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Abstract

A new lower bound algorithm for real and mixed µ problems is presented. The basic idea of this algorithm is to use a related
worst-case gain problem to compute the real blocks and, if the block structure is mixed, the standard power iteration to
compute the complex blocks. Numerical tests indicate that the algorithm is fast and provides good lower bounds for both real
and mixed µ problems of small to moderate size.
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1 Introduction

The structured singular value µ, introduced in [1], can be
used to analyze the robustness of linear systems subject
to structured uncertainty. It is assumed that the reader is
familiar with the engineering motivation for µ (see [2–4]
and references therein for some discussion). It is known
that computing µ is NP Hard [5,6] and for cases that
include real parametric uncertainty, even approximately
computing µ is NP Hard [7,8]. We refer the reader to [8]
for a precise discussion of the computational complex-
ity of ε-approximation problems. Thus there has been
extensive research into computational algorithms that
are fast and provide good lower/upper bounds for most
problems of engineering interest. This paper describes
an algorithm to compute lower bounds for µ with real
parametric uncertainty.

For the pure complex µ problem, the power iteration
[3,9] provides good lower bounds and it is fast since it
relies only on matrix-vector products. The power itera-
tion was extended to mixed µ problems in [10–12] and
skew µ problems in [13–15]. Unfortunately this algo-
rithm may fail to converge; a problem that is more com-
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mon for purely real uncertainty structures [16–18]. There
has been extensive research on alternative lower bound
algorithms to address these issues [4,19–25,16,26–29,17].

For the pure real case, there are fundamental difficulties
including the fact that realµ can be a discontinuous func-
tion of the problem data [30,31]. However, there are real
µ problems of engineering interest that are well-posed.
Most existing algorithms to solve these problems have
a computational cost that grows exponentially with the
problem size [20–23,28] and hence they are only suitable
for small numbers of real parameters. A less computa-
tionally intensive approach is to regularize the problem
and use the standard mixed µ power iteration. The reg-
ularization is typically accomplished by adding a small
amount of complex uncertainty to each uncertain real
parameter [31]. If the power iteration converges then
the real parameter variations are obtained by neglect-
ing the complex uncertainties. The magnitude of these
real perturbations can then be increased to cause the
system poles to lie on the imaginary axis [4]. Difficulties
may arise if a large magnitude of complex uncertainty is
needed to achieve power iteration convergence.

This paper describes a polynomial-time lower bound al-
gorithm that can be applied to both pure real and mixed
µ problems. We refer to this lower bound algorithm as
the Gain-Based Algorithm (GBA). The basic idea of the
GBA is to use a related worst-case gain problem to com-
pute the real blocks of the perturbation. For mixed µ
problems, the standard power iteration is then used to
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compute the complex blocks since it is fast and has good
convergence characteristics for complex µ problems. The
GBA uses the wrap-in reals idea that exists in [16,17]
but with two main distinctions. First, the use of the
worst-case gain problem to compute the values of the
real blocks is a new approach. Second, we do not wrap
in the real blocks within each step of the power itera-
tion. Instead, the real block is computed from scratch for
each step of the GBA, wrapped-in, and then held fixed
throughout the complex power iteration.

The GBA has been tested on several real-µ problems
arising in industry as well as random matrices drawn
from a class of no-gap mixed µ problems. It is our expe-
rience that the GBA has better convergence properties
than the standard power iteration on these test prob-
lems. These results are discussed in Section 4. The im-
proved convergence properties are due to an implicit reg-
ularization of the problem: the GBA can be viewed as
adding a small complex scalar to one entry of the data
matrix. Moreover, the GBA makes Ntry attempts to find
a good lower bound and Ntry can be used to trade off
computation time with the quality of the lower bound.
The GBA has been integrated into the mussv function
of Matlab’s Robust Control Toolbox and can be called
with the ’g’ option. This should enable other users to
easily apply it to their own problems of interest.

The basic idea of computing µ via a related worst-case
gain problem can potentially be applied to a variety of
control analysis problems. The idea can be generalized
to analyze robustness problems with other uncertainty
norms, e.g. the 2-norm for ellipsoidal uncertainty [32].
This would require an algorithm to quickly and reliably
solve the worst-case gain problem for the uncertainty
norm of interest. The idea can also be applied to the
analysis of nonlinear lumped and distributed parameter
systems [33–35]. This would be applicable to analysis of
finite-time control in batch and semibatch processes.

2 Notation

Cn×m and Rn×m are complex and real n × m matrices.
For any matrix M , MT and M∗ denote the transpose and
complex conjugate transpose of M . Given A ∈ Cn×m

and B ∈ Cr×s, diag(A, B) ∈ C(n+r)×(m+s) denotes the
block diagonal concatenation. σ̄ (M) and σ (M) denote
the maximum and minimum singular values of the ma-
trix M . Let M ∈ C(n+m)×(n+m) and ∆ ∈ Cn×n be given
and partition M :=

[

M11 M12

M21 M22

]

with M11 ∈ Cn×n and

M22 ∈ Cm×m. If I − M11∆ is invertible, then define
Fu(M, ∆) as the linear fractional transformation (LFT)
obtained by closing ∆ around the upper channels of M :

Fu(M, ∆) := M22 + M21∆(I − M11∆)−1 M12

The notation used in this paper for the structured sin-
gular value, µ, is standard. We consider block structures

consisting of r repeated real scalar blocks, c repeated
complex scalar blocks, and f square full complex blocks.
The restriction to square full blocks is for notational sim-
plicity and the results can be extended to non-square full
blocks. Given positive integers k1, k2, . . . , kr+c+f define
the following sets of block structured matrices:

∆R := {∆ = diag(δ1Ik1
, . . . , δrIkr

) : δi ∈ R}
∆C :=

{

∆ = diag(δ1Ikr+1
, . . . , δcIkr+c

, ∆1, . . . , ∆f ) :

δi ∈ C, ∆i ∈ C
kr+c+i×kr+c+i

}

∆ := {∆ = diag(∆R, ∆C) : ∆R ∈ ∆R, ∆C ∈ ∆C}

∆R, ∆C , and ∆ are pure real, pure complex, and mixed
real/complex block structures, respectively. The matri-
ces in ∆R, ∆C , and ∆ have respective dimensions nR ×
nR, nC × nC , and n × n where nR :=

∑r
i=1 ki, nC :=

∑c+f
i=1 kr+i, and n := nR + nC .

The next definition, originally given in [1] for the pure
complex case, is for µ in terms of the block structure
defined by the set ∆. However, it also applies to other
block structures such as the pure real (µ∆R

) and pure
complex (µ∆C

) cases.

Definition 1 [1] The structured singular value of M ∈
Cn×n with respect to ∆, denoted µ∆(M), is defined as

µ∆(M) :=

(

min
∆∈∆

{σ̄ (∆) : det(I − M∆) = 0}
)−1

(1)
if ∃∆ ∈ ∆ such that det(I − M∆) = 0 and otherwise
µ∆(M) := 0.

3 Gain-Based Algorithm (GBA)

In this section, we first introduce the basic idea of the
GBA (Section 3.1). Then we describe the full GBA for
pure real µ problems (Section 3.2) and for mixed µ prob-
lems (Section 3.3).

3.1 Basis for GBA

Assume MR ∈ C
nR×nR and consider the problem of

computing lower bounds for the pure real problem
µ∆R

(MR). Note that MR is generally a complex matrix
and the subscript R refers to the real block structure
used in the µ computation. It follows from the definition
of µ that any ∆R ∈ ∆R that satisfies det(I−MR∆R) = 0
yields a lower bound: 1

σ̄(∆R) ≤ µ∆R
(MR). Thus lower

bounds for µ∆R
(MR) can be computed by searching

for a ∆R ∈ ∆R for which there exists nonzero z ∈ C
nR

and w ∈ CnR satisfying z = MRw and w = ∆Rz. These
equations can be represented by the LFT Fu(MR, ∆R)
with z and w denoting the output of MR and ∆R,
respectively. The basis for the GBA is to recast this
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Fig. 1. MR-∆R Loop With d-to-e Channels

problem into a related worst-case disturbance-to-error
problem, shown in Figure 1. In this figure, a scalar dis-
turbance is inserted at the output of MR and a scalar
error signal is pulled off the input to ∆R. ik denotes the
kth standard basis vector in RnR and d, e ∈ C denote
the scalar disturbance and error signals.

This input/output system represents the algebraic

equations [ z
e ] = M̃R [ w

d ] and w = ∆Rz where M̃R :=
[

MR ik

iTk MR 1

]

. If det(I − MR∆R) 6= 0 then these equa-

tions are well-posed and the disturbance to error rela-
tion is given by: e = Fu(M̃R, ∆R)d. The key step of the
GBA chooses an estimated value for the lower bound,
lbtry, and attempts to solve the following problem:

max
∆R∈∆R,σ̄(∆R)≤1/lbtry

|Fu(M̃R, ∆R)| (2)

Equation 2 is in the form of a worst case performance
problem. This problem is non-convex and solving for
the global maximizer would be computationally inten-
sive. However it is sufficient for our purposes to find any
∆R achieving a large gain from d to e. We will apply
the lower bound algorithm introduced in [36] for worst-
case performance assessment. The algorithm is an ascent
method that returns a lower bound on the maximum.
Specifically, an exact maximization is used for the single
parameter problem (r = 1) and an iterative coordinate-
wise maximization is used for the general case (r > 1).
The exact maximization along each coordinate is com-
puted by mimicking the Hamiltonian methods for state-
space H∞ norm calculation. The lower bound algorithm
in [36] is presented for σ̄ (∆R) ≤ 1. This is without loss
of generality since the perturbation can be normalized.

If the maximum gain can be driven to infinity (within
numerical error) then the maximizer ∆R,opt satis-
fies det(I − MR∆R,opt) = 0. This yields a true lower
bound: µ∆R

(MR) ≥ 1
σ̄(∆R,opt)

. Restricting the search to

σ̄ (∆R) ≤ 1/lbtry ensures that ∆R,opt will yield a lower
bound that is ≥ lbtry. It is more often the case that the
coordinate-wise ascent algorithm will return a ∆R,opt

that gives an extremely large but finite gain. If we find
a ∆R ∈ ∆R such that the gain from d to e is large
then I −MR∆R will be close to singularity. The follow-

ing theorem provides two precise relations between the
d-to-e gain and the distance of I−MR∆R to singularity.

Theorem 1 If ∃∆R ∈ ∆R such that det(I −MR∆R) 6=
0 and |Fu(M̃R, ∆R)| ≥ γ > 0 then:

(A.) ∃δ ∈ C, |δ| ≤ γ−1 such that det(I − MR∆R −
δikiTk ) = 0

(B.) σ (I − MR∆R) ≤ γ−1

Proof 1 (A.) Since det(I − MR∆R) 6= 0, the equations

[ z
e ] = M̃R [ w

d ] and w = ∆Rz are well-posed, i.e. for each
d ∈ C there exist unique e ∈ C and w, z ∈ CnR that
satisfy these equations. This unique solution is:

z = (I − MR∆R)
−1

ikd

w = ∆R (I − MR∆R)−1 ikd (3)

e = iTk (I − MR∆R)
−1

ikd

Let d = 1 and consider the e, w, z (note |e| = γ) that
provide the unique solution to the input-output equations.

Define δ := d/e ∈ C and ∆̃R :=

[

∆R 0

0 δ

]

. Note that

|δ| = 1/|e| = 1/|Fu(M̃R, ∆R)| ≤ γ−1 and d = δe. Thus
d, e, w, z are a nontrivial solution to the equations [ z

e ] =

M̃R [ w
d ] and [ w

d ] = ∆̃R [ z
e ]. This implies that I − M̃R∆̃R

is singular. Next, define the nonsingular transformation

T :=

[

I 0

−iTk 1

]

. Singularity of I − M̃R∆̃R implies the

singularity of:

T
(

I − M̃R∆̃R

)

T−1 =

[

I − MR∆R − δikiTk −δik

0 1

]

This implies I − MR∆R − δikiTk is singular.

(B.) By the proof of (A.), ∃δ ∈ C such that |δ| ≤ γ−1 and
det(I−MR∆R−δikiTk ) = 0. Hence σ

(

I − MR∆R − δikiTk
)

= 0. Apply Theorem 3.3.16 of [37] to conclude

σ (I − MR∆R) ≤ σ
(

I − MR∆R − δikiTk
)

+ σ̄
(

δikiTk
)

= |δ| ≤ γ−1

3.2 Real µ GBA

The full GBA to compute real µ lower bounds is pre-
sented in Table 1. The GBA is initialized with upper and
lower bounds (ub and lb) on µ∆R

(MR) as well as a per-
turbation (∆R) achieving lb. The lower bound informa-
tion can simply be initialized to lb = 0 and ∆R = 0nR

.
Alternatively, the lower bound and perturbation from
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the standard power iteration can be used. However, the
standard power iteration has convergence issues for pure
real µ problems and from our experience it is not worth
the computational effort to perform this iteration. The
upper bound can be computed via standard methods,
e.g. using the LMI [38] or Balanced [39,12] form. These
upper/lower bounds are used within the iteration to ob-
tain good estimates for lbtry.

For each iteration, the GBA chooses lbtry that restricts
the perturbation search in Equation 2. It must also select
the channel k in which to insert and pull off the distur-
bance and error signals. These choices will be described
further below. The GBA then attempts to solve Equa-
tion 2 using the worst case gain lower bound algorithm
given in [36]. As mentioned above, the lower bound al-
gorithm typically returns a ∆R,try that achieves a finite
but large gain. Based on Theorem 1 we anticipate that
I − MR∆R,try will be close to singularity but we per-
form a check using the reciprocal condition number. 2 If
the perturbation passes the singularity check then it and
the lower bound it achieves are stored. A factor used for
choosing lbtry is updated based on the success or failure
of the singularity check. The iteration will stop if it finds
a lower bound within a factor tolstop of the upper bound
or if it reaches the maximum number of iterations, Ntry.

We now provide further details on the selection of lbtry,
lbfac, and k. Since the value of µ∆R

(MR) is unknown,
lbtry must be intelligently selected at each iteration. If
lbtry is too large then it might exceed µ∆R

(MR) and we
will not find a ∆R such that I − MR∆R,try passes the
singularity check. If lbtry is too small then our search
might be successful but with only a minor increase in lb.
Our solution is to set lbtry = lb + (ub − lb)lbfac where
lbfac is adaptively updated based on the search results.
We start with lbfac = 3/4 based on the experience that
the LMI upper bound is typically within this factor of
the true value of µ. This value provides a good starting
point for successfully finding a lower bound. Within the
iteration, we set lbfac = 1/2 for each successful search
and back off by a factor of two for each failed search. This
can be roughly viewed as a stochastic bisection and we
have found this provides a good compromise. Finally, we
do not allow lbfac to decrease below 1/32. This is based
on the engineering judgment that that it is better to
spend the computation time searching for a perturbation
that increases the lower bound by at least this factor.

2 The minimum singular value or the determinant could be
used instead of the reciprocal condition number to check for
singularity. We chose not to use the determinant since it is
possible for matrices to have small determinants even if they
are not necessarily close to singularity, e.g. det(0.9I200) =
7.1×10−10 . We also found that the algorithm typically drives
σ (I − MR∆R,try) to a small value but σ̄ (I − MR∆R,try)
remains O(1). Consequently the reciprocal condition number
and minimum singular value are roughly of the same order
and either is suitable for the singularity check.

The input/output channel for the disturbance/error is
selected as k :=mod (cnt−1, nR)+1 where moddenotes
the modulus after division. This choice simply cycles k
up from 1 to nR and then rolls back to 1. This sim-
ple strategy appears to work well and we currently do
not have a better method to determine which channel
is likely to provide the best performance. This would be
worth investigating. We should also point out that the
algorithm can be generalized by replacing ik with a vec-
tor v ∈ CnR . The disturbance and error signals remain
scalar but they are inserted into and pulled off from a
linear combination of the channels. Theorem 1 contin-
ues to hold with ik replaced by v throughout. Again, we
have no method to select a good candidate v and hence
our algorithm currently does not utilize this generaliza-
tion. Finally, one could generalize to the case where ik
is replaced by a matrix V ∈ CnR×m. In this case d and
e are no longer scalar signals; they have dimension m.
For this generalization, Theorem 1-A requires a rank m
perturbation to bring I − MR∆R to singularity. Initial
attempts using V = InR

provided worse performance
than the algorithm as outlined in Table 1.

The performance of the GBA is discussed in Section 4.
Our results indicate that the GBA has good convergence
properties on pure real µ problems of engineering inter-
est since the GBA implicitly regularizes the problem.
Specifically, Theorem 1-A shows that the algorithm can
be viewed as attempting to make I − MR∆R singular
by adding a complex perturbation of magnitude ≤ γ−1

to the (k,k) diagonal entry. The algorithm can be inter-
preted as minimizing the magnitude of a scalar complex
uncertainty that is artificially introduced to regularize
the problem.

3.3 Mixed µ GBA

Assume M ∈ C
n×n and partition M conformably with

the real and complex blocks of ∆, M :=
[

MR MRC

MCR MC

]

where MR ∈ CnR×nR and MC ∈ CnC×nC . This section
addresses the problem of computing lower bounds for the
mixed µ problem µ∆(M). The GBA for mixed µ prob-
lems is presented in Table 2. The GBA makes up to Ntry

attempts to find a good lower bound with lbtry being up-
dated adaptively. The mixed µ GBA is initialized with
upper and lower bounds (ub and lb) on µ∆R

(MR) as well
as a perturbation (∆R) achieving lb. The lower bound
information can be initialized to lb = 0 and ∆R = 0nR

but it is worth the computational effort to run the power
iteration first and use the lower bound and perturbation
it returns to initialize lb and ∆ ∈ ∆ in the GBA.

For each attempt of the GBA, the related worst-case gain
problem (Figure 1) is used to compute the real block of
the perturbation. If the real block alone causes singu-
larity then it is used to compute a valid lower bound.
We can always use the complex blocks to ensure det(I −
M∆) = 0 within numerical tolerance. Hence we can
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1. Given : MR ∈ C
nR×nR , ∆R ∈ ∆R, lb, ub

2. Initialize : lbfac = 3/4, cnt = 1

3. while cnt ≤ Ntry AND lb < ub · tolstop

4. lbtry = lb + (ub − lb)lbfac

5. k := mod (cnt − 1, nR) + 1

6. M̃R :=





MR ik

iTk MR 1





7. ∆R,try := arg max
∆R∈∆R, σ̄(∆R)≤1/lbtry

|Fu(M̃R, ∆R)|

8. if rcond(I − MR∆R,try) < tolreal

9. lb = 1

σ̄(∆R,try)

10. ∆R = ∆R,try

11. lbfac := 1/2

12. else

13. lbfac := max(1/32, lbfac/2)

14. end

15. cnt = cnt + 1

16. end

17. Return : ∆R, lb

Table 1
The GBA for Real µ Lower Bounds

set tolcomplex to be a small factor above numerical tol-
erance, e.g. 100eps. The main point is that the mixed
µ GBA, unlike the real-µ GBA presented in the pre-
vious section, returns perturbations that strictly cause
det(I − M∆) = 0 within numerical errors.

If the real block does not cause singularity, then it is
wrapped into M to form M̃C = Fu(M, ∆R). The stan-

dard power iteration [3,9] is run on M̃C to compute the
complex block, ∆C ∈ ∆C . A perturbation, ∆ ∈ ∆, is
then formed from the real/complex blocks and stored if
it increases the current lower bound. Even though lbtry

is chosen to be strictly larger than the current lower
bound, the perturbation ∆ might not increase the lower
bound. In particular, if the norm of the complex block
is too large (σ̄ (∆C) > 1/lb), then the perturbation will
not improve the lower bound. It seems that the adaptive
selection of lbtry naturally balances the norms of the real
and complex blocks. If lbtry is too large, then we will
be overly restricting our search for ∆R. As a result the
gain of Fu(MR, ∆R) may not be very large and hence it
will take a larger norm complex block to make the loop
singular. If this larger norm complex block causes ∆ to
achieve a lower bound less than lbtry then lbtry will be
decreased on the next iteration. This will increase the
search for ∆R, resulting in a larger gain for Fu(MR, ∆R),
and hence a smaller norm ∆C will be needed to force
loop singularity. The performance of the mixed µ GBA
is discussed in the next section.

1. Given : M :=
[

MR MRC
MCR MC

]

∈ C
n×n, ∆ ∈ ∆, lb, ub

2. Initialize : lbfac = 3/4, cnt = 1

3. while cnt ≤ Ntry AND lb < ub · tolstop

4. lbtry = lb + (ub − lb)lbfac

5. k := mod (cnt − 1, nR) + 1

6. M̃R :=





MR ik

iTk MR 1





7. ∆R,try := arg max
∆R∈∆R, σ̄(∆R)≤1/lbtry

|Fu(M̃R, ∆R)|

8. if rcond(I − MR∆R,try) < tolcomplex

9. lb = 1

σ̄(∆R,try)

10. ∆ = diag(∆R,try, 0)

11. lbfac := 1/2

12. else

13. M̃C := Fu(M, ∆R)

14. Power Iteration on M̃C to find ∆C,try ∈ ∆C

15. ∆try := diag(∆R,try, ∆C,try)

16. if rcond(I − M∆try) < tolcomplex AND 1

σ̄(∆try)
≥ lb

17. lb = 1

σ̄(∆try)

18. ∆ = ∆try

19. lbfac := 1/2

20. else

21. lbfac := max(1/32, lbfac/2)

22. end

23. end

24. cnt = cnt + 1

25. end

26. Return : ∆, lb

Table 2
The GBA for Mixed µ Lower Bounds

3.4 Discussion of Algorithm Performance

As pointed out in the Introduction, there are fundamen-
tal computational issues associated with computing µ.
In particular, this computational problem is NP Hard
and approximately computing µ is also NP Hard. As a
result, it is unlikely that a polynomial time algorithm
can be developed that computes or approximately com-
putes µ in all cases. Real µ problems have the additional
issue that the result can be a discontinuous function of
the problem data [30,31]. Given these fundamental diffi-
culties, it is important to address the assessment of the
GBA performance for real and mixed µ problems.

For real µ problems there are essentially three classes of
algorithms for computing lower bounds:
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(1) Exponential-Time Algorithms : There are several
algorithms of this type listed in the introduction
and some of these come with rigorous proofs that
they compute µ to within a specified tolerance.
The drawback is that the computation time grows
exponentially with the number of real uncertain-
ties. This limits their use to problems with only a
few real uncertainties.

(2) Polynomial-time Algorithms: To our knowledge,
the power iteration is the only algorithm in the
literature in this class for real µ problems. Each
iteration mainly consists of matrix-vector products
and vector norm calculations. The number of these
calculations per iteration and the vector/matrix
dimensions scale linearly with the number and size
of the uncertainty blocks. For a fixed number of
iterations, this computation time grows polynomi-
ally with the number and size of the uncertainty
blocks. Unfortunately this algorithm has poor con-
vergence characteristics on real µ problems.

(3) Approximation Algorithms : The main algorithm
in this class is the regularization [31] described in
the introduction. The benefit is that it improves
the convergence properties of the power iteration,
which is a fast algorithm. The drawback is that
the magnitude of the complex uncertainty needed
to achieve power iteration convergence may be suf-
ficiently large that it alters the original problem.
The magnitude of these real perturbations can
then be increased to cause the system poles to lie
on the imaginary axis [4]. Difficulties may arise if a
large magnitude of complex uncertainty is needed
to achieve power iteration convergence.

The bulk of the computation time for the GBA occurs
in solving the worst-case gain problem. The algorithm
we use to solve this worst-case gain problem consists of
a fixed number of coordinate-wise ascents. Each ascent
step requires the solution of a number of eigenvalue prob-
lems with dimensions equal to the uncertainty block di-
mensions. The overall algorithm is complicated and we
have neglected many details. However, it is our anticipa-
tion that the computational cost will grow polynomially
with the number and size of the uncertainty blocks. On
a limited class of problems, we have indeed observed the
computational cost of the real µ GBA to grow polyno-
mially with the number of real uncertainties.

Given the complexity of computing µ it is unlikely that
we can prove that our algorithm computes or approx-
imately computes µ for all problems. It should again
be stressed that this is a fundamental characteristic of
the problem, i.e. it is unlikely that generic performance
guarantees can be proved for any polynomial-time al-
gorithm. Instead, we could attempt to prove the GBA
converges for a limited class of real µ problems. For
example, an exact solution has been found for the case
where M is rank 1 [40–42]. Unfortunately, our algo-
rithm does not converge for all instances of rank 1

problems 3 . We would still like to assess the perfor-
mance of the GBA on “typical” engineering problems.
We have compiled and posted a set of test examples at:
http://jagger.me.berkeley.edu/~pack/gblowerbound/.
This website contains HTML codepads/results for bus
steering, hydraulic servos, flight control, missile au-
topilots, disk drives, systems biology, spark-ignition
engines, water tank systems, and mass-spring damper
systems. These files compare the performance of the
GBA against the only other polynomial-time algorithm,
the power iteration. Results from two of these examples
are presented in Section 4.

Similar comments apply concerning the computational
complexity of mixed µ problems. The computation for
the mixed µ power iteration grows polynomially in the
number and size of the uncertainty block dimensions.
This iteration has good convergence properties for many
mixed µ problems. In these instances the power itera-
tion should be used over the GBA since it has typically
has lower computational cost. The GBA algorithm can
be used for mixed µ problems for which the real un-
certainties prevent the power iteration from converging.
The GBA performance on a class of mixed µ problems
is presented in Section 4.

4 Numerical Results

The GBA has been successfully applied to several en-
gineering problems arising in industry. These problems
involve only real parameter variations and the standard
power iteration fails to provide useful lower bounds. In
this section we demonstrate the performance of the GBA
algorithm on two problems which are similar to those
encountered in industry. We then test the performance
of the GBA on a class of no-gap mixed µ problems.

The GBA is integrated into the mussv function of Mat-
lab’s Robust Control Toolbox [2] and can be called with
the ’g’ option. All of the results presented in this sec-
tion will use the algorithm as currently implemented
in Version 3.4 of the Robust Control Toolbox. The al-
gorithm settings are tolstop = 0.97, tolreal = 1 × 10−7,
and tolcomp = 100eps where eps= 2−52 ≈ 2.22 × 10−16

for floating point doubles in Matlab. Ntry = 10 + 10k
where k is the integer following the ’g’ option, i.e.
mussv(M,blk,’g6’) uses Ntry = 70. Also, the worst-
case coordinate-wise ascent is stopped if the gain from
d to e exceeds 1 × 1012. All results were computed on a
2.66GHz Intel Core 2 Quad CPU.

3 Consider the rank 1 matrix M =
[

1+j 1+j
1 1

]

with ∆R con-
sisting of two real, scalar uncertainties. ∆R = diag(0, 1) is
the only ∆R ∈ ∆R for which I − M∆R is singular. The
disturbance-to-error gain associated with either the first or
second output channel is undefined at (δ1, δ2) = (0, 1) and
remains finite in a neighborhood of this point.
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4.1 Real µ GBA: Analog Filter Analysis

Anti-aliasing filters are used in flight control electronics
to limit the distortion effects introduced by digital sam-
pling. In this example we consider a low-pass Sallen-Key
filter [43,44]. This is a second-order, active filter imple-
mented with one op-amp, two resistors, and two capaci-
tors. The input/output transfer function for the Sallen-
Key filter is given by:

F (s) =
1

R1R2C1C2s2 + C2 (R1 + R2) s + 1
(4)

The variations in part values due to manufacturing tol-
erances, temperature, and other factors can have a sig-
nificant impact on filter performance. The flight control
electronics is a safety critical system and the DO-254
standard [45] lays out a requirements-based design pro-
cess. In following this process, it must be verified that
the anti-aliasing filters satisfy all design requirements
over the range of possible part values. We will consider
one such requirement: the poles of the filter shall have
a damping ratio greater than ζmin =

√
2/2. Assume the

parts are chosen: R1 = 17.5MΩ± 10%, R2 = 0.5MΩ±
10%, C1 = 1µF±25%, and C2 = 0.1µF±25%. The nom-
inal filter has poles at −1.03± 0.29j and this meets the
damping ratio requirement (ζ = 0.96 ≥ ζmin). We can
determine if the filter satisfies the damping ratio require-
ment for all possible part values by computing µ along
the line of complex points s(ω) := −ω sin(θ)+ jω cos(θ)
where θ := arcsin(ζmin) [20,21]. At each point along this
line, 1/µ is the size of the smallest perturbation (normal-
ized) that causes the filter pole to have a damping ratio
of ζmin and a natural frequency ω. If µ < 1 for all points
then filter satisfies the damping ratio requirement for all
possible part variations.

The Matlab code to create the uncertain transfer func-
tion F (s) and compute the µ bounds is provided in
Appendix A. µ was evaluated at 100 frequency points
linearly spaced between 0.6 and 2.0 rad/sec. Figure 2
shows the lower and upper bounds computed with the
GBA and LMI method, respectively. The GBA was run
with Ntry = 10 (’g0’). The total time to compute up-
per/lower bounds at all frequency points was 46.5 sec-
onds and the GBA accounted for roughly 7.0 seconds
of this total time. We substituted the perturbations re-
turned by the GBA into F (s) and they all give poles
whose damping ratio satisfies |ζ−ζmin| < 2×10−14. The
worst case lower bound is 1.107 achieved at a frequency
ωk = 1.109 rad/sec. The part values returned by GBA
at this frequency are R∗

1 = 15.93MΩ, R∗
2 = 0.54MΩ,

C∗
1 = 1.22µF , and C∗

2 = 0.077µF . These part values are
within the specified tolerances (deviations from nominal
are −7.8%, 9.0%, 22.5%, −22.6% for R1, R2, C1, and
C2, respectively) and they place the two filter poles at
−0.784±0.784j. These poles have a damping ratio equal
to ζmin and hence we conclude that this filter design will
not meet the requirement over all part variations.
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Fig. 2. µ Bounds for Anti-aliasing Filter Damping Ratio

For comparison, we computed the µ lower bounds us-
ing the standard power iteration (SPI) with 10 restarts.
In this case it took 43.2 seconds to compute the up-
per/lower bounds with the SPI accounting for approxi-
mately 8.6 seconds of this total time. The SPI converged
on 58 out of the 100 frequency points (labeled with
squares in Figure 2). However, the SPI failed to converge
for any frequencies between 1.0 and 1.29 rad/sec. As a
result, the best lower bound returned by the power iter-
ation is only 0.81. The results of the analysis are incon-
clusive when using the SPI. We can neither validate that
the filter meets the ζmin requirement (since the µ upper
bound exceeds 1) nor can the SPI find a set of part val-
ues that demonstrate the violation of the requirement.

Finally, we performed a Monte Carlo search to study
the dependence of the filter damping ratio with respect
to part variations. We generated 1 × 104 random sam-
ples assuming the parts are uniformly distributed over
their tolerances. The random search found a filter with
damping ratio of 0.692. This confirms that the filter
design will not meet the minimum damping ratio re-
quirement. The random search took only 0.96 seconds.
In this case, the Monte Carlo search was significantly
faster than computing µ bounds. However, Monte Carlo
search becomes prohibitive for more complicated filter
designs with many uncertain part values. Moreover, the
Monte Carlo search can only provide lower bounds on
performance, i.e. verifying a design requirement at sam-
ples of specific part values does not provide hard guar-
antees that the filter implementation will satisfy the re-
quirement. Thus this method does not meet the true
objectives of the verification process for a safety critical
system. The upper bounds provided by µ, on the other
hand, can provide rigorous bounds to verify that a filter
meets a performance requirement.

4.2 Real µ GBA: Flight Control Robustness

This section provides another example of the GBA per-
formance on a real µ problem. This example, taken from
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[4], studies the stability margins for a rigid body trans-
port aircraft with a output feedback control law. The
state equations are given by equations 2.1 and 2.2 of [4].
The model includes 14 real uncertainties that represent
parametric uncertainties in the aircraft aerodynamic
coefficients (r = 14 and ki = 1 for i = 1, . . . , 14).
µ was evaluated at 100 frequency points logarithmi-
cally spaced between 0.1 and 1000 rad/sec. Figure 3
shows the lower and upper bounds computed with the
GBA and LMI method, respectively. The GBA was run
with Ntry = 20 (’g’). The total time to compute up-
per/lower bounds at all 100 frequency points was 43.1
seconds and the GBA accounted for roughly 30.5 sec-
onds of this total time. We substituted the perturbations
returned by the GBA into Fu(MR(s), ∆R) and they
all gave rcond(I − MR(jωk)∆k) < tolreal = 1 × 10−7

where ωk is the kth point in the frequency grid. Most
(90 out of 100 points) gave a reciprocal condition num-
ber less than 1×10−10. The worst case lower bound
is 0.18 achieved at the frequency 0.64 rad/sec. The
perturbation returned by the GBA at this frequency
is ∆R = diag(5.47, 5.47,−5.47, 5.47,−5.47,−3.35
, 5.47,−5.47, 5.47,−5.47, 3.43, 5.47, 0.05,−5.47). This
perturbation places two poles of Fu(MR(s), ∆R) at
−4.98 × 10−10 ± 0.64j. For comparison, it only took
14.5 seconds to compute the LMI upper bound and the
lower bound from the standard power iteration with
no restarts (SPI). The power iteration took roughly 1.1
seconds of this total time but the iteration failed to
converge on any of the frequency points. Increasing the
number of SPI restarts to 100 (’m100’ option) increased
the total computation time to 91.3 seconds but only
resulted in convergence on 6 out of the 100 frequency
points. The lower bounds returned by the SPI with 100
restarts are labeled with squares in Figure 3. The figure
also shows the lower bound reported by [4]. This lower
bound is 0.18 at the frequency 0.63 rad/sec. It was com-
puted using regularization to improve the convergence
of the power iteration. The magnitude of the real pa-
rameter uncertainties returned by the power iteration
for the regularized problem were then increased to cause
the poles of the system to lie at ±0.63j.

4.3 Mixed µ GBA

A procedure for generating mixed µ problems for which
it is known a priori that µ = 1 (and µ is equal to the
LMI upper bound) is described in [18,12]. We tested the
GBA on this class of problems with a block structure
consisting of r 1×1 real uncertainties, two 1×1 complex
uncertainties, and a single 2×2 complex full block. This
block structure was also used to test lower bound al-
gorithms in [16,17]. Figure 4 shows the distribution of
the GBA lower bounds on 500 problems for Ntry = 30
(’g2’) with two and twelve real uncertainties. The dis-
tribution of lower bounds from the SPI and the Com-
bined Power Algorithm (CPA) [16] are also shown for
the case of two and twelve real uncertainties. The GBA
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Fig. 3. µ Bounds for Flight Control Robustness

(r = 12) curve passes through the point (40, 0.87). This
means the GBA returned a lower bound less than 0.87 on
40% of the problems and a lower bound ≥ 0.87 on 60%
of the problems. The SPI (r = 12) curve passes through
the point (40, 0.18). This means the SPI returned a lower
bound less than 0.18 on 40% of the problems and a lower
bound ≥ 0.18 on 60% of the problems. Other points on
the curves can be interpreted similarly. For each algo-
rithm the curve for r = 2 lies above the corresponding
curve for r = 12). It should be noted that on this plot
a perfect lower bound algorithm appears as a constant
horizontal line at y = 1.

The performance of the GBA degrades less than the SPI
when the number of real blocks is increased from r = 2
to r = 12. For the r = 2 block structure, the GBA per-
forms slightly worse than the CPA. We note that the de-
fault choice of tolstop in the GBA causes the algorithm to
stop once it achieves a lower bound exceeding 0.97. For
the r = 12 block structure, the performance of the GBA
is superior to that of the SPI. However, the lower bound
of the CPA exceeds that of the GBA on approximately
60% of the problems. For this particular block and class
of problems, the CPA performance is better on a major-
ity of the test examples. The performance characteristics
are dependent on the uncertainty structure and problem
class. Thus the relative performance of these three algo-
rithms will change for different problems. The GBA of-
fers another alternative algorithm which may, depending
on the particular problem, generate larger lower bounds.

Figure 5 shows the computation time per problem for
the GBA and SPI as a function of the number of real
blocks, r. This is averaged over 100 problems for each
value of r. For the GBA there is some overhead for small
problems, but the curve is basically a straight line on
the log-log plot for r ≥ 20. For this particular block
structure and for this range of r, the computational cost
grows polynomially with the number of real blocks. The
computational growth curves will change for different
block structures / test matrices.
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We also studied the computational growth with respect
to the real block dimension. We briefly summarize one
comparison. Again consider the block structure consist-
ing of r 1×1 real uncertainties, two 1×1 complex uncer-
tainties, and a single 2×2 complex full block. For r = 10,
the gain based lower bound took 0.14 sec/problem av-
eraged over 100 problems. Increasing the dimension of
the real blocks to 10 × 10 increased the computation
time to 3.16 sec/problem. The computation for the stan-
dard power iteration grew from 0.02 sec/problem to 0.41
sec/problem. Computational growth times will change
for different block structures and test matrices.

5 Conclusions

We presented a new lower bound algorithm for real and
mixed µ problems. The algorithm uses a related worst-
case gain problem to compute the real blocks and, for
mixed µ problems, uses the standard power iteration
to compute the complex blocks. The main advantage of
this algorithm is that, on the real µ test examples, it has

better convergence characteristics than the power iter-
ation and its computational requirements do not grow
as rapidly as algorithms which exactly compute µ. The
algorithm is integrated into the mussv function of Mat-
lab’s Robust Control Toolbox and can be called with
the ’g’ option. This should enable other users to dupli-
cate the results contained here and/or apply the GBA to
their own problems of interest. There are several avenues
for future work. First, it would be interesting to inves-
tigate the impact of generalizing the disturbance inser-
tion and error pull-off points on algorithm performance.
Second, the algorithm could also be modified by incor-
porating branch and bound methods. Third, the algo-
rithm could be generalized to consider other uncertainty
norms, e.g. the 2-norm for ellipsoidal uncertainty. This
would require an algorithm to quickly and reliably solve
the worst-case gain problem for the uncertainty norm
of interest. Finally, it would be interesting to apply this
idea to analyze a finite-time control in a batch process.
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A Code for Anti-aliasing Filter Example

% Create Sallen-Key Filter with uncertain part values
R1 = ureal(’R1’,17.5,’Percentage’,10); % MegaOhms
R2 = ureal(’R2’,0.5,’Percentage’,10); % MegaOhms
C1 = ureal(’C1’,1,’Percentage’,25); % microFarads
C2 = ureal(’C2’,0.1,’Percentage’,25); % microFarads
F = tf(1,[R1*R2*C1*C2, C2*(R1+R2) 1]); % Filter

% Set the minimum allowable damping ratio
zeta_min = sqrt(2)/2;
theta = asin(zeta_min);

% Since the frequency response is not along the imag. axis,
% get LFT Representation: F(s) = lft(Delta,M(s))
[M,Delta,DeltaBlkStructure] = lftdata(F);
M = M(1:end-1,1:end-1);

% Evaluate M(s) along line of damping ratio zeta_min
NPTS = 100; ww = linspace(0.6,2,NPTS);
Mfr = zeros([size(M) NPTS]);
for i1=1:NPTS

s = ww(i1)*( -sin(theta)+j*cos(theta) );
Mfr(:,:,i1) = evalfr(M,s);

end

% Call mussv with options for power iteration with 10 restarts
[bnds1,muinfo1] = mussv(Mfr,DeltaBlkStructure,’am10’);

% Call mussv with options for GBA with N_try=10
[bnds2,muinfo2] = mussv(Mfr,DeltaBlkStructure,’ag0’);
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