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Abstract— Integral quadratic constraints (IQCs) provide a
general framework for robustness analysis of feedback inter-
connections. The main IQC stability theorem by Megretski and
Rantzer was formulated with frequency domain conditions that
depend on the IQC multiplier. Their proof of this theorem
uses a homotopy method and operator theory. An interesting
aspect of this theory is that input/output stability (defined as
uniformly bounded gain over all finite horizons) is established
using integral constraints that only hold, in general, on infinite
time horizons. The use of IQCs that only hold over infinite
time horizons is related to the use of noncausal multipliers in
absolute stability theory. This paper shows that if the conditions
of the IQC stability theorem are satisfied by any rational
IQC multiplier then a dissipation inequality is satisfied by a
quadratic storage function. This provides a new interpretation
for IQC analysis in terms of quadratic storage functions and a
causal, finite-horizon dissipation inequality.

I. INTRODUCTION

Integral quadratic constraints (IQCs), introduced in [10],
[11], [12], provide a general framework for robustness anal-
ysis of linear systems with respect to nonlinearities and
uncertainties. In this framework the system is separated into a
feedback connection of a known, linear time-invariant system
and a perturbation whose input-output behavior is described
by an integral quadratic constraint. The IQC stability theorem
in [10], [12] was formulated with frequency domain condi-
tions and was proved using a homotopy method and operator
theory. In [4] it was shown that the use of IQC multipliers
that satisfy a certain convexity condition is equivalent to the
use of multipliers in the absolute stability theory [3], [25].

The integral constraint used to describe the perturbation
can be expressed in either the frequency domain or the
time domain. For the time domain interpretation, [12] draws
a distinction between hard IQCs for which the integral
constraint is valid over all finite time intervals and soft IQCs
for which the integral constraint need not hold over finite
time intervals. The use of soft IQCs amounts to proving
stability (defined as having uniformly bounded input/output
gain on all finite horizons) using integral constraints that
only hold, in general, on infinite time horizons. Moreover,
in [12] a connection is drawn between soft IQCs and the use
of non-causal multipliers in the theory of absolute stability.

This paper proves IQC stability theorems using dissipa-
tivity theory [22], [23]. Previous work [2], [9], [17], [6]
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has related IQC analysis to dissipativity theory only for
the special case of hard IQCs. This paper shows that if
the conditions of the IQC stability theorem are satisfied
by any rational IQC multiplier then stability can be es-
tablished by a quadratic storage function. The dissipation
inequality satisfied by the storage function uses a Lagrange
multiplier to capture information provided by the IQC. This
result is important because it provides a connection between
dissipativity theory and IQC stability theory with rational
IQC multipliers. The dissipation inequality is a time-domain
condition and hence this might lead to certain generalizations
that would be difficult, if not impossible, to obtain with
the frequency domain IQC conditions. This result also has
pedagogical importance because the dissipation inequality
leads to a finite horizon interpretation for the use of soft
IQCs. As a corollary, it also gives a causal interpretation for
the use of non-causal multipliers in absolute stability theory.

The dissipation inequality interpretation relies on an IQC
factorization theorem that is of independent interest. In most
cases IQC multipliers are specified in the frequency domain
and the time-domain interpretation arises by performing a
factorization of the multiplier [12]. This factorization is not
unique and structured factorizations have been proposed for
robust filter design [18], [19]. One fact that seems unnoticed
in the literature is that an IQC multiplier can be classified
as soft or hard depending on the factorization. In other
words, the notions of soft and hard are not inherent to the
IQC multiplier but are factorization dependent. An example
is provided to demonstrate this fact. It is then shown that
hard IQC factorizations exist for a large class of known
multipliers. This hard IQC factorization theorem forms the
basis for connecting IQC stability theory to dissipativity
theory. Due to space constraints, most results in this paper
are presented without proofs.

II. INTEGRAL QUADRATIC CONSTRAINTS

A. Background

Let Π : jR→ C(l+m)×(l+m) be a measurable Hermitian-
valued function. Two signals z ∈ Lm2 [0,∞) and v ∈
Ll2[0,∞) satisfy the integral quadratic constraint (IQC) de-
fined by Π if∫ ∞

−∞

[
v̂(jω)
ẑ(jω)

]∗
Π(jω)

[
v̂(jω)
ẑ(jω)

]
dω ≥ 0 (1)

where v̂(jω) and ẑ(jω) are Fourier transforms of v and
z. IQCs were introduced in [12] for stability analysis of
feedback interconnections. Π is called an “IQC multiplier”
or simply a “multiplier”. The term “multiplier” is used in a



different context in absolute stability theory [3], [25]. The
connections between IQC multipliers and absolute stability
multipliers is clarified in Section III-D. IQCs can be used
to describe the relationship between input-output signals of
system components. A bounded operator ∆ : Ll2e[0,∞) →
Lm2e[0,∞) satisfies the IQC defined by Π if Equation 1 holds
for all (v, z) where v ∈ Ll2[0,∞) and z = ∆(v).

The IQC in Equation 1 can be equivalently expressed in
the time domain. Assume that Π is a rational and uniformly
bounded function. Then Π(jω) can be factored as Π(jω) =
Ψ(jω)∗MΨ(jω) where M is a constant matrix and Ψ(jω) ∈
RH(l+m)×(l+m)
∞ [24], [17], [9]. Ψ(jω) is denoted as:

Ψ(jω) := Cψ(jωI −Aψ)−1[Bψ1 Bψ2] + [Dψ1 Dψ2] (2)

The IQC (Equation 1) can be expressed as:∫ ∞
0

yψ(t)TMyψ(t) dt ≥ 0 (3)

where yψ is the output of the following linear system:

ẋψ(t) = Aψxψ(t) +Bψ1v(t) +Bψ2z(t) (4)
yψ(t) = Cψxψ(t) +Dψ1v(t) +Dψ2z(t) (5)
xψ(0) = 0 (6)

To shorten notation, the factorization Ψ(jω)∗MΨ(jω) will
occasionally be denoted (Ψ,M).

The time domain constraint (Equation 3) holds, in gen-
eral, over infinite time intervals. A hard IQC satisfies the
following more restrictive property: If ∆ is any causal,
bounded operator that satisfies the IQC (Equation 1) then∫ T

0
yψ(t)TMyψ(t) dt ≥ 0 holds for all T ≥ 0. By

contrast, IQCs for which the time domain constraint need
not hold over all finite time intervals are called soft IQCs.
This distinction is important because the main technical and
pedagogical difficulties in the IQC framework arise from the
use of soft IQCs (e.g., see the comments in Section I.B
of [12]). Unfortunately there is ambiguity surrounding the
terms soft IQC and hard IQC. Specifically, the factorization
of Π(jω) as Ψ(jω)∗MΨ(jω) is not unique.

Simple examples can be constructed to show that a
multiplier can be interpreted as being either soft or hard
depending on the factorization. This demonstrates that the
characterizations of soft and hard are not inherent to the
IQC multiplier but instead depend on the factorization. This
dependence of the notions soft and hard on the factorization
seems unnoticed in the literature. For clarity, the following
definition will be used in the remainder of the paper.

Definition 1: A rational function Π : jR →
C(l+m)×(l+m) admits a hard IQC factorization if there
exists Ψ ∈ RH(l+m)×(l+m)

∞ and M ∈ C(l+m)×(l+m), such
that Π = Ψ∼MΨ, and any bounded, causal operator ∆
which satisfies the IQC defined by Π also satisfies∫ T

0

yψ(t)TMyψ(t) dt ≥ 0 (7)

for all T ≥ 0 and for all v ∈ Ll2[0,∞), z = ∆(v). (Ψ,M)
is a hard IQC factorization of Π.

B. Hard IQC Factorizations

Two closely related classes of multipliers are considered
in this section. It is shown that hard IQC factorizations exist
for one of these classes of multipliers. This result, which is
of independent interest, forms the basis for connecting IQC
theory to dissipativity theory.

Let Π : jR → C(l+m)×(l+m) be a Hermitian-valued
function partitioned as

[
Π11 Π12
Π∗

12 Π22

]
where Π11 is l × l and

Π22 is m×m. Π is called a PN IQC multiplier if it satisfies
the following conditions:

a) Π ∈ RL(l+m)×(l+m)
∞

b) Π11(jω) ≥ 0 ∀ω ∈ R
c) Π22(jω) ≤ 0 ∀ω ∈ R

The PN terminology refers to the Positive semidefinite and
Negative semidefinite properties specified by conditions b)
and c). The first condition is required so Π and (Ψ,M)
have state-space representations. The second condition is
necessary and sufficient for the zero operator to satisfy the
IQC defined by Π. The third condition implies that if the
operator ∆ satisfies the IQC defined by Π then ∆ maps
zero input to zero output. The third condition also implies
that the set of all operators that satisfy the IQC defined by
Π is a convex set [5], [4]. The PN class of multipliers is
quite general and covers the most typical multipliers used in
IQC analysis. In fact, all of the IQCs listed in [12] satisfy
conditions b) and c) except for the IQCs for certain sector
bounded nonlinearities and polytopic uncertainties.

Π is called a Strict-PN IQC multiplier if it satisfies con-
dition a) and if there exists an ε > 0 such that:

b’) Π11(jω) ≥ εIl ∀ω ∈ R
c’) Π22(jω) ≤ −εIm ∀ω ∈ R

The Strict-PN terminology refers to the Strict Positive defi-
nite and Negative definite properties specified by conditions
b’) and c’). The next theorem proves that Strict-PN IQC
multipliers admit a hard IQC factorization. The proof is
based on the Lemmas provided in the appendix.

Theorem 1: Let Π : jR→ C(l+m)×(l+m) be a Hermitian-
valued function. If Π is a Strict-PN IQC multiplier then
there exists a hard IQC factorization (Ψ,M) such that M :=[
Il 0
0 −Im

]
and Ψ :=

[
Ψ11 0
Ψ21 Ψ22

]
where Ψ11, Ψ−1

11 ∈ RHl×l
∞ ,

Ψ22 ∈ RHm×m
∞ , and Ψ21 ∈ RHm×l

∞ .
Proof: By Lemma 1, if Π is a Strict-PN IQC multiplier

then it can be factored as Ψ∼MΨ with M :=
[
Il 0
0 −Im

]
and

Ψ :=
[

Ψ11 0
Ψ21 Ψ22

]
where Ψ11, Ψ−1

11 ∈ RHl×l
∞ , Ψ22 ∈ RHm×m

∞ ,
and Ψ21 ∈ RHm×l

∞ .
Let ∆ be any casual, bounded operator that satisfies the

IQC defined by Π. Given any v ∈ L2[0,∞) and T ≥ 0
define w = ∆(v) and yψ = Ψ [ vw ]. By Lemma 2 there exists
z(t) ∈ L2[T,∞) such that for the input

ṽ(t) =
{
v(t) t < T
z(t) t ≥ T (8)

the signal ỹ1 = Ψ11ṽ satisfies ỹ1(t) = 0 for all t ≥ T .
Define w̃ := ∆(ṽ) and ỹψ := Ψ [ ṽw̃ ]. ỹψ can be partitioned



as
[
ỹ1
ỹ2

]
where ỹ2 := Ψ21ṽ + Ψ22w̃. Since ∆ satisfies the

IQC defined by Π, the pair (ṽ, w̃) satisfies

0 ≤
∫ ∞

0

ỹψ(t)TMỹψ(t) dt (9)

It now follows that:

0 ≤
∫ T

0

ỹψ(t)TMỹψ(t) dt =
∫ T

0

yψ(t)TMyψ(t) dt

The first inequality follows from Equation 9 because ỹ1(t) =
0 for all t ≥ T by construction and the lower right block of
M is −Im. The equality follows by causality of ∆.

The previous theorem shows that a hard IQC factorization
exists for all Strict-PN IQC multipliers. The factorization
in Lemma 1 can be numerically computed with state space
operations involving Lyapunov and Riccati equations.

There are many PN IQC multipliers that are not not
Strict-PN multipliers. Such multipliers do not satisfy the
conditions of Theorem 1 and hence a hard factorization may
not exist. However, PN IQC multipliers can be perturbed so
that the Strict-PN conditions are satisfied. For example, the
Popov IQC can be perturbed so that it satisfies the Strict-PN
conditions. This is of interest because it means the Popov
IQC, given as the canonical soft IQC in [12], is arbitrarily
close to an IQC which admits a hard IQC factorization.

III. IQC STABILITY THEOREMS

The formulation in this section is taken from [10], [12].
Consider the feedback interconnection:

v = Gw + f (10)
w = ∆(v) + e (11)

where f ∈ Ll2e[0,∞) and e ∈ Lm2e[0,∞) are exogenous
inputs. G is a causal, linear time-invariant operator on
Lm2e[0,∞) with transfer function G(s) ∈ RHl×m

∞ . ∆ is a
causal operator on Ll2e[0,∞) with bounded gain.

Definition 2: The feedback interconnection of G and ∆
is well-posed if the map (v, w) → (e, f) defined by Equa-
tions 10 and 11 has a causal inverse on Lm+l

2e [0,∞).
Definition 3: The feedback interconnection of G and ∆

is stable if the interconnection is well-posed and if the map
(v, w) → (e, f) has a bounded inverse, i.e. there exists a
constant γ > 0 such that∫ T

0

(vT v + wTw)dt ≤ γ
∫ T

0

(fT f + eT e)dt (12)

for any T ≥ 0 and for any solution of the feedback
interconnection.

A. Frequency Domain IQC Condition ([10], [12])

IQCs can be used to formulate a frequency-domain condi-
tion proving stability of the feedback interconnection. This
section reviews the IQC stability condition formulated by
Megretski and Rantzer.

Theorem 2: [10], [12] Let G(s) ∈ RHl×m
∞ and let ∆ be

a bounded causal operator. Assume that:

i) for every τ ∈ [0, 1], the interconnection of G and τ∆
is well-posed.

ii) for every τ ∈ [0, 1], the IQC defined by Π is satisfied
by τ∆.

iii) ∃ε > 0 such that[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI ∀ω ∈ R (13)

then the feedback interconnection of G and ∆ is stable.
This theorem was proved in [10], [12] using a homotopy

method. The technical conditions involving τ are a result
of the homotopy method used in the proof. Condition ii)
implies that the IQC defined by Π must be satisfied by the
zero operator ∆ = 0. As mentioned previously, the IQC is
satisfied by the zero operator if and only if Π11(jω) ≥ 0
∀ω ∈ R. Thus Π11(jω) ≥ 0 ∀ω ∈ R is necessary for any
IQC multiplier that satisfies the conditions of Theorem 2.
Condition ii) can also be simplified for PN IQC multipliers.
In particular, it follows from the properties of PN IQC
multipliers (Section II-B) that τ∆ satisfies the IQC for all
τ ∈ [0, 1] if and only if ∆ satisfies the IQC.

For rational IQC multipliers, Condition iii) in Theorem 2
is equivalent to a linear matrix inequality. Assume Π ∈
RL(l+m)×(l+m)
∞ and factorize Π as Π := Ψ∼MΨ where

Ψ ∈ RH(l+m)×(l+m)
∞ . Assume Ψ has the state matrices as

specified in Equation 2. In addition, let G(s) := C(sI −
A)−1B +D. The left side of Equation 13 can be expressed
in terms of the state matrices of G and Ψ:[

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
=[

(jωI−Â)−1B̂
I

]∗ ([
ĈT

D̂T

]
M [ Ĉ D̂ ]

) [
(jωI−Â)−1B̂

I

]
(14)

where Â :=
[

A 0
Bψ1C Aψ

]
, B̂ :=

[
B

Bψ2+Bψ1D

]
, Ĉ :=

[Dψ1C Cψ ], and D̂ := Dψ2 +Dψ1D.
Condition iii) in Theorem 2 is equivalent to a linear matrix

inequality condition by the KYP Lemma [16], [21].
Theorem 3: ∃ε > 0 such that[

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI ∀ω ∈ R (15)

if and only if there exists a matrix P = PT such that[
ÂTP + PÂ PB̂

B̂TP 0

]
+
[
ĈT

D̂T

]
M
[
Ĉ D̂

]
< 0 (16)

Moreover, if the upper left corner of M (conformable with
the row dimension of Ĉ) is positive semidefinite then any
solution of P of Equation 16 satisfies P ≥ 0.

B. Dissipation Inequality for IQCs with Hard Factorizations

IQCs can be used to formulate an alternative stability
condition in terms of a dissipation inequality. The dissipation
inequality formulation only applies to IQCs for which a
hard factorization exists. By Theorem 1, this encompasses
all Strict-PN IQC multipliers. The restriction to Strict-PN
IQC multipliers will be relaxed in subsequent sections.



Consider again the basic feedback interconnection and
assume ∆ satisfies the IQC defined by Π. Assume that Π ∈
RL(l+m)×(l+m)
∞ and let (Ψ,M) be a hard IQC factorization

for Π. The basic feedback interconnection including Ψ is
described by z = ∆(v) and the following linear dynamics:[

ẋ
ẋψ

]
= Â [ xxψ ] + B̂z + B̂2 [ fe ] := F (x, xψ, z, f, e) (17)

[ vw ] = Ĉ1 [ xxψ ] + D̂11z + D̂12 [ fe ] (18)

yψ = Ĉ [ xxψ ] + D̂z + D̂22 [ fe ] (19)

where Â, B̂, Ĉ, and D̂ are defined beneath Equation 14. The
other state matrices are defined as B̂2 :=

[
0 B

Bψ1 Bψ1D

]
, Ĉ1 :=

[C 0
0 0 ], D̂11 := [DI ], D̂12 := [ I D0 I ], and D̂22 := [Dψ1 Dψ1D ].

e - e w - G(s)

? f�ev�z

6

-

- Ψ(s)
yψ-

Fig. 1. Analysis Interconnection Structure

The IQC encapsulates the knowledge about the input-
output behavior of ∆: given any input v, the output z = ∆(v)
must be such that yψ satisfies the time-domain IQC. Analysis
with hard IQC factorizations can be viewed as replacing the
precise relation z = ∆(v) with the constraint:∫ T

0

yψ(t)TMyψ(t) dt ≥ 0 (20)

Equation 20 implicitly constrains the possible values of z
consistent with the behavior of ∆. The analysis proceeds us-
ing the interconnection structure in Figure 1. The uncertainty
∆ is removed and z is viewed as an external signal subject
only to the the quadratic constraint on yψ (Equation 20). The
following theorem uses the hard IQC factorization to provide
a dissipation inequality stability condition for the feedback
interconnection of G and ∆.

Theorem 4: Let G(s) ∈ RLl×m∞ and let ∆ be a bounded
causal operator. Assume that:

i) the interconnection of G and ∆ is well-posed.
ii) ∆ satisfies the IQC defined by Π

iii) there exists a matrix P ≥ 0 and scalars λ, γ > 0 such
that V (x, xψ) := [ xxψ ]T P [ xxψ ] satisfies

∇V · F (x, xψ, z, f, e) ≤ γ(fT f + eT e)

− (vT v + wTw)− λ(yTψMyψ) (21)

∀x ∈ R·, xψ ∈ R·, z ∈ Rm, f ∈ Rl, e ∈ Rm where
v, w, yψ are defined by Equations 18 and 19.

iv) Π ∈ RL(l+m)×(l+m)
∞ and Π has a hard IQC factoriza-

tion Π = Ψ∼MΨ.
then the feedback interconnection of G and ∆ is stable.

Note that G is not required to be stable in Theorem 4.
It is easy to construct examples where G is unstable and

the dissipation inequality is satisfied. However, if the IQC is
satisfied by the zero operator, ∆ = 0, then stability of G is,
of course, a necessary condition for the dissipation inequality
to be satisfied. The remaining theorems in the paper add the
assumption that G(s) ∈ RHl×m

∞ .
Theorem 4 provides an alternative stability condition and

proof for using IQCs. The dissipation inequality formulation
is more restrictive than the frequency domain formulation
(Theorem 2) because it only applies to IQCs for which a
hard factorization exists. However, there are benefits to this
formulation. One benefit of the dissipation inequality for-
mulation is that it relaxes the technical conditions associated
with the homotopy method in the original proof. Specifically,
Theorem 4 only requires that ∆ satisfy the IQC defined by
Π and that the loop is well-posed for ∆. These conditions
do not need to be verified for all τ∆ with τ ∈ [0, 1] as
in Theorem 2. Another benefit of the dissipation inequality
formulation is that it involves a time-domain condition that
is amenable to new generalizations. For example, one could
easily extend the dissipation inequality condition to handle:

1) Integral polynomial constraints on the input/output
behavior of ∆, i.e. replace yTψMyψ in the time-domain
IQC with a polynomial function of yψ .

2) G and/or Ψ described as nonlinear systems with poly-
nomial vector fields.

3) Storage functions V of polynomial of degree greater
than than two.

4) Feedback interconnections that are locally but not
globally stable [20].

The connection to the frequency-domain condition (Equation
13) would be lost with these generalizations. However, The-
orem 4 could be generalized and the dissipation inequality
could be solved using sum-of-squares optimizations [13],
[14], [7]. Freely available software [15], [8], [1] could
then be used to solve for a storage function that satisfies
the dissipation inequality. This would be computationally
demanding but still within the limits of current desktop
computers for small nonlinear problems.

The dissipation inequality (Equation 21) is an algebraic
constraint on variables (x, xψ, z, f, e). This constraint in-
volves the data of G and Ψ and does not depend on ∆.
Specifically, the dissipation inequality can be equivalently
expressed as a quadratic constraint using the extended linear
system (Equations 17-19):

[
x
xψ
z
f
e

]T [
Q(P, λ) S(P, λ)
S(P, λ)T R(λ)− γI

] [ x
xψ
z
f
e

]
≤ 0 (22)

This shows a connection between the dissipation inequality
and an LMI condition. The next theorem proves that feasi-
bility of the dissipation inequality is equivalent to feasibility
of the KYP LMI (Equation 16).

Theorem 5: Assume G(s) ∈ RHl×m
∞ . There exists a

matrix P ≥ 0 and scalars λ, γ > 0 such that V (x, xψ) :=



[ xxψ ]T P [ xxψ ] satisfies

∇V · F (x, xψ, z, f, e) ≤
γ(fT f + eT e)− (vT v + wTw)− λ(yTψMyψ) (23)

if and only if there exists a matrix P ≥ 0 such that[
ÂTP + PÂ PB̂

B̂TP 0

]
+
[
ĈT

D̂T

]
M
[
Ĉ D̂

]
< 0 (24)

To summarize, for G(s) ∈ RHl×m
∞ the dissipation inequal-

ity (Equation 21) in Theorem 4 is equivalent to the existence
of P ≥ 0 that satisfies the KYP LMI (Equation 24). In con-
trast, the frequency domain stability condition (Equation 13)
in Theorem 2 is equivalent to the existence of P = PT that
satisfies the KYP LMI.

C. Dissipation Inequality for PN IQC Multipliers

The previous section showed that stability analysis with
IQCs for which a hard factorizations exist can be interpreted
with a dissipation inequality. By Theorem 1, this encom-
passes all Strict-PN multipliers. The objective of this section
is to demonstrate that stability analysis with PN multipliers
can also be interpreted with a dissipation inequality.

Theorem 6: Let G(s) ∈ RHl×m
∞ and let ∆ be a bounded

causal operator. Assume that:

i) the interconnection of G and ∆ is well-posed.
ii) ∆ satisfies the IQC defined by Π.

iii) ∃ε > 0 such that[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −εI ∀ω ∈ R (25)

iv) Π is a PN IQC multiplier

Then the feedback interconnection of G and ∆ is stable.
Moreover, there exists a Strict-PN IQC Π̃ that satisfies

conditions ii), iii). In addition, there is a P ≥ 0 and scalars
λ, γ > 0 such that V (x, xψ) := [ xxψ ]T P [ xxψ ] satisfies the
dissipation inequality (Equation 21) with Π̃.

The main point of Theorem 6 is that if the IQC stability
theorem holds with a PN IQC multiplier then it holds
with a Strict-PN IQC multiplier. Hard factorizations exist
for all Strict-PN IQC multipliers and a quadratic storage
function can be constructed to satisfy the dissipation in-
equality. This provides provides an alternative proof for IQC
stability analysis for PN multipliers based on connections to
a dissipation inequality. Theorem 6 also provides a time-
domain interpretation for IQC stability analysis for the
most commonly used IQCs. Pedagogically, it is of interest
that the dissipation inequality proof exploits finite-horizon
information in the form of the hard constraint (Equation 20).
This is in contrast to the use of, in general, infinite-horizon
constraints in the original proof of the IQC stability theorem.
A loop transformation argument can be used to construct
storage functions for cases where the IQC multiplier does
not satisfy the PN conditions.

D. Absolute Stability

This section provides a connection between absolute sta-
bility and the results contained in this paper. Section VI.9
of [3] provides a good summary of multiplier results in
absolute stability theory. The term “multiplier” has a different
meaning in absolute stability theory [3], [25]. In absolute
stability theory, the term multiplier refers to a system M(s)
that is introduced into the feedback interconnection. The
purpose is to prove stability of the original interconnection by
showing that MG is strictly positive and ∆M−1 is positive.
M is allowed to have poles in the right half-plane and
M is interpreted as being a non-causal operator. The main
absolute stability theorems require that M satisfy certain,
restrictive factorization conditions. In particular, M must
be factorizable as M = M−M+ where M+, M−1

+ , M∗−,
and (M∗−)−1 are all stable (see, e.g., Theorem 20 on p.203
of [3] and Theorem 2 of [25]). The use of a non-causal
absolute stability multiplier M(s) can be interpreted in the
IQC framework. The next result is a slight generalization of
the Corollary on p.824 of [12].

Corollary 1: Let G(s) ∈ RHl×m
∞ and let ∆ be a bounded

causal operator. Assume that:
i) the interconnection of G and ∆ is well-posed.

ii) There exists M ∈ RLl×m∞ such that∫ ∞
−∞

Re(v̂(jω)∗M(jω)ẑ(jω))dω ≥ 0 (26)

for any v ∈ Ll2[0,∞) and z = ∆(v).
iii) ∃ε > 0 such that

M(jω)∗G(jω) +G(jω)∗M(jω) ≤ −εI ∀ω ∈ R (27)

Then the feedback interconnection of G and ∆ is stable.
Proof: The conditions of Theorem 6 are satisfied with

the PN IQC multiplier Π :=
[

0 M
M∗ 0

]
.

This result slightly generalizes the Corollary in [12]. In
particular, the Corollary in [12] requires that the feedback
interconnection is well-posed with τ∆ for all τ ∈ [0, 1].
Corollary 1 above only requires well-posedness for τ = 1. It
is stated in [12] that non-causal absolute stability multipliers
are related to soft IQCs. It is of interest that Corollary 1 is
a consequence of Theorem 6 the proof of which is based on
constructing a hard IQC factorization.

This Corollary is important for two reasons. First, it
provides a complete connection between absolute stability
theory and dissipativity theory: if the absolute stability theory
conditions are satisfied by any multiplier then a storage func-
tion can be constructed that satisfies a dissipation inequality.
Second, it provides a causal interpretation for the use of non-
causal absolute stability multiplier M(s). Corollary 1 shows
that the use of non-causal absolute stability multipliers is
equivalent to the use of a PN IQC multiplier in the IQC
framework. The proof of Theorem 6 demonstrates that the
stability conditions can be satisfied with a Strict-PN IQC
multiplier for which a hard IQC factorization exists. This
factorization yields a stable filter Ψ that provides information
about the behavior of ∆ in terms of a causal, finite-horizon



quadratic constraint. In addition, there is a quadratic storage
function for the extended system that includes the states of
Ψ. This storage function satisfies a dissipation inequality
and hence proves stability (as defined in Section III-A) via
integration over a finite-time horizon.

IV. CONCLUSIONS

This paper showed that if the conditions of the IQC
stability theorem are satisfied by any rational IQC multiplier
then a dissipation inequality is satisfied by a quadratic storage
function. This result is important because it connects both
IQC and absolute stability theories to dissipativity theory.
In addition, this provides new interpretations for the use of
infinite horizon (soft) constraints in IQC analysis and the
use of non-causal multipliers in absolute stability theory.
In both cases, stability can be proved using a quadratic
storage functions and a causal, finite-horizon dissipation
inequality. This result is also of practical importance because
the dissipation inequality theorem can be generalized in
several ways, e.g. using integral polynomial constraints.
These generalizations would enable the analysis of new
classes of nonlinear systems and will be the subject of future
work. Finally, the dissipation inequality results were based
on the construction of a hard IQC factorization for a class of
IQC multipliers. It would be of theoretical interest to derive
necessary and sufficient conditions for an IQC multiplier to
have a hard IQC factorization.
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[18] C.W. Scherer and I.E. Köse. Robust H2 estimation with dynamic
IQCs: A convex solution. In Proceedings of the IEEE Conference on
Decision and Control, pages 4746–4751, 2006.
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VI. APPENDIX

Lemma 1: Let Π : jR → C(l+m)×(l+m) be a Hermitian-
valued function. If Π is a Strict-PN IQC multiplier then Π
can be factorized as Π(jω) = Ψ(jω)∗MΨ(jω) where M :=[
Il 0
0 −Im

]
and Ψ :=

[
Ψ11 0
Ψ21 Ψ22

]
. In addition, Ψ11, Ψ−1

11 ∈
RHl×l
∞ , Ψ22 ∈ RHm×m

∞ , and Ψ21 ∈ RHm×l
∞ .

Lemma 2: Consider the system G with the realization:

ẋ = Ax+Bv (28)
y = Cx+Dv (29)

Assume G ∈ RHl×l
∞ and G is invertible with G−1 ∈ RHl×l

∞ .
For any T ≥ 0 and any v ∈ L2[0, T ) there exists z ∈

L2[T,∞) such that for the input

ṽ(t) =
{
v(t) t < T
z(t) t ≥ T (30)

the system output satisfies y(t) = 0 for all t ≥ T .


