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Abstract— In the aircraft industry, it is common to use
physically redundant components to ensure that the overall
system meets the necessary safety requirements. For systems
where physical redundancy is impractical (e.g, Unmanned
Aerial Vehicles), analytical redundancy can be used to reduce
the number of components needed. However, it is more difficult
to certify the safety of an analytically redundant system. This
paper presents a performance analysis framework that applies
to both physically and analytically redundant sensor systems
with linear time-invariant dynamics and additive faults. The
framework is used to compare and certify the performance of
two air-data sensor examples—one with physically redundant
altitude sensors, and another that exploits the analytical rela-
tionship between altitude, airspeed, and flight path angle. In
both examples, a threshold fault detection scheme is used.

I. INTRODUCTION

The aircraft industry has many years of experience de-
signing systems driven by extremely stringent safety require-
ments. The system availability and integrity requirements
for commercial flight control electronics are typically on the
order of no more than 10−9 catastrophic failures per flight
hour [1], [2]. The industry has converged to a design solution
that is based almost exclusively on physical redundancy
at all levels of the design. For example, the Boeing 777
control law software is implemented on three primary flight
computing modules. Each computing module contains three
dissimilar processors with control law software compiled
using dissimilar compilers. The inertial and air data sensors
have a similar level of redundancy [3], [4].

The designs used in the aircraft industry achieve extraor-
dinarily high levels of availability and integrity. However,
the use of physical redundancy dramatically increases system
size, complexity, weight, and power consumption. Moreover,
such systems are extremely expensive in terms of design
and development costs, as well as the unit production costs.
There is an increasing demand for high-integrity, but at
the same time low cost, fault tolerant aerospace systems,
e.g., Unmanned Aerial Vehicles and fly-by-wire in lower
end business/general aviation aircraft. In such applications,
analytical redundancy may be used to limit the number of
sensors needed, but the ability to detect sensor failures may
also be diminished. The use of analytical fault detection
algorithms would represent a major shift away from the
current design approach used by the aerospace industry. One
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critical aspect preventing this shift is the need to certify the
airworthiness of safety-critical systems. In particular, there
is a lack of tools to rigorously analyze the reliability for
systems that use analytical redundancy.

This paper presents a framework for the rigorous perfor-
mance analysis of fault detection schemes based on ana-
lytically redundant sensors with linear time-invariant (LTI)
dynamics. It is shown that this framework also applies to
physically redundant sensor systems with LTI dynamics.
The performance analysis is carried out for a particular
sensor example with little justification for the choice of
numerical parameter values. The emphasis is on the method
of analysis rather than the design of the particular sensor
systems analyzed.

The outline of the paper is as follows: Section II demon-
strates that both types of sensor systems have the same
basic structure if the sensor dynamics are LTI. Using a
thresholding fault detection scheme [5], [6], [7], probabilistic
performance metrics for are defined for this common LTI
system structure. Relevant results from reliability theory are
presented in Section III. Section IV introduces an air-data
sensor example, and the numerical performance analysis of
the air-data example is presented in Section IV-C. Finally,
conclusions and possible avenues of future research are
discussed in Section V.

II. PROBLEM FORMULATION

We begin by presenting a unified framework for analyzing
physically and analytically redundant sensor systems with
LTI sensor dynamics. Consider the physically redundant
sensor system in Fig. 1. The two identical sensors have the
same discrete-time LTI sensor dynamics S. Sensor 1 uses
S to measure a quantity u and produce m̂, while Sensor 2
uses the same S to measure u and produce m̃. Both sensors
are affected by an i.i.d. Gaussian random process {vi,k} and
a random fault signal { fi,k}, such that the event { fi,k = 0}
indicates that the Sensor i is in the nominal mode (i.e., no
fault) at time k. The residual {rk} is defined as rk := m̂− m̃,
for all k. In the absence of noises v1 and v2 and faults f1
and f2 the residual would be zero. Since the dynamics of S
are LTI and the noises and faults enter additively, the overall
system represented by Fig. 1 is also LTI.

Consider the analytically redundant sensor system in
Fig. 2. As in the physically redundant case, the sensor
dynamics S and T are discrete-time LTI systems; however, in
this case, S and T are different. Again, for i = 1,2, {vi,k} is
an i.i.d. Gaussian noise and { fi,k} is a random fault signal.
Sensor 1 uses S to measure some quantity u and produce
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Fig. 1. Physically redundant sensor system with LTI sensor dynamics S,
subject to noises v1 and v2 and random fault signals f1 and f2.
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Fig. 2. Analytically redundant sensor system with LTI sensor dynamics
S and T , subject to noises v1 and v2 and random fault signals f1 and f2.
The LTI system P represents a dynamic analytical relationship between the
quantities m̂ and n̂.

m̂. Sensor 2 uses T to measure some other quantity w
and produce n̂. The block labeled P is an LTI system that
represents the analytical relationship between m̂ and n̂. In
the absence of noises and faults, the residual r produced by
P acting on the inputs m̂ and n̂ is zero. Because S, T , and P
are LTI and the noises and faults enter additively, the overall
system represented by Fig. 2 is also LTI.

A. Performance Metrics

Since the physically redundant sensor system (Fig. 1) and
the analytically redundant sensor system (Fig. 2) are both
represented by discrete-time LTI dynamics, it suffices to
consider the general case:

xk+1 = Axk +Buuk +Bvvk +B f fk,

rk =Cxk +Duuk +Dvvk +D f fk,
(1)

where {uk} is a known sequence of physical quantities, {vk}
is an i.i.d. Gaussian sequence with vk ∼N (0, I), for all k,
and { fk} is a random fault sequence. Assume that if vk = 0
and fk = 0, for all k, then the residual is zero (i.e., rk = 0,
for all k).

The performance metrics are defined with respect to a
residual thresholding scheme. That is, a fault is declared
if the magnitude of the residual exceeds some threshold.
Applications of fixed thresholding [5], [6] and time-varying
thresholding [7] have appeared in the literature. More con-
cretely, the threshold function is defined as

δ (r) := I(|r|> ε),

where I is the indicator function and ε > 0 is the threshold.
In this paper, we assume that a fixed threshold is used for
all time.

At each time k ≥ 0, define H0,k := { fk = 0} to be the
event that no fault is occurring and H1,k := { fk 6= 0} to

be the event that some fault is occurring. Similarly, define
R0,k := {δ (rk) = 0} to be the event that the fault detector
decides that no fault is occurring and R1,k := {δ (rk) = 1} to
be the event that the fault detector decides that some fault is
occurring. The performance of the threshold fault detector δ ,
with respect to system (1), is quantified by the probability
of a true negative

pTN
k := P(R0,k ∩H0,k), (2)

the probability of a false positive

pFP
k := P(R1,k ∩H0,k), (3)

the probability of a false negative

pFN
k := P(R0,k ∩H1,k), (4)

and the probability of a true positive

pTP
k := P(R1,k ∩H1,k), (5)

where the names of these probabilities are taken from the
statistical hypothesis testing literature [8], [9]. Collectively,
we refer to these quantities as the performance metrics for
the fault detector.

Although the probabilities (2)–(5) provide all the neces-
sary information, their numerical values can be difficult to
interpret. For example, suppose that P(H1,k) ≈ 0 for k =
0,1, . . . ,T . This implies that

P(H1,k) = pFN
k + pTP

k ≈ 0.

Since both pFN
k and pTP

k are small, it is difficult to get a
sense of how well the fault detection scheme will perform
in the presence of a fault at times k ∈ {0,1, . . . ,T}. In this
case, it is beneficial to consider the relative magnitudes of
pFN

k and pTP
k . This approach gives rise to two conditional

probabilities: the probability of detection

pD
k := P(R1,k |H1,k) =

pTP
k

pTP
k + pFN

k
, (6)

and the probability of a false alarm

pF
k := P(R1,k |H0,k) =

pFP
k

pFP
k + pTN

k
. (7)

Note that, by rearranging equations (6) and (7), the perfor-
mance metrics can be computed from pD

k , pF
k and P(H1,k).

B. Computational Procedure

For k ≥ 0, define the notation f0:k := { f0, f1, . . . , fk}.
Assume that { fk} takes values in some finite set F , so
that f0:k ∈F k+1 can take only finitely many different val-
ues. Also, assume that P( f0:k = f̂0:k) is known (or easily
computable), for all f̂0:k ∈F k+1 and all k ≥ 0. Fix a final
time T . Note that, conditional on the event { f0:T = f̂0:T},
the system (1) is linear-Gaussian. Thus, the conditional



distribution of the residual rk given { f0:T = f̂0:T} is Gaussian,
where the conditional mean is given by the recurrence

x̂k+1 := E(xk+1 |{ f0:T = f̂0:T}),
= Ax̂k +Buuk +B f f̂k,

r̂k := E(rk |{ f0:T = f̂0:T}),
=Cx̂k +Duuk +D f f̂k,

(8)

and the conditional variance is given by

Σk+1 := E((xk+1− x̂k+1)(xk+1− x̂k+1)
T |{ f0:T = f̂0:T}),

= AΣkAT +BvBT
v ,

Λk := E((rk− r̂k)
2 |{ f0:T = f̂0:T}),

=CΣkCT +DvDT
v .

(9)

We assume that x̂0 and Σ0 are known.
Since f0:T can only take finitely many discrete values, the

performance metric pTN
k can be written as

pTN
k = P(R0,k |H0,k)P(H0,k)

= ∑
f̂0:k∈G k+1

(∫
εk

−εk

p(rk | f̂0:k)drk

)
P( f0:k = f̂0:k),

where G k+1 := { f0:k ∈ F k+1 : fk = 0} is the set of all
fault signals that do not put the system in a fault mode at
time k. The Gaussian conditional density p(rk | f̂0:k), which
is N (r̂k,Λk), is obtained by simulating (8) and (9) with the
appropriate f̂0:k. Similarly, pFN

k can be written as

pFN
k = ∑

f̂0:k∈H k+1

(∫
εk

−εk

p(rk | f̂0:k)drk

)
P( f0:k = f̂0:k),

where H k+1 = { f0:k ∈ F k+1 : fk 6= 0} is the set of fault
signals that put the system in a fault mode at time k. Since
P(R1,k |H0,k) = 1−P(R0,k |H0,k), pFP

k can be written as

pFP
k = ∑

f̂0:k∈G k+1

(
1−

∫
εk

−εk

p(rk | f̂0:k)drk

)
P( f0:k = f̂0:k).

Finally, pTP
k is determined by

pTP
k = 1− (pTN

k + pFP
k + pFN

k ),

for all k. Thus, each performance metric is computed as a
weighted sum of terms of the form

∫
ε

−ε
p(r)dr, where p(r)

is a Gaussian density. Such terms are easily evaluated using
the error function, which can be implemented accurately and
efficiently as a rational approximation [10].

III. FAULT MODELS & RELIABILITY THEORY

Let τ be a random variable that represents the failure
time of some physical component, and let f and F be the
probability density function (PDF) and cumulative density
function (CDF) of τ , respectively. The failure rate is defined
as the expected number of failures in some interval of time
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Fig. 3. The “bathtub curve” describes the hazard rate function of many
real-world systems that have a burn-in phase (time 0 to tb) and a wear-out
phase (after time tw).

given that no failure has occurred yet. More precisely, the
failure rate is defined as

ρ∆t (t) :=
P(t < τ ≤ t +∆t |τ > t)

∆t

=
F(t +∆t)−F(t)

∆t(1−F(t))
,

for each t and ∆t . Taking the limit as ∆t → 0 yields the
hazard rate at time t:

h(t) :=
f (t)

1−F(t)
.

In many applications, the hazard rate takes the shape of the
“bathtub curve” shown in Fig. 3. Initially, the probability of
a failure is high as the component is “burned in”. Then, for
a period of time, say tb to tw, the hazard rate is constant.
Finally, after time tw, the component begins to wear out and
failures become more likely. Because failures may be rare,
the empirically estimated failure rate for a long time interval
may be the only available statistic for the component. Hence,
it is common to assume that the component is in the middle
of the bathtub curve where h(t) is constant. See [11] for a
more thorough discussion of reliability theory.

Suppose that the failure time of some component is
modeled by an exponentially distributed random variable τc
with parameter λ , which we write as τc ∼ Exp(λ ). The PDF
and CDF of τc are

fc(t) := λe−λ t , Fc(t) := 1− e−λ t ,

respectively. Therefore, the hazard rate of τc is

hc(t) =
λe−λ t

1− (1− e−λ t)
= λ .

Since the hazard rate of τc is constant, the exponential
distribution is a useful model for the constant portion of the
bathtub curve (tb to tw in Fig. 3). However, τc only applies
to continuous-time models.

The discrete analog of the exponential distribution is the
geometric distribution. Let ∆t be the discrete sample time
such that k = t/∆t , and let τd be a geometric random variable
with parameter q, which we write as τd ∼ Geo(q). The
probability mass function (PMF) and CDF of τd are

fd(k) := (1−q)k−1q, Fd(k) := 1− (1−q)k,



respectively, for k≥ 1. Although the hazard rate is not well-
defined in discrete time, the failure rate of τd at time t = k∆t
is

ρd,∆t (k) =
q
∆t

.

Note that ρd,∆t (k) does not depend on k. To see the con-
nection between τc and τd , consider the parameter value
q̂ = 1− e−λ∆t . The CDF of τd ∼ Geo(q̂) is

Fd(k) = 1− (e−λ∆t )k = 1− e−λk∆t = Fc(k∆t),

and the failure rate is

ρd,∆t (k) =
q̂
∆t

=
1− e−λ∆t

∆t
≈ λ − λ 2∆t

2
+O(∆2

t ),

which converges to hc(t) = λ as ∆t→ 0. Hence, τd ∼Geo(q̂)
is an accurate discrete representation of τc ∼ Exp(λ ), for
small ∆t . The following application utilizes this connection
between the exponential and geometric distributions to model
component failures.

IV. APPLICATION: AIR-DATA PROBES

Nearly all aircraft flying today utilize air data probes
to measure total and static pressure in order to determine
airspeed and altitude. For proper operation, the probes must
be free of any blockages, e.g. due to icing or dirt. Failures
of these probes have resulted in numerous fatal accidents
of commercial, military, and general aviation aircraft (e.g.,
Air France Flight 447 [12], [13]). To combat these failures,
sensor hardware redundancy is typically combined with
voting systems such that erroneous measurements can be
detected and discarded. This section considers the problem
of fault detection in two air-data sensor systems—one based
on physical redundancy and the other based on analytical
redundancy.

A. Sensor Equations
The basic air data relationships are derived in [2]. For

compressible air and subsonic speeds, the static and total
pressures, Ps and Pt , are related to calibrated (indicated)
airspeed V by

V = φ1(Pt ,Ps) := c0

(
5
(

Pt −Ps

P0
+1
) 2

7
−5

) 1
2

, (10)

where c0 := 340.294 m/s is the speed of sound at sea level
and P0 := 101.325kPa is the static pressure at sea level. The
indicated airspeed model φ1 does not account for changes
in density due to changes in altitude. Hence, the indicated
airspeed deviates from the true airspeed at altitudes above
sea level. A more accurate model would use a measurement
of the outside air temperature to determine the changes in
density and compute the true airspeed. By restricting our
attention to low altitudes, we ignore this complexity and
assume that V equals the true airspeed.

For altitudes in the troposphere (up to about 17000km),
the static pressure Ps is related to altitude h by

h = φ2(Ps) :=
T0

L

(
1−
(

Ps

P0

)LR/g
)

(11)
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Fig. 4. Plot of (a) the (indicated) airspeed V as a function of differential
pressure Pd := Pt −Ps and (b) the altitude h as a function of static pressure
Ps. The values plotted here are typical for subsonic flight in the troposphere.
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Fig. 5. System of two physically redundant altitude sensors. Both sensors
measure the same static pressure Ps, but each sensor is corrupted by
independent noise signals v1 and v2 and fault signals f1 and f2.

where T0 := 288.15K is the temperature at sea level, L :=
6.49 K/km is the troposphere lapse rate, g := 9.80665 m/s2. is
the gravity constant at sea level, and R := 287.0529 J/kg·K is
the specific gas constant for dry air. These sensor equations
are plotted in Fig. 4. Note that φ1 and φ2 are only mildly
nonlinear for modest changes in airspeed and altitude.

B. Sensor Systems Considered

Using the air-data sensors as our example, we demonstrate
how to apply the framework of Section II. Consider the phys-
ically redundant sensor system in Fig. 5 and the analytically
redundant sensor system in Fig. 6. The physically redundant
system consists of two static pressure ports, modeled by φ2,
while the analytically redundant system consists of a static
port (φ2), a pitot probe (φ1), and a direct measurement of the
flight path angle. In order to apply the methods of Section II,
the sensor systems must be LTI. Hence, we assume that
aircraft is performing a gentle climb maneuver where the
airspeed is constant, the flight path angle is positive but
small, and the altitude slowly increases. Since the sensor
equations are only mildly nonlinear for small changes in
altitude (see Fig. 4), we linearize the sensor equations at
the initial altitude and assume that this linearization holds
over the entire climb. The maneuver is parameterized by the
triple (V̄ , γ̄,h0), and the increasing altitude is given by the
analytical relationship

h(t) = h0 +
∫ t

0
ψ(V̄ , γ̄)ds,

where ψ(V,γ) := V sin(γ). The sensor equations φ1 and
φ2 are then inverted to find the corresponding Pt and Ps
trajectories. Define P̄t and P̄s to be the initial values of these
trajectories. Both sensor systems are linearized about the
point (P̄t , P̄s) and then discretized in time.
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Fig. 6. System of three air data sensors measuring static pressure Ps, total
pressure Pt , and flight path angle γ , respectively. The sensors are subject
to noises v3, v4, and v5 and random fault signals f3 and f4. A dynamic
analytical relationship is to generate the residual signal ra.

In Fig. 5 and 6, the signals v1,v2, . . . ,v5 are independent
Brownian motions, which are scaled by the positive constants
βs, βt , and βγ . The fault signals f1, f2, f3, and f4 are defined
as fi(t) := I(t ≥ τi), where τ1, τ2, τ3, and τ4 are independent
exponential random variables such that τ1,τ2,τ3 ∼ Exp(λs)
and τ4 ∼ Exp(λt). The constants bs and bt determine the
magnitudes of these bias faults.

The first-order linearization of φ1 about (P̄t , P̄s) is

φ1(P̄t +βtv4 +bt f4, P̄s +βsv3 +bs f3)

≈ φ1(P̄t , P̄s)+Φ1

[
βt v4+bt f4
βsv3+bs f3

]
,

and the first-order linearization of φ2 about P̄s is

φ2(P̄s +βsv j +bs f j)≈ φ2(P̄s)+Φ2(βsv j +bs f j),

where Φ1 := (∇φ1)
T , Φ2 := dφ2/dPs. Similarly, ψ is linearized

about (V̄ , γ̄) as follows:

ψ(V̂ , γ̄ +βγ v5)≈Ψ1V̂ +Ψ2βγ v5,

where Ψ1 := sin(γ̄) and Ψ2 := V̄ cos(γ̄). As the noisy signal
ψ(V̂ , γ̂) passes through the integrator, the noise accumulates
and h̃ diverges from ĥ. To counteract this effect, a high-pass
or “washout” filter with transfer function

W (s) =
s

s+a
, a > 0,

is applied to the difference ĥ− h̃. Essentially, this filter
cancels the integrator pole at zero and places a stable pole at
−a < 0. The drawback of using this filter is that it removes
the DC component from the signal ĥ− h̃, which could mask
faults if the bias magnitudes bt and bs are small.

The linearized equation for the residual of the physically
redundant system (Fig. 5) is

rp = Φ2βs(v1− v2)+Φ2bs( f1− f2). (12)

The residual of the analytically redundant system (Fig. 6) is
given by the linearized dynamics

η̇ =−aη− [a Ψ1]u+Bvv+B f f ,

ra = η +[1 0]u+Φ2βsv3 +Φ2bs f3,
(13)

where η0 =−h0, u := [h0 V̄ ]T , v := [v3 v4 v5]
T , f := [ f3 f4]

T ,
and

Bv =
[
−aΦ2βs−Ψ1Φ12βs −Ψ1Φ11βt −Ψ2βγ

]
,

B f =
[
−aΦ2bs−Ψ1Φ12bs −Ψ1Φ11bt

]
.
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Fig. 7. Performance metrics {pTN
k } (solid line), {pFP

k } (dashed line), and
{pFN

k } (dotted line) for the physically redundant sensor system in Fig. 5.
The quantity {pTP

k } is omitted for the sake of clarity.
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Fig. 8. Conditional probabilities {pD
k } (solid line) and {pF

k} (dashed line)
for the physically redundant sensor system in Fig. 5.

Therefore, both rp and ra are governed by continuous-time
LTI dynamics. Define a sample time ∆t , and discretize equa-
tions (13) accordingly. (Note that the static map (12) does
not need to be discretized.) Because the Brownian motions
v1,v2, . . . ,v5 have independent increments, the discretized
signals {v′i,k} are i.i.d. Gaussian random processes with v′i,k ∼
N (0,∆t), for all k. To discretize the fault model, define the
parameters qs := 1−e−λs∆t and qt := 1−e−λt ∆t , the random
variables τ ′1,τ

′
2,τ
′
3 ∼Geo(qs) and τ ′4 ∼Geo(qt), and the fault

signals f ′i,k = I(k ≥ τ ′i ) for all i = 1,2, . . . ,4 and all k. Then,
the discretized linearized dynamics with the noises {v′i,k} and
fault inputs { f ′i,k} fit the framework of Section II.

C. Numerical Results

For this analysis, the sample time is ∆t = 0.05s; the flight
path is given by V = 45 m/s, γ = 0.5 ◦, and h0 = 200m; the
noises are parameterized by βs = 690Pa, βt = 690Pa, and
βγ = 0.2 ◦; the fault biases are bs = 335Pa and bt =−275Pa;
the fault probabilities are qt = qs = 1.38× 10−7, which
corresponds to a mean time-to-failure (MTTF) of about
1000 hrs [11]. For both systems, the threshold is ε = 9m.
The pole of the “washout” filter is a = 0.001.

The performance metrics for the physically redundant alti-
tude sensors are shown in Fig. 7. Note that the performance
metrics are constant in time because the residual dynamics
are memoryless. For all k, their values are pTN

k = 0.9709,
pFP

k = 0.0271, and pFN
k = 1×10−6. The corresponding joint

probabilities {pD
k } and {pF

k} are plotted in Fig. 8. For all k,
their values are pD

k = 0.9995 and pF
k = 0.0271.

The performance metrics for the analytically redundant
sensor configuration are shown in Fig. 9. Although these
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Fig. 9. Performance metrics {pTN
k } (solid line), {pFP

k } (dashed line), and
{pFN

k } (dotted line) for the analytically redundant sensor system in Fig. 6.
The quantity {pTP

k } is omitted for the sake of clarity.
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Fig. 10. Conditional probabilities {pD
k } (solid line) and {pF

k} (dashed line)
for the analytically redundant sensor system in Fig. 6.

quantities vary with time, the washout filter W causes steady-
state convergence. The steady-state values are pTN

k → 0.9785,
pFP

k → 0.0195, and pFN
k → 4.5× 10−6. Hence, the overall

system reliability, given by pTN
k , is comparable to that of

the physically redundant configuration. Because a fault is so
unlikely in the time interval considered, the joint probabilities
are dominated by the small marginal probability P(H1,k). By
definition, the conditional probabilities, shown in Fig. 10,
are not multiplied by P(H1,k), so their time-varying nature is
much more apparent. Note that these probabilities converge
to the steady-state values pD

k → 0.9977 and pF
k → 0.0196.

Since the performance metric {pTN
k } quantifies the overall

system reliability, the values plotted in Fig. 9 certify the
reliability of this analytically redundant sensor scheme when
the ε-threshold fault detector is used.

V. CONCLUSIONS & FUTURE WORK

For sensors with linear-time invariant dynamics and ad-
ditively entering noises and faults, both physically and an-
alytically redundant sensor systems can be written as an
LTI system that produces a residual. Applying a threshold
fault detector to the residual, we formulated probabilistic
performance metrics that apply to any LTI sensor network
that generates a residual. These metrics are easily computable
if the noises are Gaussian and the faults take finitely many
values. This performance analysis was applied to two air-data
sensor networks—one consisted of two physically redundant
altitude sensors, while the other exploited the analytical
relationship between measurements of altitude, airspeed, and
flight path angle. The numerical results in Section IV-C illus-
trate, for particular parameter values, how the performance

metrics vary with time, how the same framework can be used
to compare the performance of different sensor systems, and
how the performance metrics certify the overall reliability of
the sensor system.

Future work on this topic will include extensions of the
performance analysis framework to more complex sensor
systems. For example, the sensor dynamics could be linear
time-varying or perhaps even nonlinear. Also, the occurrence
of a fault could affect the structure of the sensor dynamics,
as well as the structure of the fault signal. Since the analysis
performed in Section IV depends on a particular flight path,
it would be interesting to determine which flight path yields
the worst fault detector performance.
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de l’aviation civile, 2009.

[13] Interim report no. 2 on the accident on 1st June 2009 to the Airbus
A330-203 registered F-GZCP operated by Air France flight AF 447
Rio de Janeiro – Paris. Bureau d’Enquêtes et d’Analyses pour la
sécurité de l’aviation civile, 2009.


