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The current practice to validate flight control laws relies on applying linear analysis

tools to assess the closed loop stability and performance characteristics about many trim

conditions. Nonlinear simulations are then used to provide further confidence in the linear

analyses and also to uncover dynamic characteristics, e.g. limit cycles, which are not

revealed by the linear analysis. This paper reviews analysis techniques which can be applied

to nonlinear systems described by polynomial dynamic equations. The proposed approach

is to reduce the analysis problems to a sum-of-squares optimization problem which can then

be solved with freely available software. These techniques can fill the gap between linear

analysis and nonlinear simulations and hence can be used to provide additional confidence

in the flight control law performance.

I. Introduction

The current practice to validate flight control laws relies on applying linear analysis tools to assess the
closed loop stability and performance characteristics about many trim conditions. Nonlinear simulations are
then used to provide further confidence in the linear analyses and also to uncover dynamic characteristics,
e.g. limit cycles, which are not revealed by the linear analysis. This approach is well-suited for validation of
current commercial and military aircraft. However, there are drawbacks of this approach. First, the process
is rather time-consuming and requires many well-trained control and simulation engineers. Second, most
adaptive control laws lead to nonlinear, time-varying closed loop dynamics. Thus the current practice is not
applicable to validating systems with adaptive control laws. There is a need for analytical tools to assess
the performance of nonlinear feedback systems.

This paper reviews an approach to reformulate nonlinear analysis problems into a form which can be
solved using freely available software. The approach is applicable to nonlinear systems described by polyno-
mial dynamics and it relies on connections between sums-of-squares (SOS) polynomials and positive semidef-
inite matrices. A polynomial p is a sum of squares if it can be expressed as p =

∑m
i=1 f2

i . This connection
was made in the work by Parrilo1, 2 and has led to research on computational tools for estimating regions
of attraction, reachability sets, input-output gains, and robustness with respect to uncertainty. The reader
is referred to15–32 and the references contained therein. There are two key ideas in this approach. First,
sufficient conditions for many nonlinear analysis problems can be formulated as set containment conditions
involving either a Lyapunov function or a storage function. Second, the set containment conditions can be
reformulated as polynomial non-negativity conditions using a generalized version of the S-procedure.6 This
approach will be described in more detail for L2 − L2 input-output gain analysis.

We envision these techniques as filling the gap between linear analysis and nonlinear simulations. Lin-
earized analysis is only valid over an infinitesimally small neighborhood of the equilibrium point/null input.
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The proposed approach provides an improvement over linearized analysis in that the results are valid over
a provable region of the state/input space.32 Moreover, the nonlinear analysis tools can complement the
linear analysis tools and nonlinear simulations to provide additional confidence in the flight control law
performance.

The remainder of the paper has the following outline. In the next section, we provide a brief review
of background material including SOS polynomials, their connections to positive semidefinite matrices, and
SOS programming problems. In Section III we derive an upper bound for the L2 − L2 input-output gain of
a nonlinear system in terms of an optimization problem involving SOS constraints. We also discuss several
computational approaches to solve this optimization problem. In Section IV, the approach is applied to
compute bounds on the L2 −L2 gain for a simple model-reference adaptive control system. Conclusions are
then given in Section V.

II. Sum of Squares Optimization

In this section we provide a brief review of computational methods for sum-of-squares polynomial opti-
mizations. Briefly, a polynomial p is a sum of squares (SOS) if there exist polynomials {fi}

m
i=1 such that

p =
∑m

i=1 f2
i . Sum-of-squares programs are optimization problems involving sum-of-squares polynomial

constraints. As discussed further in Section III, many nonlinear analysis problems can be posed within
this optimization framework. The computational solutions to these problems rely on connections between
semidefinite matrices and SOS polynomials.1–3 In this section we first present notation and background
material. Next we discuss the connections between semidefinite matrices and SOS polynomials. Finally we
discuss software available to solve SOS optimization problems.

A. Background

1. Polynomial Notation

R[x] denotes the set of all polynomials in variables {x1, . . . , xn} with real coefficients. N denotes the set of
nonnegative integers, {0, 1, . . .}, and N

n is the set of n-dimensional vectors with entries in N. For α ∈ N
n, a

monomial in variables {x1, . . . , xn} is given by xα .
= xα1

1 xα2

2 · · ·xαn

n . The degree of a monomial is defined as
deg xα .

=
∑n

i=1 αi. In this notation a polynomial in R[x] is simply a finite linear combination of monomials:

p
.
=

∑

α∈A

cαxα =
∑

α∈A

cαxα1

1 xα2

2 · · ·xαn

n

where cα ∈ R and A is a finite collection of vectors in N
n. Using the definition of deg for a monomial, the

degree of p is defined as deg p
.
= maxα∈A [deg xα].

A polynomial p is a sum of squares (SOS) if there exist polynomials {fi}
m
i=1 such that p =

∑m
i=1 f2

i . The
set of SOS polynomials is a subset of R[x] and is denoted as Σ[x]. We note that if p is a sum of squares then
p(x) ≥ 0 ∀x ∈ R

n. Thus p ∈ Σ[x] is a sufficient condition for a polynomial to be globally non-negative. The
converse is not true, i.e. non-negative polynomials are not necessarily SOS polynomials. This is related to
one of the problems posed by Hilbert in 1900.4

2. Semidefinite Programming

This brief review of semidefinite programming (SDP) is based on a survey by Vandenberghe and Boyd5 and
a monograph by Boyd, et al.6 A symmetric matrix F ∈ R

n×n is positive semidefinite if xT Fx ≥ 0 for all
x ∈ R

n. Positive semidefinite matrices are denoted by F � 0. A semidefinite program is an optimization
problem of the following form:

minλ cT λ

subject to: F0 +
∑r

k=1 λkFk � 0
(1)

The symmetric matrices F0, . . . , Fr ∈ R
n×n and the vector c ∈ R

r are given data. The vector λ ∈ R
r is the

decision variable and the constraint, F0 +
∑r

k=1 λkFk � 0, is called a linear matrix inequality. We refer to
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Equation 1 as the primal problem. The dual associated with this primal problem is:

maxZ −Tr [F0Z]

subject to: Tr [FkZ] = ck k = 1, . . . , r

Z � 0

(2)

where Z = ZT ∈ R
n×n is the decision variable for the dual problem. Tr [·] denotes the trace of a matrix.

This dual problem can be recast in the form of Equation 1 and thus it is also a semidefinite program.
While the primal and dual forms may look restrictive, these formulations are quite versatile and SDPs find
applications in many problems of interest. Moreover, SDPs are convex and quality software exists to solve
these problems. In particular, SeDuMi7, 8 is a freely available MATLAB toolbox that simultaneously solves
the primal and/or dual forms of a semidefinite program.

In some cases, our only goal is to find a decision variable that satisfies the linear matrix inequality
constraint. These are semidefinite programming feasibility problems. The following is an example:

Find λ1, . . . , λr ∈ R such that F0 +
r

∑

k=1

λkFk � 0 (3)

B. Connections Between SOS Polynomials and Semidefinite Matrices

Theorem 1 below gives a concrete statement of the connection between sums of squares and positive semidef-
inite matrices. We require two facts that follow from9 (refer to Theorem 1 and its preceding Lemma):

1. If p is a sum of squares then p must have even degree.

2. If p is degree 2d (d ∈ N) and p =
∑m

i=1 f2
i then deg fi ≤ d ∀i.

Next, we define z as the column vector of all monomials in variables {x1, . . . , xn} of degree ≤ d: a

z
.
=

[

1, x1, x2, . . . , xn, x2
1, x1x2, . . . , x2

n, . . . , xd
n

]T

(4)

There are
(

k+n−1
k

)

monomials in n variables of degree k. Thus z is a column vector of length lz
.
=

∑d
k=0

(

k+n−1
k

)

=
(

n+d
d

)

. If f is a polynomial in n variables with degree ≤ d, then f is a finite linear

combination of monomials of degree ≤ d. Consequently, there exists a ∈ R
lz such that f = aT z. The proof

of the following theorem, introduced as a “Gram Matrix” method by Choi, Lam, and Reznick,10 is included
for completeness. This result can be found more recently in.11

Theorem 1 Suppose p ∈ R[x] is a polynomial of degree 2d and z is the lz × 1 vector of monomials defined

in Equation 4. Then p is a SOS if and only if there exists a symmetric matrix Q ∈ R
lz×lz such that Q � 0

and p = zT Qz.

Proof:

(⇒) If p is a SOS, then there exists polynomials {fi}
m
i=1 such that p =

∑m
i=1 f2

i . As noted above,
deg fi ≤ d for all i. Thus, for each fi there exists a vector, ai ∈ R

lz , such that fi = aT
i z. Define the matrix,

A ∈ R
lz×m, whose ith column is ai and define Q

.
= AAT � 0. Then p = zT Qz.

(⇐) Assume there exists Q = QT ∈ R
lz×lz such that Q � 0 and p = zT Qz. Define m

.
= rank(Q).

There exists a matrix A ∈ R
lz×m such that Q = AAT . Let ai denote the ith column of A and define the

polynomials fi
.
= zT ai. By definition of fi, p = zT (AAT )z =

∑m
i=1 f2

i . �

aAny ordering of the monomials can be used to form z. In Equation 4, xα precedes xβ in the definition of z if:

deg xα < deg xβ or deg xα = deg xβ and the first nonzero entry of α − β is > 0
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C. Software for SOS Optimizations

A sum-of-squares program is an optimization problem with a linear cost and SOS constraints on the decision
variables:12

min
u∈Rn

c1u1 + · · · + cnun (5)

subject to:

ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un ∈ Σ[x] k = 1, . . .Ns

The polynomials {ak,j} are given as part of the optimization data and u ∈ R
n are decision variables. This

formulation appears far removed from dynamical systems but we’ll show in Section III that nonlinear analysis
problems can be posed within this optimization framework.

Theorem 1 provides the bridge to convert an SOS program into a semidefinite-programming problem.
For example, the constraint ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un ∈ Σ[x] can be equivalently written as:

ak,0(x) + ak,1(x)u1 + · · · + ak,n(x)un = zT Qz (6)

Q � 0 (7)

Q is a new matrix of decision variables that is introduced when we convert an SOS constraint to an LMI
constraint. Equating the coefficients of zT Qz and ak,0(x)+ak,1(x)u1+ · · ·+ak,n(x)un imposes linear equality
constraints on the decision variables u and Q. Thus, Equation 6 can be rewritten as a set of linear equality
constraints on the decision variables. All SOS constraints in Equation 5 can be replaced in this fashion with
linear equality constraints and LMI constraints. As a result, the SOS program in Equation 5 can be written
in the SDP dual form (Equation 2).

While this may appear cumbersome, there is software available to perform the conversion. For example,
SOSTOOLS12 and Yalmip13 are freely available MATLAB toolboxes for solving SOS optimizations. These
packages allow the user to specify the polynomial constraints using a symbolic toolbox. Then they convert
the SOS optimization into an SDP which is solved with SeDuMi7, 8 or another freely available SDP solver.
Finally these toolboxes convert the solution of the SDP back to a polynomial solution. A drawback is
that the size of the resulting SDP grows rapidly if the SOS optimization involves polynomials with many
variables and/or high degree. While various techniques can be used to exploit the problem structure,14 this
computational growth is a generic trend in SOS optimizations. We have developed some methods which use
simulation to ease this computational growth.15–17

III. Nonlinear Analysis Tools

Many nonlinear analysis problems can be formulated as sum of squares programming problems. This
connection was made in the work by Parrilo1, 2 and has led to research on computational tools for estimating
regions of attraction, reachability sets, input-output gains, and robustness with respect to uncertainty. The
reader is referred to15–32 and the references contained therein. The key idea is that sufficient conditions
for these nonlinear analysis problems can typically be formulated as set containment conditions involving
either a Lyapunov function or a storage function. The set containment conditions can be reformulated as
polynomial non-negativity conditions using a generalized version of the S-procedure.6 These problems can
then be solved as SOS programs since SOS polynomials are globally non-negative. In this section we’ll
demonstrate this approach for an L2 − L2 input-output gain problem. More details for this input-output
gain problem can be found in.28, 31, 32 The formulations for the other analysis problems can be found in the
references given above.

We consider nonlinear dynamical systems of the form:

ẋ = f(x, u) (8)

y = h(x)

where x ∈ R
nx is the state vector, u ∈ R

nu is the input, and y ∈ R
ny is the output. We assume f is a

nx × 1 polynomial function of x and u such that f(0, 0) = 0. We also assume that h is an ny × 1 polynomial
function of x such that h(0) = 0. We’ll denote this system by S.
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Define the L2 norm of a signal as ‖u‖2 :=
[∫ ∞

0
uT (t)u(t)dt

]0.5
. u is called an L2 signal if this integral

is finite and we’ll assume all inputs to S are L2 signals. The L2-L2 input-output gain of the system

is defined as ‖S‖ := sup‖u‖2 6=0
‖y‖2

‖u‖2

. We can also define a “local” input-output gain of the system as

‖S‖R := sup0<‖u‖2≤R
‖y‖2

‖u‖2

. For a linear system, the magnitude of the output scales proportionally with the

magnitude of the input and so the ratio ‖y‖2

‖u‖2

does not depend on ‖u‖2. Thus ‖S‖R = ‖S‖ for all R > 0.

For a nonlinear system, the local gain depends on the magnitude of the input and hence ‖S‖R and ‖S‖ need
not be equal. The class of possible inputs increases with increasing values of R and so we can conclude that
‖S‖R is a monotonically increasing function of R and ‖S‖R ≤ ‖S‖ for all R > 0.

Lemma 1 provides a sufficient condition for the local L2-L2 input-output gain to be less than γ. This
specific lemma can be found in28, 31, 32 but similar results are given in textbooks.33, 34

Lemma 1 If there exists a γ > 0 and a continuously differentiable function V : R
n → R such that:

• V (0) = 0 and V (x) ≥ 0 ∀x ∈ R
nx

• {(x, u) ∈ R
nx+nu : V (x) ≤ R2} ⊆ {(x, u) ∈ R

nx+nu : ∂V
∂x

f(x, u) ≤ uT u − γ−2yT y}

then x(0) = 0 and ‖u‖2 ≤ R implies ‖y‖2 ≤ γ‖u‖2.

Proof:

We provide a sketch of the proof. Assume that ∂V
∂x

f(x, u) ≤ uT u − γ−2yT y holds along the trajectories
of the system S from time 0 to T . Integrating then yields:

V (x(T )) − V (x(0)) ≤

∫ T

0

(

uT u − γ−2yT y
)

dt (9)

If x(0) = 0 and ‖u‖2 ≤ R then this implies that V (x(T )) ≤ ‖u‖2
2 ≤ R2. Thus the state trajectories satisfy

V (x(T )) ≤ R2 for all time T and it is valid to assume ∂V
∂x

f(x, u) ≤ uT u − γ−2yT y holds along the system

trajectories. Moreover, Equation 9 implies that
∫ T

0

(

yT y
)

dt ≤ γ2
∫ T

0

(

uT u
)

dt since V (x) ≥ 0 ∀x. Letting
T → ∞, we conclude that ‖y‖2 ≤ γ‖u‖2. �

Lemma 1 provides a sufficient condition to prove ‖S‖R ≤ γ in terms of a storage function, V . This lemma
involves one non-negativity condition on the storage function and a set containment condition. The next
Lemma provides a sufficient condition for set containment in terms of function non-negativity constraints.
This lemma is a generalization of the S-procedure which has been frequently applied in control theory.6 The
function s appearing in the Lemma is called a multiplier.

Lemma 2 Define two sets A := {x ∈ Rn : fA(x) ≥ 0} and B := {x ∈ Rn : fB(x) ≥ 0}. If there exists a

function s(x) ≥ 0 ∀x such that fB(x) − fA(x)s(x) ≥ 0 ∀x then A ⊆ B.

Proof:

Assume there exists a function s(x) ≥ 0 ∀x such that fB(x) − fA(x)s(x) ≥ 0 ∀x. Take any x ∈ A. Then
fB(x) ≥ fA(x)s(x) ≥ 0. Thus x is also in B. �

We can now formulate a sum-of-squares program which provides an upper bound on the local L2-L2 gain:

γ∗ := min
V,s,γ

γ (10)

subject to:

s(x, u) ∈ Σ[x, u], V (x) ∈ Σ[x], V (0) = 0 (11)

uT u − γ−2h(x)T h(x) −
∂V (x)

∂x
f(x, u) − s(x, u)

(

R2 − V (x)
)

∈ Σ[x, u] (12)

The constraint in Equation 12, if satisfied, ensures that {(x, u) ∈ R
nx+nu : V (x) ≤ R2} ⊆ {(x, u) ∈

R
nx+nu : ∂V

∂x
f(x, u) ≤ uT u− γ−2yT y}. Since SOS polynomials are non-negative everywhere this follows by

applying the generalized S-procedure in Lemma 2. We can then apply Lemma 1 to conclude that ‖S‖R ≤ γ

for any γ for which the constraints are valid. γ∗ is the smallest upper bound on ‖S‖R which can be found
with this sufficient condition.

This optimization problem involves SOS constraints on s(x, u) and V (x) (Equation 11). The coefficients of
the polynomials s(x, u) and V (x) are decision variables which the optimization can choose to try to minimize
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γ. The constraint in Equation 12 is simply an SOS constraint on a polynomial of x and u. Unfortunately
this constraint is bilinear in the decision variables since it involves a term of the form s(x, u) · V (x). This
makes the computational problem substantially more difficult. This can be solved directly using bilinear
matrix inequality solvers.16 Alternatively one can note that if either s or V is held fixed then it is possible
to express this optimization problem in the form of a standard SOS programming problem (Equation 5) and
it can be solved using SOS programming software.12, 13 Thus another solution method is to iterate back and
forth solving for either V or s while the other variable is held fixed. This iteration can be initialized with V

fixed at the quadratic storage function obtained from linear analysis.21 A final method is to use simulation
data to construct a candidate V and then perform this iteration.16

The computational tools for other nonlinear problems (estimating regions of attraction, reachability
sets, input-output gains with other signal norms, and robustness with respect to uncertainty) all essentially
follow the same steps as used for computing a bound on the local L2-L2 gain. Specifically, a Lyapunov
or storage function type theorem is used to derive a sufficient condition for the nonlinear system to have
a particular performance/stability property. Lyapunov and storage functions are naturally restricted to be
positive definite and this can be enforced using SOS constraints. Additional conditions can typically be
formulated as set containment conditions. These set containment conditions can then be converted into
function non-negativity constraints using the generalized S-procedure. Since SOS polynomials are non-
negative everywhere, the non-negativity constraints can be relaxed and written as SOS constraints. In many
cases this sequence of constraint reformulations leads to either a linear or bilinear SOS programming problem
which yields a bound on a particular systems property (e.g. inner approximations to regions of attraction
or upper bounds on system gains). Bilinear problems can be solved using one of the methods described
above. Simulations or gradient searches can be used to compute dual bounds (e.g. outer approximations to
regions of attraction or lower bounds on system gains). For example, lower bounds on the local gain can
be computed using a power method derived for a finite horizon optimal control problem.35 This approach
provides an improvement over linearized analysis in that the results are valid over a provable region of the
state/input space rather than for an infinitesimally small neighborhood of the equilibrium point/null input.
Further details on this statement can be found in.32

IV. Adaptive Control Example

To demonstrate the computational tools we consider the following single state system:

ẋ = −x + w + u

y = −1.8x + w + u

x ∈ R is the plant state, u ∈ R is the control input, y ∈ R is the output, and w ∈ R is a disturbance which
impacts both the state and the output. The following model-reference adaptive controller will be used for
reference tracking:

ẋm = −xm + r

żx = −x2 + xxm

żr = −xr + xmr

u = (1 + zr)r + zxx

xm is the reference model state, r is the reference signal, and zx and zr are feedback gains which are tuned
by the adaptation. Figure 1 shows lower and upper bounds on ‖S‖R. The upper bounds (blue curves)
are computed as described in the previous section with deg(V)=2 and deg(V)=4. Simulation data is used
to construct a candidate storage function V and then an iteration is performed successively holding V or
s fixed.16, 31 The green curves are a slightly better upper bound using the refinement technique described
in.28, 29 The refinement only yields a minor improvement on the upper bounds. The lower bound (red curve)
is computed using the power method technique described in.35 There is a significant gap between the lower
and upper bounds which indicates that improvement in one or both bounds is possible. Increasing the degree
of the storage function should improve the upper bound at the cost of additional computation.
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Figure 1. Upper bounds on ‖S‖R for deg(V) = 2 (with �) and deg(V) = 4 (with ×) before the refinement (blue
curves) and after the refinement (green curves) along with the lower bounds (red curve).

V. Conclusion

In this paper we described the connections between sums-of-squares optimizations and analysis problems
for nonlinear polynomial systems. In particular, a SOS optimization was derived to compute upper bounds on
the L2 to L2 gain of nonlinear polynomial system. Many other nonlinear analysis problems can be formulated
within this optimization framework. The approach was applied to compute the disturbance to output gain
for a simple model-reference adaptive control system. We view these nonlinear analysis tools as filling the gap
between linear analyses, which are valid only for infinitesimally small neighborhoods about an equilibrium,
and nonlinear simulations. These tools can be used to provide additional confidence when validating the
performance of a flight control law. Significant work remains to be done to reduce the computational cost
and enable these techniques to be applied to moderate-sized systems (systems with more than ≈ 8 states).
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