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Abstract: Up-down counters are commonly used in the aerospace industry for fault detection
thresholding. This paper applies the up-down counter technique to detect wind turbine faults.
The thresholding problem involves a tradeoff between false alarms and missed detections.
Counter based thresholding can detect smaller faults with higher probability and lower false
alarms than is possible using simple constant thresholds. This improvement is achieved by
effectively introducing dynamics into the thresholding logic as opposed to decisioning based on
a single time step. Up down counters are applied to the development of a fault detection system
for a commercial sized 4.8MW wind turbine. Realistic fault scenarios in the sensing, actuation
and drivetrain subsystems are considered. It is seen that most faults can be detected with fast
detection times and minimal false alarms without implementation of more complex filtering and
detection techniques on residuals.
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1. INTRODUCTION

Wind energy is a rapidly growing renewable energy source
as its cost per unit is reaching competitive levels. Mainte-
nance and repair costs constitute an important portion of
the operating costs of a typical wind turbine. These costs
are more significant for offshore wind turbines which are
located further from the maintenance centers. In addition,
offshore wind turbines in general have lower availability
rates than their onshore counterparts due to the longer
repair times.

Fault detection and isolation (FDI) algorithms can be used
to detect the irregularities in the sensing and actuation
subsystems of the wind turbine and accommodate these
faults when possible. In addition, FDI systems can also
be used for detection of the precursors of some critical
failures, which may otherwise result in a high cost break-
down in the future. These benefits of the FDI systems can
significantly reduce the downtime and repair costs of the
wind turbine over its lifetime.

The fault detection problem usually comprises a method
to compute residuals and a process to declare faults based
on the residuals. It is desired that the generated residual
be a good representation of the fault of interest while being
insensitive to process and measurement noises. Generation
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of residuals depends on the information available about
the system. If a sufficiently accurate model of the system
is available, model based methods can be used to esti-
mate system states and outputs. Donders (2002) applied
Kalman Filter and Interacting Multiple-Model estimators
to the wind turbine FDI problem. H∞/H− techniques for
observer design were used by Wei and Verhaegen (2008)
and Szaszi et al. (2002). Another method of obtaining
residuals is to compare the redundant information about
the system if the system has some physical redundancy
built in it. See Gertler (1998), Isermann (2005), and Ding
(2008) for a detailed treatment of model based and model-
free fault detection methods.

A common method used for decision making in fault
detection algorithms is thresholding. That is, a fault is
declared if the residual exceeds a certain threshold. See
Gertler (1998), Emami-Naeini et al. (1988) for applications
of fixed thresholding and see Stoustrup et al. (2003)
for time varying thresholding. Another method used for
decisioning is up-down counters which are also known as
leaky bucket counters in the communications and software
literature. See Logothetis and Trivedi (1994) and Butto
et al. (1991) for the applications of leaky bucket counters
in the communications literature. These counters are also
commonly used in aerospace industry for fault detection
purposes. Gertler (1998) used a special case of the up-
down counters for fault detection where the up and down-
counts at each time step are simply set equal to one.
The operation of these counters is explained in detail in
Section 3.3.

This paper develops a fault detection and isolation system
for a typical commercial wind turbine. Faults are consid-
ered in the pitch actuators and sensors, rotor speed and



generator speed sensors as well as system faults in the
drivetrain and generator. Both model based and physical
redundancy based residuals are used. Up-down counters
are used for decisioning on each residual.

The paper has the following structure: Section 2 describes
the wind turbine model used in this paper and explains the
faults that are considered. Section 3 explains the design
of the FDI system in detail. The results are presented in
Section 4. Conclusions are presented in Section 5.

2. WIND TURBINE MODEL AND PROBLEM
FORMULATION

The wind turbine model and problem considered in this
paper is based on the work presented in Odgaard et al.
(2009). The modeled turbine is a variable speed, three
bladed horizontal axis wind turbine with a rated power
of 4.8 MW. A brief overview of the problem formulation
is presented in this section.

2.1 Aerodynamics and Pitch System Model

The captured power is approximately given by:

Pr = τaeroωr =
1

2
ρAv3Cp(λ, β) (1)

where τaero (N) is the aerodynamic torque, ωr (rad/s) is
the rotor speed, ρ (kg/m3) is the air density, A (m2) is
the area swept by the rotor, v (m/s) is the wind speed.
Cp (unitless) is the power coefficient which represents how
much of the power available in wind is captured. Cp is a
function of blade pitch angle β (deg) and tip speed ratio
λ (unitless) where λ is defined as:

λ =
ωrR

v
(2)

R (m) is the rotor radius. From Equation (1), it is seen
that the aerodynamic torque can be written as:

τaero =
ρAv3Cp(λ, β)

2ωr
(3)

The pitch actuators on the system are represented by a
second-order transfer function Gact(s):

β(s)

βref (s)
= Gact(s) =

ω2
n

s2 + 2ζωns+ ω2
n

(4)

The nominal values of ζ and ωn are 0.6 and 11.11 respec-
tively.

2.2 Drivetrain and Generator Model

Drivetrain flexibility is modeled by a two mass model:ω̇r
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where ωr is the rotor speed, ωg is the generator speed,
θ∆ is the drivetrain torsion, Jr and Jg are the rotor and

generator inertia, Br and Bg are the viscous damping of
the rotor and generator, Bdt and Kdt are the damping and
stiffness coefficients of the drivetrain flexibility, and Ng is
the gearbox ratio.

The dynamics of the generator are modeled with a first-
order transfer function:

τg(s)

τg,ref (s)
= Ggen(s) =

αg

s+ αg
(7)

The nominal value of αg = 50. See Odgaard et al. (2009)
for the numeric values of the constants specified in this
section.

2.3 Control Systems

The control system of the turbine includes two separate
controllers for Region 2 and Region 3 operation.

When the turbine is in Region 2 or power optimization
mode, blades are pitched to βopt = 0◦. Generator torque
is set as:

τg,ref =
1

2
ρAR3Cpmax

λ3
opt

ω2
r (8)

This control law simply drives the rotor speed to the
optimal tip speed ratio (λopt) in steady state, which yields
the optimal power coefficient Cpmax = Cp(βopt, λopt). For
the details of this control law, see Johnson et al. (2006).

If the turbine is operating in Region 3, a discrete PI
controller generates blade pitch commands to maintain the
rated rotor speed. The generator torque is set as:

τg,ref =
Prated

ωg
(9)

such that the generator captures the rated power of
the turbine. Note that this simple control scheme does
not include individual pitch control (IPC) for turbine
structural load reduction. The FDI system presented in
this paper is not specific to this control scheme and can
be implemented on any IPC control law without any
modifications.

2.4 Sensor Configuration

Typically, wind turbines are built with sensor configu-
rations that involve some physical redundancy for fault
tolerant operation. The available sensors on the model
are listed in Table 1. Subscripts m1 and m2 represent
redundant measurements of the quantities. In addition to
the measurements listed in Table 1, it is assumed that the
digital controller commands are also available for the FDI
system. The sampling time of the sensors is assumed to be
Ts = 0.01 seconds.

Table 1. Sensor Configuation of Wind Turbine

Sensor Symbols Noise (µ, σ2)

Rotor Speed ωr m1, ωr m2 (rad/s) (0, 0.025)
Generator Speed ωg m1, ωg m2 (rad/s) (0, 0.050)
Generator Torque τg m (Nm) (0, 90)
Generator Power Pg m (W) (0, 1000)
i-th Blade Pitch Angle βi m1, βi m2 (deg) (0, 0.200)
Wind Speed vm (m/s) (1.5, 0.500)

The noises acting on each sensor are assumed to be
Gaussian white noise. The mean values (µ) and variances



(σ2) of the sensor noises are given in Table 1. The wind
speed sensor is considered to have low accuracy and it
requires calibration frequently. In addition, note that the
standard deviation of the rotor speed measurement is
σ ≈ 0.1581. This corresponds to approximately 10% of
the rated rotor speed of 1.7 rad/s. The large noise on this
measurement was an issue in our baseline designs.

2.5 Fault Modeling and Detection Requirements

The sensor faults considered in this paper are listed in
Table 2. It is required that these faults (Faults 1-5) are
detected in 10Ts, i.e. 10 sampling periods of the sensors.

Table 2. List of Sensor Faults

Fault No Fault Description

1 β1 m1=5 deg Pitch Sensor Stuck
2 β2 m2=1.2β2 m2 Pitch Sensor Scale Factor
3 β3 m1=10 deg Pitch Sensor Stuck
4 ωr m1=1.4 rad/s Rotor Speed Sensor Stuck

5
ωr m2=1.1ωr m2 Simultaneous Rotor Speed and
ωg m2=0.9ωg m2 Gen. Speed Sensor Scale Factor

Two fault scenarios are considered for pitch actuator faults
(Faults 6 and 7). Fault 6 is a hydraulic failure in the
pitch actuator 2 which involves an abrupt change in pitch
actuator model parameters ζ and ωn. The second scenario,
Fault 7, involves increased air content in the actuator
oil which manifests itself with slower actuator response
over time. This fault is modeled as a slow, time varying
change in actuator parameters ζ and ωn. Bode plots of
the nominal and faulty actuator models are presented in
Figure 1. Detection time requirements for these actuator
faults are given as 8Ts, and 600Ts respectively.
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Fig. 1. Bode Plots for Healthy and Faulty Actuator Models

In addition, two system level faults are considered (Faults
8 and 9). The first system level fault, Fault 8, involves
an offset in the inner control loop of the generator. It
results in a bias in the generator torque τg = τg + 100
(Nm). The second system level fault considered is the
increased friction in the drivetrain (Fault 9). This fault
typically develops slowly over time and results in increased
vibrations in the drivetrain. This fault is modeled with a
5% change in the drivetrain efficiency ηdt. Fault 8 needs to
be detected in 5Ts and there are no time restrictions for
the detection of Fault 9. A list of the actuator and system
level faults are given in Table 3.

In addition to the detection time constraints, it is required
that the false alarm rate be less than 1 in 105 time steps. It
is also expected that the false alarms are cleared in three
time steps.

Table 3. List of Actuator and System Faults

Fault No Description

6 Pitch Actuator 2 Hydraulic Failure
7 Pitch Actuator 3 Air in Oil Failure
8 Generator Inner Control Loop Failure
9 Increased Drivetrain Friction due to Wear

3. FAULT DETECTION SYSTEM

Most FDI systems involve a method to generate residuals
from system measurements and a thresholding logic to
declare faults based on these residuals. Section 3.1 provides
an overview of the residual generation methods used in
this paper. Section 3.3 describes the up-down counter
thresholding logic.

3.1 Residual Generation Methods

Physical Redundancy Based A residual r can be gen-
erated by direct comparison of the physically redundant
measurements of the same quantity m1 and m2:

r = m1 −m2 (10)

r represents the noise on the sensors if the system is
healthy. If one of the sensors is faulty, the residual carries
the fault and the noise. The disadvantage of this approach
is that the residual typically carries a larger variance than
the individual noises, given by equation:

V ar[r] = V ar[m1] + V ar[m2] + 2Cov[m1,m2] (11)

Generally it is assumed that the measurement noises
from redundant sensors are independent and identically
distributed. For this case, the variance of the residual is
twice as large as the sensor noise variance, i.e.

V ar[r] = 2V ar[m1] = 2V ar[m2] (12)

Parity Equations An ideal response of a system can be
obtained if a reasonably accurate model of the system
and its inputs are available. Typically available transfer
functions are discretized for implementation on digital
processors and ideal system responses are calculated. Var-
ious residuals can be generated by comparing this ideal
response with measurements from the physical system.

Kalman Filter The well known Kalman Filter yields
the optimal minimum-variance state estimate of a linear
system subject to Gaussian noise. It is desired to obtain
low noise estimates of the rotor and generator speed
measurements. Hence an estimate of the drivetrain states
are obtained using a Kalman Filter based on the drivetrain
system model Eq. (5). Filter structure is shown in Figure 2.
The Kalman Filter inputs are the average of the rotor and
generator speed measurements, and the generator torque
measurement. In case of a fault in rotor or generator
speed measurements, only the healthy measurements are
fed to the Kalman filter instead of the average of the
redundant measurements. The filter outputs are used for
identification of the faulty rotor and generator speed
measurements.

3.2 Fault Residuals

The FDI system uses physical redundancy based residu-
als for pitch angle sensors. This residual is sufficient for



Fig. 2. Kalman Filter for Drivetrain System
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fault detection but additional information is required for
diagnosing the faulty sensor. Ideal pitch responses are
obtained via parity equations and controller pitch com-
mands. Comparison of ideal pitch response against each
measurement yields two extra residuals for fault diagnosis.
These residuals are not affected by other faults in the
turbine and no specific fault isolation measures are taken.

Fault residuals for three pitch actuators are obtained
by comparing ideal pitch response against pitch angle
measurements. If both sensors are healthy, the average
of the two measurements is taken for comparison. In case
there is a pitch sensor fault, only the healthy measurement
is used. A sixth-order elliptical filter with 1dB pass-band
ripple has been used on these residuals due to high noise
levels. An elliptical filter is chosen due to its fast rolloff
characteristics at its cutoff frequency. Actuator faults are
mainly observed in the mid-frequency range. Therefore less
than unity gain at DC frequency achieved by elliptical
filters is not detrimental for FDI performance. The residual
carries higher noise when one of the pitch sensors are
faulty. Fault flagging system should be designed to satisfy
FDI system requirements under this condition.

Rotor and generator speed sensor faults are observed
through dual measurements of each quantity. The differ-
ence between the drivetrain Kalman filter outputs and
each measurement is used for fault diagnosis. The ro-
tor speed measurements have a low signal-to-noise ratio.
Hence the rotor speed rotor speed residuals are averaged
over 40 time steps to reduce the variance of the Gaussian
white noise in the steady state. This corresponds to the
digital filter Fωr (z):

Fωr (z) =
1

40

z40 + z39 + ...+ z2 + z1 + 1

z40
(13)

Generator system faults are detected using controller gen-
erator torque commands and parity equations for the gen-
erator system. This residual is not affected by faults other
than generator system fault.

The drivetrain system fault could not be detected and is
discussed further in Section 4.

3.3 Up-Down Counters

Discrete time up-down counters are used for the decision
making process on residuals generated for each fault in this
paper. Counters involve six parameters in the most general
case: up-count amount +U , down-count amount −D, up-
counting threshold Tol1, fault declaration threshold Tol2,
counter lowerbound LB, and counter upperbound UB.
At each time step an up-count is triggered if the residual
exceeds Tol1 otherwise the counter counts down by −D.
A fault is declared if the value of the counter exceeds Tol2.
The structure of the up-down counter is shown in Figure 3.

Fig. 3. Up/Down Counter Structure
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The use of up-down counters differs from straightforward
thresholding in two ways. First, the decision to declare a
fault involves discrete-time dynamics and is not simply a
function of the current value of the residual. Therefore the
extra time specified by the detection time constraints can
be utilized. Second, up-count and down-count parameters
+U and −D introduce a penalty on the residual exceeding
the Tol1 threshold. These features enable the designer to
use a lower Tol1 compared to typical thresholding and to
detect smaller faults with higher detection rates, without
increasing false-alarm rates. Note that typical threshold
schemes are just a special case of an up-down counter. In
particular, if U > (UB−LB) and −D = −U then the up-
down counter will declare a fault if the residual exceeds
Tol1 for one time step.

Fixed counter parameters are used in this work. All
parameters except Tol1 are chosen as integers for ease
of design and implementation. It can be seen that +U ,
−D, Tol2, LB, and UB can be scaled together without
any effect. Hence, −D = −1 is chosen to eliminate one
parameter from the counter design. As a starting point,
LB=0 and UB=255 are chosen so that the counter can
be implemented using 8-bit unsigned integers. This choice
will significantly reduce the memory and computational
costs required by the implementation if the FDI system
has many up-down counters. This leaves three parameters
to choose for up-down counter: Tol1, +U , and Tol2. These
parameters are chosen according to the nature of the fault
of interest and the noise on the residual.

The first stage of the counter design involves determining
Tol1. This is a similar process to the selection of a fixed
threshold. Assuming a statistical distribution for the noise
on residual, Tol1 is chosen to result in a predetermined
false up-count rate Pup false. Tol1 reflects the sensitivity
of the fault detection system and it involves a tradeoff
between false alarms and missed detections. If the fault of
interest is significantly larger than the noise on the data,
a larger Tol1 can be chosen to minimize the false alarms.
On the other hand, if the noise level is high compared to
the fault, a lower Tol1 must be chosen at the expense of
higher false alarms to avoid a missed detection.

In general, it is desired to have faster up-counts than down-
counts. This basically relies on the fact that commonly
Pup false is significantly smaller than the up-count prob-
ability in existence of the fault, i.e. Pup fault. Typically,
harder to detect faults require higher +U values to avoid
missed detections. For instance, the pitch actuator faults
can be most easily distinguished at mid-frequency range.
These faults cannot be detected unless there are pitch
commands in this frequency range and counters can count
down often during fault. On the contrary, note that the



up-counts +U must be limited for clearing the false alarms
quickly.

The last stage of the design involves obtaining Tol2. As a
starting point, Tol2 is chosen as +Un where n is found by
using false alarm constraint Pfaconst:

n = logPup false
(Pfaconst) (14)

then +Un is rounded to the nearest integer towards
infinity and set as Tol2. If the Pup false is small enough,
this equation approximately ensures that the false alarm
requirements are met since it should take about n steps
of false up-counting to exceed the Tol2 in case of healthy
operation. The final value of Tol2 for each fault is set after
some iterations.

Introducing discrete time dynamics into the fault detection
algorithm with up-down counters can be compared with
combination of linear filters and fixed thresholding. Up-
down counters can be implemented with small memory
and computational requirements. Up-down counters also
offer good rejection of single event upsets (e.g. due to cor-
rupted memory) by having finite up-counts. On the other
hand, design of simple linear filters are more straightfor-
ward. Linear filters provide an intuitive way for frequency
based noise attenuation. This paper uses a combination of
these two methods.

4. SIMULATION RESULTS

The designed fault detection system is simulated 100
times with different randomly generated noise sequences
on each sensor. The wind disturbance used is given by
Odgaard et al. (2009) and shown in Figure 4. This section
summarizes the results of these simulations.

Fig. 4. Wind Disturbance and Turbine Operating Zones
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Table 4 lists the average fault detection times, false alarm
rates, missed detections, and the average time required
for clearing false alarms for each fault. False alarm rate is
defined as the number of false alarms per digital processor
time step Ts = 0.01 (s). Entries in the table that satisfy
the design specifications are marked in green and the failed

specifications are marked in red. It is seen in Table 4 that
false alarm rate constraints are satisfied for all of the faults.
False alarm clearance time requirements are not satisfied
for Faults 4 and 5. A pitch sensor fault (Fault 2), faults
related to the rotor speed sensors (Faults 4 and 5), and
pitch actuator faults (Faults 6 and 7) required more time
than the specified time limits for detection.

Table 4. Simulation Results

F. No Det. Time FA Rate Missed FA Clear. Time

1 3 Ts 0.091/105 0 2.9 Ts

2 819.4 Ts 0.046/105 0 2.3 Ts

3 3 Ts 0.046/105 0 2.4 Ts

4 12.4 Ts 0.068/105 0 18.8 Ts

5
187.4 Ts ωr m2 0.159/105 0 17.5 Ts

2 Ts ωg m1 0/105 0 0 Ts

6 5050 Ts 0.182/105 0 3.9 Ts

7 1573 Ts 0.022/105 0 3.2 Ts

8 1 Ts 0/105 0 0 Ts

9 N/A N/A 100 N/A

The late detection of Fault 2 is due to the turbine operat-
ing conditions for the duration of the fault 2300-2400 (s).
The scale factor on the pitch angle can only be detected
if the blade pitch angle is large enough to distinguish the
fault from the noise. The wind speed is close to the rated
wind speed in this time interval. The turbine is operating
in Region 3 and generating nonzero pitch commands only
during 2300-2320 (s) interval. The fault is detected only
for a short duration when the pitch commands reach about
5 degrees around t = 2308 (s).

The rotor speed sensor faults (Faults 4 and 5) are hard to
detect due to the large noise on the rotor speed sensors.
Fault 5 corresponds to a measurement error of about 0.06
rad/s whereas the standard deviation of the measurement
noise is 0.1585 rad/s. The residuals for the rotor speed
sensors before and after filtering are given in Figure 5.
Before filtering, the fault occurring at t = 1000 (s) is
indistinguishable from the sensor noise. The high-order
low-pass filtering applied to the fault residual results in
a slow detection of faults in these sensors. The failed false
alarm clearance time constraints are also due to this low-
pass filtering since it takes longer for residual to fall below
the upcounting tolerance once it is exceeded.

Fig. 5. Rotor Speed Sensor Residual
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The main reason behind the slow detection of the actuator
faults (Faults 6 and 7) is due to the nature of actuator



failures. From Figure 1 it can be seen that the healthy
and faulty actuator models show similar behavior at low
frequencies and roll off at high frequencies. Therefore,
pitch actuator faults can only be observed if the pitch
commands include components at mid frequency range
where the faulty and nominal actuator models have dif-
ferent frequency responses. This requires the turbine to
be in Region 3 for the successful detection. The slow
detection of the air-in-oil fault (Fault 7) is due to turbine
operating close to Region 2 when the fault is initiated.
The controller is generating pitch commands close to zero
degrees and slight changes in the model are difficult to
detect. The air-in-oil fault has an additional 30◦ of phase
at 1 rad/sec compared to the nominal system. It might
be possible to design a filter for the air-in-oil fault based
on the phase change. The fault detection system satisfies
the detection time requirements for Fault 6 if the detection
time is calculated from the time turbine switches to Region
3 operation.

The behavior of the up-down counters for the 2nd blade
pitch actuator fault (Fault 6) is shown in the top plot
of Figure 6. As discussed, pitch actuator faults can only
be observed under certain conditions hence the counter
counts down occasionally during the fault. Therefore large
up-count values +U are used for this fault to avoid
removing the fault flag too early under faulty operation.
The counter for the generator system fault (Fault 8) is
shown in the bottom plot of Figure 6. The generator
system fault of interest is significantly larger than the noise
on the residual thus it is easy to detect. Small up-counts
with lower residual tolerances are sufficient in this case
since it is unlikely that the counter will count down due
to noise under faulty operation. From Table 4 it is seen
that this fault has substantially faster detection times and
lower false alarm rates compared to the other faults.

Fig. 6. Up-down Counter Values During Faults
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The detection of the drivetrain fault (Fault 9) is challeng-
ing for model-based approaches. Fault 9 creates only a
small change in the drivetrain dynamics. The effect of this
fault cannot be distinguished from the effect of unknown
aerodynamic torque disturbance based on rotor and gener-
ator speed measurements. Estimation of the aerodynamic
torque through the Cp − β − λ mapping of the turbine
typically carries about 2-3% uncertainty and depends on
unreliable wind speed measurements. Therefore it is diffi-

cult to estimate a 5% change in the drivetrain efficiency
based on estimation of the aerodynamic torque.

5. CONCLUSIONS

This paper considered the use of the up-down counters for
wind turbine fault detection and isolation. The parameters
of the counters were selected based on physical insight
of each fault of interest. It is seen that faults of lower
magnitude can be detected without increasing the false
alarm rates. Future work will focus on the development
of the relationships between the statistical properties of
the residual, detection and false alarm rates, and fault
magnitude.
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