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Abstract

We present an approach to uncertainty propagation in dynamic systems, exploiting information provided by related

experimental results along with their models. The approach relies on a solution mapping technique to approximate

mathematical models by polynomial surrogate models. We use these surrogate models to formulate prediction bounds

in terms of polynomial optimizations. Recent results on polynomial optimizations are then applied to solve the

prediction problem. Two examples which illustrate the key aspects of the proposed algorithm are given. The proposed

algorithm offers a framework for collaborative data processing among researchers.

Index Terms

Model Validation, Prediction, Sums-of-Squares Polynomials.

I. INTRODUCTION

The goal of many scientific fields is to understand a complex physical process. A common mode of investigation is

for individual researchers to study semi-isolated aspects of this complicated process. The community then faces the

problem of systematically combining data from many researchers. Optimization techniques for this data processing

problem will be discussed in this paper.

In our previous work [1], [2], we addressed the data processing problem in the context of a “real-world” example:

chemical kinetics of pollutant formation in combustion of natural gas. This example was drawn from the latest

GRI-Mech release [3] which includes a process model consisting of 325 reversible reactions among 53 chemical

species, trained on 77 well-documented and expert-evaluated experimental observations. Each experimental result,

when coupled with a model, implicitly contains information that could reduce the uncertainty in the process model

(e.g., uncertainty in some of the thermochemical parameters). The extent of reduction depends on the specific data

processing method. We introduced a collaborative data processing algorithm and used the GRI-Mech dataset to

compare it to alternative forms of data processing. We concluded that the proposed collaborative algorithm extracts

more information from experimental data and prevents false “controversies” from arising between researchers.

This paper generalizes the algorithm presented in our previous work and provides full details on the numerical

aspects of this algorithm. This algorithm can be used to predict the range of possible outcomes of a modeled

physical process, knowing to some accuracy the outcomes of several related, but different processes. We take a

deterministic approach to prediction that only requires knowledge of an upper bound on the experimental error.

The paper has the following outline. In the next section, we formulate the model validation and prediction prob-

lems. In Section III, we use a solution mapping technique to approximate the mathematical models by polynomial

surrogate models. We use these surrogate models to recast the problems as polynomial optimizations. Recent results

on polynomial optimizations [4]–[6] are discussed in Section IV and then applied to the collaborative data processing

problem. Two examples of the proposed algorithm are given in Section VI.
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II. FORMULATION OF THE MODEL VALIDATION AND PREDICTION PROBLEMS

In this section, we describe a mathematical formalism for model validation and prediction using experimental

data. First, we introduce some basic terminology concerning models and experimental data. Then we pose the

validation and prediction problems within a deterministic framework.

Let P denote a physical process and Y a variable of interest related to this process. An experiment, denoted E,

is a realization of P where y, the value of Y , is measured with some uncertainty. Associated with each experiment

is a dataset unit, (d, u, M), which consists of the measured value, reported uncertainty, and a mathematical model.

The reported uncertainty, u ∈ R, is a hard bound on the experimental error, so the measured value d and actual

value y are related by |d−y| ≤ u. In addition to d and u, an unambiguous description of the experiment is necessary

to complete the analysis. In our work this takes the form of a mathematical model of the process. This function,

M : R
n → R, models the influence of the parameter vector, x ∈ R

n, on the variable of interest Y .

In most practical problems, we have prior information concerning the parameter vector. For example, we may

know that a particular parameter, based on physical considerations, must be positive. We define the prior information

to be a set, H ⊂ R
n, known to contain all meaningful values of the parameter vector. We make the mild assumption

that the prior information can be specified by a set of c polynomial inequalities: H .= {x ∈ R
n : gk(x) ≤ 0, 1 ≤

k ≤ c}, e.g., the prior information −1 ≤ x1 ≤ 1 and x2 ≤ x1 written as −1 − x1 ≤ 0, x1 − 1 ≤ 0, x2 − x1 ≤ 0.

Each x ∈ H yields a possible outcome for the quantity of interest Y , namely M(x). If |M(x)− d| ≤ u then the

outcome, uncertainty and model (i.e., the dataset unit) are consistent at x. On the other hand, if |M(x)−d| > u then

the dataset unit is inconsistent at x. The model validation problem is to determine if a single parameter vector can

make a set of dataset units consistent. Two key assumptions are made in the proposed approach. First, the physical

processes have models with known structure, i.e. all the uncertainty lies in the values of a finite set of parameters.

Second, the models are interrelated through their dependence on a common set of uncertain parameters.

Problem 1 (Model Validation): Let {Pk}m
k=1 denote physical processes, {Ek}m

k=1 the associated experiments,

and {(dk, uk, Mk)}m
k=1 the dataset units. Assume that the mathematical models, {Mk}m

k=1, are all defined on the

common domain, H. The model validation problem is to find x̄ ∈ H such that |M k(x̄) − dk| ≤ uk for all k, or

prove that no such vector exists.

The set of parameter vectors that are consistent with all of the current information is defined as F .= ∩m
k=1{x ∈

H : |Mk(x)−dk| ≤ uk}. Each set in the intersection represents the parameters that are consistent with one dataset

unit. The model validation problem is just a feasibility problem: Find x̄ ∈ F or prove F = ∅. Therefore F is

referred to as the feasible set of parameters. If F = ∅, then an inconsistency exists among the available information.

However, the existence of x̄ ∈ F provides some confidence in the fidelity of the models/data. We can then use the

available experimental results to make a prediction about an arbitrary process P 0, for which no measured outcome

exists. We refer to P0 as the predicted process and denote its quantity of interest and mathematical model by y 0

and M0, respectively. Any x ∈ F is consistent with all the current information and hence it yields a meaningful
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prediction, M0(x). The prediction problem posed below is to find the range of possible outcomes of the predicted

process that are consistent with all available information.

Problem 2 (Prediction): The prediction problem is to find the range of possible outcomes of the predicted process:

R
.= [L, U ] where:

L
.= min

x∈F
M0(x), U

.= max
x∈F

M0(x). (1)

In the next section, we make the validation and prediction problems more concrete, and address issues involving

approximation and nonconvexity.

III. AN APPROACH TO SOLVE THE VALIDATION AND PREDICTION PROBLEMS

Our approach to the validation and prediction problem involves two steps. First, we create polynomial approxi-

mations to the actual models. Then we use these polynomial approximations to ascertain emptiness and/or compute

bounds on L and U . The polynomial approximations reduce the cost in evaluating the mathematical models and

we can exploit the algebraic properties of polynomials to formulate convex relaxations.

A. Solution Mapping

We use a solution mapping technique [7]–[9] to approximate a mathematical model with a polynomial. As a brief

explanation of this technique, consider a mathematical model, y = M(x), specified by a parametrized differential

equation model, parametrized initial conditions, and an output functional:

ż(t) = f(t, z(t), x), z(0) = Φ(x)

y = h(z)

Here, z is the state vector, t is time, and x is a parameter vector, taking values in a known set H, which parametrizes

the differential equations model and/or the initial conditions. f and Φ are known functions. h is a known functional

evaluated on the state trajectory, (e.g. the value of a state at a given time; the peak value of a given state; the peak

location, tpeak of a certain state). In general, such equations do not possess a closed-form solution (i.e., y as a

function of x, which we denoted y = M(x)). The essence of the solution mapping technique is twofold: over H,

determine which subset of parameters in x have measurable influence on M(x), referred to as the active parameters,

and again over H, approximate M by a simple algebraic expression depending only on these parameters.

Usually, the active parameters are a small subset of the model parameters. Only these parameters need to be

considered in the analysis since M has extremely low sensitivity to the remaining (nonactive) parameters. The active

parameters are identified by ranking the absolute values of response sensitivities computed from a modest number of

simulation runs. While the cut-off criterion is somewhat arbitrary in nature, past experience in methane combustion

chemistry reaction modeling [10] indicates that taking the top-ranking 9 to 13 variables for each response is more

than sufficient for accurate representation of an individual response.
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The approximating functions for the responses are then obtained using the general methodology of the response

surface technique [11], [12]. A relatively small number of computer simulations, referred to as computer experiments,

are performed at combinations of pre-selected active parameter values and the entire set of these combinations is

called a design of computer experiments. The computer experiments are performed using the mathematical model,

M(x). Finally, a simple function is selected from a prespecified class of functions (e.g., linear, quadratic, exponential)

to closely approximate M . The function obtained in this manner is referred to as a surrogate model, denoted S(x).

Once developed, the surrogate model replaces the solution of the original dynamic model whenever evaluation of

the latter is required, decreasing the computational cost of evaluating the objective function by orders of magnitude.

The approximating functions for the responses are then obtained using the general methodology of the response

surface technique [11], [12]. A relatively small number of computer simulations, referred to as computer experiments,

are performed at pre-selected combinations of the active parameter values and the entire set of these combinations

is called a design of computer experiments. The computer experiments are performed using the complete dynamic

model (i.e., M(x)). Finally, a simple function, chosen from a prespecified class of functions (e.g., linear, quadratic,

exponential), is used to closely approximate the responses. The function obtained in this manner is referred to as a

surrogate model, denoted S(x). Once developed, the surrogate model replaces the solution of the original dynamic

model whenever evaluation of the latter is required, decreasing the computational cost of evaluating the objective

function by orders of magnitude.

While there is, in principle, no restriction on the mathematical form of the surrogate model, we will make extensive

use of low order polynomial surrogate models, whose coefficients are determined via computer experiments arranged

in a special order, called a factorial design. These designs originate from a rigorous analysis of variance, with the

objective of minimizing the number of computer experiments to be performed to gain the required information.

The error of the surrogate model is controlled by the size of H, the domain over which the surrogate model should

approximate M , and the chosen polynomial order. The polynomial fit of the response surface is more accurate for

smaller parameter domains and/or larger polynomial degree. In the following, we assume that an upper bound

on the surrogate modeling error is known: for each k, there exists e k such that maxx∈H |Mk(x) − Sk(x)| ≤ ek.

In practice, it is not possible to know such a bound with certainty. However, this bound can be approximated

by sampling the parameter space and measuring the error between the mathematical model and surrogate model.

Sampling and statistical assumptions can give some estimates of the error bounds.

B. Bounds for the Validation Problem

The surrogate models can be used to obtain bounds for the validation and prediction problems. Define two

approximations of the feasible set using the surrogate models:

FI
.= {x ∈ H : |Sk(x) − dk| ≤ uk − ek ∀k}

FO
.= {x ∈ H : |Sk(x) − dk| ≤ uk + ek ∀k}
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The subscripts emphasize inner and outer approximations, F I ⊆ F ⊆ FO, which can be easily verified. Since H
is described by c polynomial inequalities, both FI and FO are sets described by 2m + c polynomial inequalities.

The model validation problem is to find x̄ ∈ F or prove F = ∅. In the next section, we describe a sufficient

condition to prove that a set described by polynomial inequalities is empty. We use this condition to try to prove that

FO is empty. The containment F ⊆ FO, ensures that F = ∅ would follow from FO = ∅. Verifying the condition

can be done with modest computational cost. In the model validation problem, if F = ∅, there is an inconsistency

among all dataset units. On the other hand, in order to not invalidate, a constrained nonlinear optimization routine

can be used to search for x̄ in FI . The containment FI ⊆ F ensures that x̄ ∈ FI implies x̄ ∈ F .

C. Bounds for the Prediction Problem

The prediction problem is to compute

L
.= min

x∈F
M0(x), U

.= max
x∈F

M0(x) (2)

Figure 1 summarizes our approach. We compute four numbers (L O, LI , UI , UO) which bound (L, U): LO ≤ L ≤ LI

and UI ≤ U ≤ UO. The bounds with subscript I are referred to as inner bounds because they yield an inner

approximation to the prediction interval. Similarly, the bounds with subscript O are referred to as outer bounds. If

the inner and outer bounds are close, then we have approximately solved the original prediction problem.

Inner Bounds:
Constrained Nonlinear Optimization

Outer Bounds:
Convex Relaxations for Polynomial Optimizations

LI UI

LO UO

L U

Fig. 1. A summary of the approach to the prediction problem.

The surrogate models, and their error bounds, along with the inner and outer bounds to F naturally lead to

optimization expressions that bound L (and in an analogous manner, U ). We have

min
x∈FO

(S0(x) − e0) ≤ min
x∈F

M0(x)︸ ︷︷ ︸
L

≤ min
x∈FI

(S0(x) + e0) (3)

which follows from FI ⊆ F ⊆ FO and the bound on the surrogate modeling error.

Using this, LI is simply “defined” as the result obtained using nonlinear minimization on the function S 0(x)+e0

constrained to x ∈ FI . Even if the optimization routine fails to find a global minimizer, the result is still a valid upper
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bound on L. We obtain the outer bound LO in a more subtle manner explicitly relying on the polynomial objective

and constraints. Recall that the function S0 is polynomial, and the set FO is described by polynomial inequalities. In

the next section, we describe a convex relaxation that yields global lower bounds on such polynomial minimization

problems. This technique is used to compute a number LO which satisfies LO ≤ minx∈FO(S0(x) − e0).

IV. CONVEX RELAXATIONS FOR POLYNOMIAL OPTIMIZATIONS

In this section we discuss computational methods for polynomial optimizations. Let {p k}r
k=0 be a collection of

polynomials. In what follows, p0 is an objective function, and p1, . . . , pk describe constraints. Define P .= {x ∈
R

n : pk(x) ≤ 0, k = 1, . . . , r}. Throughout this section, we focus on the following problems:

Feasibility: Attempt to prove P = ∅. (4)

Optimization: Find L such that min
x∈P

p0(x) ≥ L. (5)

The approach presented in this section relies heavily on connections between semidefinite programming and

polynomial optimizations [4]–[6]. After presenting some background material, we restrict {p k}r
k=0 to be quadratic

functions and discuss a well-known technique for the feasibility and optimization problems. Then we generalize

this technique to handle polynomials of any degree.

A. Background

1) Polynomial Notation: N denotes the set of nonnegative integers, {0, 1, . . .}, and N
n is the set of n-dimensional

vectors with entries in N. For α ∈ N
n, a monomial in variables {x1, . . . , xn} is given by xα .= xα1

1 xα2
2 · · ·xαn

n .

The degree of a monomial is defined as deg xα .=
∑n

i=1 αi. A polynomial in variables {x1, . . . , xn} is a finite

linear combination of monomials:

p
.=

∑
α∈A

cαxα =
∑
α∈A

cαxα1
1 xα2

2 · · ·xαn
n (6)

where cα ∈ R and A is a finite collection of vectors in N
n. Using the definition of deg for a monomial, the degree

of p is defined as deg p
.= maxα∈A [deg xα]. The set of all polynomials in variables {x1, . . . , xn} with real

coefficients is denoted R[x1, . . . , xn]. Unless specified otherwise, a polynomial is assumed to be in R[x1, . . . , xn].

A distinction is typically made between the polynomial as an object in R[x 1, . . . , xn] and the associated function

from R
n to R. The only relevant point to this distinction is that if p is a polynomial in R[x 1, . . . , xn], then p(x0)

will denote the polynomial function evaluated at a specific point x 0 ∈ R
n.

2) Semidefinite Programming: This brief review of semidefinite programming (SDP) is based on a survey by

Vandenberghe and Boyd [13] and a monograph by Boyd, et al. [14]. A symmetric matrix F ∈ R
n×n is positive

semidefinite if xT Fx ≥ 0 for all x ∈ R
n. Positive semidefinite matrices are denoted by F 
 0. A semidefinite

program is an optimization problem of the following form:

minλ cT λ

subject to: F0 +
∑r

k=1 λkFk 
 0
(7)
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The symmetric matrices F0, . . . , Fr ∈ R
n×n and the vector c ∈ R

r are given data. The vector λ ∈ R
r is the decision

variable and the constraint, F0 +
∑r

k=1 λkFk 
 0, is called a linear matrix inequality. We refer to Equation 7 as

the primal problem. The dual associated with this primal problem is:

maxZ −Tr [F0Z]

subject to: Tr [FkZ] = ck k = 1, . . . , r

Z 
 0

(8)

where Z = ZT ∈ R
n×n is the decision variable for the dual problem. Tr [·] denotes the trace of a matrix. This

dual problem can be recast in the form of Equation 7 and thus it is also a semidefinite program. While the primal

and dual forms may look restrictive, these formulations are quite versatile and SDPs find applications in many

problems of interest. Moreover, SDPs are convex and quality software exists to solve these problems. In particular,

SeDuMi [15] is a freely available MATLAB toolbox that simultaneously solves the primal and/or dual forms of a

semidefinite program.

In some cases, our only goal is to find a decision variable that satisfies the constraints. These are semidefinite

programming feasibility problems. The following is an example:

Find λ1, . . . , λr ∈ R such that F0 +
r∑

k=1

λkFk 
 0 (9)

B. Relaxations for Quadratic Optimizations

If all {pk}r
k=0 are affine, then the feasibility and optimization problems (Equations 4 and 5) are linear programs. A

natural, nontrivial, and useful extension is to consider quadratic surrogate models. Consider the case where {p k}r
k=0

are all quadratic functions. For any quadratic function p in n real variables, there is a unique symmetric matrix

F ∈ R
(1+n)×(1+n) such that p(x) = [ 1

x ]T F [ 1
x ] for all x. Let R+ denote the set of nonnegative real numbers. The

following theorem, a simple consequence of the S-procedure [14], gives deceptively simple conditions that can be

applied to the quadratic feasibility and optimization problems:

Theorem 1: Assume pk(x) .= [ 1
x ]T Fk [ 1

x ] where F T
k = Fk ∈ R

(1+n)×(1+n) (k = 0, . . . , r). Define P .= {x ∈
R

n : pk(x) ≤ 0, k = 1, . . . , r}.

(A) If there exists {λk}r
k=1 ∈ R+ such that −I +

∑r
k=1 λkFk 
 0 then P = ∅.

(B) If there exists {λk}r
k=1 ∈ R+ such that F0 −

[
γ 0
0 0n

]
+

∑r
k=1 λkFk 
 0 then minx∈P p0(x) ≥ γ.

Proof:

(A): If there exists x̄ ∈ P , then we obtain a immediate contradiction:

0
(a)

≤ [ 1
x̄ ]T

[
−I +

r∑
k=1

λkFk

]
[ 1
x̄ ] = −1 − x̄T x̄ +

r∑
k=1

λk [ 1
x̄ ]T Fk [ 1

x̄ ]
(b)
< 0

Inequality (a) follows because −I +
∑r

k=1 λkFk 
 0. Inequality (b) follows because x̄ ∈ P and each λk ≥ 0.

(B): For any x̄ ∈ P ,

0 ≤ [ 1
x̄ ]T

[
F0 −

[
γ 0
0 0n

]
+

r∑
k=1

λkFk

]
[ 1
x̄ ] ≤ [ 1

x̄ ]T F0 [ 1
x̄ ] − γ (10)
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Since Equation 10 holds for all x̄ ∈ P , we conclude that minx∈P p0(x) ≥ γ.

Conditions (A) and (B) in Theorem 1 are applications of the S-procedure [14]. The use of the S-procedure in

control theory dates back to Lur’e and Postnikov in the 1940’s (see [14] for a brief historical account). The

nonnegative scalars, {λk}r
k=1, are often referred to as multipliers. The two conditions in Theorem 1 can be

implemented and efficiently solved as SDPs. In (A), the search for λk ≥ 0 such that −I +
∑r

k=1 λkFk 
 0

can be placed in the form of an SDP feasibility problem (Equation 9). 1 Similarly, condition (B) yields a lower

bound on quadratic optimizations and we can find the “best” lower bound by solving an SDP:

min
x∈P

p0(x) ≥ max
λk∈R+,γ

γ

subject to: F0 − γ
[

1 0
0 0n

]
+

r∑
k=1

λkFk 
 0
(11)

The lower bound has a useful statistical interpretation [13], [16]. The dual of the SDP in Equation 11 is:

min
Σ,x̄

Tr
[
F0

[
1 x̄T

x̄ Σ

]]

subject to:


 Tr

[
Fk

[
1 x̄T

x̄ Σ

]] ≤ 0 k = 1, . . . , r[
1 x̄T

x̄ Σ

] 
 0

(12)

Under weak technical conditions, strong duality holds and the two SDPs yield the same lower bound. We can

reinterpret the dual SDP by introducing a random variable X of dimension n×1 with E [X ] = x̄ and E
[
XXT

]
= Σ.

Since Tr
[
Fk

[
1 x̄T

x̄ Σ

]]
= E

[
[ 1
X ]T Fk [ 1

X ]
]
, Equation 12 is equivalent to:

min
X

E
[
[ 1
X ]T F0 [ 1

X ]
]

s.t. :


 E

[
[ 1
X ]T Fk [ 1

X ]
]
≤ 0 k = 1, . . . , r

X is a rand. var. with E [X ] = x̄, E
[
XXT

]
= Σ

(13)

The constraint
[

1 x̄T

x̄ Σ

] 
 0 can be dropped because it is satisfied by all random variables. The optimization in

Equation 13 is similar to minx∈P p0(x) except that we search for a random variable rather than a specific vector

and the constraints are only required to be satisfied in expected value. Let (x̄ 0, Σ0) denote the optimal values found

in the dual SDP. In our experience, vectors drawn from a Gaussian distribution with mean x̄ 0 and second moment

Σ0 can provide good initial conditions to start the nonlinear optimization for computing an upper bound.

C. Relaxations for Polynomial Optimizations

In this section, we return to the general case where {pk}r
k=0 is a collection of polynomials which are not

necessarily quadratic. One additional concept is needed to generalize the S-procedure. A polynomial p is a sum of

squares (SOS) if there exist polynomials {fi}m
i=1 such that p =

∑m
i=1 f2

i . We note that if p is a sum of squares then

1There is one detail to place this problem in the form of Equation 9. A single LMI constraint is obtained by diagonally augmenting the

additional constraints, λk ≥ 0, to the main semidefiniteness constraint, −I +
∑r

k=1 λkFk � 0 [13].
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p(x) ≥ 0 ∀x ∈ R
n. In general, the existence of a sum of squares decomposition is sufficient but not necessary for

global nonnegativity. This is related to a famous problem in mathematics, first posed by Hilbert in 1900 [17]. Let

S denote the set of SOS polynomials, i.e. write p ∈ S if p is a sum of squares. The restriction of S to polynomials

of degree ≤ d is denoted Sd. The following theorem generalizes the the results in Theorem 1:

Theorem 2: Assume {pk}r
k=0 are polynomials and define P .= {x ∈ R

n : pk(x) ≤ 0, k = 1, . . . , r}.

(A) If there exists {λk}r
k=1 ∈ S such that −1 +

∑r
k=1 λkpk ∈ S then P = ∅.

(B) If there exists {λk}r
k=1 ∈ S such that p0 − γ +

∑r
k=1 λkpk ∈ S then minx∈P p0(x) ≥ γ.

The proof of this theorem essentially involves notational changes to the proof of Theorem 1 and hence it is

omitted. The multipliers, {λk}r
k=1, are now polynomials which are constrained to be sums of squares. In principle,

conditions (A) and (B) in Theorem 2 can be directly applied to the feasibility and optimization problems (Equations 4

and 5). For example, if we restrict the multipliers to have degree ≤ d, then the analogue of Equation 11 is:

min
x∈P

p0(x) ≥ max
λk∈Sd,γ

γ

subject to: p0 − γ +
r∑

k=1

λkpk ∈ S
(14)

The maximization on the right involves the search for polynomial multipliers subject to various SOS constraints.

This type of problem is called an SOS optimization [18]. The decision variables in the SOS optimization are γ

and the coefficients of the multipliers. Since a polynomial with n variables and degree d has
(

n+d
d

)
terms, there

are r
(

n+d
d

)
+ 1 decision variables. The only issue at this point is to write the SOS constraints in a meaningful

form. This is done by exploiting ties between SOS polynomials and semidefinite matrices. In the remainder of

this section, we review the elementary aspects of recent work by Parrilo [4], [5] that can be used to implement

conditions (A) and (B) as SDPs. Connections to algebraic geometry are omitted in this review. For instance, if

some additional technical conditions are satisfied and we search for multipliers of arbitrary degree, then the ≥ in

Equation 14 can be strengthened to = by applying Putinar’s theorem (Lemma 4.1 in [19]).

Theorem 3 below gives a concrete statement of the ties between sums of squares and positive semidefinite

matrices. We require two facts that follow from Theorem 1 and its preceding Lemma in [20]:

1) If p is a sum of squares then p must have even degree.

2) If p is degree 2d (d ∈ N) and p =
∑m

i=1 f2
i then deg fi ≤ d ∀i.

Next, we define z as the column vector of all monomials in variables {x 1, . . . , xn} of degree ≤ d: 2

z
.=

[
1, x1, x2, . . . , xn, x2

1, x1x2, . . . , x2
n, . . . , xd

n

]T

(15)

There are
(

k+n−1
k

)
monomials in n variables of degree k. Thus z is a column vector of length l z

.=
∑d

k=0

(
k+n−1

k

)
=(

n+d
d

)
. If f is a polynomial in n variables with degree ≤ d, then f is a finite linear combination of monomials of

2Any ordering of the monomials can be used to form z. In Equation 15, xα precedes xβ in the definition of z if:

deg xα < deg xβ or deg xα = deg xβ and the first nonzero entry of α − β is > 0
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degree ≤ d. Consequently, there exists a ∈ R
lz such that f = aT z. The proof of the following theorem, introduced

as a “Gram Matrix” method by Choi, Lam, and Reznick [21], is enlightening and is included for completeness.

This result can be found more recently in [22].

Theorem 3: Suppose p ∈ R[x1, . . . , xn] is a polynomial of degree 2d and z is the lz × 1 vector of monomials

defined above. Then p is a SOS if and only if there exists a symmetric matrix Q ∈ R
lz×lz such that Q 
 0 and

p = zT Qz.

Proof:

(⇒) If p is a SOS, then there exists polynomials {fi}m
i=1 such that p =

∑m
i=1 f2

i . As noted above, deg fi ≤ d

for all i. Thus, for each fi there exists a vector, ai ∈ R
lz , such that fi = aT

i z. Define the matrix, A ∈ R
lz×m,

whose ith column is ai and define Q
.= AAT 
 0. Then p = zT Qz.

(⇐) Assume there exists Q = QT ∈ R
lz×lz such that Q 
 0 and p = zT Qz. Define m

.= rank(Q). There

exists a matrix A ∈ R
lz×m such that Q = AAT . Let ai denote the ith column of A and define the polynomials

fi
.= zT ai. By definition of fi, p = zT (AAT )z =

∑m
i=1 f2

i .

Theorem 3 provides the bridge to convert an SOS optimization, such as the maximization in Equation 14, into

an SDP. For example, the constraint p0 − γ +
∑r

k=1 λkpk ∈ S can be equivalently written as:

p0 − γ +
r∑

k=1

λkpk = zT Qz (16)

Q 
 0 (17)

Q is a new matrix of decision variables that is introduced when we convert an SOS constraint to an LMI constraint.

Equating the coefficients of zT Qz and p0 − γ +
∑r

k=1 λkpk imposes linear equality constraints on the decision

variables. Thus, Equation 16 can be rewritten as a set of linear equality constraints on the decision variables. All

SOS constraints in Equation 14 can be replaced in this fashion with linear equality constraints and LMI constraints.

As a result, the maximization in Equation 14 can be written in the SDP dual form (Equation 8). While this may

appear cumbersome, it is elementary, and software can perform the conversion. For example, SOSTOOLS [18]

is a freely available MATLAB toolbox for solving SOS optimizations. Currently, this package allows the user

to specify the polynomial constraints using a symbolic toolbox. SOSTOOLS then converts the SOS optimization

into an SDP which is then solved with SeDuMi [15]. SOSTOOLS then converts the solution of the SDP back to

a polynomial solution. A drawback is that the size of the resulting SDP grows rapidly if the SOS optimization

involves polynomials with many variables and/or high degree. While various techniques can be used to exploit the

problem structure [23], this computational growth is a generic trend in SOS optimizations.

V. COMPUTATIONAL ASPECTS OF THE VALIDATION/PREDICTION PROBLEMS

In this section, we apply the results of the previous sections to the validation and predictions problems. First

consider model validation: find x̄ ∈ F or prove F is empty. The inner and outer approximations, F I and FO, are
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described by 2m+c polynomial inequalities and satisfy FI ⊆ F ⊆ FO. We use a constrained nonlinear optimization

in an attempt to find x̄ in FI . Alternatively, we apply Theorem 2 in an attempt to prove that FO is empty. Let

{pk}2m+c
k=1 denote the polynomials that describe the outer approximation: FO

.= {x ∈ R
n : pk(x) ≤ 0, k =

1, . . . , 2m+c}. By Theorem 2, if there exists sum of squares polynomials, {λk}2m+c
k=0 , such that −1+

∑2m+c
k=1 λkpk ∈

S then FO is empty. If we restrict the multipliers to have degree ≤ d, then the search for multipliers that prove

P = ∅ can be performed as an SDP feasibility problem. In the special case where FO is described by quadratic

inequalities, and we restrict the multipliers to be nonnegative constants (degree=0), then the conversion to an SDP

feasibility problem is immediate by applying the S-procedure (Theorem 1).

There are three scenarios in which the convex relaxation fails to prove FO = ∅ and the nonlinear optimization

fails to find x̄ ∈ FI , hence no conclusions regarding model validation can be drawn. In each case, there are partial

remedies to resolve the difficulty at the expense of additional computation. One possibility is that F O is not empty,

though F is. In this situation, the approximation of F is the culprit, due to errors in fitting the surrogate models

to the mathematical models. The fitting errors can be reduced by increasing the polynomial degree of the surrogate

models and refitting the mathematical models. A second possibility is that F I is nonempty, but the constrained

nonlinear optimization routine may fail to find x̄ ∈ F I . The only remedy is to restart the feasibility search at a new

initial point(s). Finally, FO may be empty, but the convex relaxation is unable to prove emptyness. A partial remedy

is to increase the degree of the multipliers and re-solve the SDP. The condition in Theorem 2 is only sufficient and

hence we may fail to find multipliers even if we allow the degree to be arbitrarily large. However, Theorem 2 can

be generalized to yield a necessary and sufficient condition. This result, known as the Positivstellensatz, is due to

Stengle [24] and a recent presentation can be found in Section 4 of [5].

Next, we consider the prediction problem: compute R = [L, U ] as defined in (1). As in section III, we focus

on L. The inner bound, L ≤ LI , is found using nonlinear optimization. The outer bound, L d
O (≤ L) is obtained

applying Theorem 2,

Ld
O

.= max
λk∈Sd,γ

γ

subject to: p0 − γ +
2m+c∑
k=1

λkpk ∈ S
(18)

The superscript, d, denotes the restriction on the degree of the multipliers. We now have inner and outer bounds

that satisfy Ld
O ≤ L ≤ LI . If LI and Ld

O are “close”, then we have approximately solved the original minimization

for L. As in the validation problem, there are three reasons these bounds may fail to be close. Remedies are

analogous to those discussed for the validation problem. For example, we can attempt to improve both bounds by

refitting the mathematical models. Alternatively, we can try to reduce the inner bound by restarting the optimization

from a different initial condition. Finally, we can try to improve the outer bound by increasing the degree of the

multipliers from d to d + 1. Since Ld
O ≤ Ld+1

O ≤ L, we have a hierarchy of relaxations to obtain outer bounds.

At the lowest (d = 0) the multipliers are just positive constants and this corresponds to a standard Lagrangian
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relaxation. 3

VI. EXAMPLES

We recently demonstrated the viability of the proposed algorithm on a combustion process involving 77 experi-

ments and 102 active parameters [1], [2]. In this section, we illustrate the steps of the proposed algorithm through

two examples. Due to their simplicity, we can describe and visualize certain aspects of the proposed algorithm.

A. Mass-spring-damper

In this example, we consider a mass-spring-damper system with a unit of force applied to the mass (Figure 2).

The goal is to use a single dataset unit containing an uncertain measurement and model of the integrated error

(IE) to predict the peak velocity (PV). Using the techniques discussed in this paper we will calculate a prediction

interval that contains PV . The constraints imposed by the dataset unit allow us to form a smaller prediction interval

than would be otherwise possible.

m=1

z

f=1
b

k

Fig. 2. A mass-spring-damper system.

The damper applies a force proportional to the velocity of the mass while the spring applies a force proportional

to the position. Thus, Newton’s second law for the mass-spring-damper is:

mẍ = −bẋ − kx + f (19)

The differential equation model is parameterized by the mass m, the spring constant k, and the damping coefficient b.

We assume the m = 1, but k and b are unknown. Therefore the parameter vector x = (b, k) reflects the uncertainty in

the differential equation model. The prior information on this uncertainty is H = {(b, k) : 0.5 ≤ b ≤ 1, 1 ≤ k ≤ 2}.

Information for the experimental and predicted processes is given in Tables I and II. We generated d IE by computing

the integrated error at x = (0.75, 1.5) and then adding an error term randomly selected from [−0.2, 0.2]. The feasible

set for this measurement is F = {x ∈ H : |MIE(x) − dIE | ≤ uIE}. Hereafter, the true system refers to the

parameterized model evaluated at xtrue = (0.75, 1.5). We note that in a real problem, (dIE , uIE) would be obtained

from an experiment.

3If the technical conditions in Putinar’s theorem [19] are satisfied, then these outer bounds converge to the correct answer, LdO →
minx∈FO

(S0(x) − e0), as d → ∞. But since there is still a gap between L and minx∈FO
(S0(x) − e0), this convergence property is

not crucial for the prediction problem.
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Quantity of Interest, IE Integrated Error

z̈(t) + bż(t) + kz(t) = 1

Math. Model, MIE z(0) = 0, ż(0) = 0

IE = lim
T→∞

∫ T
0 |z(s) − z(T )|ds

SIE(
[

b
k

]
) =

Surrogate Model, SIE 8.57 − 6.78b − 4.42k

+2.56b2 + 0.91bk + 0.86k2

Surr. Model Error, eIE 0.082

Meas./Unc., (dIE , uIE) (1.37, 0.20)

TABLE I

MSD EXPERIMENT PROCESS (PIE )

Quantity of Interest, PV Peak Velocity

z̈(t) + bż(t) + kz(t) = 1

Math. Model, MPV z(0) = 0, ż(0) = 0

PV = maxt≥0 |ż(t)|
SPV (

[
b
k

]
) =

Surrogate Model, SPV 1.25 − 0.63b − 0.37k

+0.12b2 + 0.12bk + 0.05k2

Surr. Model Error, ePV 0.004

Meas./Unc., (dPV , uPV ) ———

TABLE II

MSD PREDICTED PROCESS (PPV )

We briefly discuss the computation of the surrogate models. We used a 2 2 composite orthogonal design containing

9 points in the parameter space, {xi}9
i=1 ⊂ H. These points consisted of the 4 corners of H, the midpoints of

the 4 sides of H, and the center of H. At each point in the parameter space, we calculated peak velocity by

evaluating MPV . Specifically, we simulated the mass-spring damper system with the chosen values for the spring

/ damping constants and then computed the maximum velocity obtained during the simulation. We restricted the

surrogate model, SPV , to be a quadratic function and used an unweighted least-squares criterion to determine

the coefficients. The same procedure was used to generate the surrogate model, S IE , for IE. To compute the

surrogate modeling errors we sampled the parameter space at an additional 100 points chosen randomly from H.

The maximum deviation between the mathematical models and the corresponding surrogate models is e PV and

eIE , respectively.

Computing the prediction interval for PV involves specifying four quantities: L O, LI , UI , and UO . We note that

the parameter constraints can be written as quadratic inequalities, e.g. (b − 0.75) 2 ≤ 0.125. Since the surrogate

models are also quadratic the outer bounds were computed by applying Theorem 1(B) and using SeDuMi to solve

the resulting SDP. fmincon, an optimization routine in MATLAB, was used to find the inner bounds.

These computations led to the following bounds: 0.478 ≤ L ≤ 0.504 and 0.583 ≤ U ≤ 0.602. The inner bounds

guarantee that there are parameter values, consistent with all available information which would generate a peak

velocity is as low as 0.504 and as great as 0.583. The outer bounds guarantee that the true peak velocity can be no

less than 0.478 and no greater than 0.602. For comparison, Figure 3 shows the response of the true system. The

solid lines on this figure are the outer bounds found by applying Theorem 1. As expected, the peak velocity of the

true system lies between the outer bounds.

For this simple example, we can also visualize the various sets and models involved in the prediction algorithm

(Figure 4). Figure 4(a) shows that the dataset unit carves a diagonal swath across the parameter space. F I and FO

provide good approximations of F because the surrogate modeling error, e IE , is small. The labeled points lie within
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FI and satisfy MPV (xL) = LI MPV (xU ) = UI . Figure 4(b) shows the surface generated by PV = MPV (x)

∀x ∈ H. The tick marks on the z-axis can be used to compare the prediction bounds (L O, LI , UI , UO) with the

min/max values of PV on H. If we only know that x ∈ H, then it is possible for the true peak velocity to lie

between 0.447 and 0.711. Conceptually, the proposed algorithm uses the dataset unit to constrain the possible

parameter vectors. As a result, the true peak velocity must lie in the gray shaded region on the surface. The

minimum (maximum) value of PV on the gray region of the surface lies between L O and LI (UI and UO).
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Fig. 3. The true peak velocity lies between the outer bounds.
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(a) Parameter Sets: MPV (xL) =

LI and MPV (xU ) = UI .
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0.711

kb
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(b) PV Surface: Lines emanate from surface at heights of LI , UI , and

the min/max values of PV . Tick marks for LO and UO are also shown.

Fig. 4. Visualization of sets and models: The feasible set, F , is shaded gray in both subplots.
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B. Cell Division

We consider the cell division control system in frog eggs [25], [26]. Many biochemical processes occur as a

cell grows and divides into two daughter cells. Two molecules, M-phase promoting factor (MPF) and cyclin, play

a key role during cell division. In this example, we pose a model for the interactions of MPF and cyclin. Two

measurements of MPF are then used to invalidate this model. This example demonstrates the model validation

techniques in a general (i.e. nonquadratic) setting.

A simple model for the interactions of MPF and cyclin is given by [25]:

ż1 =
0.01
1.1

− (
k̄2 + kw

)
z1 +

(
0.04 + 100z2

2

) ( z2

1.1
− z1

)
ż2 = 0.01 − k̄2z2

z1(0) = 0.01, z2(0) = 0.75

(20)

where z1 and z2 represent (non-dimensional) concentrations of MPF and total cyclin, respectively. k w depends on

the concentration of another molecule, Wee1, and it is treated as an input to the system. The only uncertainty lies

in the rate constant, k̄2. The prior information for this parameter is H = { k̄2 : 0.01 ≤ k̄2 ≤ 0.04}.

Measurements of MPF concentration at t = 60 minutes are taken for two values of k w: kw,1 = 3.5 and kw,2 = 6.0.

The information for the two experimental processes is given in Table III. The surrogate models were computed

using data from 5 points in H. Note that cubic surrogate models were required to adequately fit the mathematical

models. The two measurements, d1 and d2, were generated by simulating a true system and then adding an error

term randomly selected from [−5e − 4, 5e − 4]. The true system is obtained by replacing the uncertain constant

k̄2 in Equation 20 with k2(z1)
.= 0.01 + 100z2

1. This function represents a negative feedback in the production of

MPF and appears to more closely model the cell division process.

The model in Equation 20 can be invalidated by using Theorem 2(A) to prove that F O is empty. The outer

approximation of the feasible set is given by FO
.= {x ∈ R : pk(x) ≤ 0, k = 1, . . . , 5} where:

p1(x) = S1(x) − d1 − (u1 + e1) p2(x) = −S1(x) + d1 − (u1 + e1)

p3(x) = S2(x) − d2 − (u2 + e2) p4(x) = −S2(x) + d2 − (u2 + e2)

p5(x) = (x − 0.025)2 − 2.25e−4

Using SOSTOOLS, we found the following multipliers, {λk}5
k=1 ∈ S, such that −1 +

∑5
k=1 λkpk ∈ S:

λ1(x) = 3.60e6x2 − 2.03e5x + 6.08e3 λ2(x) = 1.52e6x2 − 4.23e4x + 4.81e2

λ3(x) = 1.28e6x2 − 3.51e4x + 9.77e2 λ4(x) = 3.37e7x2 − 1.69e6x + 3.59e4

λ5(x) = 1.50e6x2 + 4.71e4x + 3.33e3

By Theorem 2(A), FO is empty and hence F is empty. Thus, the proposed model has been invalidated using the

two dataset units.
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Quantity of Interest, yi MPF after 60 minutes

ż1 = 0.01
1.1

− (
k̄2 + kw,i

)
z1 +

(
0.04 + 100z2

2

) ( z2
1.1

− z1

)
Math. Model, Mi ż2 = 0.01 − k̄2z2

(kw,1 = 3.5, kw,2 = 6.0) z1(0) = 0.01, z2(0) = 0.75

yi = z1(60)

Surrogate Model, Si S1(k̄2) = −1509.1k̄3
2 + 134.0k̄2

2 − 4.0k̄2 + 0.05

S2(k̄2) = −97.0k̄3
2 + 11.0k̄2

2 − 0.48k̄2 + 0.01

Surr. Model Error, ei e1 = 9.02e−4, e2 = 1.93e−5

Meas./Unc., (di, ui) (d1, u1) = (9.8e−3, 5e−4), (d2, u2) = (6.5e−3, 5e−4)

TABLE III

CELL DIVISION: DATASET UNITS (i = 1, 2) GENERATED AT kw,1 = 3.5, kw,2 = 6.0.

VII. CONCLUSIONS

In this paper, we presented a numerical approach for model validation and prediction. The proposed algorithm

relies on a solution mapping technique as well as recent results for polynomial optimizations. We then illustrated the

approach to prediction and validation via two simple examples. We believe that this approach provides a framework

for collaborative data processing among researchers and that it can be successfully applied to other scientific fields.
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