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Abstract—Robust stability of linear time-invariant systems
with respect to structured uncertainties is considered. The small
gain condition is sufficient to prove robust stability and scalings
are typically used to reduce the conservatism of this condition. It
is known that if the small gain condition is satisfied with constant
scalings then there is a single quadratic Lyapunov function
which proves robust stability with respect to all allowable time-
varying perturbations. In this paper we show that if the small
gain condition is satisfied with frequency-varying scalings then
an explicit parameter dependent Lyapunov function can be
constructed to prove robust stability with respect to constant
uncertainties. This Lyapunov function has a rational quadratic
dependence on the uncertainties.

I. I NTRODUCTION

Modeling uncertainties can be represented as parametric
and/or dynamic perturbations to a nominal model. The entire
collection of modeling uncertainties in a system can be col-
lected into a single structured uncertainty (see, for example,
[1], [2]). The structured singular value (µ) [2], [3], [4] provides
a necessary and sufficient condition for robust stability with re-
spect to structured linear-time invariant perturbations.However
it is known that computingµ is NP Hard [5], [6]. Thus there
has been extensive research into computational algorithms
which are fast and provide good lower/upper bounds for most
problems of engineering interest.

The small gain condition [7], [8] provides an easily com-
putable sufficient condition for robust stability but is, ingen-
eral, not necessary. Thus scalings are typically introduced to
reduce the conservatism. For example, if there exists constant
or frequency-dependent D-scales from an allowable set such
that the small gain condition holds, then the system is robustly
stable. These tests have their roots in the multiplier approaches
used for passivity analysis [7]. In [2], these two conditions are
referred to as the frequency domain constant D test and the
frequency domain upper bound. In this paper we will refer to
these as the constant D and varying D tests.

The constant D test is necessary and sufficient for robust
stability with respect to arbitrarily fast linear time-varying
perturbations [9]. This condition is connected to the notion
of quadratic stability, i.e. the existence of a single quadratic
Lyapunov function which proves stability of all possible trajec-
tories of the uncertain system for both fixed and time-varying
perturbations [10], [11], [12], [13], [14], [15]. In particular, if
the small gain condition holds with constant D-scales then the
uncertain system is quadratically stable.

The varying D test has a different interpretation. The use of
frequency-varying D-scales renders the small gain condition
necessary and sufficient for robust stability with respect to
arbitrarily slowly-varying linear perturbations [16]. This is
the condition that is typically used when computingµ versus
frequency. Clearly this test is also sufficient for robust stability
with respect to all constant perturbations from the allowable

set. Thus for each fixed perturbation there exists a Lyapunov
function proving stability of the system. In contrast to the
constant D test, this Lyapunov function may be a function of
the perturbation. This paper provides an explicit expression for
a parameter-dependent Lyapunov function (PDLF) which can
be derived from the varying D test. This Lyapunov function
has a rational quadratic dependence on the uncertainties.

There is a significant amount of related research on PDLFs.
The classical Popov criterion, when applied to a linear un-
certainty, can be interpreted as using a PDLF to prove robust
stability [14], [17]. This Lyapunov function is quadratic in the
state and has an affine dependence on the uncertainty. There
are many approaches to develop robust stability conditions
using more general PDLFs. Lyapunov functions having an
affine [14], [18], [19], [20], [17], [21], [22], [23], [24], [25],
multi-affine [26], bi-quadratic [27], generic polynomial [28],
[29], [30], [31], and linear fractional dependence [32], [33] on
the uncertainty have been considered. Hermite matrices [34]
and power forms [35] have also been considered. The Kalman-
Yakubovich-Popov (KYP) lemma [36] connects the PDLF in
the Popov Criterion to a frequency domain condition but there
are few additional connections for these more general PDLF
conditions. One connection is made in [20], [21]. In particular,
[20], [21] consider linear systems with affine dependence on
real parameter uncertainties. They derive a sufficient condition
for robust stability using a PDLF having affine dependence
on the uncertainties. They demonstrate that this sufficient
condition is equivalent to the standard realµ upper bound [37]
but restricted to have constantD scales andG scales having
a specific affine dependence on frequency. Thus the condition
in [20], [21] is more conservative than the realµ upper bound
with generic frequency-varyingD−G scales which is known
to be equal toµ for certain block structures [38].

The work on quadratic separators provides another relevant
connection to PDLFs [39], [40], [41], [42]. The authors derive
necessary and sufficient robust stability conditions basedon
finding a Hermitian matrix-valued function, termed a quadratic
separator, which topologically separates the graph of the
nominal system from the inverse graph of each uncertainty
in the allowable set. One version of this condition can be
interpreted as simultaneously searching for a PDLF and a
parameter-dependent quadratic separator which satisfy a linear
matrix inequality (see Theorem 3 of [40]). These necessary
and sufficient conditions are computationally difficult to solve
(they are equivalent to computingµ) and hence various suffi-
cient conditions are derived. One of these sufficient conditions,
termed the vertex-separator condition, can be used to construct
a PDLF with polytopic dependence on the uncertainties.
Another sufficient condition is obtained for linear parameter
varying systems by applying a constant quadratic separator.
This sufficient condition is shown to be equivalent to the
existence of a PDLF which has a linear fractional dependence
on the uncertainty (see Theorem 4 of [42]). This particular
PDLF will be discussed further in Section IV.

II. N OTATION

C
n×m and R

n×m are complex and realn × m matrices,
respectively. ForM ∈ Cn×m, M∗ is the complex conjugate
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transpose ofM . The maximum singular value ofM is denoted
by σ̄ (M). ForM ∈ Cn×n, the spectral radius ofM is denoted
by ρ (M). If M = M∗ then all the eigenvalues ofM are real
and λmax (M) denotes the largest eigenvalue. IfM = M∗

then M > 0 and M < 0 denote the matrix is positive
and negative definite, respectively. GivenA ∈ C

n×m and
B ∈ Cr×s, diag(A, B) ∈ C(n+r)×(m+s) denotes the block
diagonal concatenation of the two matrices.A⊗B ∈ Crn×sm

denotes the Kronecker product. Letn and m be positive
integers and partitionM ∈ C(n+m)×(n+m) as M = [ A B

C D ]
whereA ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, andD ∈ Cm×m.
Let ∆ ∈ Cm×m be a matrix such thatI − D∆ is invertible.
In this case we define the linear fractional transformation
Fl(M, ∆) := A + B∆(I − D∆)

−1
C. The subscriptl refers

to the closure of the lower block ofM with the matrix ∆
and we can use this transformation to define an uncertain,
autonomous discrete-time system:xk+1 = Fl(M, ∆)xk. Sim-
ilarly, for Ω ∈ Cn×n such thatI −AΩ is invertible, we define
Fu(M, Ω) := D + CΩ (I − AΩ)

−1
B. The subscriptu refers

to the upper block ofM being closed with the matrixΩ.
This transformation can be used to define a transfer function
matrix, e.g.G(z) := D + C (zIn − A)

−1
B = Fu(M, 1

z
In).

We define‖G‖∞ := max
0≤θ≤2π

σ̄
(

G(ejθ)
)

.

III. PRELIMINARY RESULTS

This section presents lemmas which are used in Section IV
to construct a PDLF from the varying D test. The first lemma is
the Schur complement lemma. The next lemma relates a block
2 × 2 Lyapunov inequality to Lyapunov inequalities for the
diagonal blocks. The last lemma relates an algebraic Riccati
inequality to a robust stability condition.

Lemma 1 (Schur Complements [14], [43]): Let
P :=

[

P11 P12

P∗

12 P22

]

∈ C
(n+m)×(n+m) and P = P ∗. The

following conditions are equivalent:
A) P > 0
B) P11 > 0 andP22 − P ∗

12P
−1
11 P12 > 0

C) P22 > 0 andP11 − P12P
−1
22 P ∗

12 > 0

Lemma 2 (Block Lyapunov Inequality): Let A :=
[

A11 A12

0 A22

]

∈ C(n+m)×(n+m) and P :=
[

P11 P12

P∗

12 P22

]

∈

C(n+m)×(n+m) be partitioned conformably. IfP = P ∗ > 0
andA∗PA − P < 0 then:
A) P̂ := P11 satisfiesP̂ > 0 andA∗

11P̂A11 − P̂ < 0
B) Q̂ := P22 − P ∗

12P
−1
11 P12 satisfies Q̂ > 0 and

A∗
22Q̂A22 − Q̂ < 0

Proof: A) Any diagonal block of a positive (negative)
definite matrix must itself be positive (negative) definite.Thus
P > 0 implies P̂ > 0. Also, the (1,1) block ofA∗PA− P is
A∗

11P̂A11 − P̂ and hence this quantity is negative definite.
B) By the Schur complement lemma,P > 0 implies Q̂ >

0. Also by the Schur complement lemma,A∗PA − P < 0
implies AP−1A∗ − P−1 < 0. The (2,2) block ofP−1 is
Q̂−1 (see Equation A.1.7 of [43]). Thus the (2,2) block of
AP−1A∗ − P−1 < 0 implies A22Q̂

−1A∗
22 − Q̂−1 < 0. One

more application of the Schur complement lemma brings the
desired result,A∗

22Q̂A22 − Q̂ < 0.

Lemma 3 (Robust Stability Condition): Let M := [ A B
C D ] ∈

C(n+m)×(n+m). If there existsP = P ∗ ∈ Cn×n such that
P > 0 and

A∗PA − P + Z∗Y −1Z + C∗C < 0 (1)

whereY := I −D∗D−B∗PB andZ := B∗PA+D∗C then
P satisfies:

max
∆∈Cm×m,σ̄(∆)≤1

λmax (Fl(M, ∆)∗PFl(M, ∆) − P ) < 0 (2)

Proof: The S-procedure can be used to prove this lemma.
For example, Chapter 5 of [14] applies the S-procedure to
derive a robust stability condition for continuous-time LTI
systems with norm-bounded time-varying uncertainties. For
completeness, we provide a proof for discrete-time systems
which is based on completion of a square.

The algebraic Riccati inequality (Equation 1) can be used to
show σ̄ (D) < 1. ThusI −D∆ is invertible andFl(M, ∆) is
well-defined for all∆ with σ̄ (∆) ≤ 1. To simplify notation,
defineW := ∆ (I − D∆)−1 so thatFl(M, ∆) = A+BWC.
Completing a square and usinḡσ (∆) ≤ 1 yields:

Fl(M, ∆)∗PFl(M, ∆) − P

= A∗PA − P + Z∗Y −1Z − (Y WC − Z)∗Y −1(Y WC − Z)

+ C∗ [W ∗W − W ∗D∗DW − W ∗D∗ − DW ] C

= A∗PA − P + Z∗Y −1Z − (Y WC − Z)∗Y −1(Y WC − Z)

+
[

C∗C + C∗(I − D∆)−∗(∆∗∆ − I)(I − D∆)−1C
]

≤ A∗PA − P + Z∗Y −1Z + C∗C

The desired result follows by applying Equation 1.

IV. M AIN RESULT

In this section we consider the robust stability of a discrete
time system with respect to structured uncertainties. We con-
sider block structures∆ ⊂ Cm×m consisting ofs repeated
complex scalar blocks andf square full complex blocks.
The restriction to square full blocks is for notational sim-
plicity. Given positive integersm1, m2, . . . , ms+f satisfying
∑s+f

i=1 mi = m, we can define the following sets of block
structuredm × m matrices:

∆ := {∆ = diag(δ1Im1
, . . . , δsIms

, ∆1, . . . , ∆f ) : (3)

δi ∈ C, ∆i ∈ C
ms+i×ms+i

}

B∆ := {∆ ∈ ∆ : σ̄ (∆) ≤ 1} (4)

Associated with these block structures we can define sets of
constant and varying D-scales:

Dc :=
{

Dc ∈ C
m×m : Dc∆ = ∆Dc ∀∆ ∈ ∆, det(Dc) 6= 0

}

Dv :=
{

Dv(z) := Dd + Cd (zI − Ad)
−1

Bd : det(Dd) 6= 0,

[

Ad Bd

Cd Dd

]

∈ C
(k+m)×(k+m), Dv∆ = ∆Dv ∀∆ ∈ ∆

}

By definition, any scalingDs from eitherDc or Dv satisfies
∆ = D−1

s ∆Ds ∀∆ ∈ ∆. Thus we can insertDs at the input to
∆ andD−1

s at the output of∆. If ‖DsFu(M, 1
z
I)D−1

s ‖∞ <

1 then xk+1 = Fl(M, D−1
s ∆Ds)xk is robustly stable with

respect toB∆. By the equivalence of the scaled and unscaled
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systems, we can then conclude thatxk+1 = Fl(M, ∆)xk is
robustly stable with respect toB∆. This is an indirect proof
of robust stability. The two theorems in this section directly
prove robust stability by constructing Lyapunov functionsfor
xk+1 = Fl(M, ∆)xk. The theorems are stated in a form which
highlights this construction.

Theorem 1 (Constant D Test): Let G(z) := Fu(M, 1
z
In)

whereM := [ A B
C D ] ∈ C(n+m)×(n+m) andρ(A) < 1. If there

existsDc ∈ Dc such that‖DcGD−1
c ‖∞ < 1 then:

A) There existsP = P ∗ ∈ Cn×n such thatP > 0 and:

Ã∗PÃ − P + C̃∗C̃ +
(

B̃∗PÃ + D̃∗C̃
)∗

(5)
(

I − D̃∗D̃ − B̃∗PB̃
)−1 (

B̃∗PÃ + D̃∗C̃
)

< 0

where Ã := A, B̃ := BD−1
c , C̃ := DcC, and D̃ :=

DcDD−1
c .

B) The solutionP > 0 to Equation 5 satisfies

max
∆∈B∆

λmax (Fl(M, ∆)∗PFl(M, ∆) − P ) < 0 (6)

C) Let {∆k}
∞
k=0 ⊂ B∆ be given. Thenx = 0 is a globally ex-

ponentially stable equilibrium point ofxk+1 = Fl(M, ∆k)xk.
Proof: A) The Ã, B̃, C̃, andD̃ given in the theorem are

the state matrices for the systemDcGD−1
c . The existence of

P > 0 satisfying Equation 5 follows from‖DcGD−1
c ‖∞ < 1

and the discrete-time Bounded Real Lemma [2].
B) DefineM̃ =

[

Ã B̃
C̃ D̃

]

. SinceP > 0 satisfies Equation 5,
we can apply Lemma 3 to conclude

max
∆∈Cm×m, σ̄(∆)≤1

λmax

(

Fl(M̃, ∆)∗PFl(M̃, ∆) − P
)

< 0

Restricting to∆ ∈ B∆, we can useDc∆ = ∆Dc to show
Fl(M̃, ∆) = Fl(M, ∆).

C) Define the Lyapunov functionV (x) = xT Px. B) implies
there exists aβ < 1 such that for any∆k ∈ B∆, V (xk+1) <

βV (xk) which guarantees the robust stability with respect to
time-varying perturbations. Formally, C) follows from B) and
discrete-time Lyapunov theory (Section 5.9 of [44]).

As noted in the introduction, an uncertain system is quadrat-
ically stable if there exists a single quadratic Lyapunov func-
tion which proves stability of all possible trajectories ofthe
uncertain system. Theorem 1 demonstrates that satisfying the
small-gain theorem with constant D-scales implies quadratic
stability. The next theorem demonstrates that using frequency
varying D-scales implies the existence of a PDLF. One diffi-
culty is that the state matrices ofDv(z) ∈ Dv do not commute
with the ∆ ∈ ∆. However, we can derive how∆ is altered
as it ”moves through” the state matrices ofDv(z).

Let Dv(z) := Dd + Cd (zI − Ad)
−1

Bd. Since Dv(z)
commutes with all∆ ∈ ∆, it must be block-diagonal:

Dv(z) =diag(Dv,1(z), . . . , Dv,s(z),

dv,s+1(z)Ims+1
, . . . , dv,s+f (z)Ims+f

)

A natural state space realization forDv(z) is given by:

Ad :=diag
(

Ad,1, . . . , Ad,s, (Ims+1
⊗ Ad,s+1), . . . , (7)

(Ims+f
⊗ Ad,s+f )

)

Bd :=diag
(

Bd,1, . . . , Bd,s, (Ims+1
⊗ Bd,s+1), . . . , (8)

(Ims+f
⊗ Bd,s+f)

)

Cd :=diag
(

Cd,1, . . . , Cd,s, (Ims+1
⊗ Cd,s+1), . . . , (9)

(Ims+f
⊗ Cd,s+f )

)

Dd :=diag
(

Dd,1, . . . , Dd,s, (Ims+1
⊗ Dd,s+1), . . . , (10)

(Ims+f
⊗ Dd,s+f)

)

where
[

Ad,i Bd,i

Cd,i Dd,i

]

∈ C(ki+mi)×(ki+mi) are the state space

matrices of Dv,i(z) (i = 1, . . . , s) and
[

Ad,i Bd,i

Cd,i Dd,i

]

∈

C(ki+1)×(ki+1) are the state space matrices ofdv,i(z) (i =
s + 1, . . . , s + f ). Next, defineX(∆) : ∆ → Ck×k by:

X(∆) =diag
(

δ1Ik1
, . . . , δsIks

, ∆s+1 ⊗ Iks+1
, . . . ,

∆s+f ⊗ Iks+f

)

The dimension of theith block of X(∆) depends on the state
dimension,ki, of the transfer function inith block of the
Dv(z). For any∆ ∈ ∆, the state space realization ofDv(z)
given in Equations 7- 10 satisfies the commutation relations:
AdX(∆) = X(∆)Ad, Bd∆ = X(∆)Bd, CdX(∆) = ∆Cd,
andDd∆ = ∆Dd. Thus∆ commutes withDd but is altered
when passing throughBd andCd. These relations will be used
in the proof of the following theorem.

Theorem 2 (Varying D Test): Let M := [ A B
C D ] ∈

C(n+m)×(n+m) with ρ(A) < 1 and define G(z) :=
Fu(M, 1

z
In). If there exists Dv(z) ∈ Dv such that

‖DvGD−1
v ‖∞ < 1 then:

A) There existsP = P ∗ ∈ C(n+2k)×(n+2k) such thatP > 0
and:

Ã∗PÃ − P +
(

B̃∗PÃ + D̃∗C̃
)∗ (

I − D̃∗D̃ − B̃∗PB̃
)−1

(

B̃∗PÃ + D̃∗C̃
)

+ C̃∗C̃ < 0 (11)

where
[

Ad Bd

Cd Dd

]

∈ C(k+m)×(k+m) are the state matrices of
Dv(z) and:

Ã :=

[

Ad BdC −BdDD
−1

d
Cd

0 A −BD
−1

d
Cd

0 0 Ad−BdD
−1

d
Cd

]

, B̃ :=

[

BdDD
−1

d

BD
−1

d

BdD
−1

d

]

C̃ := [ Cd DdC −DdDD
−1

d
Cd ] , D̃ := DdDD−1

d

B) Given the solutionP > 0 to Equation 11, define:

P̂ (∆) := P22 + (P21 + P23X(∆))

(P11 + P13X(∆) + X(∆)∗P ∗
13 + X(∆)∗X33X(∆))

−1

(P21 + P23X(∆))∗ (12)

where thePij are a block3 × 3 partition of P conformable
with the 3 × 3 blocks of Ã. ThenP̂ (∆) satisfies:

max
∆∈B∆

λmax

(

Fl(M, ∆)∗P̂ (∆)Fl(M, ∆) − P̂ (∆)
)

< 0

(13)
C) Let ∆ ∈ B∆ be given. Thenx = 0 is a globally exponen-
tially stable equilibrium point ofxk+1 = Fl(M, ∆)xk.

Proof: A) The Ã, B̃, C̃, and D̃ given in the theorem
statement are the state matrices for the systemDvGD−1

v .
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The existence ofP > 0 satisfying Equation 11 follows
from ‖DvGD−1

v ‖∞ < 1 and the discrete-time Bounded Real
Lemma [2].

B) DefineM̃ =
[

Ã B̃
C̃ D̃

]

. SinceP > 0 satisfies Equation 11,
we can apply Lemma 3 to conclude

max
∆∈Cm×m, σ̄(∆)≤1

λmax

(

Fl(M̃, ∆)∗PFl(M̃, ∆) − P
)

< 0

Define the coordinate transformation:

T :=
[

I 0 0
0 I 0

X(∆) 0 I

]

Define R := T−1Fl(M̃, ∆)T and S := T ∗PT . Multiplying
Fl(M̃, ∆)∗PFl(M̃, ∆) − P on the left/right byT ∗/T and
inserting TT−1 yields R∗SR − S. This is a congruence
transformation and henceR∗SR−S remains strictly negative
definite for all∆ ∈ B∆. Performing block multiplications and
applying the commutations relations satisfied byX(∆) yields:

R =

[

(·) (·) (·)
0 Fl(M,∆) (·)
0 0 (·)

]

S =

[

S11 (P21+P23X(∆))∗ (·)
P21+P23X(∆) P22 (·)

(·) (·) (·)

]

whereS11 := P11+P13X(∆)+X(∆)∗P ∗
13+X(∆)∗P33X(∆)

and blocks denoted by(·) do not affect the remaining argu-
ment in the proof. The proof is concluded by first applying
Lemma 2-A toR∗SR−S < 0 and then applying Lemma 2-B.

C) For each∆ ∈ B∆ define the Lyapunov function
V (x, ∆) = xT P̂ (∆)x. C) follows from B) and discrete-time
Lyapunov theory (Section 5.9 of [44]).

Comments:
• This paper uses a discrete-time formulation but the results
carry over to the continuous-time case. The lemmas in
Section III must be restated in terms of the continuous-time
Lyapunov inequality, Bounded-Real Lemma, and algebraic
Riccati inequality (refer to Chapter 5 of [14]). The proofs
and results in Section IV then require only minor modifica-
tions. The continuous-time PDLF in the varying D test has
the same structure and dependence on the solution of the
continuous-time algebraic Riccati inequality.

• The algebraic Riccati inequalities (Equations 5 and 11)
can be converted to linear matrix inequalities by the Schur
complement lemma. Thus we can use available software
(e.g. LMILab [1] and Sedumi [45]) to solveP > 0. Both
theorems then give an explicit construction for a Lyapunov
function which proves robust stability. However, this can
be computationally demanding in the case of the varying D
test since the variableP has dimensionn + 2k wherek is
the state dimension ofDv(z). Fitting the magnitude data,
|Dv(e

θ)|, from a frequency griddedmussv [1] calculation
with a state-space model can lead to high state dimensions
for Dv(z). This is especially true for the full blocks of
Dv(z) associated with repeated scalar uncertainties.

• If the ith block of Dv(z) is constant then its state dimen-
sion is ki = 0. In this caseX(∆), and henceP (∆), do
not depend on the corresponding block of∆. Thus we can
obtain Lyapunov functions which are partially parameter-
dependent by fixing some blocks of the D-scale to be

constant and others to be frequency varying. The example
in the following section will further demonstrate this point.

• PDLFs with polynomial dependence on the uncertainty
are used in [28], [29], [30], [31] for linear robust stability
analysis and in [46], [47], [48], [49] for nonlinear region of
attraction analysis. While polynomial dependence is without
loss of generality for linear robust stability [25], [50], it
might require a high degree. It would be useful to see if
algorithms can be developed based on the particular form
of the PDLF given in Equation 12.

Theorem 2 demonstrates that satisfying the small gain
condition with frequency varying D-scales implies the ex-
istence of a PDLF with a rational-quadratic dependence on
the uncertainties. The class of PDLFs of this form includes
those which have an affine dependence on the uncertainties.
This provides another explanation for why the affine PDLF
condition given in [20], [21] is more conservative than using
frequency-varyingD − G scales.

We can also compare the PDLF from the varying D test
to that obtained from a special case of the quadratic sep-
arator condition for continuous-time, linear parameter vary-
ing systems [42]. These systems have the formẋ = A +
B (I − ∆(t)D)−1 ∆(t)C with ∆(t) having a block diagonal
structure of repeated real scalars. A sufficient condition for
robust stability with respect to the time-varying real parameters
is derived using a constant quadratic separator. This sufficient
condition is no more conservative than using constantD −G

scales but it is, in general, more conservative than using a
frequency varying quadratic separator. The sufficient condition
with the constant quadratic separator is shown to be equivalent
to the existence of a PDLF of the form:

P̂ (∆) :=
[

I
(I−∆D)−1∆C

]T

P
[

I
(I−∆D)−1∆C

]

(14)

This PDLF proves robust stability with respect to time-varying
parameter variations and hence it also proves robust stability
with respect to constant parameter uncertainties. The class of
PDLFs of this form is not directly comparable to PDLFs of
the form given in Equation 12; in general neither form is more
general than the other. It is notable that if the nominal system
has no direct feedthrough (D = 0) then the PDLF from the
constant quadratic separator condition reduces to a quadratic
dependence on the uncertainty. The form of the PDLF from
the varying D test can, in principle, have a rational quadratic
dependence on the uncertainty for any nominal system.

We can briefly summarize four related cases:
1) Constant D-scales: The small-gain condition with con-

stantD-scales is only a sufficient condition for robust stability.
If this sufficient condition is satisfied then the system is
quadratically stable and there exists a parameter independent
Lyapunov function which proves robust stability.

2) Frequency Varying D-scales: The small-gain condition
with frequency varyingD-scales is only a sufficient condition
for robust stability. In this paper we showed that if this suffi-
cient condition is satisfied then one can explicitly construct a
PDLF (Equation 12) which proves robust stability.

3) Constant Quadratic Separator: The constant quadratic
separator condition is only a sufficient condition for robust



5

stability. If this sufficient condition is satisfied then there is
a PDLF (Equation 14) which proves robust stability [42]. In
general, the form of this PDLF is neither more nor less general
than the form derived from the varyingD test.

4) Frequency Varying Quadratic Separator: The frequency
varying quadratic separator condition is necessary and suffi-
cient for robust stability (see Theorem 1 in either [40] or [41]).
It is not known how to explicitly construct a PDLF when this
condition is satisfied. This would be interesting since it would
provide a form for the PDLF which could be assumed without
loss of generality when analyzing the robustness of linear
systems with respect to constant uncertainties. In particular, it
is well known that quadratic Lyapunov functions are sufficient
to prove stability of linear systems. Thus if a linear systemis
stable then there is a Lyapunov function which is a quadratic
function of the state which proves stability. One does not need
to consider more complicated Lyapunov functions for linear
systems. For stability analysis of uncertain linear systems this
implies that we only need to consider Lyapunov functions
which are quadratic in the state but with an arbitrary functional
dependence on the uncertainty. It would be useful for algo-
rithm development to know if there is a functional dependence
on the uncertainties which can be assumed without loss of
generality. Since the frequency-varying quadratic separator
condition is necessary and sufficient for robust stability,it
potentially provides a path to understanding this functional
dependence. Specifically, if we can construct an explicit PDLF
when this condition is satisfied then the form of this PDLF can
be assumed without loss of generality when analyzing linear
uncertain systems. One might then develop algorithms based
on this functional form similar to the current development of
algorithms centered around affine Lyapunov functions.

V. EXAMPLE

Consider the two-state systemxk+1 = Fl(M, ∆)xk from
[12] where∆ := {∆ = diag(δ1, δ2) : δi ∈ C} and:

M :=

[

a 0 2ba 0
0 −a 0 −2ba
0 1 0 b
1 0 b 0

]

Choosea = 0.9 andb = 0.5. This system is not quadratically
stable but is robustly stable with respect to constant∆ ∈ ∆.

Consider the time-varying perturbations∆k = diag(1, 0)
for k even and∆k = diag(0,−1) for k odd. Fork odd, the
two step evolution of the system isxk+1 =

[

1.62 −0.81
−0.81 0.81

]

xk.
This has eigenvalues at 0.3094 and 2.1206 which demon-
strates that the system is not stable for all time varying
perturbations inB∆. Hence the system is not quadratically
stable. DefineG(z) := Fu(M, 1

z
I2). We used LMILab [1] to

minimize ‖DcGD−1
c ‖∞ over Dc ∈ Dc. The optimal constant

scaling isDc = I2 and, as expected, the minimal value of
‖DcGD−1

c ‖∞ = 9.50 which exceeds 1.
Next, consider the scalingDv(z) = diag(1, 0.9975z−0.9025

z+0.9 ).
For this scaling‖DvGD−1

v ‖∞ = 0.526 < 1 and by the
varying D test we conclude the system is robustly stable with
respect to constant∆ ∈ B∆. We again used LMILab to
computeP > 0 which satisfies Equation 11. The result is:

P =

[

1204.5 −669.2 0 0
−669.2 371.9 0 0

0 0 789.8 712.6
0 0 712.6 643.1

]

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Level Set V==1 for δ
2
=−1 (blue), δ

2
=+1 (green), −1<δ

2
<+1 (red)

As δ
2
 goes 

from  −1 to +1

Fig. 1. Level Sets{x : V (x, ∆) = 1} for δ2 ∈ [−1, 1]

The lines denote the3×3 block partition used in the Lyapunov
function construction of Theorem 2. Using this construction,
define the Lyapunov functionV (x, ∆) := xT P̂ (∆)x where
P̂ (∆) is given by:

P̂ (∆) = [ 371.9 0
0 789.8 ] +

105

643.1δ2
2 + 1204.5

[

4.48 −4.77δ2

−4.77δ2 5.08δ2
2

]

This PDLF proves stability ofxk+1 = Fl(M, ∆)xk for each
constant∆ ∈ B∆: We verified this statement on a finite grid
of values of(δ1, δ2), |δi| ≤ 1. This Lyapunov function does
not depend onδ1 since the corresponding block ofDv(z) is a
constant. Figure 1 shows the unit level sets of this Lyapunov
function asδ2 varies from−1 to +1. The level sets are skewed
and rotate withδ2.

VI. CONCLUSIONS

This paper considered robust stability with respect to struc-
tured uncertainties. If the small gain condition is satisfied
with constant scalings then the uncertain system is robustly
stable with respect to norm-bounded time-varying perturba-
tions. In this case, there is a single Lyapunov function which
proves stability over all possible trajectories, i.e. the system
is quadratically stable. If the small gain condition is satisfied
with frequency-varying scalings then the uncertain systemis
robustly stable with respect to norm-bounded constant pertur-
bations. In this paper we constructed a PDLF which proves
robust stability with respect to constant uncertainties. This
Lyapunov function has a rational quadratic dependence on the
uncertainties. It might prove fruitful to use this particular form
to develop algorithms for stability and region of attraction
analysis for nonlinear, uncertain systems. It would also be
interesting to see if a similar explicit construction can be
given for the frequency-varying quadratic separator condition.
This would be interesting since it would provide a form for
the PDLF which could be assumed without loss of generality
when analyzing the robustness of linear systems with respect
to constant uncertainties.
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