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Adaptive control algorithms have the potential to improve performance and reliability
of flight control systems. The application of adaptive control on commercial or military
aircraft will require validation and verification of the robustness of these algorithms to
modeling errors and uncertainties. Currently, there is a lack of tools to rigorously analyze
the performance and robustness of adaptive systems. This paper addresses the development
of nonlinear robustness analysis tools for such systems. First a model-reference adaptive
controller is derived for an aircraft short-period model. It is noted that the adaptive control
law is a polynomial system. Polynomial optimization tools are applied to the closed loop
model to assess the performance and robustness of the adaptive control law. Two sets of
results are presented in this paper. First, input-output gains are calculated in the presence
of model uncertainty to evaluate the performance of the adaptive law. Second, time delay
margins are computed for varying parameters in the adaptive law, as well as in the presence
of model uncertainty.

I. Introduction

Adaptive control laws have great potential to improve the performance and reliability of flight control
systems. Adaptive control laws are nonlinear, time-varying, and few tools exist to rigorously analyze their
robustness and performance. The lack of tools to validate and verify performance and robustness is a
significant roadblock to implementation of adaptive controllers.

The objective of this paper is to demonstrate the suitability of sum-of-squares polynomial optimiza-
tion tools for the analysis of adaptive control systems. There has recently been significant research on
sum-of-squares optimization problems.1–3 These optimization problems involve constraints on polynomial
functions. Sum-of-squares optimizations can be used to analyze the performance and robustness of systems
described by polynomial dynamics. Computational algorithms have been developed for estimating regions
of attraction, reachability sets, input-output gains, robustness with respect to uncertainty, and time delay
margins.4–23 Moreover, there is freely available software to solve sum-of-squares optimizations, which allows
easy application of these techniques to aerospace systems.24–26

This paper demonstrates that these sum-of-squares optimization tools can be applied to assess the per-
formance and robustness of adaptive flight control laws. The analysis tools have been previously applied
to simple one-state model-reference adaptive control systems.20,27 This paper focuses on a more realistic
flight control problem and the engineering insight that can be drawn from these nonlinear analyses. First a
model-reference adaptive controller (MRAC) is developed for the short-period dynamics of an aircraft. It is
noted that the MRAC is a polynomial system, hence the closed loop system can be modeled as a polynomial
dynamical system. The sum-of-squares optimization tools are ideally suited to analyze MRAC algorithms
because the MRAC is a polynomial system. A brief description of sum-of-squares optimization is provided,
as well as an overview of the analyis tools. Finally, two applications of the analysis tools for polynomial
systems are presented. First, a sufficient condition to compute an upper bound on input-output gain is
given. This condition is used to analyze the reference to error gain for the closed-loop short-period dynamics
with model uncertainty. Second, a sufficient condition for stability in the presence of time delay is given.
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This condition is used to compute time delay margins for varying parameters in the adaptive law and model
uncertainty.

II. MRAC for Short Period Control

This section describes a simple model-reference adaptive controller for the short-period dynamics of the
NASA X-15 hypersonic aircraft, taken from Ref. 28. The short-period model is given by:

ẋ = Aλx+Bu (1)
y = Cx

where x := [α (deg), q (deg/sec)]T and u := elevator deflection (deg). The state matrices are:

Aλ =

[
−0.2950 1.0000
−13.0798λα −0.2084λq

]
(2)

B =

[
0

−9.4725

]
(3)

C =
[
1 0

]
(4)

where λ := [λα, λq]T models the uncertainties in two of the aerodynamic coefficients. The nominal model
corresponds to λα = 1 and λq = 1, denoted as Anom.

The control law consists of a state feedbackKx, a reference feedforwardKr, and an adaptive augmentation
term uad:

u = Kxx+Krr + uad (5)

where r is the angle of attack reference command. Kx and Kr are chosen to provide the desired system
response on the nominal model. Specifically, the reference model is:

ẋm = Amxm +Bmr (6)
y = Cmxm (7)

where Am := Anom + BKx, Bm := BKr, and Cm := C. Kr is chosen as Kr := (−CA−1
m B)−1 so that the

reference model has a steady state gain of one. It is noted that the reference model is equivalent to the
nominal open loop plant model augmented with the state feedback term.

The adaptive term in the control signal is given by:

uad = θTx (8)

where θ is updated based on the parameter update law described below. It is assumed that for all λ there
exists an ideal gain θ∗ such that Aλ+B(Kx+θ∗) = Am. In other words, there exists a gain θ∗ such that the
uncertain plant matches the reference model. The value of θ∗ depends on λ, i.e. the optimal gain depends
on the particular values of the plant uncertainties. Specifically, Bθ∗ is a solution to the following:

Bθ∗ = Am −Aλ −BKx = Anom −Aλ (9)

The term Bθ∗ is a measure of the deviation between the nominal and the uncertain state matrix. For the
nominal case, i.e. Aλ = Anom, it is clear that θ∗ is zero. Hence parameter adaptation is not required.

Define the tracking error e := x − xm and the parameter error θ̃ := θ − θ∗. It can be shown that the
error dynamics are expressed by Equation 10.

ė = Ame+Bθ̃Tx (10)

Let P > 0 solve the Lyapunov equation ATmP+PAm = −Q for some Q > 0. Consider the Lyapunov function
candidate in Equation 11 where κ > 0 is a scalar constant:

V = eTPe+
1
κ
θ̃T θ̃ (11)
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An adaptive control law with sigma modification is proposed in Equation 12.

θ̇ = −κxeTPB − σθ (12)

Using Equations 10 through 12, it can be shown that V̇ is the following:

V̇ = −eTQe− 2σ
κ
θ̃T θ̃ (13)

In general, Equation 13 is not negative semidefinite because the second term is not sign definite. However,
if sigma modification is eliminated, i.e. σ = 0, then V̇ ≤ 0. Convergence of e → 0 and boundedness of the
estimation parameters follows from Lyapunov theory and Barbalat’s Lemma.29 No conclusion is drawn
about convergence of the adaptive parameters. The sigma modification is required, with σ > 0, to increase
robustness and to ensure that the adaptive parameters remain bounded. As such, the Lyapunov funcion
in Equation 11 can no longer be used to prove convergence of e → 0. It is a known result that sigma
modification increases robustness at the expense of the precise convergence of e to the origin.30 However, all
signals remain bounded, and e converges to a small closed region near the origin.30

The control law is defined by Equations 5, 8 and 12. The reference model (Equations 6 and 7) is also
part of the control law since the reference model state xm appears in the definition of the tracking error. The
adaptive law in Equation 12 is a polynomial function of x and x− xm. Equation 8 is a polynomial function
of x and θ. All other terms in the controller are linear. Thus, the key observation is that the MRAC is a
polynomial system. In other words the MRAC system is of the form

ż = f(z, y) (14)
u = h(z, y)

where z := [θ, xm]T is the MRAC state, y := [x, r]T are the measurements available to the MRAC, and f
and h are polynomial functions.

III. Sum-of-Squares Programs

This section provides a brief review of sum-of-squares optimizations. Additional details can be found
in Refs. 1–3. A polynomial p is a sum of squares (SOS) if there exist polynomials {fi}mi=1 such that
p =

∑m
i=1 f

2
i . For example, p = x2 − 4xy + 7y2 is a sum of squares since p = f2

1 + f2
2 where f1 = (x− 2y)2

and f2 = 3y2. Note that if p is a sum-of-squares, then p(x) ≥ 0 ∀x ∈ Rn.
Quadratic forms can be expressed as p(x) = xTQx where Q is a symmetric matrix. Similarly, polynomials

of degree ≤ 2d can be expressed as p(x) = z(x)TQz(x) where the vector z contains all monomials of degree
≤ d. This is known as the Gram matrix form. An important fact is that p is SOS if and only if there exists
Q � 0 such that p(x) = z(x)TQz(x). This provides a connection between SOS polynomials and positive
semidefinite matrices.

A sum-of-squares program is an optimization problem with a linear cost and SOS constraints on the
decision variables:24

min
u∈Rn

cTu (15)

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un ∈ SOS (k = 1, . . . Ns)

The vector c ∈ Rn and polynomials {ak,j} are given as part of the optimization data. u ∈ Rn are decision
variables. SOS programs can be converted to semidefinite programs (SDP) using the connection between
SOS polynomials and positive semidefinite matrices. SOSTOOLS,24 Yalmip,25 and SOSOPT26 are freely
available MATLAB toolboxes for solving SOS optimizations. These packages allow the user to specify the
polynomial constraints using a symbolic toolbox. Then they convert the SOS optimization into an SDP
which is solved with SeDuMi31,32 or another SDP solver. Finally the solution of the SDP is converted back
to a polynomial solution.

A drawback is that the size of the resulting SDP grows rapidly in the number of variables and polynomial
degree. For a generic degree 2d polynomial p in n variables, the Gram matrix representation involves

(
n+d
d

)
monomials. An SOS constraint on p is enforced via the constraint Q � 0 on the lz × lz Gram matrix.
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For example, Q has dimension lz = 495 for a generic degree 8 polynomial in 8 variables. The size of this
matrix constraint is near the limits of current SDP solvers. The problem structure can be exploited33 but
this computational growth is a generic trend in SOS optimizations. For analysis of polynomial systems, this
roughly limits the approach to systems with fewer than 8-10 states and cubic degree models. Polynomial
models of higher degree can be handled if there are fewer states.

By definition, SOS polynomials are globally positive definite. Lyapunov based analysis is generally
centered around satisfying non-negativity conditions on storage functions and their derivatives, which involve
the governing system dynamics. Constraining storage functions to be SOS polynomials, Lyapunov type
stability certificates can be obtained using SOS optimization. This is only possible if the control systems are
governed by polynomial dynamics.

IV. Analysis of Polynomial Systems

This section describes methods to compute input-output gains and time delay margins using SOS tech-
niques. Many other nonlinear analysis problems (estimating regions of attraction, reachability sets, local
input-output gains, input-output gains with other signal norms, and robustness with respect to uncertainty)
can be formulated as polynomial optimization problems with sum-of-squares constraints.4–21

A. SOS Input-Output Gain Analysis

Consider nonlinear dynamical systems of the form:

ẋ = f(x, u) (16)
y = h(x)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input, and y ∈ Rny is the output. Assume that f is an
nx × 1 polynomial function of x and u such that f(0, 0) = 0. Also assume that h is an ny × 1 polynomial
function of x such that h(0) = 0. Denote this system by S.

Define the L2 norm of a signal as ‖u‖ :=
[∫∞

0
uT (t)u(t)dt

]0.5
. u is called an L2 signal if this integral is

finite, and it is assumed that all inputs to S are L2 signals. The L2-L2 input-output gain of the system is
defined as:

‖S‖ := sup
‖u‖6=0

‖y‖
‖u‖

(17)

Lemma 1 provides a sufficient condition for the L2-L2 input-output gain to be less than γ. This is a standard
result which can be found in textbooks.34,35

Lemma 1 If there exists a γ > 0 and a polynomial V : Rn → R such that:

1) V (0) = 0 and V (x) ≥ 0 ∀x ∈ Rnx

2) γ2uTu− yT y − ∂V
∂x f(x, u) ≥ 0 ∀x ∈ Rnu ∀u ∈ Rnu

then x(0) = 0 implies ‖y‖ ≤ γ‖u‖.

Lemma 1 provides a sufficient condition to prove ‖S‖ ≤ γ in terms of a storage function, V . This
lemma involves two polynomial non-negativity conditions. Bounds on the system gain can be computed
by minimizing γ while searching over a class of polynomial storage functions, e.g. all polynomials V of
a specified degree, that satisfy the non-negativity constraints. Constraining a polynomial to be a sum-of-
squares is sufficient to ensure that it is globally non-negative. Thus the non-negativity constraints in the
system gain calculation can be relaxed to sum-of-squares constraints. This leads to an SOS program that
can be used to compute a bound on the system gain. Further details for solving the L2-L2 gain problem are
discussed in Refs. 14,15,18,20,27.
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B. SOS Time Delay Analysis

An approach for calculating time delay margins using SOS optimization was proposed in Ref. 22. This
section reviews the results contained in Ref. 22. The complete derivation for this approach, along with
proofs, can be found in Refs. 22 and 23.

Consider nonlinear time delay dynamical systems of the form:

ẋ = f(x(t), x(t− r)) (18)

where x(t) is the current state, and x(t−r) is the delayed state vector. Assume that f is an nx×1 polynomial
function of x(t) and x(t−r) such that f(0, 0) = 0. Implicitly, this system is infinite dimensional. The current
derivative depends on the current state and the delayed state. However, predicting future states requires
knowledge of the entire time history of the state vector on the interval of the time delay. Denote this time
history of the state vector as x(m), where m ∈ [t− r, t]. r is the maximum time delay for which stability is
shown, hence the time delay margin.

If stability of a system in the presence of time delay is independent of the size of the time delay, then
the system is delay-independent stable. Enforcing such stability is conservative for typical engineering
applications. Instead, delay-dependent stability is considered where particular time delay margins are found.
The time delay is treated as a parameter altering the dynamics of the system. A brief derivation of delay-
dependent SOS conditions for stabilty is provided in this section.

The dynamics in Eq. 18 are nonlinear, hence quadratic form Lyapunov functions used in linear analysis
will not be sufficient in proving stability. A more complex Lyapunov function structure is required. Consider
the function V :

V (x(m)) = V0(x(t)) +
∫ 0

−r
V1(τ, x(t), x(t+ τ)) dτ +

∫ 0

−r

∫ t

t+τ

V2(x(ξ)) dξ, dτ (19)

where V0, V1, and V2 are polynomials. The polynomial function V depends on the current state and the
entire interval of the state trajectory inside the window of the time delay margin. Instead of constraining
each term to be non-negative, the kernels of the integrals are constrained to be SOS polynomials. Using this
structure for the storage function V , a set of sufficient conditions for global stability for the time delayed
system are formulated.

Lemma 2 Assume the origin is an equilibrium point for the system in Eq. 18, polynomials V0, V1, and V2

exist, and that ψ(x(t)) is a positive definite polynomial function such that:

1) V0(x(t))− ψ(x(t)) ≥ 0

2) V1(τ, x(t), x(t+ τ)) ≥ 0 ∀τ ∈ [−r, 0]

3) V2(x(ξ)) ≥ 0

4) r ∂V1
∂x(t)f + dVo

dx(t)f − r
∂V1
∂τ + rV2(x(t))− rV2(x(t+ τ)) +V1(0, x(t), x(t))−V1(−r, x(t), x(t− r)) ≤ 0 ∀τ ∈

[−r, 0]

then the origin is a globally stable equilibrium for time delays up to size r.

The first condition ensures that V0 is positive definite. The second and third conditions ensure that
the kernels of the integral terms in V are positive semi-definite. Finally, the fourth condition ensures that
the derivative of V is negative semi-definite. Conditions 2 and 4 depend on the time delay τ , hence their
respective inqeualities must hold for all time delays on the interval [−r, 0]. Together, these constraints are
sufficient to prove global stability of the origin.

To translate the conditions in Lemma 2 into SOS polynomial constraints, the time delay interval restric-
tion τ ∈ [−r, 0] must enter as a polynomial function in conditions 2 and 4. A variant of the S-procedure is
used to augment the interval into the constraints. In condition 2, V1 is required be positive semi-definite only
on the interval τ ∈ [−r, 0]. Defining a separate polynomial function h(τ) = τ(τ + r) = τ2 + τr, this function
is negative only on the given interval. Augmenting h(τ) to the condition 2, and using an SOS multiplier p1,
the following constraint is derived:

V1(τ, x(t), x(t+ τ)) + p1(τ, x(t), x(t+ τ)) h(τ) ∈ SOS (20)
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With the same approach, the fourth condition in Lemma 2 can be augmented and converted into an SOS
constraint using multiplier p2. Using this variant of the S-procedure ensures that the required conditions
hold on the desired time delay interval, and relaxes the constraints otherwise.

The SOS conditions in Lemma 2 are sufficient to prove global stability. In the case of many nonlinear
systems, this is conservative. It may even be infeasibile, as nonlinear systems can have multiple equilibria.
To limit the SOS conditions to a local domain around the equilibrim point, a variant of the S-procedure is
used. The desired local domain for each state in the system is constrained as:

|xi| ≤ ζi (21)

To obtain local SOS conditions, polynomial functions hji are defined as negative in the local region, and
positive elsewhere. These functions augment V and V̇ , hence conditions 1 and 4 must be changed. Since
x(t), x(t + τ), and x(t − r) are treated as separate sets of state variables, three sets of hji functions are
defined. Each state variable set is denoted with the j index. The i index is reserved for the individual state
in the set. Consider the following structure of hji functions:

h1i = (x(t)− ζi) (x(t) + ζi) (22)
h2i = (x(t+ τ)− ζi) (x(t+ τ) + ζi) (23)
h3i = (x(t− r)− ζi) (x(t− r) + ζi) (24)

The hji polynomials enter the conditons with SOS multiplier functions qji. The final result is a set of
sufficient conditions that prove local stability for a range of time delays. The final SOS conditions are
summarized with the following:

Lemma 3 Assume that the origin is an equilibrium point for the system in 18, that polynomials V0, V1, and
V2 exist, and that ψ(x(t)), p1, p2, and qji are SOS polynomials such that:

1) V0(x(t))− ψ(x(t)) +
∑n
i=1 q1ih1i is SOS

2) V1(τ, x(t), x(t+ τ)) + p1(τ, x(t), x(t+ τ))h(τ) is SOS

3) V2(x(ξ)) is SOS

4) −r ∂V1
∂x(t)f −

dVo

dx(t)f + r ∂V1
∂τ − rV2(x(t)) + rV2(x(t + τ)) − V1(0, x(t), x(t)) + V1(−r, x(t), x(t − r)) +

p2(τ, x(t), x(t+ τ))h(τ) +
∑n
i=1(q1ih1i + q2ih2i + q3ih3i) is SOS

then the origin is a locally stable equilibrium for time delays up to size r.

The conditions in Lemma 3 can be used with a bisection algorithm to calculate the time delay margin
for the system. Time delay margins are crucial in nonlinear performance analysis since classical notions of
gain and phase margins do not exist.

V. Results

SOS methods described in the previous section are used to analyze the MRAC system. This section
summarizes the findings and insightful conclusions that can be drawn from the analysis. First, input-output
gains are calculated to aid in the understanding of the interaction between adaptation and plant uncertainty.
Then, time delay margins are found to analyze how the system robustness depends on the sigma modification
parameter and plant model uncertainty.

A. Input-Output Gain Analysis

Input-output L2 gains for the MRAC system described in Section II are caluclated using the proposed SOS
methods from Section IV. Figure 1 provides a graphical interpretation of the system architecture. The gain
considered in this analysis computes bounds on the L2 gain from input reference r to error signal e. Note
that signal e is the error between the reference model state xm and the aircraft state x. The aircraft model
is denoted by Pλ, specifying that it is an uncertain model. Recall that uncertainty enters the state matrix
directly through scaling parameters λα and λq on the (2,1) and (2,2) entries, respectively. The MRAC
architecture consists of a state feedback, a reference feedforward, and a parameter update law term. The
components pertaining to the conroller are contained in the dashed box seen in Figure 1.
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Figure 1: Architecture for MRAC gain analysis

The adaptive law in Figure 1 is defined with Equation 12. Although sigma modification is used, the
parameter update law is mainly driven by error signal e. This error represents deviation of the true aircraft
state from the reference model state. Using the nominal condition, i.e. λα=λq= 1, the reference model is
defined as the nominal model Pλ=1 augmented with state feedback term Kx. Recall from Section II that
the gain Kr is built into the reference model’s input matrix. In the nominal case, with θ∗ = 0, the error
dynamics in Equation 10 simplify to the following:

ė = Ame+BθTx (25)

Note that the error dynamics now depend only on θ. Given this result and the parameter update law in
Equation 12, e(t) = 0 and θ(t) = 0 are valid solutions given any reference signal. Hence in the nominal case
without uncertainty, the gain from reference to error is zero. The true aircraft state is always equal to the
reference model state. As a result, the adaptive law is not activated.

When uncertainty is considered, the models no longer match exactly, and a transient occurs in the error
signal. The transient is used by the adaptive law to estimate the uncertainty and drive the true aircraft
state to the reference model state. The goal of the analysis is to gain engineering insight into the interaction
of model uncertainty with the error transients pertaining to the adaptive law.

For the controller design, the following MRAC parameters are used:

Kx =
[
0.0577 0.9843

]
(26)

Q = 2I2 (27)
κ = 1 (28)
σ = 1 (29)

The state feedback term Kx is used to place the poles of the referece model. The short-period model
is very lightly damped in the open loop, with damping ratio 0.069. Kx is used as a stability augmentation
system to move the poles to the real axis, eliminating any oscillation.

The short period-model of the X-15 depends on uncertainties λα and λq. Thus the closed loop L2 gain
from r to e is also a function of these uncertainties, denoted γ(λα, λq). The uncertain parameters enter
the state matrix by multiplying the (2,1) and (2,2) entires, hence considering values ranging from 0 to 2
represents 100 percent uncertainty in the respective aerodynamic coefficients.

As noted above, the nominal model perfectly matches the reference model for any input r and thus the
gain from r to e is zero for the nominal model, γ(1, 1) = 0. The gain is nonzero for other values of the plant
uncertainty. A grid was created for the uncertain parameters, and the gain was calculated using SOSOPT.26

A 25x25 grid on λα and λq took 104 seconds to calculate. Figure 2 illustrates the gain as a function of
uncertainty in the plant model. Values of λα and λq ranging from 0 to 2 were selected.
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Figure 2: Reference to error gain versus plant uncertainty

The input-output gain analysis provides several insightful conclusions. As expected, the gain for the
nominal condition is zero. The results in Figure 2 also indicate that the system is more sensitive to uncertainty
entering through λα than through λq. The system can tolerate 100 percent uncertainty through λq without
significant effects in the closed loop dynamics. Equivalent uncertainty through λα induces larger variations
in the reference to error gain.

It is important to note that when the uncertainty reaches a certain level, e.g. λα ≤ −0.005, the open
loop aircraft model becomes unstable. In this particular example, a sign in the state matrix has flipped.
The magnitude of λα is large enough to completely alter the open loop flight dynamics of the X-15. A
positive deflection in angle of attack now induces a positive pitch acceleration, which causes instability in
the longitudinal axis. However, the closed loop dynamics remain stable. The current SOS algorithm is unable
to reach a feasible result when the open loop plant is unstable. Hence, gain bounds are only computed for
uncertainties for which the open loop plant Pλ is stable.

B. Time Delay Margin Analysis

In this section, time delay margins for the MRAC system are calculated. SOS methods are used to satisfy
the conditions in Lemma 3, constructing a polynomial Lyapunov function sufficient to prove stability in the
presence of time delay. Figure 3 illustrates the system architecture considered in this analysis. The reference
signal is neglected and the remaining components form a system equivalent to a regulator control problem
with time delay. The time delay occurs between the controller and the plant.
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Figure 3: Architecture for MRAC time delay margin analysis

It should be noted that the construction of Lyapunov functions that prove local stability in the presence
of time delays is not at odds with known results about MRAC with a sigma-modification. Recall that the
simple Lyapunov function V in Equation 11 is used to design the MRAC. In the absence of time-delay, V̇ is
given by Equation 13. As previously mentioned, V̇ is not necessarily negative semidefinite for small values
of e and hence this Lyapunov function can only be used to prove that e converges to a neighborhood of the
origin if σ > 0. When the reference signal is omitted it is possible to construct quadratic Lyapunov functions
that prove converge of both x and θ to the origin in the absence of time delays. The main point is that it is
possible to construct Lyapunov functions that prove asymptotic converge of the state and parameters when
the reference signal is omitted.

A region in the closed loop aircraft model state space around the origin is designated for local stability
analysis. The MRAC system is nonlinear, hence local stability is a relevant and sufficient result. The local
region in the plant state space is selected as ± 2 deg on α and ± 5 deg/sec on q. This region is large enough
to be relevant for engineering analysis. The definition of a local region in the adaptive law parameter θ state
space is also required. Gridding and simulating over allowable initial conditions in the plant, the response of
the full system state is observed. Based on these simulations, trajectories of the two adaptive law parameter
states satisfy a local region constrained by ± 0.8 and ± 1.4 in each direction, respectively. Together, these
4 state space constraints form a box that contains all possible trajectories originating from admissible plant
initial conditions. This local analysis constraint is added to the SOS conditions as described in Section IV.
A limitation of the SOS conditions used in this analysis is the inability to obtain feasible results when the
local region in the state space is arbitrarily large.

The first set of results explore the change in time delay margin as a function of sigma modification. The
calculated time delay margins from the SOS algorithm serves as a lower bound on the true value. Simulations
are used to find upper bounds. For these simulations, the plant initial condition is α = 0 deg and q = 5
deg/sec. The time delay is increased until the signals exhibit growing oscillations. Figure 4 summarizes the
effect of sigma modification on the lower and upper bounds of time delay margin.

For both the lower and upper bounds, an increase in sigma modification results in a larger time delay
margin. This was expected, as the purpose of sigma modification is increased robustness. The lower bound
is conservative compared to the upper bound, with an order of magnitude difference. However, this result
is a dramatic improvement over recent work on time delay margins for MRAC systems. A similar problem
was studied in Ref. 28 and the gap between bounds was of 3 orders of magnitude. Although the result of
this analysis is still conservative, the gap between lower and upper bounds is greatly reduced. Exploring
more advanced lower bound methods is a next step in reducing the gap, and have been shown to obtain less
conservative results in simple examples.23

Interpreting the results in Figure 4a, as the sigma modification approaches zero, the time delay margin
reaches a value of 5.1 msec. The SOS algorithm has numerical problems when sigma modification equals
zero, i.e. a feasible solution cannot be found for any value of time delay. The time delay margin increases as
sigma modification increases, but this analysis considers σ values up to 2. Higher sigma modification masks
the intended MRAC dynamics by significantly altering the adaptive parameters dynamics and causing worse
performance in the tracking error.

The next set of results calculate time delay margin in the presence of plant uncertainty. Sigma modifcation
with a value of 1 is used in the control design. As noted previously from the results in Figure 2, the plant
is not sensitive to fluctuations in λq. A less refined grid is used in this direction in the interest of reducing
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(a) Lower Bound (b) Upper Bound

Figure 4: Time delay margin versus sigma modification

computation time. This is particularly convenient since the computation time exceeds 20 minutes per data
point.Therefore, the grid on λq is coarse, and fine on λα.

The SOS algorithm is able to prove stability by establishing a lower bound on the time delay margin.
Simulations are used to find suitable upper bounds. Figure 5 shows the calculated lower and upper bounds
on time delay margin in the presence of plant uncertainty.

(a) Lower Bound (b) Upper Bound

Figure 5: Time delay margins in the presence of plant uncertainty

The lower bound on time delay margin found with the SOS algorithm is again conservative. In the lower
bound, the time delay margin grows as the uncertainty parameter λα increases. Simulations find that the
upper bound on the time delay margin is relatively constant at around 50 msec. As predicted, the time delay
margin is not very sensitive to variations in the uncertainty parameter λq. Future work includes improving
the SOS conditions with algorithms known to provide less conservative results.23 Monte carlo simulations
can also be used to find a smaller upper bounds on the time delay margin.

VI. Conclusion

Adaptive control algorithms have the potential to improve performance and robustness in aerospace
systems. However, there is a lack of tools available to rigorously analyze these systems. This paper uses
polynomial optimization tools to show the suitability of such analysis in the verification and validation of
adaptive control systems. The performance and robustness of a model-reference adaptive controller for a
short-period aircraft model is examined. Input-output gains and time delay margins are calculated. The
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input-output gain analysis details the sensitivity of the system to plant uncertainty. The time delay margin
analysis provides insight to the effects of sigma modification as well as plant uncertainty on stability in the
presence of time delay. The findings are less conservative than previous results. Future work includes refining
the SOS conditions with algorithms known to provide less conservative results. More refined simulations will
be performed to seek lesser upper bounds on time delay margin.
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