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Abstract: Geometric fault detection and isolation filters are known for having excellent fault
isolation, fault reconstruction and sensitivity properties under small modeling uncertainty and
noise. However they are assumed to be sensitive to model uncertainty and noise. This paper
proposes a method to incorporate model uncertainty into the design. First, a geometric filter is
designed on the nominal plant. Next a robust model matching problem is solved to design a filter
that robustly matches the performance of the geometric filter over the set of uncertain plants.
Several existing methods for robust filter synthesis are described to solve the robust model
matching problem. It is then shown that the robust model matching problem has an interesting
self-optimality property for multiplicative input uncertainty sets. Finally, an aircraft dynamics
example is presented to detect and isolate aileron actuator faults to asses the performance of
the geometric filter.

1. INTRODUCTION

Modern fly-by-wire aircraft flight control systems are be-
coming more complex with many actuators controlling
several aerodynamic surfaces. While performance goals,
like aerodynamic drag minimization and structural load
suppression are becoming more and more important flight
must be kept at the same highest safety level. In parallel,
there is a clear trend towards the All-Electric Aircraft.
Recently, Airbus introduced on the A380 a new hydraulics
layout [Van den Bossche, 2006], where the three Hydraulics
circuitry is replaced by a two Hydraulics plus two Electric
layout, which saves one ton mass for the aircraft. Each
primary surface has a single hydraulically powered actua-
tor and electrically powered back-up with the exception
of the outer aileron, which uses the two hydraulic sys-
tems together. Consequently, the trends of complexity and
more-electric architectures, like Electromechanical Actu-
ators (EMA) with more fault sources, raise the impor-
tance of availability, reliability and operating safety. For
safety critical systems, like aircraft, the consequence of
faults in the control system hardware and software can
be extremely serious in terms of human mortality and
economical impact. This is the reason why all aircraft man-
ufacturers are compliant with stringent safety regulations
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of FAA, EASA and other aviation authorities. However,
there is a growing need for on-line supervision and fault
diagnosis to satisfy the newer societal imperatives towards
an environmentally-friendlier aircraft with still the highest
level of safety and reliability. The traditional approach to
fault diagnosis in the wider application context is based on
hardware redundancy methods which use multiple sensors,
actuators computers and software to measure and control
a particular variable [Goupil, 2009a]. Based on the mathe-
matical model of the plant, analytical relation between dif-
ferent sensor outputs can be used to generate residual sig-
nals. There is a growing interest in methods which do not
require additional hardware redundancy, and only rely on
the ever increasing level of computational power onboard
the aircraft. In analytical redundancy schemes, the result-
ing difference generated from the consistency checking of
different variables is called as a residual signal. The basis
for residual generation is analytical redundancy, which
according to Chow and Willsky [1984] takes two forms:
1) direct redundancy-the relationship among instanta-
neous outputs of sensors; and 2) temporal redundancy-
the relationship among the histories of sensor outputs and
actuator inputs. It is based on these relationships that
outputs of (dissimilar) sensors (at different times) can be
compared. The residuals resulting from these comparisons
are then measures of the discrepancy between the behavior
of observed sensor outputs and the behavior that should
result under normal conditions. The residual should be
zero when the system is normal, and should diverge from
zero when a fault occurs in the system. This zero and non-
zero property of the residual is used to determine whether
or not faults have occurred. Analytical redundancy makes
use of a mathematical model and the goal is the deter-
mination of faults of a system from the comparison of
available system measurements with a priori information



represented by the mathematical model, through gener-
ation of residual quantities and their analysis. Various
approaches have been applied to the residual generation
problem, the parity space approach [Chow and Willsky,
1984], the multiple model method [Chang and Athans,
1978], detection filter design using geometric approach
[Massoumnia, 1986], frequency domain concepts [Frank,
1990], unknown input observer concept [Chen and Pat-
ton, 1999], dynamic inversion based detection [Edelmayer
et al., 2003], and using rational nullspace bases [Varga,
2003]. Most of these design approaches refer to linear time-
invariant (LTI) systems. The geometric concept is further
generalized to linear parameter-varying (LPV) systems by
Balas et al. [2003], while input affine nonlinear systems are
considered by De Persis et al. [2001]. The basic concepts
underlying observer-based fault detection and isolation
(FDI) schemes are the generation of residuals and the use
of an optimal or adaptive threshold function to differen-
tiate faults from disturbances, see the surveys of Frank
[1990], Patton and Chen [1996]. Generally, the residuals,
also known as diagnostic signals, are generated by the FDI
filter from the available input and output measurements
of the monitored system. The threshold function is used
to robustify the detection of the fault by minimizing the
effects from false faults, disturbances and commands on
the residuals. For fault isolation, the generated residual
has to include enough information to differentiate said
fault from another, usually this is accomplished through
structured residuals or directional vectors. Robustness of
the FDI algorithm is determined by its capability to de-
couple the filter performance outputs from disturbances,
errors, and unmodelled dynamics. Estimation is important
for both signal processing and feedback control and it is
the most common approach used in fault detection. The
well-known Kalman Filter [Kalman, 1960, Kailath et al.,
2000] provides an optimal minimum-variance estimator
for linear systems subject to Gaussian noise. The rise of
robust control techniques in the 1980s led to an interest in
alternative filters, e.g. the H2 filter (a generalization of the
Kalman filter) and the H∞ filter ([Shaked and Theodor,
1991]). These methods assume the signals are generated
by a known dynamic model and robustness with respect to
model uncertainty is an important consideration. Numer-
ous papers on robust filter design have appeared [Appleby
et al., 1991, Mangoubi, 1995, Sun and Packard, 2003,
Scherer and Köse, 2008].

The geometric design approach, for example, is known
for its excellent fault isolation, fault reconstruction and
sensitivity properties under small modeling uncertainty
and noise. This paper proposes a method incorporate
model uncertainty into the design. First, a geometric
filter is designed on the nominal plant. Next a robust
model matching problem is solved to design a filter that
robustly matches the performance of the geometric filter
over the set of uncertain plants. It is then shown that the
robust model matching problem has an interesting self-
optimality property for multiplicative input uncertainty
sets. Specifically, the filter designed on the nominal plant
is the optimal filter in the robust model matching problem.
Finally, an aircraft aileron FDI example is detailed in the
present article.

The importance of this paper is on the application (simula-
tion) of the geometric approach based LTI FDI technique
to a nonlinear high-fidelity aircraft, where issues of model
uncertainty, realistic disturbances and robustness have to
be accounted for in the design stage. The remainder of the
paper is structured as follows. Section 2 and 3 presents
the notation and basic concepts of geometric fault detec-
tion filter design. Section 4 formulates the robust fault
detection filter design problem and describes the proposed
solution method. The application example of a civil air-
craft is described in Section 5. The method is applied to
the high fidelity aircraft example, which demonstrates the
proposed approach, given in Section 6. Finally, the paper
is concluded in Section 7.

2. NOTATION

R and C denote the set of real and complex numbers,
respectively. RH∞ denotes the set of proper, rational
functions with real coefficients that are analytic in the
closed right half of the complex plane. Rm×n, Cm×n, and
RHm×n∞ denote the sets of m×n matrices whose elements
are in R, C, and RH∞, respectively. A single superscript
index is used to denote vectors, e.g. Rl denotes the set
of l × 1 vectors whose elements are in R. For a matrix
M ∈ Cm×n, M∗ denotes the complex conjugate transpose.
σ̄(M) and σ(M) denote the maximum and minimum
singular values. ‖M‖ denotes the matrix norm induced
by the vector 2-norm. It is known that ‖M‖ = σ̄(M). For
a vector v ∈ Cn, Re[v] denotes the real part of v. For
G ∈ RHm×n∞ , ‖G‖∞ := supω σ̄(G(jω)). Finally, let G ∈
RH(n+k)×(n+m)
∞ and ∆ ∈ RHn×n∞ be given and partition

G :=
[
G11 G12

G21 G22

]
with G11 ∈ RHn×n∞ and G22 ∈ RHk×m∞ .

If I −G11∆ is invertible at ω = ∞, then define Fu(G,∆)
as the linear fractional transformation (LFT) obtained by
closing ∆ around the upper channels of G:

Fu(G,∆) := G22 +G21∆ (I −G11∆)
−1
G12 (1)

3. GEOMETRIC FDI FILTERS

This section briefly describes the formulation of fault
detection filters designed using geometric concepts. The
derivation of the geometric FDI filters is presented for
LTI systems with no disturbance, no uncertainty and the
detection and isolation of two faults. Consider the LTI
system with two additive actuator faults:

ẋ(t) = Ax(t) +Bu(t) + L1f1(t) + L2f2(t) (2)

y(t) = Cx(t)

where L1 and L2 represent the faults directions in the
state space. f1 and f2 are the fault signals. The fault
signals are zero if there is no fault but nonzero if the
particular fault occurs. Only actuator faults are considered
here but sensor faults can also be considered within the
theory. The fundamental problem of residual generation is
to synthesize residual generators (filters) with outputs ri
(i = 1, 2) that have the following decoupling property: ri is
sensitive to fi but insensitive to fj , i 6= j. More precisely,
if fi = 0 then limt→∞ ri(t) = 0 and if fi 6= 0 then ri 6= 0.

The solution of this problem depends on the (C,A)-
invariant subspaces and certain unobservability subspaces
[Massoumnia, 1986]. A (C,A)-unobservability subspace S



is a subspace such that there exist matrices G and H with
the property that S is the maximal (A + GC) invariant
subspace contained in Ker HC. The family of (C,A)-
unobservability subspaces containing a given set L has a
minimal element. Define Li = Im Li (i = 1, 2) and denote
by S∗ the smallest unobservability subspace containing
L2. Then the fundamental problem of residual generation
has a solution if and only if S∗ ∩ L1 = 0 [Massoumnia
et al., 1989]. The condition S∗ ∩ L1 = 0 ensures that the
fault to be detected is not hidden in the unobservability
subspace of the detection filter. In fact, the fault direction
will be decoupled from the rest of the fault directions since
they are contained in the unobservability subspace of the
residual generator. This result can be extended to LPV
systems [Balas et al., 2003] and to nonlinear input affine
systems [De Persis et al., 2001].

The residual generator associated with fault direction L1

can be described by an observer of the form:

ẇ(t) = Nw(t)−Gy(t) + Fu(t) (3)

r1(t) = Mw(t)−Hy(t)

where u and y are the known input and measured output
signals of the original LTI system. w is the state of the
residual generator and r1 is the residual.

Denote by P the projection operator P : X → X/S∗. The
state matrices can be determined as follows [Massoumnia,
1986]. H is a solution of the equation Ker HC = Ker C +
S∗, and M is the unique solution of MP = HC. Consider
a gain matrix Ĝ chosen such that (A + ĜC)S∗ ⊆ S∗ and

define Â = P (A+GC)PT . Â is not necessarily Hurwitz. To

obtain quadratically stable filters one can setN = Â+G̃M,
where G̃ := X−1K and X, K are determined from the
linear matrix inequality (LMI):

0 � ÂTX +XÂ+MTKT +KM (4)

0 � X = XT (5)

Then set G = PĜ+ G̃H and F = PB.

Using this approach there are as many filters as faults
to detect, and their state dimensions are equal to the
dimension of X/S∗. The filter poles can be tuned by
imposing constraints in the LMI resulting in perfect re-
construction of fault signals fi. One issue is that the filter
design does not consider model uncertainty and the fault
detection performance may be not be robust. The next
section discusses a model matching approach for recovering
the geometric filter performance in the presence of model
uncertainty.

4. ROBUST MODEL MATCHING

This section considers a robust model matching prob-
lem for geometric filter design on uncertain plants. Then
several existing methods for robust filter synthesis are
described. The final subsection shows that the robust
model matching problem has an interesting self-optimality
property for multiplicative input uncertainty sets.

4.1 Problem Formulation

Let Gu denote an uncertain plant for which the filter will
be designed. The standard linear fractional transformation

(LFT) framework [Packard and Doyle, 1993, Zhou et al.,
1996] can be used to model the uncertainties. Let G ∈
RH(n+k)×(n+m)
∞ and ∆ ⊆ RHn×n∞ be given. 1 Define the

set of models

M := {Gu = Fu(G,∆) : ∆ ∈∆, ‖∆‖∞ ≤ 1} (6)

It is assumed that Fu(G,∆) is well defined for all ∆ ∈
∆ with ‖∆‖∞ ≤ 1. ∆ is typically a set describing
a block structured system that can include (repeated)
real parametric and LTI dynamic system uncertainties.
Nonlinear and/or time-varying uncertainties can also be
modeled using integral quadratic constraints [Megretski
and Rantzer, 1997]. The restriction that ∆ be a square
system is only for notational simplicity.

Each Gu ∈M is a system that relates the faults and plant
inputs to the signals available to the fault detection filter:[

y
u

]
= Gu

[
f
u

]
(7)

The objective is to design a filter F with inputs [ yu ] and
output residuals r such that the residuals have “good”
fault decoupling properties for all models Gu ∈M.

A robust model matching problem is now described to
meet this objective. The nominal plant in the set M is
given by ∆ = 0, i.e. G0 := Fu(G, 0) is the nominal plant.
First, design a geometric filter F0 to solve the fundamental
problem of residual generation on the nominal plant G0.
The model matching method attempts to design a filter
F such that the performance on the uncertain plant
Gu robustly matches the designed behavior of F0G0.
Mathematically, the proposed design problem is:

Problem 1. Let G ∈ RH(n+k)×(n+m)
∞ , ∆ ⊆ RHn×n∞ and

F0 ∈ RHl×k∞ be given. The robust model matching problem
is:

min
F∈RHl×k

∞

max
Gu∈M

‖F0G0 − FGu‖∞ (8)

The interconnection for this robust model matching prob-
lem is shown in shown in Figure 1. The reference model
is given by F0G0. The nominal residual response r0 will
have the desired decoupling properties given by the fun-
damental problem of residual generation. The optimiza-
tion in Equation 8 designs a filter F that most closely
matches, in a worst-case sense, the desired residual gen-
eration behavior F0G0. In this paper the focus is on fault
detection filters designed using the geometric approach but
the model matching problem can, in principle, be used to
robustly match the behavior of any filter F0 designed on
the nominal system G0.

4.2 Filter Synthesis

There are several approaches to solve the robust model
matching problem. Sun and Packard observed that robust
filter design (Equation 8) is an infinite-dimensional convex
optimization in the filter [Sun and Packard, 2003]. They
developed an algorithm to compute the globally optimal
robust filter for the special case where ∆ only models
1 G and F were used in the previous section to denote gain matrices
in the geometric filter. In this section G and F will denote systems
in the model matching design.
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Fig. 1. Robust model matching.

repeated real uncertainties. It does not seem possible to
extend this algorithm to sets ∆ that include dynamic un-
certainties, nonlinearities and/or time-varying operators.

The standard approach to handle more complicated uncer-
tainty sets is to replace maxGu∈M ‖F0G0 − FGu‖∞ with
an upper-bound. For example, when ∆ contains only LTI
uncertainty the maximization overM can be replaced with
the µ upper bound which involves a minimization over D
scales [Dullerud and Paganini, 2000]. The design problem
can then be recast as a µ-synthesis problem involving a
search for the filter and the D scales. µ-synthesis is, in
general, a nonconvex problem and the coordinate-wise D-
K iteration has been applied to solve for the filter and
uncertainty multipliers [Appleby et al., 1991]. The D-K
iteration yields sub-optimal solutions but is a standard
method to handle the nonconvexity that arises in robust
control synthesis.

In robust filter design problem, the filter enters the design
interconnection in an open loop (rather than a feedback)
configuration and this structure can be exploited. There
are two different approaches to convert the µ-synthesis
problem into an infinite dimensional convex optimization
problem ([Scherer and Köse, 2008] and [Seiler et al., 2011]).
Both approaches use the more general IQC framework
to model the uncertainty and obtain an upper bound on
the worst-case performance. In [Scherer and Köse, 2008],
the filter synthesis problem is converted into an infinite-
dimensional (convex) semi-definite program (SDP) [Boyd
et al., 1994]. The set of allowable IQC multipliers is infi-
nite dimensional and a finite dimensional optimization is
obtained by restricting the multipliers to be a combination
of chosen basis functions. In [Seiler et al., 2011], the robust
filter design problem is turned into a frequency-dependent,
infinite dimensional linear matrix inequality (LMI) in the
filter and multipliers. Next, a finite dimensional optimiza-
tion is obtained by enforcing the frequency-dependent LMI
on a dense frequency grid and restricting the filter to
be a linear combination of chosen basis functions. The
frequency-dependent IQC multipliers are allowed to be
arbitrary functions on the frequency grid. To summarize,
the two approaches use roughly dual methods to convert
the robust filter design problem to a finite dimensional
convex optimization: In [Seiler et al., 2011], basis functions
are used for the filter but the multipliers (scalings) are
allowed to be arbitrary functions on the frequency grid.
In [Scherer and Köse, 2008] basis functions are chosen for
the multipliers but the filter is allowed to be an arbitrary,
linear system.

The various methods to solve the robust filter design
problem have benefits and drawbacks in terms of computa-
tional complexity and ease of formulating the problem (e.g.
picking basis functions for the filter or for the uncertainty
scalings). The next section shows that the robust model
matching problem has an interesting self-optimality prop-
erty for multiplicative input uncertainty sets. Specifically,
F0 itself is the optimal filter for this uncertainty structure.

4.3 Multiplicative Input Uncertainty

This section considers the robust model matching problem
for input multiplicative uncertainty. The uncertain system
is given by Gu := G0(I+w∆) where w ∈ RH∞ is a weight
that specifies the level of uncertainty at each frequency
by |w(jω)|. |w(jω)| = 1 corresponds to 100% input
uncertainty at frequency ω and hence weights typically
satisfy ‖w‖∞ ≤ 1. Input multiplicative uncertainty is a
commonly used uncertainty model because the effect of
uncertainty can be quickly assessed by choosing simple
weights w. For example, a reasonable uncertainty model
is obtained by choosing w to be a first order system with
small magnitude at low frequencies and magnitude close to
one at high frequencies. Alternatively, the Matlab function
ucover [Balas et al., 2010] can be used to compute a w so
that the uncertainty set M contains a given, finite set of
LTI systems. The weight can generally be chosen as a full
matrix but the result in this section is restricted to weights
of the form w(s)I.

The design interconnection for the robust model matching
problem with input multiplicative uncertainty is shown in
Figure 2. G0 again denotes the nominal system and F0

is a filter that has been designed to achieve some desired
performance on the nominal plant. For this uncertainty
structure the robust model matching problem can be
equivalently stated as:

Problem 2. Let F0 ∈ RHm×n∞ , G ∈ RHn×k∞ and w ∈ RH∞
be given. The robust model matching problem is:

min
F∈RHm×n

∞

max
∆∈RHk×k

∞ ,‖∆‖∞≤1

‖F0G− FG(I + w∆)‖∞ (9)
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Fig. 2. Robust model matching with multiplicative input
uncertainty.

The next theorem presents the main result of this section.

Theorem 3. If ‖w‖∞ ≤ 1 then F0 is the optimal filter for
the robust model matching problem.

Proof 1. The robust model matching problem can be
equivalently written as:

min
F∈RHm×n

∞

max
ω

max
∆∈RHk×k

∞
|∆(jω)|≤|w(jω)|

‖ (F0G− FG(I + ∆)) (jω)‖



The min-max is always greater than the max-min and
hence a lower bound on the model matching problem is
obtained by:

max
ω

min
F∈RHm×n

∞

max
∆∈RHk×k

∞
|∆(jω)|≤|w(jω)|

‖ (F0G− FG(I + ∆)) (jω)‖

(10)

Next, the constraints that F and ∆ be stable are dropped:

max
ω

 min
F∈Cm×n

max
∆∈Ck×k

|∆|≤|w(jω)|

‖(F0G)(jω)− FG(jω)(I + ∆)‖


(11)

The max over ∆ is unchanged by dropping the stabil-
ity constraint but the min over F is potentially lower
once we drop the stability constraint. Thus the result
of Equation 11 is no greater than the optimal value for
Equation 10.

Next, apply Lemma 5 in the appendix with A := F0(jω),
B := G(jω), and α := |w(jω)|. By this lemma and
the assumption ‖w‖∞ ≤ 1, the optimization in the
brackets of Equation 11 has an optimal cost equal to
|w(jω)|‖(F0G)(jω)‖ at each ω and the optimal value is
achieved by F = F0(jω).

Thus the optimal cost for the robust model matching
problem is lower bounded by ‖wF0G‖∞. This cost is
achieved by the choice F = F0 and hence F0 is the optimal
filter.

Roughly, this result implies that the robust model match-
ing filter design is self optimal for this input multiplicative
uncertainty set. The uncertainty degrades the performance
but it does so in a way that apparently cannot be exploited
by any other filter. Note that this result is not specific to
nominal filters F0 designed with the geometric method.
The result only depends on the formulation of the robust
model matching problem and the specific structure of the
input multiplicative uncertainty.

5. AIRCRAFT MODEL

5.1 General Aircraft Characteristics

The aircraft model used in this paper is an aircraft from
Airbus. The aircraft has two engines and a nominal weight
of 200 tons. Some of its performance at cruise flight
condition are speed of 240 knots, altitude of 30000 ft.
The aircraft has 19 control inputs, and measurement of
6-DOF motion with load factor (nx, ny, nz), body rate
(p, q, r), velocity (VT ), aerodynamic angles (α, β), position
(X,Y, Z) and attitude (φ, θ, ψ) outputs. The inputs are:
pi1 left and pi2 right engine; AF (airbrake), which is
disabled at cruise flight condition, δa,IL Aileron internal
Left; δa,IR Aileron internal Right; δa,EL Ail external Left;
δa,ER Ail external Right; δsp,1L Spoiler 1 Left; δsp,1R
Spoiler 1R; Spoiler 23L; Spoiler 23R; Spoiler 45L; Spoiler
45R; δsp,6L Spoiler 6L; δsp,6R Spoiler 6R; δe,L Elevator
Left; δe,R Elevator Right; δr Rudder; and δih Trimmable
Horizontal Stabilizer which is used for trimming purposes.

The aerodynamic database, propriety of Airbus Opera-
tions S.A.S, is of high-fidelity. The rigid body aircraft

equations of motion are augmented with actuator [Goupil,
2009b] and sensor characteristics. The nonlinear body-axes
rigid body dynamics includes 13 states using quaternion
formalism: p, q, r body rates, u, v, w velocities all in body
axes, q0, q1, q2, q3 quaternions, representing the rotation
between the body and inertial axes, and X,Y, Z positions
in the North-East-Down coordinate frame, assuming Flat
Earth for simplicity.

5.2 Linearized Aircraft Model

In the present article one design point, cruise flight con-
dition, is considered. The LTI model of the aircraft is
obtained at level flight, with p = q = r = 0 rad/s,
vx = 194.36 m/s, vy = 0m/s, vz = 15.13 m/s, at 9144 m
altitude, see Vanek et al. [2011] for details. The airbrake,
which is disabled at high Mach numbers, is removed from
the control inputs since it has no effect on the aircraft.
Since the original aircraft model uses quaternions, which
impose additional constraints on the state equations, the
model used for trim and linearization is rewritten using
conventional Euler angles [Stengel, 2004]. The model used
for trim is an open-loop model without the control loop
and, since the actuators and sensors are assumed to have
unit steady state gain and low-pass characteristics, their
dynamics are omitted. Trim is obtained with zero aileron,
rudder and elevator deflection, left and right engines are
providing the same amount of thrust to balance the yawing
motion. Pitch axis trim is obtained with the Trimmable
Horizontal Stabilizer, while the aircraft has 2.66 degrees
Angle-of-attack. The resulting 12 state linear model is
unstable.

The open loop aircraft model is slightly unstable around
the yaw angle (ψ), and has two modes (X,Y ) which
are integrators. Since the FDI problem is invariant of
X,Y positions and yaw angle these states are removed
from the dynamics. The resulting model with nine states,
as described in [Vanek et al., 2011], almost perfectly
matches the original 12 states model in the behavior of the
remaining states, and outputs. The resulting system with
nine states is stable which is necessary for linear estimator
based FDI techniques.

The resulting LTI model can be augmented with first
order sensor and actuator dynamics derived from the
high-fidelity simulation, to account for their effect on the
aircraft behavior. Since the filters obtained by geometrical
FDI methods require intense computation onboard the
aircraft, only the pure rigid body dynamics model is used
for filter synthesis here.

6. FDI FILTER DESIGN FOR THE AIRCRAFT

A geometric LTI FDI filter is designed for the aileron fault
detection problem of the aircraft. First, the filter design
steps are detailed and supported by linear analysis plots
to show the optimality of the geometric filter. Detailed sim-
ulations on the high-fidelity aircraft model with injected
aileron faults follows.

6.1 Filter Design Steps

The main idea behind the filter design formulation is
that aileron faults appear on the filter residual output,



while elevator and rudder faults are embedded in the
unobservability subspace of the filter. For that reason the
LTI model derived in Section 5.2 is augmented with left
inner aileron, left elevator, and rudder faults, by using the
successive input directions from the B and D matrices as
fault directions in the linear model. Load factor, nx, ny,
and nz, measurement is omitted from the model, since
the D matrix associated with these acceleration outputs is
nonzero, which makes the geometric FDI synthesis more
complicated. The resulting filter, using the methods devel-
oped in [Massoumnia, 1986], has 1 residual output, 27 in-
puts, and 7 states. Since perfect decoupling is possible, the
transfer functions between elevator to residual and rudder
to residual are zero, while the residual have 0.394rad/s
time constant tracking response for aileron faults.

A lower bound on the optimal performance is computed
using frequency-gridding method described in [Seiler et al.,
2011], when the system is exposed to uncertainty. In
the nominal case, with no uncertainty, the geometric
filter is optimal for the decoupling, and according to
Theorem 3 the filter is also optimal when input multi-
plicative uncertainty is considered. The effect of struc-
tured, input multiplicative uncertainty with the weights
of w1 = 2s+2

s+60 on engines,w2 = 2s+8
1160 on spoilers, w3 =

1.5s+3
1120 on ailerons, elevators, and rudders , and w4 =
14

1160 on trimmable horizontal stabilizers are considered,
with time constants comparable with the different ac-
tuator bandwidths. These weights corresponds to more
than 100% uncertainty at high frequencies and 5% un-
certainty at low frequencies on the input channels, and
the block structure of the uncertainty ∆a is grouped ac-
cording to the actuator functional groups: ∆a = diag <
∆2×2
engine,∆

4×4
aileron,∆

8×8
spoiler,∆

3×3
longitudinal,∆

1×1
rudder >.

The frequency grid consisted of 50 logarithmical spaced
points between 0.01 and 100rad/sec. Figure 3 shows the
lower bounds versus frequency. The dashed curve in Fig-
ure 3 shows the worst-case performance of F0. The per-
formance of F0 degrades by approximately 41% over the
uncertainty set, from perfect decoupling corresponding to
0 lower bound of the nominal case. The solid curve in
Figure 3 shows the lower bound on the best achievable
filter performance with uncertainty set included. The two
curves are equal as expected based on Theorem 3. Thus
F0 is the optimal filter for robustly matching its own
performance on the nominal plant. To further investigate
the performance of the obtained filter, the uncertain LTI
aircraft model is augmented with first order sensor and
actuator models, on all input and output channels. Since
the corresponding mathematical models are Airbus propri-
ety, they are not discusses here. A lower bound calculation
indicates in Figure 4 that the achievable performance is
not significantly higher, compared with the actuator- and
sensorless case, but the performance of the nominal filter
is significantly lower than the achievable minimum. Due
to these results, it is desirable to have actuator and sensor
dynamics included in the filter design, which is not the
case here since computational complexity of those filters
are significantly higher.

The filters are applied to the nonlinear aircraft model after
taking the trim values into consideration, on both control
input and sensor output signals. Since the simulation
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Fig. 3. Theoretical lower bound and achieved lower bounds
of the FDI problem formulation with input multiplica-
tive uncertainty.
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Fig. 4. Theoretical, and achieved lower bounds of the
FDI problem formulation with input multiplicative
uncertainty, augmented actuator and sensor models.

is implemented under Simulink with 0.01sec fixed step
size, the corresponding filters are also discretized with the
same sampling time using bilinear transformation. It is
also worth mentioning, that the simulation is in closed-
loop with the flight control system set to altitude and
heading hold mode and moderate atmospheric windgust
disturbances are perturbing the aircraft flight.

The first fault scenario is left inboard aileron liquid jam-
ming as seen on Figure 5, this means that a bias occurs
on the rod sensor and the actuator shifts from it nominal
1.5deg deflection to −0.75deg deflection and it remains
−2.25deg apart from it commanded position. Figure 5 also
shows the abrupt change in roll rate at 25sec when the
fault occurs, otherwise slight deflection can be seen on the
rudder but elevator and THS is unaffected, mainly the
right aileron compensates the effect of the failure.

After investigation of fault free flight profiles, a detection
threshold of 0.125 is selected. This corresponds to 100%
margin over the largest observed residual signal with no
fault. It is worth to note, that significantly lower detection
threshold is achievable when the atmospheric windgust
disturbances have lower level. Using the above mentioned
threshold a detection time of 3.12 seconds is achieved, as
shown on Figure 6, which is satisfactory since the level of
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Fig. 5. Left aileron liquid jamming scenario, fault occurs
at 25s.
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Fig. 6. Aileron liquid jamming, geometric FDI filter resid-
ual.

fault only affects optimal aircraft configuration and is not
critical to be detected instantaneously.

The second fault scenario is left inboard aileron disconnec-
tion as seen on Figure 7, this occurs when the connection
between the actuator rod and the control surface is lost
due to mechanical separation of the two components. Due
to the aerodynamic forces, the freely floating aileron goes
to −12 deg where it is reaching its physical limit, while the
commanded position still remains positive as seen on Fig-
ure 7. The large unintended deflection leads to significant
deviation from trim condition and the flight controller tries
to compensate against it mainly in the lateral channel with
rudder and right aileron, while the elevator commands are
not influenced (see Fig.7). Significant sideslip can be seen
also, which is due to asymmetric aircraft configuration,
while roll rate has almost 2.5 deg/s peak after the fault
occurs.

Since this fault creates large roll rate and sideslip motion,
which also leads to significant structural stress in the wings
the detection of this fault is critical. Figure 8 shows a
detection time of 1.26 seconds, which is lower than the
detection of the jamming but it is desired to have shorter
detection times in industrial implementation, to be able
to detect such failures before large wind deformation is
present.
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Fig. 7. Left aileron disconnection scenario, fault occurs at
25s.
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Fig. 8. Left aileron disconnection, geometric FDI filter
residual.
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Fig. 9. Left elevator runaway scenario, fault occurs at 25s.

To be able to asses the decoupling performance of the
FDI filter for other types of faults a left elevator runaway
scenario is also investigated as shown in Figure 9. The left
elevator starts to drift from its commanded position with
5 deg/s rate.
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Fig. 10. Left elevator runaway, geometric (aileron) FDI
filter residual.

As seen on Figure 9 the fault creates significant pitch rate
response and the angle of attack also changes dramatically
during the maneuver, which leads to covering large part of
the flight envelope. The right elevator with lower response
time and later the THS compensates against the failure
effect.

As seen on Figure 10, the residual signal increases, due to
deviation from the trim flight condition, where the linear
model used in the FDI filter design is no more accurate.
But the residual signal stays away from the detection
threshold and as soon as the aircraft motion is stabilized
the residual goes back to near zero value.

7. CONCLUSIONS

This paper considers the design of geometric fault detec-
tion filters and their application to a high fidelity aircraft
model, and shows the advantages of advanced model-
based methods, those are candidates for future industrial
implementation. First, a geometric filter is designed on the
nominal plant. Next a robust model matching problem is
solved to design a filter that robustly matches the per-
formance of the geometric filter over the set of uncertain
plants. It is then shown that the robust model matching
problem has an interesting self-optimality property for
multiplicative input uncertainty sets. The proposed LTI
filter is then applied to a high-fidelity aircraft model, where
different aileron faults are successfully detected and when
designed properly isolated from elevator and rudder faults
in reasonable time. Further research should extend the
validity of the present approach and based on the present
findings provide a fault detection approach for a larger
flight envelope.
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Appendix A

Lemma 4. Let c1, c2 ∈ R be non-negative constants. If
u, v ∈ Cn and Re[u∗v] ≥ 0 then ‖c1u‖ ≤ ‖c1u+ c2v‖.

Lemma 5. Let α ∈ R be a strictly positive constant and
let A ∈ Cm×n and B ∈ Cn×k be given matrices. Define
J : Cm×n → R as:

J(X) := max
∆∈Ck×k,σ̄(∆)≤α

‖AB −XB −XB∆‖ (A.1)

Then

min
X∈C

J(X) =

{
α‖AB‖ if α ≤ 1
‖AB‖ if α > 1

(A.2)

The minimal cost is achieved by X∗ = A if α ≤ 1 and
X∗ = 0 if α > 1.

Proof 2. Let u ∈ Ck and v ∈ Cm be the input/output
vectors associated with the maximum singular value of
AB, i.e. u and v satisfy ABu = σ̄(AB)v, ‖u‖ = 1, and
‖v‖ = 1.

Assume α > 1 and pick any X ∈ Cm×n. If Re[(XBu)∗v] ≥
0 then choose ∆0 = −αI. J(X) can be lower-bounded as:

J(X) ≥ ‖AB −XB −XB∆0‖
= ‖AB + (α− 1)XB‖
≥ ‖ (AB + (α− 1)XB)u‖
≥ ‖σ̄(AB)v + (α− 1)XBu‖
≥ σ̄(AB)

The first inequality follows from the definition of J(X) in
Equation A.1 while the equality follows from the definition
of ∆0. The next two inequalities follow from the definition
of the matrix norm (maximum singular value) and the
choices of u and v. The final inequality follows from
Lemma 4. If Re[(XBu)∗v] ≤ 0 then similar steps can be
used to again show that J(X) ≥ σ̄(AB) with the choice
∆0 = +αI. Thus J(X) ≥ σ̄(AB) and the lower bound is
achieved by X = 0.

Next assume α ≤ 1. Pick any X ∈ Cm×n and define
Y := −A+X. If Re[(Y Bu)∗v] ≥ 0 then choose ∆0 = αI.
Similar to the steps above, J(X) can be lower-bounded as:

J(X) ≥ ‖αAB + (α+ 1)Y B‖
≥ ‖ασ̄(AB)v + (α+ 1)Y Bu‖
≥ ασ̄(AB)

The first inequality follows from the choice of ∆0 and the
definition of Y . The next inequality again follow from the

choices of u and v while the final inequality follows from
Lemma 4. If Re[(Y Bu)∗v] ≤ 0 then similar steps can
be used to show that J(X) ≥ ασ̄(AB) with the choice
∆0 = −αI. Thus J(X) ≥ ασ̄(AB) and the lower bound is
achieved by X = A.


