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Abstract— We propose a method to compute invariant subsets
of the robust region-of-attraction for the asymptotically stable
equilibrium points of systems with polynomial nominal vector
fields and unmodeled dynamics. The effects of unmodeled
dynamics are accounted for as systems satisfying certain gain
relations or dissipation inequalities. The methodology is ex-
tended to systems with parametric uncertainties and an in-
formal branch-and-bound type refinement procedure to reduce
the conservatism is discussed. We demonstrate the method on a
polynomial approximation of uncertain controlled short period
aircraft dynamics.

I. INTRODUCTION

We consider the problem of estimating the “robust” sta-
bility regions around stable equilibrium points of uncertain
nonlinear dynamical systems. Two types of uncertainties
are considered: (1) bounded uncertainties due to unmodeled
dynamics in the feedback loop as shown in Figure 1, where
Φ is considered to be unknown with a known bound on the
input-output gain and M is the known nonlinear part of the
dynamics; (2) bounded parametric uncertainties in M. Krstic
et al. demonstrated that existence of unmodeled dynamics
may reduce the size of regions-of-attraction for nonlinear
dynamical systems [1]. The approach for accounting for
the unmodeled dynamics with bounded induced L2 → L2

norms is based on separate analyses of input-output gain
properties of M and Φ. A “local” small-gain type argument,
which uses the certificates from separate input-output gain
analyses, is used to estimate stability regions for the closed-
loop dynamics. Following [2], [3], [4], we characterize
upper bounds on “local” input-output gains for M due
to bounded L2 disturbances by Lyapunov/storage functions
which satisfy certain “local” dissipation inequalities [5].
We use polynomial Lyapunov/storage function candidates,
simple generalizations of the S-procedure [6], and sum-of-
squares (SOS) relaxations for polynomial nonnegativity [7]
and compute upper bounds on the input-output gains via
(bilinear) SOS programming problems.

The approach for the bounded parametric uncertainties
is similar to that developed in [8], [9] in the context of
region-of-attraction analysis for systems with parametric
uncertainties (but with no unmodeled dynamics). Namely, a
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parameter-independent storage function is used to character-
ize input-output properties over the entire set of admissible
values of uncertain parameters. The input-output relations
characterized by a single parameter-independent certificate
may be more conservative compared to those by parameter-
dependent certificates [10]. This potential conservatism is
reduced by partitioning the uncertainty set into subregions
following an informal branch-and-bound type refinement
procedure [11] and computing parameter-independent certifi-
cates for each subregion. Although it is simplistic (compared
to theories based on parameter-dependent Lyapunov func-
tions), this approach offers certain computational advantages
as discussed in section III-C and in [9] in more detail.
Notation: For x ∈ Rn, x � 0 means that xk ≥ 0 for
k = 1, · · · , n. For Q = QT ∈ Rn×n, Q � 0 (Q � 0)
means that xTQx ≥ 0 (> 0) for all x ∈ Rx. For x1 ∈ Rn1

and x2 ∈ Rn2 , [x1;x2] ∈ Rn1+n2 denotes the concatenation
of x1 and x2. R[x] represents the set of polynomials in x
with real coefficients. The subset Σ[x] := {π = π2

1 + π2
2 +

· · ·+ π2
M : π1, · · · , πM ∈ R[x]} of R[x] is the set of SOS

polynomials. For η > 0 and a function g : Rn → R, define
the η-sublevel set Ωg,η of g as

Ωg,η := {x ∈ Rn : g(x) ≤ η}.

For a piecewise continuous map u : [0,∞) → Rm, define
the L2 norm as

‖u‖2 :=

√∫ ∞
0

u(t)Tu(t)dt.

In several places, a relationship between an algebraic con-
dition on some real variables and state properties of a dy-
namical system is claimed, and same symbol for a particular
real variable in the algebraic statement as well as the state
of the dynamical system is used. This could be a source of
confusion, so care on the reader’s part is required. /

II. PRELIMINARIES

Consider the autonomous nonlinear dynamical system

ẋ(t) = f(x(t)), (1)

where x(t) ∈ Rn is the state vector and f is an n-vector
with entries in R[x] satisfying f(0) = 0, i.e., the origin is
an equilibrium point of (1). Let φ(t; x0) denote the solution
to (1) at time t with the initial condition x(0) = x0. The
region-of-attraction (ROA) of the origin for the system (1)
is {

x0 ∈ Rn : lim
t→∞

φ(t; x0) = 0
}
.



A modification of a similar result in [12] provides a charac-
terization of invariant subsets of the ROA in terms of sublevel
sets of appropriately chosen Lyapunov functions.

Lemma II.1. Let α ∈ R be positive. If there exists a
continuously differentiable function V : Rn → R such
that

ΩV,α is bounded, and (2)
V (0) = 0 and V (x) > 0 for all x ∈ Rn (3)
ΩV,α\ {0} ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} , (4)

then for all x0 ∈ ΩV,α, the solution of (1) exists, satisfies
φ(t; x0) ∈ ΩV,α for all t ≥ 0, and limt→∞ φ(t; x0) = 0,
i.e., ΩV,α is an invariant subset of the ROA. /

Our goal is to construct Lyapunov functions that estimate
the regions-of-attraction for the closed-loop dynamics in
Figure 1 based on the input-output properties of M and Φ.
To this end, consider the input-output system governed by

ẋ(t) = f(x(t), w(t))
z(t) = h(x(t)), (5)

where x(t) ∈ Rn, w(t) ∈ Rnw , and f is a n-vector with
elements in R[(x,w)] such that f(0, 0) = 0 and h is an
nz-vector with elements in R[x] such that h(0) = 0. Let
φ(t; x0, w) denote the solution to (5) at time t with the initial
condition x(0) = x0 driven by the input/disturbance w.

Lemma II.2. [3] If there exists a real scalar γ > 0 and a
continuously differentiable function V such that

V (0) = 0 and V (x) ≥ 0 ∀x ∈ Rn, (6)

∇V f(x,w) ≤ wTw − γ−2zT z (7)
∀x ∈ ΩV,R2 and ∀w ∈ Rnw ,

then it holds that for the system in (5)

x(0) = 0 and ‖w‖2 ≤ R ⇒ ‖y‖2 ≤ γ‖w‖2. (8)

/

In other words, γ is a local upper bound for the input-output
gain for the system in (5). We call γ to be a local upper
bound because the upper bound on the norm of the output
z is only supposed to hold whenever the norm of the input
is bounded by R. This is unlike the input-output gains for
linear systems which hold for all values of input norms.

Finally, the following lemma is a straightforward general-
ization of the S-procedure [6] and is used to obtain algebraic
sufficient conditions for certain set containment constraints.
See [8] for a proof.

Lemma II.3. Given g0, g1, · · · , gm ∈ R[x], if there exist
s1, · · · , sm ∈ Σ[x] such that

g0 −
m∑
i=1

sigi ∈ Σ[x],

then

{x ∈ Rn : g1(x), . . . , gm(x) ≥ 0} ⊆ {x ∈ Rn : g0(x) ≥ 0} .

z w-
Φ

M
�

Fig. 1. Feedback interconnection of Φ and M .

III. ROA ANALYSIS FOR SYSTEMS WITH UNMODELED
DYNAMICS

Consider the system interconnection in Figure 1. Let

ẋ(t) = f(x(t), w(t))
z(t) = h(x(t)) (9)

be a realization of M, where x ∈ Rn, f and h are vectors
of polynomials satisfying f(0, 0) = 0 and h(0) = 0.

A. Local “small-gain” type theorems

Proposition III.1. Consider the system interconnection in
Figure 1 with Φ stable linear time-invariant system satisfying
‖Φ‖∞ < 1. Let 0 < γ < 1, R > 0, and l be a positive
definite function with l(0) = 0. If there exists a continuously
differentiable positive definite function V satisfying V (0) =
0 and

∇V f(x,w) ≤ wTw − 1
γ2 z

T z − l(x)
for all w ∈ Rnw and x ∈ ΩV,R2 ,

(10)

and ΩV,R2 is bounded, then, for all x(0) ∈ ΩV,R2 and Φ
starting from rest, x(t) ∈ ΩV,R2 for all t ≥ 0 and x(t)→ 0
as t→∞. /

Proof: Let

ξ̇(t) = Aξ(t) +Bz(t)
w(t) = Cξ(t) +Dz(t)

be a realization of Φ with ξ ∈ Rnξ . By Bounded Real
Lemma [6], there exist Q̃ � 0 and ε > 0 such that[

AT Q̃+ Q̃A+ CTC Q̃B + CTD

BT Q̃+DTC −I +DTD

]
+ εI � 0 (11)

Let Q(ξ) = ξT Q̃ξ, then, for all ξ ∈ Rnξ and z ∈ Rnz , the
inequality (11) implies that

d
dtQ(ξ) = ∂Q(ξ)

∂ξ (Aξ +Bz)
= −εξT ξ − εzT z − wTw + zT z
≤ zT z − wTw − εξT ξ.

(12)

Now, let (x, ξ) ∈ ΩV+Q,R2 . By (10) and (12),

d
dt (V (x) +Q(ξ)) ≤

(
1− 1

γ2

)
zT z − l(x)− εξT ξ

≤ −l(x)− εξT ξ.
(13)

Integrate (13) from 0 to T ≥ 0 to get

V (x(T )) ≤ V (x(T )) +Q(ξ(T ))
≤ −

∫ T
0

(l(x) + εξT ξ)dt+ V (x(0))
≤ V (x(0)) ≤ R2,



which implies that, for all t ≥ 0, x(t) ∈ ΩV,R2 whenever
x(0) ∈ ΩV,R2 and ξ(0) = 0. Convergence of (x, ξ) and, in
particular of x, follows from Lemma II.1 using the inequality
in (13) (note that S := V + Q is a Lyapunov function for
the closed-loop system). �

Remarks III.1.
Note that Proposition III.1 only states that ΩV,R2 is invariant
but does not assure the invariance of the sublevel sets ΩV,r2
for any 0 < r2 < R2. Hence, V may increase along
the trajectories of the closed-loop system. Nevertheless, if
V (x(0)) ≤ R2 and Φ starts from rest, then V cannot exceed
R2 and converges to the origin along every trajectory with
x(0) ∈ ΩV,R2 and ξ(0) = 0. /

In the proof Proposition III.1, the linear time-invariance
property of Φ is only used to establish the existence of a
storage function Q satisfying the inequality (12). Therefore,
if Φ is a dynamical system known to satisfy

d

dt
Q(ξ) ≤ zT z − wTw − εξT ξ

for all ξ ∈ Rnξ and z ∈ Rnz with ε > 0 where Q is
a continuously differentiable, positive definite function with
bounded sublevel sets and Q(0) = 0, then the conclusion of
Proposition III.1 still applies.

Proposition III.2. Consider the system interconnection in
Figure 1. Let 0 < γ < 1, R > 0, and l : Rn → R and
l̃ : Rnξ → R be positive definite functions with l(0) = and
l̃(0) = 0, and let

ξ̇(t) = f2(ξ(t), z(t))
w(t) = h2(ξ(t))

(14)

be a realization of Φ with ξ ∈ Rnξ such that there exists a
continuously differentiable positive definite function Q that
has bounded sublevel sets and satisfies Q(0) = 0 and

∇Qf2(ξ, z) ≤ zT z − wTw − l̃(ξ)
for all z ∈ Rnz and ξ ∈ Rnξ . (15)

If there exists a continuously differentiable positive def-
inite function V satisfying V (0) = 0 and (10), and
ΩV,R2 is bounded, then, for ξ(0) = 0 and all x(0) ∈
ΩV,R2 , (x(t), ξ(t)) ∈ ΩV+Q,R2 for all t ≥ 0 and
limt→∞ (x(t), ξ(t)) = (0, 0), in particular, x(t) ∈ ΩV,R2

for all t ≥ 0 and limt→∞ x(t) = 0. /

Conditions Φ in Proposition III.2 can be relaxed to obtain
the following result.

Proposition III.3. Consider the system interconnection in
Figure 1. Let 0 < γ < 1, R > R̃ > 0, and l : Rn →
R be a positive definite function with l(0) = 0. Let (14)
be a realization of Φ such that there exists a continuously
differentiable positive definite function Q that has bounded
sublevel sets and satisfies Q(0) = 0 and

∇Qf2(ξ, z) ≤ zT z−wTw for all z ∈ Rnz and ξ ∈ Rnξ .
(16)

If there exists a continuously differentiable positive definite

function V satisfying V (0) = 0 and (10), and ΩV,R2

is bounded, then, for ξ(0) = 0 and all x(0) ∈ ΩV,R̃2 ,
(x(t), ξ(t)) ∈ ΩV+Q,R̃2 for all t ≥ 0 and, in particular,
x(t) ∈ ΩV,R̃2 for all t ≥ 0. Moreover, limt→∞ x(t) = 0. /

Proof: Define S := V +Q.

d
dtS(x, ξ) = d

dt (V (x) +Q(ξ))
≤ −l(x) ∀x ∈ ΩV,R2 , ∀ξ ∈ Rnξ .

Let x(0) ∈ ΩV,R̃2 and ξ(0) = 0, and integrate this last
inequality to get

S(x(t), ξ(t))− S(x(0), ξ(0))
≤ V (x(t)) +Q(ξ(t))− V (x(0))
≤ −

∫ t
0
p(x(τ))τ,

and x(t) ∈ ΩV,R̃2 and (x(t), ξ(t)) ∈ ΩS,R̃2 follow.
With x(0) ∈ ΩV,R̃2 and ξ(0) = 0, S is monotoni-
cally non-increasing and bounded below (by zero). There-
fore, limt→∞

∫ t
0
Ṡ(τ)dτ exists and is finite. Since S

is bounded from below and positive definite, S(x(t), ξ(t))
is uniformly bounded for t ≥ 0, and (ẋ(t), ξ̇(t)) =
(f(x(t), w(ξ(t))), f2(z(x(t)), ξ(t))) is uniformly bounded
for all t ≥ 0. Hence x(t), ξ(t) is uniformly continuous on
[0,∞). S is uniformly continuous in t on [0,∞) because
S(x, ξ) is uniformly continuous in (x, ξ) on the compact set
ΩS,R̃2 . Therefore, by Barbalat’s Lemma [13], Ṡ(t) → 0 as
t→∞. Consequently, l(x(t))→ 0 and x(t)→ 0 as t→∞.
�

B. Estimating the region-of-attraction in the presence of
unmodeled dynamics

By Proposition III.1, for positive scalars µ and γ with γ ≤
1, and linear time-invariant Φ with ‖Φ‖∞ < 1 starting from
rest, if there exists positive definite V such that V (0) = 0,
ΩV,R2 is bounded, and

∇V f(x,w) ≤ wTw − 1
γ2 z

T z − µV (x)
for all w ∈ Rnw and x ∈ ΩV,R2 ,

(17)

then ΩV,R2 is invariant and all trajectories of the closed-
loop system with x(0) ∈ ΩV,R2 converge to the origin. In
order to enlarge ΩV,R2 by choice of V , we define a variable
sized region Ωp,β = {x ∈ Rn : l(x) ≤ β}, where p ∈ R[x]
is a fixed positive definite polynomial, and maximize β
while imposing the constraint Ωp,β ⊆ ΩV,R2 along with the
constraints V (0) = 0, that ΩV,R2 is bounded, and (17), i.e.,

max
V ∈V,β≥0,R≥0

β subject to

V (x) > 0 for all x 6= 0, V (0) = 0,
Ωp,β ⊆ ΩV,R2 ,

ΩV,R2 is bounded,
∇V f(x,w) ≤ wTw − 1

γ2 z
T z − µV (x)

∀ x ∈ ΩV,R2 , ∀ w ∈ Rnw ,
(18)

where V is the family of functions over which the maximum
in (18) is computed. Now, let l be a positive definite
polynomial (typically l(x) = εxTx with a small positive
scalar ε), µ be positive and 0 < γ ≤ 1, and Vpoly ⊆ V be a



prescribed subset of R[x]. Define

β∗ := max
V ∈Vpoly,β≥0,R≥0,s1∈S1,s2∈S2

β subject to

V − l ∈ Σ[x],
(R2 − V )− s1(β − p) ∈ Σ[x],

−∇V f + wTw − 1
γ2 z

T z − µV − s2(R2 − V )
∈ Σ[(x,w)],

(19)

where S1 and S2 are prescribed subsets of R[x] and
R[(x,w)], respectively. Then, by Lemma II.3, β∗ is a lower
bound for the maximum value of β in (18).

Remark III.1. Note from (18) that computation of the set
ΩV,R2 does not require the knowledge of the storage function
for Φ but requires the extra assumption that Φ starts from
rest. When a storage function for Φ is known, this extra
assumption can be removed. Furthermore, even when only an
upper bound Q̄ ≥ 0 on the value of Q at the nonzero initial
condition of Φ is known such that V (0) + Q̄ ≤ R2, then the
conclusion of Proposition III.1 can be modified such that
x(t) ∈ ΩV,R2−Q̄ for all t ≥ 0 whenever x(0) ∈ ΩV,R2−Q̄
and x(t) → 0 as t → ∞. By Willems [5], such bounds on
the value of the storage functions at the initial value of Φ
may theoretically be established using input-output tests, i.e.,
does not require the knowledge of specific realization of Φ.
Nevertheless, these bounds may not be easily determined by
numerical computation in practice. /

C. ROA analysis in the presence of parametric uncertainties

We now generalize the development in section III-B to the
case where M is governed by ordinary differential equations
that contain unknown but fixed and bounded parameters.
Following the methodology discussed in [9] in the context
of robust stability analysis, we first restrict our attention to

ẋ(t) = f(x(t), w(t), δ)
:= f0(x(t), w(t)) +

∑m
i=1 δifi(x(t), w(t))

z(t) = h(x(t)),
(20)

where f0, f1, . . . , fm are n-vectors with elements in
R[(x,w)] such that f0(0, 0, δ) = f1(0, 0, δ) = . . . =
fm(0, 0, δ) = 0, for all δ ∈ ∆ ⊂ Rm, and ∆ is a known
bounded polytope. Let φ(t; x0, w, δ) denote the solution of
(20) for δ at time t with the initial condition x(0) = x0

driven by the input/disturbance w and E∆ denote the set of
vertices of ∆.

Proposition III.4. If, for some V : Rn → R, and scalars
γ, µ, and R,

∇V f(x,w, δ) ≤ wTw − 1
γ2 z

T z − µV
∀x ∈ ΩV,R2 , ∀w ∈ Rnw (21)

holds for each δ ∈ E∆, then (21) holds for each δ ∈∆.

Proposition III.4 follows from the affine δ dependence in
(21) and the restriction that ∆ is a bounded polytope. By
Proposition III.4, for positive scalar µ, positive scalar γ with
γ ≤ 1, and linear time-invariant Φ that starts from rest and
satisfies ‖Φ‖∞ < 1, if there exists a positive definite V such

that V (0) = 0, ΩV,R2 is bounded, and

∇V f(x,w, δ) ≤ wTw − 1
γ2 z

T z − µV (x)
for all w ∈ Rnw , x ∈ ΩV,R2 , and δ ∈ E∆

(22)
then all trajectories of the closed-loop system in (20) with
x(0) ∈ ΩV,R2 converge to the origin. Furthermore, SOS
based sufficient conditions for those in (22) can be obtained
using Lemma II.3 and SOS relaxations.

The approach proposed here to account for parametric
uncertainties is restrictive: (1) only affine dependence on δ
and polytopic ∆ are allowed; (2) SOS relaxations for the
conditions in (22) may include a large number of semidefinite
programming (SDP) constraints - one for each δ ∈ E∆;
(3) single (δ-independent) Lyapunov/storage function is to
certify properties for an entire family of systems. These
limitations can be partially alleviated using techniques pro-
posed in [9]. For example, polynomial dependence on δ
in the vector field and the output map can be handled by
replacing non-affine appearances of δ by artificial parameters
and covering the graph of non-affine functions of δ (in
the conditions in (22)) by bounded polytopes in the lifted
uncertain parameter space. Furthermore, the fact that con-
straints in the SOS relaxations for the conditions in (22) are
only coupled through the Lyapunov/storage functions (which
include relatively small portion of all decision variables in the
associated SDPs 1.) can be exploited through a suboptimal
two-step procedure, which effectively decouples the large
number of constraints enabling the use of trivial paralleliza-
tion. Finally, conservatism (due to using a single parameter-
independent Lyapunov function and due to the suboptimal
two-step procedure) can be reduced by an informal branch-
and-bound type refinement procedure where ∆ is partitioned
into smaller subregions and a different Lyapunov/storage
function is computed for each subregion. See [9] for details.

D. Implementation issues
The SOS relaxations in (19) lead to bilinear SDPs due

to the multiplication between the decision variables in V
and the multipliers. Therefore, solution techniques for these
problems are usually limited local search schemes such
as PENBMI [14] or coordinate-wise affine search based
on the observation that, for given V and R, constraints
in these problems are affine in the decision variables in
the multipliers. For example, one can obtain a suboptimal
solution for the problem in (19) by alternating between
solving Problems 1 and 2 (stated below) until a maximum
number of iterations or an increase in the value of certified
R smaller than a pre-specified tolerance is reached.
Problem 1: For given V̄ (known to be) feasible for (19),
solve

max
R≥0,s2∈S2

R2 subject to

−∇V̄ f + wTw − 1
γ2 z

T z − µV̄ − s2(R2 − V̄ )
∈ Σ[(x,w)],

(23)

1Note that the SOS relaxation for each constraint in (22) contains
decision variables in the S-procedure multipliers and those introduced in
the corresponding SDP to certify the SOS property [7]



and, with the optimal value R̄ of R in (23), solve

max
β≥0,s1∈S1

β subject to

(R̄2 − V̄ )− s1(β − p) ∈ Σ[x],
(24)

Problem 2: For given s̄1 and s̄2 (known to be) feasible for
(19), solve

max
V ∈Vpoly,β≥0,R≥0

β subject to

V − l ∈ Σ[x],
(R2 − V )− s̄1(β − p) ∈ Σ[x],

−∇V f + wTw − 1
γ2 z

T z − µV − s̄2(R2 − V )
∈ Σ[(x,w)],

(25)

Note that Problems 1 and 2 can be solved using linear
SDP solvers, such as SeDuMi [15], through a line search on
R and β in (23) and (24), respectively.

IV. EXAMPLES

Consider the controlled short period aircraft dynamics
shown in Figure 2 with

ẋp =

 c01(xp) + δ1c11(xp) + δ2
1q31(xp)

q02(xp) + δ1`
T
12xp + δ2q22(xp)
x1


+

 `Tb xp + b11 + b12δ1
b21 + b22δ2

0

u, (26)

where xp := [x1 x2 x3]T , x1, x2, and x3 denote the pitch
rate, the angle of attack, and the pitch angle, respectively.
Here, δ1 ∈ [0.99, 2.05] models variations in the center of
gravity in the longitudinal direction and δ2 ∈ [−0.1, 0.1]
models variations in the mass. Here, c01 and c11 are cubic
polynomials, q02, q22, and q31 are quadratic polynomials,
`12 and `b are vectors in R3, b11, b12, b21, and b22 are real
scalars (see [9] for the values of the missing parameters). The
controller output v, the elevator deflection, is determined by

ẋ4 = −0.864y1 − 0.321y2

v = 2x4,
(27)

where x4 is the controller state and the plant output y =
[x1 x3]T . Define x :=

[
xTp x4

]T
and let the system from

the input w to the output z be governed by ẋ = f(x,w, δ)
and z = hz(x). Using the procedure explained in section III
with p(x) = xTx, γ = 0.99, and µ = 10−6, we computed
estimates of the ROA for two cases:

• (uncertain parameters set to the nominal values δ1 =
1.52 and δ2 = 0) Ωp,4.24 and Ωp,6.67 are certified to
be in the robust region-of-attraction with ∂(V ) = 2 and
∂(V ) = 4, respectively.

• (with parametric uncertainty in the plant δ1 ∈
[0.99, 2.05] and δ2 ∈ [−0.1, 0.1]) We implemented a
branch-and-bound type refinement procedure coupled
with a generalization of the sequential suboptimal so-
lution technique (as mentioned in section III-C and
detailed in [9]). Ωp,2.39 and Ωp,4.14 are certified to be

in the robust region-of-attraction with ∂(V ) = 2 and
∂(V ) = 4, respectively.

On the other hand, in case there is no unmodeled dynamics,
the following was proven in [16].
• (uncertain parameters set to the nominal values) Ωp,9.38

and Ωp,16.11 are certified to be in the region-of-
attraction with ∂(V ) = 2 and ∂(V ) = 4, respectively.

• (with parametric uncertainty in the plant) Ωp,5.45 and
Ωp,7.93 are certified to be in the region-of-attraction with
∂(V ) = 2 and ∂(V ) = 4, respectively.

V. CONCLUSIONS

We proposed a method to compute invariant subsets of the
robust region-of-attraction for the asymptotically stable equi-
librium points of systems with polynomial nominal vector
fields and unmodeled dynamics. The effects of unmodeled
dynamics were accounted for as systems satisfying certain
gain relations or dissipation inequalities. The methodology
was extended to systems with parametric uncertainties and
an informal branch-and-bound type refinement procedure
to reduce the conservatism is discussed. We demonstrated
the method on a polynomial approximation of uncertain
controlled short period aircraft dynamics.
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