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Abstract— This paper considers the limits of disturbance
rejection performance with preview information subject to
actuator rate constraints. A one-state, continuous-time optimal
control problem is formulated to investigate these limits. The
optimal control action which minimizes the peak tracking error
is explicitly characterized using Lagrange duality theory. In
addition, the optimal tracking performance as a function of
preview time is provided. There is a fundamental preview time
beyond which no performance improvements are obtained.

I. INTRODUCTION

Actuator rate constraints place limits on the speed of
response and performance of a feedback system. In particu-
lar, the rate constraints prevent the system from rejecting
rapidly changing disturbances. In some cases, a preview
measurement of the disturbance is available and can be
used to partially overcome the actuator rate constraints. For
example, LIDAR measurements of the incoming wind field
have been investigated for wind turbine pitch control [6], [7],
[5], [2], [3], [10]. As another example, the road profile can
be measured with a forward-mounted radar on an off-road
vehicle. This preview information can be incorporated into
an active suspension controller [1].

This paper considers the limits of disturbance rejection
performance with preview information subject to actuator
rate constraints. An optimal, disturbance rejection problem is
formulated in Section III. The formulation is in continuous-
time and assumes first order plant dynamics. The disturbance
rejection performance depends on the amount of preview
time. Next, Section IV summarizes the optimal input and
state response for the case where the system is marginally
stable. This special case yields simple formulas that provide
rough guidelines for how the optimal performance varies as
a function of preview time. In addition, this special case pro-
vides the basic intuition for the following result: there exists
a preview time beyond which no performance improvement
is obtained. This result is proved in Section V using the
Lagrange duality theory for vector space optimization [8].

There is a large body of literature on preview control. A
brief, by no means complete, list of work includes feedback
control design based on linear quadratic [12], H∞ [4], and
H2 [9] costs. This paper uses the peak L∞ norm to measure
tracking errors and derives explicit formulas for the optimal
open-loop control actions. In addition, the derivation in this
paper considers the effect of actuator rate limits.
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II. NOTATION

The notation aligns with that used in [8]. Cn[a, b] is the
normed linear space of vector-valued, continuous functions
f : [a, b]→ Rn. The norm on Cn[a, b] is given by ‖f‖∞ :=
maxa≤t≤b max1≤i≤n |fi(t)|. The superscript n is dropped
for scalar functions, i.e. C[a, b] denotes scalar continuous
functions. Similarly, Cn[a,∞) is the space of vector-valued,
uniformly-bounded, continuous functions f : [a,∞) → Rn
with the norm ‖f‖∞ := supt≥a max1≤i≤n |fi(t)|.

The total variation of a function f : [a, b]→ R is defined
as TV (f) := sup

∑n
i=1 |f(ti) − f(ti−1)| where the sup is

over all finite partitions a = t0 < t1 < · · · < tn = b
of the interval [a, b]. NBV [a, b] is the normalized space
of functions with bounded total variation on [a, b]. The
functions f ∈ NBV [a, b] are normalized such that f is right
continuous and f(a) = 0. NBV n[a, b] denotes the space of
functions f : [a, b]→ Rn such that each fi ∈ NBV [a, b].

Define the positive cone P ⊂ Cn[a, b] by P := {f ∈
Cn[a, b] : fi(t) ≥ 0 ∀t ∈ [a, b]}. Denote f ≥ 0 if f ∈ P
and f ≤ 0 if −f ∈ P . Moreover, denote f > 0 if f is
an interior point of P , i.e. fi(t) > 0 ∀t ∈ [a, b]. Finally,
define the positive cone P ∗ ⊂ NBV n[a, b] as the subset of
functions f such that fi is a non-decreasing on [a, b]. Again,
denote f ≥ 0 if f ∈ P ∗ and f ≤ 0 if −f ∈ P ∗.

III. PROBLEM FORMULATION

Consider the first-order system:

ẋ(t) = −ax(t) + bu(t) + d(t) (1)

where x ∈ R is the state, u ∈ R is the control input, and
d ∈ R is the disturbance. Assume the system is marginally
or strictly stable (a ≥ 0). In addition, assume without loss
of generality that b > 0. The control objective is to regulate
x(t) to zero. The disturbance is “matched” in Equation 1
and hence it can be perfectly canceled by setting u(t) =

−d(t)
b . However, perfect cancellation is not possible if the

actuator is subject to rate constraints and the disturbance is
rapidly changing. In some cases preview information of the
disturbance is available for the controller. In other words, the
controller at time t may have access to a measurement or
estimate of d(τ) for τ > t. Intuitively, preview information
can be used to partially overcome the disturbance rejection
limitations imposed by actuator rate constraints.

The following optimal control problem is used to study
the disturbance rejection performance as a function of the



preview time and the actuator rate constraint.

p(T ) := inf
u̇∈C[0,∞)

‖x‖∞ (2)

subject to:
ẋ(t) = −ax(t) + bu(t) + dT (t)

x(0) = 0, u(0) = 0, |u̇(t)| ≤ r

dT (t) :=

{
0 if t < T
d̄ if t ≥ T

In words, the system is initialized at the equilibrium x(0) = 0
and is disturbed by a step of magnitude d̄ at time T . For
concreteness, assume d̄ > 0. The objective is to design the
optimal input that minimizes the peak deviation in x. u is rate
constrained and hence the disturbance cannot be perfectly
canceled. However, the formulation allows u to anticipate the
disturbance, i.e. u can begin moving at t = 0 to cancel the
step disturbance at t = T . This models a situation in which
the controller has a measurement of the disturbance with T
seconds of preview. p(T ) denotes the optimal performance as
a function of the preview time T . The tracking performance
p is a monotonic function of the preview time: T ′ ≥ T ⇒
p(T ′) ≤ p(T ). This follows because any feasible solution for
preview time T can be time-shifted to construct a feasible
solution for T ′ ≥ T that achieves the same cost.

A concrete example for this problem formulation is rotor
speed control for a wind turbine. At high (Region 3) wind
speeds, the tower/blade structural loads are controlled by
pitching the blades in response to wind gusts. The blade
pitch actuators have restrictive rate limits due to the large
blade inertia. As a result, it is not possible to respond to
fast changing wind gusts. The use of preview information,
e.g. LIDAR measurements of the incoming wind field, has
been investigated to improve the load attenuation [6], [7], [5],
[2], [3], [10]. For a wind turbine, Equation 1 represents the
dominant rotor dynamics linearized about an operating wind
speed. In this case, x(t) denotes the rotor speed (rad/sec),
u(t) denotes the collective blade pitch angle (deg), and
d(t) denotes the wind speed deviation (m/sec). The optimal
control problem in Equation 2 aims to minimize the peak
variations in rotor speed due to a step wind gust. This one-
state, optimal control formulation is too simplified to make
a detailed assessment of the load reduction performance. In
particular, the dynamics neglect the tower and blade bending
modes. In addition, the step wind gust disturbance is only
a rough approximation of the effects of the wind field.
Nevertheless, rotor speed variations are well correlated with
the various structural loads. Eliminating sharp peaks in rotor
speed typically leads to reduced blade, tower and gearbox
loads. Thus the simple rotor speed problem in Equation 2
can be used to understand the basic performance trends.

IV. OPTIMAL RESPONSE FOR a = 0

This section describes the optimal response as a function
of preview time T for the special case a = 0. This case
provides the basic intuition for the main result derived for
a > 0. In addition, these results yield simple formulas that

provide guidelines for systems with small damping (a ≈ 0).
Due to space restrictions, proofs of optimality are not given.
However, they can be derived using Lagrange duality theory
similar to the approach taken in the next section.

A. No Preview: T = 0

If there is no preview (T = 0) then the optimal response
is to ramp the control input at its maximum rate u̇ = −r
until u cancels the disturbance. It takes T ∗ := d̄

rb seconds to
ramp the input u from 0 to − d̄b . Define the input:

u0(t) =

{
−rt if t < T ∗

− d̄b if t ≥ T ∗ (3)

Integration of the system dynamics (Equation 1) with a = 0
yields the trajectory:

x0(t) =

{
d̄t− brt2

2 if t < T ∗

d̄2

2rb if t ≥ T ∗
(4)

Thus the minimal cost for the optimal control problem
(Equation 2) with no preview is given by p(0) = d̄2

2rb .
One technical issue is that the optimal control problem is
formulated with u̇ ∈ C[0,∞). This formulation is required
to apply the Lagrange duality theory in the next section. The
u0 in Equation 3 has u̇0 change discontinuously from −r to
0 at t = T ∗. Thus u̇0 /∈ C[0,∞) for this input. However,
there are continuous functions u̇ that yield an input arbitrarily
close to u0 and a cost arbitrarily close to p(0).1

B. Small Preview: T ≤
(√

2− 1
)
T ∗

For “small” preview times, the optimal input is still given
by u0(t) in Equation 3. Specifically, u0(t) is optimal for
preview times that satisfy T ≤

(√
2− 1

)
T ∗. Figure 1 shows

the state responses with the optimal input u0(t) for three
different “small” preview times. The responses are generated
for the specific data b = 1, r = 16, and d̄ = 16. The solid line
in Figure 1 is the response x0(t) for no preview (Equation 4).
For this data, T ∗ = 1 sec and the minimal cost with no
preview is p(0) = 8. The dashed and dash-dotted lines are
the optimal responses for T = 0.2 and T = 0.4. The vertical
dotted lines at t = 0.2 and t = 0.4 denote the time of the
step disturbance for these two responses. The last vertical
dotted line is at T ∗ = 1. All three trajectories achieve their
peak magnitude at t = T ∗ and have ẋ(t) = 0 for t ≥ T ∗.

For T = 0.2, the state trajectory is − brt
2

2 prior to the
onset of the step disturbance. At t = 0.2, the state trajectory
reverses direction due to the step disturbance and eventually
reaches a steady state at x(T ∗) = 4.8. The preview has
two benefits. First, the control input is able to partially
overcome the rate limit by ramping toward − d̄b before the
step disturbance occurs. Second, the initial negative motion
of the state leaves the system in a better position to absorb the
disturbance. In particular, the large positive peak at x(T ∗) is
reduced because disturbance must first overcome the negative

1Inputs with discontinuous u̇ will be used in the remainder of the paper
with the same understanding. That is, a continuous u̇ can be constructed to
achieve a cost arbitrarily close to that achieved by the discontinuous u̇.
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Fig. 1. Time responses of x(t) for “small” preview times

value of x(T ) at the time of the step disturbance. As a result
the optimal cost is reduced from p(0) = 8 to p(0.2) = 4.8.

The response for T = 0.4 shows a similar trend with the
cost further reduced to p(0.4) = 1.6. Note that, for T =
0.4, the negative motion of the state trajectory prior to the
disturbance reaches x(T ) = −1.28. This is almost the same
magnitude as x(T ∗) = 1.6. As the preview time is further
increased, the state at the time of the step disturbance, x(T ),
continues to become more negative (larger in magnitude).
In addition, x(T ∗) continues to decrease in magnitude. This
trend continues until T becomes large enough that |x(T )| =
|x(T ∗)|. This happens precisely when T = (

√
2 − 1)T ∗.

For T > (
√

2 − 1)T ∗, u0 is no longer optimal because the
negative peak at x(T ) dominates the cost.

C. Moderate Preview:
(√

2− 1
)
T ∗ < T ≤ T ∗

For “moderate” preview times (
√

2 − 1)T ∗ < T ≤ T ∗,
the optimal input is of the form:

uT (t) =


+rt if t < t1
−r(t− 2t1) if t1 ≤ t < 2t1 + T ∗

− d̄b if t ≥ 2t1 + T ∗
(5)

where t1 := T 2+2TT∗−T∗2

4(T+T∗) . The subscript in uT denotes that
the optimal input depends on T through the parameter t1. For
t ≤ t1 the optimal input uT ramps at maximum rate in the
wrong direction, i.e. away from the value − d̄b required to
cancel the disturbance. Then it ramps at maximum rate in
the other direction until it reaches − d̄b . As noted above, the
optimal cost for preview time T = (

√
2 − 1)T ∗ becomes

constrained by the negative peak at x(T ). The magnitude of
x(T ) is reduced by ramping initially in the wrong direction.

Figure 2 shows the state response and optimal input uT (t)
for three different “moderate” preview times. The solid,
dashed, and dash-dotted lines are the responses for T = 0.6,
0.8, and 1.0. The responses are again generated for the
specific data b = 1, r = 16, and d̄ = 16. The vertical
dotted lines denote specific times related to the trajectory
for T = 1.0 and will be discussed further below. All three
trajectories have ẋ(t) = 0 for t ≥ 2t1+T ∗. For each preview
time the state trajectory x(t) achieves the peak magnitude

p(T ) at both t = T and t = 2t1 + T ∗. In other words, the
value of t1 is chosen to balance both the negative peak at
x(T ) and the positive peak at x(2t1 + T ∗).
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Fig. 2. Time responses of x(t) and u(t) for “moderate” preview times

For each trajectory the optimal control uT is positive for
t < 2t1. This causes x(t) to initially move in the positive
direction and achieve a local maximum at x(2t1). As the
preview time T increases, x(2t1) becomes more positive
while the magnitudes of x(T ) and x(2t1 + T ∗) are both
reduced. When T = T ∗ the first positive peak at t = 2t1
satisfies |x(2t1)| = |x(T )| = |x(2t1 + T ∗)|. For T > T ∗,
the input uT in Equation 5 is no longer optimal because
the magnitude of x(2t1) dominates the cost. For the given
data, T ∗ = 1.0 and hence the dash-dotted curve in Figure 2
represents the optimal response for the limiting case of
“moderate” preview (T = T ∗). The four vertical dotted lines
in each subplot are drawn at the times t1, 2t1, T , and 2t1+T ∗

for this response. The optimal input u shown in the bottom
subplot changes from u̇ = +r to u̇ = −r at t1. The top
subplot shows that the optimal x(t) for T = 1.0 achieves its
maximum magnitude at times 2t1, T , and 2t1 + T ∗.

D. Long Preview: T > T ∗

For T > T ∗ one might suspect that p(T ) can be further
reduced by pre-pending the control action uT∗(t) with an
initial negative ramp. This might simultaneously reduce the
magnitudes of x(2t1), x(T ), and x(2t1+T ∗) which constrain
the performance for T = T ∗. In actuality, no further
improvement can be obtained for T > T ∗, i.e. p(T ) = p(T ∗)
for T ≥ T ∗. The optimal input for T > T ∗ is not unique
but one choice is given by:

uT (t) =

{
0 if t < T − T ∗
uT∗ (t− (T − T ∗)) if t ≥ T − T ∗ (6)

where uT∗ is the optimal input given by Equation 5 for T =
T ∗. This choice wastes the first T − T ∗ seconds of preview
by leaving the input at zero and then executes the control
action uT∗ once T ∗ seconds of preview remains. It can be
shown that the minimal cost is p(T ) = d̄2

16rb for T ≥ T ∗.



E. Summary

The solution to the optimal control problem (Equation 2)
for a = 0 is summarized in Table I. Figure 3 shows the
optimal cost versus preview time. In this figure the preview
time on the horizontal axis has been normalized by T ∗ and
the cost on the vertical axis has been normalized by p(0).
T ∗ = d̄

rb is a fundamental preview time beyond which
no additional performance improvements are obtained. In
addition, p(0) = d̄2

2rb and p(T ∗) = d̄2

16rb . Thus, preview
information can, at best, reduce the peak tracking error
by a factor of eight compared to the performance with no
preview. Finally, the use of preview has the largest impact
for T ≤ (

√
2−1)T ∗. For these small preview times, the cost

reduces linearly in T . Only minor improvements in the cost
are obtained for preview times (

√
2− 1)T ∗ < T ≤ T ∗.

Preview Optimal Cost, Optimal Input,
Time p(T ) u(t)

T ≤ (
√

2− 1)T ∗ d̄2

2rb
− d̄T Equation 3

(
√

2− 1)T ∗ < T ≤ T ∗ br
16

(−T2+2TT∗+T∗2)2

(T+T∗)2
Equation 5

T > T ∗ d̄2

16rb
Equation 6

TABLE I
SUMMARY OF RESULTS FOR a = 0
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V. OPTIMAL RESPONSE FOR a > 0

This section considers the case where the system is strictly
stable (a > 0) and proves the following result: there exists
T̄ such that p(T ) = p(T̄ ) ∀T ≥ T̄ . In other words,
the actuator rate constraint places a fundamental bound on
tracking performance that cannot be overcome with preview.

A. Long Preview Response

The first step is to determine T̄ and construct a candidate
optimal input ū and state response x̄ for preview time T = T̄ .

The response for a = 0 and T = T ∗ (dash-dotted curve in
Figure 2) displays the basic features of the expected solution.
Based on these features, the optimal input for a > 0 and
T = T̄ is expected to have the form:

ū(t) =

 +rt if t < t1
−r(t− 2t1) if t1 ≤ t < t3
ū(t3) if t ≥ t3

(7)

for some t1 and t3. In addition, the optimal state response
is expected to satisfy the following constraints:
• x̄(t2) = +p̄ and ˙̄x(t2) = 0
• x̄(T̄ ) = −p̄
• x̄(t3) = +p̄ and ˙̄x(t3) = 0

where t2 < T̄ < t3 and p̄ is the peak tracking error. This set
of five constraints on x̄(t) and ˙̄x(t) can be solved for the five
unknowns (t1, t2, T̄ , t3, p̄). Solving these equations requires
explicitly integrating the state dynamics (Equation 1).

These constraint equations can be solved after lengthy but
straightforward algebra. Recall T ∗ := d̄

rb and define the non-
dimensional constants α := aT ∗ and β := α

eα−1 . The five
unknowns of the candidate optimal solution are given by:

t1 := −T
∗

α
log

(
1−

√
1− e− 1

2 (β−1−log β)

)
(8)

t2 := 2t1 −
T ∗

2α
(β − 1− log β) (9)

T̄ := t2 −
T ∗

α
log β (10)

t3 := t2 + T ∗ (11)

p̄ =
d̄T ∗

2α2
(β − 1− log β) (12)

For given a, b, d̄ > 0, the equations define a preview time T̄
and a feasible input ū that achieves the cost p̄. The limits
of these values as a → 0 agree the results presented in
the previous section for a = 0 and T = T ∗. This feasible
solution provides a bound on the optimal performance.

Lemma 1: p(T ) ≤ p̄ ∀T ≥ T̄ .
Proof: Equations 8-12 define an input ū and state x̄

that achieve a cost ‖x̄‖∞ = p̄ for preview time T̄ . Therefore
p(T̄ ) ≤ p̄. Moreover, the performance p(T ) is a monotonic
function of preview time: p(T ) ≤ p(T̄ ) ∀T ≥ T̄ .

Figure 4 shows the state response and input for the data
a = 2, b = 1, r = 16, and d̄ = 16. For this data, t1 ≈
0.308sec, t2 ≈ 0.497sec, T̄ ≈ 1.078sec, and t3 ≈ 1.497sec.
The vertical lines in Figure 4 are drawn at these four times.
In addition, p̄ ≈ 0.949. The two horizontal lines in the top
subplot of Figure 4 are drawn at ±p̄. For comparison, the
optimal response for a = 0, b = 1, r = 16, and d̄ = 16
(shown in Figure 2) is given by: t1 = 0.25sec, t2 = 0.50sec,
T ∗ = 1.0sec, t3 = 1.50sec, and p̄ = 1.0.

B. Lagrange Duality

Lagrange duality theory is used to prove that the candidate
solution constructed in the previous subsection is in fact
optimal. The primal/dual theory presented here essentially
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Fig. 4. Time responses of x̄(t) and ū(t) for a > 0 and T = T̄

relies on the results in [8]. Given Tf <∞, define the vector
spaces Y := R × C[0, Tf ] and Z := C4[0, Tf ]. Also define
the functions f : Y → R and G : Y → Z by:

f(γ, u̇) = γ (13)

G(γ, u̇) =

[
x−γ
−x−γ
u̇−r
−u̇−r

]
(14)

where x(t) =
∫ t

0
e−a(t−τ) (bu(τ) + dT (τ)) dτ . f and G are

both affine functions of (γ, u̇) and hence they are convex.
The optimal control problem in Equation 2 is formulated on
an infinite horizon. A finite-horizon version of this problem
expressed in terms of the vector space notation is:

inf
(γ,u̇)∈Y
G(γ,u̇)≤0

f(γ, u̇) (15)

G(γ, u̇) ≤ 0 represents four infinite-dimensional linear
constraints, e.g. the third constraint is u̇(t) ≤ r ∀t ∈ [0, Tf ].
The optimization depends on the preview T through the state
trajectory x(t) that appears in the constraint function G.

The Lagrange duality result is based on a dual functional
defined on the dual space of Z. By the Riesz representation
theorem [8], Z∗ := NBV 4[0, Tf ] is the dual space of
Z := C4[0, Tf ]. Recall the positive cone P ∗ ⊂ Z∗ is
defined as the set of functions z∗ ∈ NBV 4[0, Tf ] such that
each z∗i is a nondecreasing function on [0, Tf ]. The dual
functional φ(z∗) : P ∗ → R for the vector space optimization
(Equation 15) is defined by:

φ(z∗) = inf
(γ,u̇)∈Y

[
f(γ, u̇) +

4∑
i=1

∫ Tf

0

gi(t)dz
∗
i (t)

]
(16)

where gi is the ith entry of G(γ, u̇).2 The following Lagrange
duality theorem [8] holds for the optimization in Equation 15.

2If z∗i ≥ 0 is everywhere differentiable with λi(t) := ż∗i (t) then
λi(t) ≥ 0 ∀t and the Stieltjes integral

∫ Tf
0 gi(t)dz

∗
i (t) is equivalent

to
∫ Tf
0 gi(t)λi(t)dt. This form is a natural extension of the Lagrange

multiplier λi that appears in a finite-dimensional linear program. However,
z∗i is, in general, not differentiable.

Theorem 1: Suppose there exists (γ1, u̇1) such that
G(γ1, u̇1) < 0 and suppose the infimum in Equation 15 is
finite. Then

inf
(γ,u̇)∈Y
G(γ,u̇)≤0

f(γ, u̇) = max
z∗≥0

φ(z∗) (17)

The maximum on the right is achieved by some z∗0 ≥ 0.
If the infimum on the left is achieved by some (γ0, u̇0)

then
∫ Tf

0
gi,0(t)dz∗i,0(t) = 0 for each i where gi,0 is the ith

entry of G(γ0, u̇0).

The formulation of the optimization using the function
space C[0, Tf ] ensures the existence of (γ1, u̇1) such that
G(γ1, u̇1) < 0. Specifically, the condition G(γ1, u̇1) < 0 is
satisfied by u̇1(t) = 0 ∀t ∈ [0, Tf ] and γ1 sufficiently large.
The finiteness of the infimum in Equation 15 follows from
the existence of this feasible point and the fact that γ ≥ 0
for any feasible point (γ, u̇).

A simpler form of the dual optimization can be derived.
Let D ⊂ NBV 2[0, Tf ] denote functions w∗ that satisfy
TV (w∗1) = 1, w∗2 is everywhere differentiable, and

dw∗
2

dt = −
∫ Tf
t

h(τ)dτ (18)

where h(t) :=
∫ Tf
t

be−a(τ−t)dw∗1(τ). Define the functional
ψ : D → R by:

ψ(w∗) =
∫ Tf
T

d̄
a

(
1− e−a(t−T )

)
dw∗1(t)− r · TV (w∗2) (19)

ψ can be used to obtain a bound on the dual optimization.

Lemma 2: For any w∗ ∈ D,

ψ(w∗) ≤ max
z∗≥0

φ(z∗) (20)

Proof: Substituting for the gi in the dual function
(Equation 16) and re-arranging terms yields:

φ(z∗) = inf
(γ,u̇)∈Y

γ
[
1−

∫ Tf
0

dz∗1(t)−
∫ Tf

0
dz∗2(t)

]
(21)

−r
[∫ Tf

0
dz∗3(t) +

∫ Tf
0

dz∗4(t)
]

+
∫ Tf

0
u̇(t)dz∗3(t)−

∫ Tf
0

u̇(t)dz∗4(t)

+
∫ Tf

0
x(t)dz∗1(t)−

∫ Tf
0

x(t)dz∗2(t)

Define ψ̃ : NBV 2[0, Tf ]→ R by:

ψ̃(w∗) = inf
(γ,u̇)∈Y

γ [1− TV (w∗1)]− r · TV (w∗2) (22)

+
∫ Tf

0
u̇(t)dw∗2(t) +

∫ Tf
0

x(t)dw∗1(t)

Any w∗1 ∈ NBV [0, Tf ] can be decomposed as w∗1 := z∗1−z∗2
such that z∗1 and z∗2 are monotone non-decreasing functions
with TV (w∗1) = TV (z∗1)+TV (z∗2) [11]. w∗2 can be similarly
decomposed as z∗3 − z∗4 . For any w∗ ∈ NBV 2[0, Tf ] this
decomposition defines a z∗ ∈ P ∗ such that ψ̃(w∗) = φ(z∗).
Thus it follows that:

ψ̃(w∗) ≤ max
z∗≥0

φ(z∗) (23)



After substituting for x(t) and re-arranging the integrals, ψ̃
can be written as:

ψ̃(w∗) = inf
(γ,u̇)∈Y

γ [1− TV (w∗1)]− r · TV (w∗2) (24)

+
∫ Tf
T

d̄
a

(
1− e−a(t−T )

)
dw∗1(t)

+
[∫ Tf

0
u̇(t)dw∗2(t) +

∫ Tf
0

u(t)h(t)dt
]

If TV (w∗1) = 1 and dw∗
2

dt = −
∫ Tf
t

h(τ)dτ then terms
involving γ, u, and u̇ are zero. Thus ψ̃(w∗) = ψ(w∗) for
all w∗ ∈ D.

This lemma can be strengthened. It can be shown that
ψ̃(w∗) is finite if and only if w∗ ∈ D. In addition, the dual
optimization can be equivalently reformulated in terms of ψ.

max
z∗≥0

φ(z∗) = max
w∗∈D

ψ(w∗) (25)

These stronger results require technical steps that are omitted
since they are not required for the remainder of the paper.

C. Main Result

Theorem 2: Let a, b, d̄, r > 0 be given and consider the
optimal disturbance rejection problem in Equation 2. There
exists T̄ such that p(T̄ ) > 0 and p(T ) = p(T̄ ) ∀T ≥ T̄ .

Proof: Equations 8-12 define a feasible input achieving
a cost p̄ > 0. By Lemma 1, p(T ) ≤ p̄ ∀T ≥ T̄ . The proof
is completed by showing that p(T ) ≥ p̄ ∀T ≥ T̄ .

By Theorem 1 and Lemma 2, if w∗ ∈ D then ψ(w∗)
provides a lower bound on the the finite horizon optimization
(Equation 15). For any preview time T and horizon time
Tf <∞, the finite-horizon problem (Equation 15) provides
a lower bound on the infinite-horizon cost p(T ). This follows
because infinite-horizon solutions can be truncated to give
feasible solutions on [0, Tf ] without increasing the cost. Thus
ψ(w∗) ≤ p(T ) for any Tf <∞ and any w∗ ∈ D.

First consider T = T̄ and choose any Tf ≥ t3. Define w∗1
and ẇ∗2 by:

w∗1(t) =


0 if t < t2
1
2 − c if t2 ≤ t < T
−c if T ≤ t < t3
0 if t3 ≤ t

(26)

ẇ∗2(t) =


0 if t < t2
−b(1−2c)

2a

[
ea(t−t2) − 1

]
if t2 ≤ t < T

−bc
a

[
1− ea(t−t3)

]
if T ≤ t < t3

0 if t3 ≤ t

(27)

where c := 1−β
2(1−e−α) . w∗2 is obtained by integrating Equa-

tion 27 with initial condition w∗2(0) = 0. This yields a
w∗ ∈ NBV 2[0, Tf ]. It can be verified that w∗ ∈ D and
ψ(w∗) = p̄. Thus p(T̄ ) ≥ ψ(w∗) = p̄.

This w∗ can be time-shifted for the case T ≥ T̄ .
Specifically, for any T ≥ T̄ choose Tf ≥ t3 + (T − T̄ ).
Define the dual variable w̃∗(t) = 0 for t ≤ (T − T̄ ) and
w̃∗(t) = w∗(t− (T − T̄ )) otherwise. This gives ψ(w̃∗) = p̄
for any T ≥ T̄ . Hence p(T ) ≥ p̄ ∀T ≥ T̄ .

The construction of the dual variable w∗ is based on the
alignment condition

∫ Tf
0

gi,0(t)dz∗i,0(t) = 0 in Theorem 1. If
this condition holds then zi,0 can only vary, at most, on the
set of times where gi,0(t) = 0. The candidate solution x̄ only
achieves its peak magnitude at times t2, T , and t3. For this
solution, g1,0(t) = 0 only at t = t2 and t3 and g2,0(t) = 0
only at t = T . Since w∗1 = z∗1 − z∗2 , w∗1 is constructed
to be a step function with increasing jumps at t = t2 and
t3 and a decreasing jump at t = T . w∗2 can be computed
from w∗1 using Equation 18. Thus the construction of w∗

reduces to determining the values of the three discontinuous
jumps in w∗1 . The jump magnitudes can be determined from
the constraint TV (w∗1) = 1 and by imposing ẇ∗2(t) = 0
for t ≤ t2. The condition on ẇ∗2 can be inferred from the
structure of the optimal input for T > T ∗.

VI. CONCLUSIONS

This paper considered a regulation problem with dis-
turbance preview information and actuator rate constraints.
Lagrange duality theory was used to derive explicit formulas
for the optimal control action. The optimal performance as
a function of preview time was also provided. There is a
fundamental preview time beyond which no performance im-
provements are obtained. It would be interesting to compare
model predictive control with this explicit optimal control.
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