
Quasiconvex Sum-of-Squares Programming

Peter Seiler and Gary J. Balas

Abstract— A sum-of-squares program is an optimization
problem with polynomial sum-of-squares constraints. The con-
straints and the objective function are affine in the decision
variables. This paper introduces a generalized sum-of-squares
programming problem. This generalization allows one decision
variable to enter bilinearly in the constraints. The bilinear
decision variable enters the constraints in a particular struc-
tured way. The objective function is the single bilinear decision
variable. It is proved that this formulation is quasiconvex
and hence the global optima can be computed via bisection.
Many nonlinear analysis problems can be posed within this
framework and two examples are provided.

I. INTRODUCTION

A polynomial is a sum-of-squares (SOS) if it can be
expressed as a sum of squares of other polynomials. An SOS
program is an optimization problem with polynomial SOS
constraints [16], [17]. The constraints and objective function
are affine in the decision variables. The algorithms to solve
SOS programs rely on connections between SOS polynomi-
als and positive semidefinite matrices [6], [18], [16], [12],
[17]. In particular, software is available to convert the SOS
programs to semidefinite programs [19], [13], [2]. Many
nonlinear analysis problems, e.g. Lyapunov stability analysis,
can be formulated within this optimization framework.

This paper provides a generalization to SOS programming
problems. One decision variable is allowed to enter bilinearly
into the SOS constraints. The bilinear decision variable enters
the constraints in a particular structured way. The objective
function of the generalized SOS program is the decision
variable that enters bilinearly. It is proved that the generalized
SOS program is quasiconvex and hence the global optima
can be computed via bisection. A standard SOS feasibility
problem is solved at each step of the bisection. Software has
been developed to solve this particular bisection problem.
The relation between SOS programs and generalized SOS
programs is analogous to the relation between semidefinite
programs and generalized eigenvalue problems. Algorithms
for solving generalized eigenvalue optimization problems
could potentially be used to solve generalized SOS programs
with significantly less computation than bisection. This ap-
proach is not taken since the current theory and available
software for solving large, sparse generalized eigenvalue
problems is not as developed as for semidefinite program-
ming problems.

The generalized SOS program also finds many applica-
tions in nonlinear analysis. Two examples provided in this

P. Seiler is with Aerospace and Engineering Mechanics Department,
University of Minnesota, seiler@aem.umn.edu

G.J. Balas is with Aerospace and Engineering Mechanics Department,
University of Minnesota, balas@umn.edu

paper are the computation of maximum decay rates and
estimates of regions of attraction. In the second example
an estimate of the region of attraction is formulated as a
set containment condition. A sufficient condition for this set
containment condition is reformulated as an SOS constraint
with one bilinear variable. This leads to a generalized SOS
program. Similar set containment conditions appear in many
local nonlinear analysis problems, e.g in computations for
reachability sets, input-output gains, and robustness with
respect to uncertainty for nonlinear polynomial systems [24],
[25], [28]. Thus generalized SOS programs play a role in
many local nonlinear analyses.

The remainder of the paper has the following structure.
The next section briefly reviews background material on
semidefinite programming, generalized eigenvalue problems
and sum-of-squares polynomial optimizations. The general-
ized SOS program is introduced in Section III. The proof
of quasiconvexity is provided in the same section. Two
generalized SOS examples are presented in Section IV.
Finally, conclusions are given in Section V.

II. BACKGROUND

This section briefly reviews the main results for semidefi-
nite programming [3], [31], generalized eigenvalue problems
[4] and sum-of-squares polynomial optimizations [6], [12],
[16], [17], [18], [20]. Additional details can be found in the
references.

A. Semidefinite Programming

A symmetric matrix A ∈ Rn×n is positive semidefinite if
xTAx ≥ 0 for all x ∈ Rn. Positive semidefinite matrices
are denoted by A � 0. A semidefinite program is an
optimization problem of the following form:

minu cTu
subject to: A(u) := A0 +

∑r
k=1 ukAk � 0 (1)

The symmetric matrices A0, . . . , Ar ∈ Rn×n and the
vector c ∈ Rr are given data. The vector u ∈ Rr is
the decision variable. The constraint, A(u) � 0, is called
a linear matrix inequality (LMI) although it is technically
affine in the decision variables. The single LMI constraint is
without loss of generality; multiple LMI constraints can be
block-diagonally concatenated for form a single larger LMI
constraint. Equation 1 is referred to as the primal problem.

The dual associated with this primal problem is:

maxQ −Tr [A0Q]
subject to: Tr [AkQ] = ck k = 1, . . . , r

Q � 0
(2)



where Q = QT ∈ Rn×n is the decision variable for the
dual problem. Tr [·] denotes the trace of a matrix. This
dual problem can be recast in the form of Equation 1
and thus it is also a semidefinite program. The primal and
dual formulations may appear restrictive but they are quite
versatile and SDPs find applications in many problems of
interest [3]. Moreover, SDPs are convex optimizations and
quality software exists to solve these problems. For example,
the Robust Control Toolbox function mincx solves the
primal form [1]. SeDuMi [23], [22] is a freely solver for
MATLAB that simultaneously solves the primal and dual
forms of a semidefinite program.

In some cases, the only goal is to find a decision variable
that satisfies a linear matrix inequality constraint. These are
linear matrix inequality feasibility problems. The following
is an example:

Find u ∈ Rr such that A0 +
r∑

k=1

ukAk � 0 (3)

B. Generalized Eigenvalue Problems

A generalized eigenvalue problem [4] is a optimization
problem of the following form:

minu λmax (A(u), B(u))
subject to: B(u) � 0

C(u) � 0
(4)

where λmax(A,B) is the maximum generalized eigenvalue
of (A,B). The vector u ∈ Rr is the decision variable and
A, B, C depend affinely on u. This optimization involves
convex (LMI) constraints and a quasiconvex cost function.
Thus a generalized eigenvalue problem is a quasiconvex
optimization.

This optimization can be equivalently written in the fol-
lowing form:

mint,u t
subject to: tB(u)−A(u) � 0

B(u) � 0
C(u) � 0

(5)

where the scalar t ∈ R is an additional decision variable. In
this form the second and third constraints in the optimization
problem are LMIs and the cost is a linear function of the
decision variables. However this is not an SDP because the
first constraint is bilinear in the decision variables t and u.

The global minimum of a generalized eigenvalue problem
can be computed via bisection on t. Each step of the bisection
involves holding t fixed and solving for u that satisfies
the matrix inequalities in Optimization 5. This is an LMI
feasibility problem at each step of the bisection. Algorithms
have also been designed specifically for solving generalized
eigenvalue problems without resorting to bisection [4], [14].
For example, the Robust Control Toolbox function gevp [1]
solves generalized eigenvalue problems using the Projective
Method in [14]. The computational complexity of these algo-
rithms is roughly the same as one LMI feasibility problem
for a fixed t and hence they are substantially faster than
applying bisection.

C. SOS Polynomials

N denotes the set of nonnegative integers, {0, 1, . . .}, and
Nn is the set of n-dimensional vectors with entries in N.
For α ∈ Nn, a monomial in variables {x1, . . . , xn} is given
by xα

.= xα1
1 xα2

2 · · ·xαnn . The degree of a monomial is
defined as deg xα .=

∑n
i=1 αi. A polynomial is a finite linear

combination of monomials:

p
.=
∑
α∈A

cαx
α =

∑
α∈A

cαx
α1
1 xα2

2 · · ·xαnn

where cα ∈ R and A is a finite collection of vectors in
Nn. R[x] denotes the set of all polynomials in variables
{x1, . . . , xn} with real coefficients. Using the definition of
deg for a monomial, the degree of p is defined as deg p .=
maxα∈A, cα 6=0 [deg xα].

A polynomial p is a sum-of-squares (SOS) if there exist
polynomials {fi}mi=1 such that p =

∑m
i=1 f

2
i . The set of

SOS polynomials is a subset of R[x] and is denoted by
Σ[x]. If p is a sum-of-squares then p(x) ≥ 0 ∀x ∈ Rn.
Thus p ∈ Σ[x] is a sufficient condition for a polynomial to
be globally non-negative. The converse is not true, i.e. non-
negative polynomials are not necessarily SOS polynomials
[21].

Define z as the column vector of all monomials in vari-
ables {x1, . . . , xn} of degree ≤ d: 1

z
.=
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

]T
(6)

There are
(
k+n−1

k

)
monomials in n variables of degree k.

Thus z is a column vector of length lz
.=
∑d
k=0

(
k+n−1

k

)
=(

n+d
d

)
. If f is a polynomial in n variables with degree

≤ d then by definition f is a finite linear combination of
monomials of degree ≤ d. Consequently, there exists a ∈ Rlz
such that f = aT z.

Two facts that follow from Theorem 1 and its preceding
Lemma in [20] are:

1) If p is a sum-of-squares then p must have even degree.
2) If p is degree 2d (d ∈ N) and p =

∑m
i=1 f

2
i then

deg fi ≤ d ∀i.
The following theorem, introduced as the “Gram Matrix”

method by [6], connects SOS polynomials and positive
semidefinite matrices. This result can be found more recently
in [18].

Theorem 1: Suppose p ∈ R[x] is a polynomial of degree
2d and z is the lz × 1 vector of monomials defined in
Equation 6. Then p is a SOS if and only if there exists
a symmetric matrix Q ∈ Rlz×lz such that Q � 0 and
p = zTQz.

Proof:

1Any ordering of the monomials can be used to form z. In Equation 6,
xα precedes xβ in the definition of z if:

deg xα < deg xβ

or

deg xα = deg xβ and the first nonzero entry of α− β is > 0



(⇒) If p is a SOS, then there exists polynomials {fi}mi=1

such that p =
∑m
i=1 f

2
i . By fact 2 above, deg fi ≤ d for all

i. Thus, for each fi there exists a vector, ai ∈ Rlz , such that
fi = aTi z. Define the matrix, A ∈ Rlz×m, whose ith column
is ai and define Q .= AAT � 0. Then p = zTQz.

(⇐) Assume there exists Q = QT ∈ Rlz×lz such that
Q � 0 and p = zTQz. Define m .= rank(Q). There exists
a matrix A ∈ Rlz×m such that Q = AAT . Let ai denote the
ith column of A and define the polynomials fi

.= zTai. By
definition of fi, p = zT (AAT )z =

∑m
i=1 f

2
i . �

D. SOS Programs
A sum-of-squares program is an optimization problem

with a linear cost and affine SOS constraints on the decision
variables [19]:

min
u∈Rr

cTu (7)

subject to: ak(x, u) ∈ Σ[x], k = 1, . . . N

u ∈ Rr are decision variables. The polynomials {ak} are
given as part of the problem data and are affine in u, i.e.
they are of the form:

ak(x, u) := ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un (8)

Many nonlinear analysis problems can be posed within this
optimization framework [16].

Theorem 1 is used to convert an SOS program into a
semidefinite-programming problem. For example, the con-
straint ak(x, u) ∈ Σ[x] can be equivalently written as:

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un = zTQz (9)
Q � 0 (10)

Q is a new matrix of decision variables that is introduced
when converting an SOS constraint to an LMI constraint.
Equating the coefficients of zTQz and ak(x, u) imposes
linear equality constraints on the decision variables u and Q.
Thus, Equation 9 can be rewritten as a set of linear equality
constraints on the decision variables. All SOS constraints
in Equation 7 can be replaced in this fashion with linear
equality constraints and LMI constraints. As a result, the
SOS program in Equation 7 can be written in the SDP dual
form (Equation 2).

There is software available to perform the conversion from
SOS programs to SDPs. SOSOPT [2], SOSTOOLS [19],
and Yalmip [13] are freely available MATLAB toolboxes for
solving SOS optimizations. These packages allow the user to
specify polynomial constraints using a symbolic or polyno-
mial toolbox. The toolboxes convert the SOS optimization
into an SDP which is solved with a freely available SDP
solver. Finally these toolboxes convert the SDP solution back
to a polynomial solution. A drawback is that the size of the
resulting SDP grows rapidly in both the number of variables
and degrees of the polynomials in the SOS optimization.
While various techniques can be used to exploit the problem
structure [9], this computational growth is a generic trend
in SOS optimizations. This roughly limits SOS methods to
nonlinear analysis problems with at most 8-10 states and
polynomial models with degree of at most 3-5.

III. QUASICONVEX SOS PROGRAMS

Generalized eigenvalue problems extend SDPs by allow-
ing one decision variable to enter bilinearly in the matrix
constraints. Similarly, SOS programs can be extended to
allow the one decision variable to enter bilinearly in the SOS
constraints. A generalized SOS program is an optimization
of the form:

mint,u t
subject to: tbk(x, u)− ak(x, u) ∈ Σ[x], k = 1, . . . N

bk(x, u) ∈ Σ[x], k = 1, . . . N
ck(x, u) ∈ Σ[x], k = 1, . . .M

(11)

t ∈ R and u ∈ Rr are decision variables. The polynomials
{ak}, {bk}, and {ck} are given data and are affine in u. The
optimization cost is linear in the decision variables and the
constraints bk(x, u) ∈ Σ[x] and ck(x, u) ∈ Σ[x] are standard
SOS constraints. This is not an SOS program because the
constraints tbk(x, u) − ak(x, u) ∈ Σ[x] are bilinear in the
decision variables t and u. However, the generalized SOS
program is quasiconvex. The proof of this statement follows
from the next Lemma and Theorem.

Lemma 1: If c1, c2 ∈ R are non-negative and p1, p2 ∈
Σ[x] then c1p1 + c2p2 ∈ Σ[x].
Proof: Since p1, p2 ∈ Σ[x], there exists polynomials {fi}m1

i=1

and {gi}m2
i=1 such that p1 =

∑m1
i=1 f

2
i and p2 =

∑m2
i=1 g

2
i .

Define hi =
√
c1fi for i = 1, . . . ,m1 and hm1+i =

√
c2gi

for i = 1, . . . ,m2. Then c1p1 + c2p2 =
∑m1+m2
i=1 h2

i . By
definition, c1p1 + c2p2 ∈ Σ[x]. �

Theorem 2: Optimization 11 is quasiconvex.
Proof: For notational simplicity consider the case where N =
1 and M = 1. The extension to multiple SOS and generalized
SOS constraints is straightforward. The generalized SOS
program can be equivalently written:

minu f(u)
subject to: c(x, u) ∈ Σ[x] (12)

where the function f : Rr → R is defined as:

f(u) :=


+∞ b(x, u) /∈ Σ[x]

mint t b(x, u) ∈ Σ[x]
subject to:
tb(x, u)− a(x, u) ∈ Σ[x]

(13)

The constraint c(x, u) ∈ Σ[x] in Optimization 12 is a convex
constraint on u. Hence the proof is completed by showing
that the cost function f is quasiconvex.

Quasiconvexity of f follows by proving that all sublevel
sets of f are convex. Consider the sublevel set Sγ :=
{u ∈ Rr : f(u) ≤ γ}. If γ = +∞ or Sγ = ∅ then Sγ
is trivially convex so assume γ < +∞ and Sγ 6= ∅. Take
any u1, u2 ∈ Sγ . By the definition of f , there exists ti ≤ γ
such that tib(x, ui) − a(x, ui) ∈ Σ[x] and b(x, ui) ∈ Σ[x]
for i = 1, 2.



For any α ∈ [0, 1] define the convex combination uα :=
αu1 + (1 − α)u2. It is now shown that f(uα) ≤ γ. Define
t0 = max(t1, t2) ≤ γ. For i = 1, 2,

t0b(x, ui)− a(x, ui)
= (t0 − ti)b(x, ui) + (tib(x, ui)− a(x, ui))

It follows from Lemma 1 that t0b(x, ui) − a(x, ui) ∈ Σ[x]
for i = 1, 2.

Since a and b are affine in u,

t0b(x, uα)− a(x, uα)
= α(t0b(x, u1)− a(x, u1)) + (1− α)(t0b(x, u2)− a(x, u2))

Thus t0b(x, uα)−a(x, uα) ∈ Σ[x] by another application of
Lemma 1. b(x, uα) ∈ Σ[x] follows similarly from Lemma 1.
This implies that the constraints in Optimization 13 are
feasible at (t, u) = (t0, uα) and hence f(uα) ≤ t0 ≤ γ.
Therefore uα ∈ Sγ and Sγ is convex. f is quasiconvex since
this holds for any γ. �

A consequence of Theorem 2 is that the global min-
imum of a generalized SOS program can be computed
via bisection on t. Each step of the bisection involves
holding t fixed and solving for u that satisfies the SOS
constraints in Optimization 11. This can be converted to
an LMI feasibility problem at each step of the bisection.
The SOSOPT software [2] contains a function gsosopt to
solve generalized SOS programs using bisection. For large
problems the conversion from polynomial SOS constraints
to LMI constraints (using the Gram matrix method) can be
computationally demanding. gsosopt performs the SOS to
LMI constraint conversion once and avoids repeating this
computation during the bisection iteration.

The Gram matrix method can also be used to convert
a generalized SOS program to a generalized eigenvalue
problem. One minor technical issue is that quasiconvex SOS
programs, as formulated in Equation 11, lead to generalized
eigenvalue problems (Equation 4) with B(u) � 0, i.e
the constraint is only semidefinite. A proper generalized
eigenvalue problem with B(u) � 0 arises if the constraints
in Equation 11) are modified to bk(x, u) − lk(x) ∈ Σ[x]
where lk(x) are strictly positive definite functions with small
coefficients. Algorithms specifically designed for solving
generalized eigenvalue problems [4], [14] can then be ap-
plied. Unfortunately the theory and available software for
generalized eigenvalue problems are not as well-developed
as for SDPs. The Robust Control Toolbox function gevp
[1] is not suitable for moderate to large generalized SOS
programs because it does not exploit the sparsity that arises
in the matrix data. It will be the subject of future work to
investigate algorithms for directly solving generalized eigen-
value problems that arise from generalized SOS programs.
For example, the algorithms in [15] and [8] could be applied
to solve quasiconvex SOS problems.

IV. EXAMPLES

This section presents two generalized SOS programs that
arise in nonlinear analysis. All computations were performed

on a 2.16GHz Intel processor.

A. Maximum Decay Rate

Consider the following third-order nonlinear system:

ẋ = f(x) := A1z1(x) +A2z2(x) +A3z3(x) (14)

where:

z1 =
[
x1

x2

]
, z2 =

 x2
1

x1x2

x2
2

 , z3 =


x3

1

x2
1x2

x1x
2
2

x3
2


and

A1 =
[
−4 5
−1 −2

]
, A2 =

1
4

[
3 6 3
1 2 1

]
,

A3 =
1
8

[
−1 0 −9 6
0 −3 6 −7

]
If there exists a V := xTPx such that V ≥ x2

1 + x2
2 and

V̇ ≤ −2rV then x = 0 is a globally exponentially stable and
all trajectories satisfy ‖x(t)‖ ≤

√
κ(P )e−rt‖x(0)‖ where

κ(P ) is the condition number of P (Section 5.1.3 of [3]).
V is a Lyapunov function that proves the decay rate of the
system is at least r.

The largest bound on the decay rate for the polynomial
system can be computed by a generalized SOS program:

mint,u t
subject to: tV (x, u)−∇V (x, u)f(x) ∈ Σ[x]

V (x, u)− xTx ∈ Σ[x]
(15)

where t := −2r and the remaining decision variables
are the entries of the symmetric matrix P , i.e. u :=
[P1,1, P2,1, P2,2]T . This problem took 1.35sec to solve
using gsosopt [2]. The largest bound on the decay rate
is r = 1.93 and the Lyapunov function is:

V (x) = 2.12x2
1 − 4.01x1x2 + 25.48x2

2 (16)

Figure 1 shows the phase plane for this nonlinear system
and the level sets for this Lyapunov function. Bisecting
with sosopt and SOSTOOLs took 1.75sec and 2.73sec,
respectively. Bisecting with these functions is slower because
they perform the conversion from SOS to LMI constraints
at each step of the bisection. As noted previously gsosopt
only performs this conversion once prior to the bisection.
The difference in computation times is relatively small on
this example but it can be significant on larger problems.

For comparison, the decay rate of the linearization A1 can
be computed by a generalized eigenvalue problem:

mint,P t
subject to: tP −

(
AT1 P + PA1

)
� 0

P � I
(17)

where t := −2r and the remaining decision variables are
the entries of P . This problem was solved using gevp.
The largest bound on the decay rate is α = 3.00 and the
Lyapunov function is:

VLIN (x) = 1.95x2
1 − 3.89x1x2 + 9.73x2

2 (18)



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Phase Plane for Nonlinear System

1

1

5
5

5

5

5

20
20 20

20 20

20

40
40 40

40 40
40

60
60 60

60 60
60

x1

x2

Fig. 1. Nonlinear system trajectories and Lyapunov function level sets.

The decay rate for a stable linear system is equal to the
magnitude of the maximum real part of the eigenvalues of
the state matrix. The eigenvalues of A1 are at −3 ± 2i and
thus the decay rate is 3.00. This is in agreement with the
decay rate computed by gevp. For linear systems, the decay
rate computed by Optimization 17 is exact [3]. For nonlinear
systems, the decay rate computed by Optimization 15 need
not be exact. Thus α = 1.93 is only a lower bound on the
maximal decay rate for the polynomial system (Equation 14).
Increasing the degree of the polynomial Lyapunov function
in the generalized SOS program may improve the bound on
the decay rate at the expense of additional computation.

B. Region of Attraction Estimation

Consider the Van der Pol oscillator:

ẋ = f(x) :=
[

−x2

x1 + (x2
1 − 1)x2

]
(19)

This system has an equilibrium point at x = 0. The
equilibrium point is locally asymptotically stable but not
globally asymptotically stable. The region of attraction R
is the set of initial conditions whose trajectories converge
back to x = 0. Lyapunov theory can be used to formulate a
generalized SOS program to estimate a subset ofR. Standard
local Lyapunov theorems are applied in this example [33],
[11].

The linearization of Equation 19 around x = 0 is

A =
[
0 −1
1 −1

]
(20)

The eigenvalues of A are −0.5 ± 0.866j. The Lyapunov
equation ATP + PA = −I is satisfied by

P =
[

1.5 −0.5
−0.5 1.0

]
> 0 (21)

Thus V := xTPx is a Lyapunov function that proves x =
0 is a locally asymptotically stable equilibrium point. For

γ > 0, denote the sublevel set of V by Ωγ := {x ∈ Rn :
V (x) ≤ γ}. If

Ωγ ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} (22)

then for all x0 ∈ Ωγ , the solution of Equation (19) starting
from x(0) = x0 satisfies x(t)→ 0 as t→∞. Thus Ωγ ⊂ R
if the set containment condition Equation 22 is satisfied.

The set containment condition in Equation 22 can be
converted to an algebraic inequality constraint. Define l(x) =
10−6xTx. The set containment is satisfied if there exists a
polynomial s such that

s(x) ≥ 0 ∀x (23)
(V (x)− γ)s(x) ≥ ∇V (x)f(x) + l(x) ∀x (24)

It is straightforward to verify that these algebraic conditions
imply the set containment. If x ∈ Ωγ then the left side of
Equation 24 is non-positive. This implies that ∇V (x)f(x) ≤
−l(x) < 0 and hence the set containment holds. This is a
generalization of the S-procedure [3].

A generalized SOS program can be used to compute the
largest inner estimate of the region of attraction provable
with the given V (x):

mint,u t
subject to:
s(x, u) ∈ Σ[x]
ts(x, u) + (V (x)s(x, u)−∇V (x, u)f(x)− l(x)) ∈ Σ[x]

(25)

t := −γ and the remaining decision variables are the
coefficients of s. s was chosen to be of the form s(x, u) =
zTUz where

z :=
[
x1 x2 x2

1 x1x2 x2
2

]T
(26)

U is a 5 × 5 symmetric matrix and the decision variables
u ∈ R15 consist of the independent entries of U . This
problem took 1.63sec to solve using gsosopt. γ = 2.30
is the largest level set of V contained within the region of
attraction. The optimal function s is

s(x) = 0.232x4
1 + 0.0536x3

1x2 − 0.0611x2
1x

2
2 − 0.0954x1x

3
2

+ 0.177x4
2 + 0.268x2

1 − 0.103x1x2 + 0.239x2
2 (27)

Figure 2 is a phase plane plot that shows the region of
attraction estimate Ωγ=2.30 (dashed ellipse). The figure also
shows the limit cycle (solid curve) that forms the exact
boundary of the region of attraction. The region of attraction
for the Van der Pol oscillator consists of all points in the
interior of this limit cycle. There are more sophisticated
algorithms for estimating the region of attraction estimate
[24], [25], [30], [29], [28], [5], [7], [10], [26], [27], [32],
[16] and these algorithms achieve better inner estimates on
the ROA than those shown in Figure 2. Set containment
conditions appear in most of these advanced algorithms.
For example the V and s steps in the V -s iteration [24],
[29], [28] involve set containments that are reformulated
as quasiconvex SOS optimizations. Thus the quasiconvex
code reported in this paper can be used to improve the
computational efficiency of more advanced algorithms.



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x2
gamma = 2.3041

Fig. 2. Van der Pol limit cycle and region of attraction estimate.

V. CONCLUSIONS

This paper generalizes sum-of-squares programming by
allowing one decision variable to enter bilinearly into the
constraints. It is proved that this formulation is quasiconvex
and the global optima can be computed via bisection. Many
nonlinear analysis problems can be posed within this frame-
work. Software has been developed to quickly solve this
particular bisection problem. Algorithms for solving large,
sparse generalized eigenvalue optimizations could be applied
to solve these generalized SOS programs with significantly
less computation than bisection. This will be the subject of
future research.

VI. ACKNOWLEDGMENTS

This research was partially supported under the NASA
Langley NRA contract NNH077ZEA001N entitled “Analyt-
ical Validation Tools for Safety Critical Systems” and the
NASA Langley NNX08AC65A contract entitled ’Fault Diag-
nosis, Prognosis and Reliable Flight Envelope Assessment.”
The technical contract monitors are Dr. Christine Belcastro
and Dr. Suresh Joshi, respectively.

REFERENCES

[1] G. Balas, R. Chiang, A. Packard, and M. Safonov. Robust Control
Toolbox. The MathWorks, Inc., 2009.

[2] G.J. Balas, A. Packard, P. Seiler, and U. Topcu. Robustness analysis
of nonlinear systems. http://www.aem.umn.edu/∼AerospaceControl/,
2009.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory, volume 15 of Studies in
Applied Mathematics. SIAM, 1994.

[4] S. Boyd and L. El Ghaoui. Method of centers for minimizing
generalized eigenvalues. Linear Algebra and Its Applications, 188:63–
111, 1993.

[5] H.-D. Chiang and J.S. Thorp. Stability regions of nonlinear dynamical
systems: A constructive methodology. IEEE Transactions on Auto-
matic Control, 34(12):1229–1241, 1989.

[6] M.D. Choi, T.Y. Lam, and B. Reznick. Sums of squares of real
polynomials. Proc. of Symposia in Pure Mathematics, 58(2):103–126,
1995.

[7] E.J. Davison and E.M. Kurak. A computational method for determin-
ing quadratic Lyapunov functions for nonlinear systems. Automatica,
7:627–636, 1971.

[8] M. Fukuda and M. Kojima. Branch-and-cut algorithms for the bilinear
matrix inequality eigenvalue problem. Computational Optimization
and Applications, 19(1):79–105, 2001.

[9] K. Gatermann and P. Parrilo. Symmetry groups, semidefinite pro-
grams, and sums of squares. Journal of Pure and Applied Algebra,
192:95–128, 2004.

[10] R. Genesio, M. Tartaglia, and A. Vicino. On the estimation of
asymptotic stability regions: State of the art and new proposals. IEEE
Transactions on Automatic Control, 30(8):747–755, 1985.

[11] H.K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.
[12] J.B. Lasserre. Global optimization with polynomials and the problem

of moments. SIAM Journal on Optimization, 11(3):796–817, 2001.
[13] J. Lofberg. Yalmip : A toolbox for modeling and optimization in

MATLAB. In Proc. of the CACSD Conference, Taipei, Taiwan, 2004.
[14] Y. Nesterov and A. Nemirovski. Interior Point Polynomial Methods

in Convex Programming: Theory and Applications. SIAM, 1994.
[15] D. Noll, M. Torki, and P. Apkarian. Partially augmented Lagrangian

method for matrix inequality constraints. SIAM J. Optim., 15(1):161–
184, 2004.

[16] P. Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, 2000.

[17] P. Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical Programming Ser. B, 96(2):293–320, 2003.

[18] V. Powers and T. Wörmann. An algorithm for sums of squares of
real polynomials. Journal of Pure and Applied Algebra, 127:99–104,
1998.

[19] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOS-
TOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

[20] B. Reznick. Extremal PSD forms with few terms. Duke Mathematical
Journal, 45(2):363–374, 1978.

[21] B. Reznick. Some concrete aspects of Hilberts 17th problem. Con-
temporary Mathematics, 253(251-272), 2000.

[22] J. Sturm. SeDuMi version 1.05.
http://fewcal.kub.nl/sturm/software/sedumi.html, 2001.

[23] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optimization Methods and Software, pages
625–653, 1999.

[24] W. Tan. Nonlinear Control Analysis and Synthesis using Sum-of-
Squares Programming. PhD thesis, University of California, Berkeley,
2006.

[25] W. Tan, U. Topcu, P. Seiler, G. Balas, and A. Packard. Simulation-
aided reachability and local gain analysis for nonlinear dynamical
systems. In Proc. of the IEEE Conference on Decision and Control,
pages 4097–4102, 2008.

[26] B. Tibken. Estimation of the domain of attraction for polynomial
systems via LMIs. In Proc. of the IEEE Conference on Decision and
Control, pages 3860–3864, 2000.

[27] B. Tibken and Y. Fan. Computing the domain of attraction for
polynomial systems via BMI optimization methods. In Proc. of the
American Control Conference, pages 117–122, 2006.

[28] U. Topcu. Quantitative Local Analysis of Nonlinear Systems. PhD
thesis, University of California, Berkeley, 2008.

[29] U. Topcu, A. Packard, and P. Seiler. Local stability analysis using sim-
ulations and sum-of-squares programming. Automatica, 44(10):2669–
2675, 2008.

[30] U. Topcu, A. Packard, P. Seiler, and T. Wheeler. Stability region
analysis using simulations and sum-of-squares programming. In Proc.
of the American Control Conference, pages 6009–6014, 2007.

[31] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM
Review, 38(1):49–95, 1996.

[32] A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and
domains of attraction for autonomous nonlinear systems. Automatica,
21(1):69–80, 1985.

[33] M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, 2nd edition,
1993.


