be decreased
on the next iteration. The performance of the mixed µ
GBA is discussed in the next section.

4 Numerical Results

4.1 Real µ GBA

This section gives an example of the GBA performance

on a Real µ problem. Let MR(s) :=

[

A B
C D

]

where the

state matrices are given in Appendix A. This data is from
a flight control robustness analysis done at the Honeywell
Labs. Consider a block structure consisting of four 1x1
real uncertainties (r = 4 and k1 = k2 = k3 = k4 = 1).
MR(s) was evaluated at 500 frequency points logarith-
mically spaced between 10 and 1e8 rad/sec. Figure 3
shows the lower and upper bounds computed with the
GBA and LMI method, respectively. The GBA param-
eters were specified as: Ntry = 30, tolstop = 0.97, and
tolreal = 1e − 7. Also, we stopped the worst-case algo-
rithm if it found a perturbation causing the gain from d to
e to exceed 1e12. The total time to compute upper/lower
bounds at all 500 frequency points was 82.3 seconds on a
2GHz processor. The GBA accounted for roughly 65 sec-
onds of this total time. We plugged the perturbations re-
turned by the GBA into Fu(MR(s),∆R) and they all gave
|det(I−MR(jωk)∆k)| < tolreal = 1e−7. Most (477 out of
500 points) gave a determinant less than 1e-10. The worst
case lower bound is 1.61 achieved at a frequency ωk =
177.2 rad/sec. The perturbation returned by the GBA
at this frequency is ∆R = diag(−.358, .620,−.621, .621).
This perturbation places two poles of Fu(MR(s),∆R) at
−5.63e−9±177.2j. For comparison, it took 55.3 seconds
to compute the LMI upper bound and the lower bound
from the standard power iteration. The power iteration
took roughly 33 seconds of this total time but the iter-
ation converged on only 6 out of 500 frequency points.
We have also tried the GBA on real µ examples in the
literature as well as randomly generated matrices and it
seems to have good convergence properties.

4.2 Mixed µ GBA

The performance of the standard power iteration (SPI)
is satisfactory on most randomly generated matrices so it
is common to test lower bound algorithms on a class of
“hard” mixed µ problems for which it is known a priori
that µ = 1. The algorithm for generating these “hard”
problems is described in [25, 29].

We tested the GBA on this class of problems with a
block structure consisting of r 1x1 real uncertainties, two
1x1 complex uncertainties, and a single 2x2 complex full
block. This block structure was also used to test lower
bound algorithms in [15, 24]. Figure 4 shows the dis-
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tribution of the GBA lower bounds on 500 problems for
Ntry = 25 with the number of real uncertainties growing
from 2 to 12. The distribution of lower bounds from the
SPI is also shown for the case of two and twelve real un-
certainties. The performance of the GBA is much better
than the SPI and it degrades gracefully as a function r.
These results are also comparable to the Combined Power
Algorithm presented in [15]. The GBA yields bounds be-
tween 0.8 and 0.95 more often than the Combined Power
Algorithm, i.e. it yields both very poor and very good
bounds less often than the Combined Power Algorithm.
The GBA lower bounds can be improved at the expense of
additional computation by increasing either the number
of tries (Ntry) and/or the stop tolerance (tolstop).

Figure 5 shows the increase in computation time for
the GBA as a function of the number of real blocks aver-
aged over 100 problems. There is some overhead for small
problems, but the curve is basically a straight line on the
log-log plot for r ≥ 20. This implies that the computa-
tional cost grows polynomially with the number of real
blocks for this block structure.
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Figure 5: Computation Time for Gain-Based Algorithm

5 Conclusions

We presented a new lower bound algorithm for real and
mixed µ problems. The algorithm uses a related worst-
case gain problem to compute the real blocks and, for
mixed µ problems, uses the standard power iteration to
compute the complex blocks. Initial numerical tests indi-
cate that this algorithm is fast and provides good bounds.
The algorithm could be modified by incorporating branch
and bound methods. The algorithm could also use exact
real µ methods for small problems and switch over to the
worst-case gain search for larger problems.

A Data for Real µ Example

A(1 : 8, 1 : 4) :=











−6.61e7 701.1 −23.66 −0.4465
6.695e8 −2.174e5 0 0
3.595e7 2.963e4 −1000 0
3.595e7 2.963e4 −1000 −18.87
3.595e7 2.963e4 −1000 −18.87
4451 3.669 −0.1238 −0.002336
44.51 0.03669 −0.001238 −2.336e−5

8.506e5 701.1 −23.66 −0.4465











A(1 : 8, 5 : 8) :=









4.507e6 4.563e8 −8.494e11 −1e4
0 0 0 0
0 0 0 0
0 0 0 0

−9.524e6 0 0 0
2.358e4 −2.388e4 0 0
235.8 2.388e4 −2.222e7 0

4.507e6 4.563e8 −8.494e11 −1e4









B :=









−0.02366 −0.02366 −1 0.4969
0 0 0 0
−1 0 0 0
−1 −1 0 0
−1 −1 0 0

−0.0001238 −0.0001238 0 0.0026
−1.238e−6 −1.238e−6 0 2.6e−5
−0.02366 −0.02366 −1 0.4969









C :=

[

0 0 1000 0 0 0 0 0
0 0 0 18.87 0 0 0 0
0 0 0 0 0 0 0 1e4

1.712e6 1411 −47.62 −0.8985 9.07e6 0 0 0

]

D :=

[

1 0 0 0
0 1 0 0
0 0 1 0

−0.04762 −0.04762 0 0

]
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