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Summary. The current practice to validate flight control laws relies on applying
linear analysis tools to assess the closed loop stability and performance characteris-
tics about many trim conditions. Nonlinear simulations are used to provide further
confidence in the linear analyses and also to uncover dynamic characteristics, e.g.
limit cycles, which are not revealed by the linear analysis. This chapter reviews non-
linear analysis techniques which can be applied to systems described by polynomial
dynamic equations. The proposed approach is to approximate the aircraft dynam-
ics using polynomial models. Nonlinear analyses can then be solved using sum-of-
squares optimization techniques. The applicability of these methods is demonstrated
with nonlinear analyses of an F/A-18 aircraft and NASA’s Generic Transport Model
aircraft. These nonlinear analysis techniques can fill the gap between linear analysis
and nonlinear simulations and hence used to provide additional confidence in the
flight control law performance.

1 Introduction

The current practice to validate flight control laws relies on applying linear
analysis tools to assess the closed loop stability and performance character-
istics about many trim conditions. Nonlinear simulations are then used to
provide further confidence in the linear analyses and also to uncover dynamic
characteristics, e.g. limit cycles, which are not revealed by the linear analysis.
This approach is well-suited for validation of current commercial and military
aircraft. However, there are drawbacks of this approach. First, the process is
rather time-consuming and requires many well-trained control and simulation
engineers. Second, most adaptive control laws lead to nonlinear, time-varying
closed loop dynamics. Thus the current practice is not applicable to validat-
ing systems with adaptive control laws. There is a need for analytical tools to
assess the performance of nonlinear feedback systems.
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This chapter reviews an approach to reformulate nonlinear analysis prob-
lems into a form which can be solved using available software tools. The
approach is applicable to nonlinear systems described by polynomial dynam-
ics and it relies on connections between sums of squares (SOS) polynomials
and positive semidefinite matrices. A polynomial p is a sum of squares if it
can be expressed as p =

∑m
i=1 f

2
i . This connection was made in the work by

Parrilo [1,2] and has led to research on computational tools for estimating re-
gions of attraction, reachability sets, input-output gains, and robustness with
respect to uncertainty. The reader is referred to [3–20] and the references con-
tained therein. There are two key ideas in this approach. First, sufficient con-
ditions for many nonlinear analysis problems can be formulated as set contain-
ment conditions involving either a Lyapunov function or a storage function.
Second, the set containment conditions can be reformulated as polynomial
non-negativity conditions using a generalized version of the S-procedure [21].
This approach will be described in more detail in the remainder of the chapter.

These nonlinear analysis techniques can fill the gap between linear analysis
and nonlinear simulations. Linearized analysis is only valid over an infinitesi-
mally small neighborhood of the equilibrium point/null input. The proposed
approach provides an improvement over linearized analysis in that the results
are valid over a provable region of the state/input space [20]. Moreover, the
nonlinear analysis tools can complement the linear analysis tools and non-
linear simulations to provide additional confidence in the flight control law
performance.

The remainder of the chapter has the following outline. The next section
provides a brief review of background material including SOS polynomials,
their connections to positive semidefinite matrices, and SOS programming
problems. Section 3 describes the formulation of several nonlinear analysis
problems in terms of optimizations with SOS constraints. This section also
provides a discussion of the computational approaches to solve these problems.
In Section 4 the proposed approach is applied to compare the performance of
two F/A-18 control laws in their ability to suppress a loss-of-control motion
known as the Falling Leaf Mode. The tools are also used to compute reachable
set estimates for NASA’s Generic Transport Model. Finally, conclusions are
given in Section 5.

2 Sum of Squares Optimization

This section provides a brief review of computational methods for sum-of-
squares polynomial optimizations. A polynomial p is a sum of squares (SOS)
if there exist polynomials {fi}

m
i=1 such that p =

∑m
i=1 f

2
i . As a simple example,

p = x2−4xy+7y2 is a sum of squares since p = f2
1+f

2
2 where f1 = (x−2y)2 and

f2 = 3y2. This section first presents the notation and background material.
Next connections between semidefinite matrices and SOS polynomials are
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described. Finally the software available to solve SOS optimization problems
is discussed.

2.1 Background

Polynomial Notation

R[x] denotes the set of all polynomials in variables {x1, . . . , xn} with real
coefficients. N denotes the set of nonnegative integers, {0, 1, . . .}, and N

n is
the set of n-dimensional vectors with entries in N. For α ∈ N

n, a monomial
in variables {x1, . . . , xn} is given by xα

.
= xα1

1 xα2

2 · · ·xαn
n . The degree of a

monomial is defined as deg xα
.
=

∑n
i=1 αi. In this notation a polynomial in

R[x] is simply a finite linear combination of monomials:

p
.
=

∑

α∈A

cαx
α =

∑

α∈A

cαx
α1

1 xα2

2 · · ·xαn

n

where cα ∈ R and A is a finite collection of vectors in N
n. Using the definition

of deg for a monomial, the degree of p is defined as deg p
.
= maxα∈A [deg xα].

A polynomial p is a sum of squares (SOS) if there exist polynomials {fi}
m
i=1

such that p =
∑m

i=1 f
2
i . The set of SOS polynomials is a subset of R[x] and

is denoted as Σ[x]. Note that if p is a sum of squares then p(x) ≥ 0 ∀x ∈
R

n. Thus p ∈ Σ[x] is a sufficient condition for a polynomial to be globally
non-negative. The converse is not true, i.e. non-negative polynomials are not
necessarily SOS polynomials. This is related to one of the problems posed by
Hilbert in 1900 [22].

Semidefinite Programming

This brief review of semidefinite programming (SDP) is based on a survey
by Vandenberghe and Boyd [23] and a monograph by Boyd, et al. [21]. A
symmetric matrix F ∈ R

n×n is positive semidefinite if xTFx ≥ 0 for all
x ∈ R

n. Positive semidefinite matrices are denoted by F � 0. A semidefinite
program is an optimization problem of the following form:

minλ cTλ
subject to: F0 +

∑r
k=1 λkFk � 0

(1)

The symmetric matrices F0, . . . , Fr ∈ R
n×n and the vector c ∈ R

r are given
data. The vector λ ∈ R

r is the decision variable and the constraint, F0 +
∑r

k=1 λkFk � 0, is called a linear matrix inequality. Equation (1) is referred
to as the primal problem. The dual associated with this primal problem is:

maxZ −Tr [F0Z]
subject to: Tr [FkZ] = ck k = 1, . . . , r

Z � 0
(2)
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where Z = ZT ∈ R
n×n is the decision variable for the dual problem. Tr [·]

denotes the trace of a matrix. This dual problem can be recast in the form
of Equation (1) and thus it is also a semidefinite program. While the primal
and dual forms may look restrictive, these formulations are quite versatile
and SDPs find applications in many problems of interest. Moreover, SDPs
are convex and quality software exists to solve these problems. In particular,
SeDuMi [24, 25] is a freely available MATLAB toolbox that simultaneously
solves the primal and/or dual forms of a semidefinite program.

In some cases, the only goal is to find a decision variable that satisfies
the linear matrix inequality constraint. These are semidefinite programming
feasibility problems. The following is an example:

Find λ1, . . . , λr ∈ R such that F0 +
r

∑

k=1

λkFk � 0 (3)

2.2 Connections Between SOS Polynomials and Semidefinite
Matrices

Theorem 1 below gives a concrete statement of the connection between sums
of squares and positive semidefinite matrices. Two facts that follow from [26]
(refer to Theorem 1 and its preceding Lemma) are required:

1. If p is a sum of squares then p must have even degree.
2. If p is degree 2d (d ∈ N) and p =

∑m
i=1 f

2
i then deg fi ≤ d ∀i.

Next, define z as the column vector of all monomials in variables {x1, . . . , xn}
of degree ≤ d: 4

z
.
=

[

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

d
n

]T
(4)

There are
(

k+n−1
k

)

monomials in n variables of degree k. Thus z is a column

vector of length lz
.
=

∑d
k=0

(

k+n−1
k

)

=
(

n+d
d

)

. If f is a polynomial in n
variables with degree ≤ d, then f is a finite linear combination of monomials
of degree ≤ d. Consequently, there exists a ∈ R

lz such that f = aT z. The
proof of the following theorem, introduced as the “Gram Matrix” method by
Choi, Lam, and Reznick [27], is included for completeness. This result can be
found more recently in [28].

Theorem 1. Suppose p ∈ R[x] is a polynomial of degree 2d and z is the lz×1
vector of monomials defined in Equation (4). Then p ∈ Σ[x] if and only if

there exists a symmetric matrix Q ∈ R
lz×lz such that Q � 0 and p = zTQz.

4 Any ordering of the monomials can be used to form z. In Equation (4), xα precedes
xβ in the definition of z if:

deg xα
< deg xβ or deg xα = deg xβ and the first nonzero entry of α− β is > 0



Title Suppressed Due to Excessive Length 5

Proof:

(⇒) If p is a SOS, then there exists polynomials {fi}
m
i=1 such that p =

∑m
i=1 f

2
i . As noted above, deg fi ≤ d for all i. For each fi there exists a vector

ai ∈ R
lz such that fi = aTi z. Define the matrix A ∈ R

lz×m whose ith column
is ai and define Q

.
= AAT � 0. Then p = zTQz.

(⇐) Assume there exists Q = QT ∈ R
lz×lz such that Q � 0 and p = zTQz.

Define m
.
= rank(Q). There exists a matrix A ∈ R

lz×m such that Q = AAT .
Let ai denote the i

th column of A and define the polynomials fi
.
= zTai. Then

p = zT (AAT )z =
∑m

i=1 f
2
i .

�

2.3 Software for SOS Optimizations

A sum-of-squares program is an optimization problem with a linear cost and
SOS constraints on the decision variables [29]:

min
u∈Rn

c1u1 + · · ·+ cnun (5)

subject to:

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un ∈ Σ[x] k = 1, . . .Ns

The polynomials {ak,j} are given as part of the optimization data and u ∈ R
n

are decision variables. In Section 3 it will be shown that many nonlinear
analysis problems can be posed within this optimization framework.

Theorem 1 provides the link to convert an SOS program into a semidefinite-
programming problem. For example, the constraint ak,0(x)+ak,1(x)u1+ · · ·+
ak,n(x)un ∈ Σ[x] can be equivalently written as:

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un = zTQz (6)

Q � 0 (7)

Q is a new matrix of decision variables that is introduced when an SOS con-
straint is converted to an LMI constraint. Equating the coefficients of zTQz
and ak,0(x)+ak,1(x)u1+ · · ·+ak,n(x)un imposes linear equality constraints on
the decision variables u and Q. Thus, Equation (6) can be rewritten as a set
of linear equality constraints on the decision variables. All SOS constraints in
Equation (5) can be replaced in this fashion with linear equality constraints
and LMI constraints. As a result, the SOS program in Equation (5) can be
written in the SDP dual form (Equation (2)).

While this may appear cumbersome, there is software available to perform
the conversion. For example, SOSTOOLS [29], Yalmip [30], and SOSOPT [31]
are freely available MATLAB toolboxes for solving SOS optimizations. These
packages allow the user to specify the polynomial constraints using a symbolic
toolbox. Then they convert the SOS optimization into an SDP which is solved
with SeDuMi [24, 25] or another freely available SDP solver. Finally these
toolboxes convert the solution of the SDP back to a polynomial solution.
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A drawback is that the size of the resulting SDP grows rapidly if the
SOS optimization involves polynomials with many variables and/or high de-
gree. For a generic degree 2d polynomial p in n variables, the Gram matrix
representation involves lz :=

(

n+d
d

)

monomials. An SOS constraint on p is
enforced via a positive semidefinite constraint on the lz × lz Gram matrix
Q. For example, for a generic degree 2d = 8 polynomial in n = 8 variables,
the Gram matrix has dimension lz = 495. The size of this positive semidef-
inite constraint is at or near the limits of current semidefinite programming
solvers. While various techniques can be used to exploit the problem struc-
ture [32], this computational growth is a generic trend in SOS optimizations.
Some methods which use simulation to ease this computational growth have
been developed [16–18].

3 Nonlinear Analysis Tools

Many nonlinear analysis problems can be formulated as sum of squares pro-
gramming problems. This connection was made in the work by Parrilo [1, 2]
and has led to research on computational tools for estimating regions of at-
traction, reachability sets, input-output gains, and robustness with respect
to uncertainty. The reader is referred to [3–20] and the references contained
therein. The key idea is that sufficient conditions for these nonlinear analysis
problems can typically be formulated as set containment conditions involv-
ing either a Lyapunov function or a storage function. The set containment
conditions can be reformulated as polynomial non-negativity conditions using
a generalized version of the S-procedure [21]. These problems can then be
solved as SOS programs since SOS polynomials are globally non-negative. In
this section this approach is described in more detail for region of attraction
estimation, L2 − L2 input-output gain calculation, and estimation of reach-
ability sets with L2 bounded inputs. Analysis problems with different signal
norms and/or with model uncertainty are described in the references given
above. Software to perform all analyses described in this section is available
at [31].

3.1 Region of Attraction Estimation

This section describes the computational method to estimate a region of at-
traction (ROA). Consider an autonomous nonlinear dynamical system of the
form:

ẋ = f(x), x(0) = x0 (8)

where x ∈ R
n is the state vector and f : Rn → R

n is a multivariable polyno-
mial. Assume that x = 0 is a locally asymptotically stable equilibrium point.
Formally, the ROA is defined as:

R =
{

x0 ∈ R
n : If x(0) = x0 then lim

t→∞
x(t) = 0

}

(9)
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Computing the exact ROA for nonlinear dynamical systems is difficult. There
has been significant research devoted to estimating invariant subsets of the
ROA [1, 3, 4, 15, 33–37]. The approach taken here is to restrict the search to
ellipsoidal approximations of the ROA. Given an n× n matrix N = NT > 0,
define the shape function p(x) := xTNx and level set Eβ := {x ∈ R

n : p(x) ≤
β}. p(x) defines the shape of the ellipsoid and β determines the size of the
ellipsoid Eβ . The choice of p is problem dependent and reflects dimensional
scaling information as well as the importance of certain directions in the state
space. Given the shape function p, the problem is to find the largest ellipsoid
Eβ contained in the ROA:

β∗ =maxβ (10)

subject to: Eβ ⊂ R

Determining the best ellipsoidal approximation to the ROA is still a challeng-
ing computational problem. Instead, lower and upper bounds for β∗ satisfying
β ≤ β∗ ≤ β̄ are computed. If the lower and upper bounds are close then the
largest ellipsoid level set, defined by Equation (10), has been approximately
computed.

The upper bounds are computed via a search for initial conditions leading
to divergent trajectories. If limt→∞ x(t) = +∞ when starting from x(0) =
x0,div then x0,div /∈ R. If β̄div := p(x0,div) then Eβ̄div

6⊂ R which implies

β∗ ≤ β̄div and Eβ∗ ⊆ Eβ̄div
. An exhaustive Monte Carlo search is used to find

the tightest possible upper bound on β∗. Specifically, random initial conditions
are chosen starting on the boundary of a large ellipsoid: Choose x0 satisfying
p(x0) = βtry where βtry is sufficiently large that βtry ≫ β∗. If a divergent
trajectory is found, the initial condition is stored and an upper bound on
β∗ is computed. βtry is then decreased by a factor of 0.995 and the search
continues until a maximum number of simulations is reached. There is a trade-
off involved in choosing the factor 0.995. A smaller factor results in a larger
reduction of the upper bound for each divergent trajectory but it typically
limits the accuracy of the upper bound. No divergent trajectories can be
found when βtry < β∗ and this roughly limits the upper bound accuracy to
β∗/(factor). The value of 0.995 is very close to one and was chosen to obtain
an accurate upper bound on β∗. β̄MC will denote the smallest upper bound
computed with this Monte Carlo search.

The lower bounds are computed using Lyapunov functions and recent re-
sults connecting sums-of-squares polynomials to semidefinite programming.
Computing these bounds requires the vector field f(x) in Equation (8) to
be a polynomial function. The computational algorithm is briefly described
here and full algorithmic details are provided elsewhere [5–7,10,14,16,18,19].
Lemma 1 is the main Lyapunov theorem used to compute lower bounds on
β∗. This specific lemma is proved by [14] but very similar results are given in
textbooks, e.g. by [38].
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Lemma 1. If there exists γ > 0 and a polynomial V : Rn → R such that:

V (0) = 0 and V (x) > 0 ∀x 6= 0 (11)

Ωγ := {x ∈ R
n : V (x) ≤ γ} is bounded. (12)

Ωγ ⊂ {x ∈ R
n : ∇V (x)f(x) < 0} ∪ {0} (13)

then for all x ∈ Ωγ , the solution of Equation (8) exists, satisfies x(t) ∈ Ωγ

for all t ≥ 0, and Ωγ ⊂ R.

A function V , satisfying the conditions in Lemma 1 is a Lyapunov func-
tion and Ωγ provides an estimate of the region of attraction. If x = 0 is
asymptotically stable, a linearization can be used to compute a Lyapunov

function. Let A := ∂f
∂x

∣

∣

∣

x=0
be the linearization of the dynamics about the ori-

gin and compute P > 0 that solves the Lyapunov equation ATP +PA = −I.
VLIN (x) := xTPx is a quadratic Lyapunov function that satisfies the condi-
tions of Lemma 1 for sufficiently small γ > 0. VLIN can be used to compute
a lower bound on β∗ by solving two maximizations:

γ∗ :=max γ (14)

subject to: Ωγ ⊂ {x ∈ R
n : ∇VLIN (x)f(x) < 0}

β :=maxβ (15)

subject to: Eβ ⊂ Ωγ∗

The first maximization finds the largest level set of VLIN , Ωγ∗ , such that
Lemma 1 can be used to verify Ωγ∗ ⊆ R. The second maximization finds the
largest ellipsoid Eβ contain within Ωγ∗ .

The set containment constraints can be replaced with a sufficient condition
involving non-negative functions [14]. The next Lemma provides this sufficient
condition. This lemma is a generalization of the S-procedure which has been
frequently applied in control theory [21]. The function s appearing in the
Lemma is called a multiplier.

Lemma 2. Define two sets A := {x ∈ Rn : fA(x) ≥ 0} and B := {x ∈
Rn : fB(x) ≥ 0}. If there exists a function s(x) ≥ 0 ∀x such that fB(x) −
fA(x)s(x) ≥ 0 ∀x then A ⊆ B.

Proof:

Assume there exists a function s(x) ≥ 0 ∀x such that fB(x)−fA(x)s(x) ≥ 0
∀x. Take any x ∈ A. Then fB(x) ≥ fA(x)s(x) ≥ 0. Thus x is also in B. �

The Positivstellensatz is a result from algebraic geometry that can be
used to construct necessary and sufficient algebraic conditions for this set
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containment condition (See [1, 2] and the references contained therein). In
addition, more general set containment constraints, e.g. sets with nonstrict
inequalities, can be handled. The condition in Lemma 2 can be interpreted as
a simplification of the most general Positivstellensatz conditions. This simple
condition will be used in the remainder of the paper since it typically requires
much less computation than the most general Positivstellensatz conditions.

Applying this Lemma to Eβ ⊂ Ωγ∗ in Optimization ((15)) leads to:

β := max
β, s(x)

β (16)

subject to: s(x) ≥ 0 ∀x

− (β − p(x)) s(x) + (γ∗ − VLIN (x)) ≥ 0 ∀x

The function s(x) is a decision variable of the optimization, i.e. its coeffi-
cients are decision variables that are computed as part of the optimization.
It is straight-forward to show that the two non-negativity conditions in Op-
timization ((16)) are a sufficient condition for the set containment condition
in Optimization ((15)). If s(x) is restricted to be a polynomial then both
constraints involve the non-negativity of polynomial functions. Restricting a
polynomial to be SOS is a sufficient condition for the polynomial to be non-
negative. Replacing the non-negativity conditions in Optimization ((16)) with
SOS constraints leads to an SOS optimization problem:

β :=max β (17)

subject to: s(x) ∈ Σ[x]

− (β − p(x))s(x) + (γ∗ − VLIN (x)) ∈ Σ[x]

As described in Section 2 there is freely available software to solve such SOS
optimizations. β

LIN
will denote the lower bound obtained from Optimiza-

tion ((17)) using the quadratic Lyapunov function obtained from linearized
analysis.

Unfortunately, β
LIN

is usually orders of magnitude smaller than the up-

per bound β̄MC . Better lower bounds β can be computed by also optimizing
the choice of the Lyapunov function. This leads to an optimization problem
that is bilinear in the Lyapunov function and a multiplier function. Specifi-
cally, the SOS constraint that arises due to the set containment condition in
Equation (14) is:

−(γ − V )s2 − (∇V · f + l2) ∈ Σ[x] (18)

where s2 is another SOS multiplier function and and l2(x) = −ǫ2x
Tx where ǫ2

is a small positive constant on the order of 10−6. If both V and s2 are allowed
to vary then the term V s2 in this constraint will be bilinear in the unknown
coefficients of V and s2. Thus optimizing over V and the set containment
multipliers is not a convex problem due to this bilinearity and hence heuristic
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solution methods are required. Several methods to compute better Lyapunov
functions exist, including V -s iterations [5–7, 10], bilinear optimization [14],
and the use of simulation data [16, 18]. The V -s iteration is now described
in more detail. The Lyapunov function V (x) in the iteration is initialized
with the linearized Lyapunov function VLIN . The iteration also uses functions
l1(x) = −ǫ1x

Tx and l2(x) = −ǫ2x
Tx where ǫ1 and ǫ2 are small positive

constants on the order of 10−6. The V -s iteration algorithm steps are provided
below.

1. γ Step: Hold V fixed and solve for s2 and γ∗

γ
∗ := max

s2∈Σ[x],γ
γ s.t. − (γ − V )s2 − (∇V · f + l2) ∈ Σ[x]

2. β Step: Hold V , γ∗ fixed and solve for s1 and β

β := max
s1∈Σ[x],β

β s.t. − (β − p)s1 + (γ∗
− V ) ∈ Σ[x]

3. V step: Hold s1, s2, β, γ
∗ fixed and solve for V satisfying:

− (γ∗
− V )s2 − (∇V · f + l2) ∈ Σ[x]

− (β − p)s1 + (γ∗
− V ) ∈ Σ[x]

V − l1 ∈ Σ[x], V (0) = 0

4. Repeat as long as the lower bound β continues to increase.

Software and additional documentation on the V -s iteration is provided at
[31]. The basic idea of the iteration is to avoid the bilinearity in V s2 by holding
either s2 or V fixed. Each step of this iteration is a linear SOS optimization
that can be solved with available software. In the V -s iteration, the Lyapunov
functions are allowed to have polynomial degree greater than two. Increasing
the degree of the Lyapunov function will improve the lower bound at the
expense of computational complexity. The computational time grows rapidly
with the degree of the Lyapunov function. Simulation data can also be used
to construct a good initial candidate V for this iteration [17].

The V step requires additional discussion. An interior-point solver is used
to find a feasible solution to the LMI feasibility problem in the V step. The
Lyapunov function V that is used in the γ and β steps will be feasible for the
constraints in the V step. Thus it possible for the solver to simply return the
same Lyapunov function that was used in the γ and β steps. While this is
possible, it typically happens that the solver returns a different V that allows
both γ and β to be increased at the next iteration. An informal justification for
this behavior is now given. The constraint −(γ∗−V )s2−(∇V · f + l2) ∈ Σ[x]
is active after the γ step. In the V step an interior point method obtains a new
feasible V by computing decision variables that are at the analytic center of
the set specified by the LMI constraints. The V step typically returns a feasible
V that is “pushed away” from the constraints. Loosely, the new feasible V

satisfies −(γ∗ − V )s2 −
(

∇V · f + l̃2

)

∈ Σ[x]. where l̃2 ≥ l2. l̃2 ≥ l2 means
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the next γ step has freedom to increase γ while still satisfying the constraint
with l2. A more formal theory for the behavior of this feasibility step is still
an open question.

3.2 Input-Output Gains

This section describes a computational method to compute L2 input-output
gains. More details on this problem as well as computing gains with other
signal norms can be found in [13,19,20]. Consider nonlinear dynamical systems
of the form:

ẋ = f(x, u) (19)

y = h(x)

where x ∈ R
nx is the state vector, u ∈ R

nu is the input, and y ∈ R
ny is

the output. Assume f is a nx × 1 polynomial function of x and u such that
f(0, 0) = 0. Also assume that h is an ny × 1 polynomial function of x such
that h(0) = 0. Denote this system by S.

Define the L2 norm of a signal as ‖u‖2 :=
√

∫∞

0
uT (t)u(t)dt. u is an L2

signal if this integral is finite. The L2-L2 input-output gain of the system

is defined as ‖S‖ := supu∈L2,‖u‖2 6=0
‖y‖2

‖u‖2

. A “local” input-output gain of the

system can also be defined as ‖S‖R := supu∈L2,0<‖u‖2≤R
‖y‖2

‖u‖2

. For linear

systems the magnitude of the output scales proportionally with the magnitude

of the input and hence the ratio ‖y‖2

‖u‖2

does not depend on ‖u‖2. Thus ‖S‖R =

‖S‖ for all R > 0. For a nonlinear system, the local gain depends on the
magnitude of the input and hence ‖S‖R and ‖S‖ need not be equal. The
class of possible inputs increases with increasing values of R and so ‖S‖R is
a monotonically increasing function of R and ‖S‖R ≥ ‖S‖ for all R > 0.

Lemma 3 provides a sufficient condition for the local L2-L2 input-output
gain to be less than γ. This specific lemma can be found in [13, 19, 20] but
similar results are given in textbooks [38, 39].

Lemma 3. If there exists a γ > 0 and a continuously differentiable function

V : Rn → R such that:

• V (0) = 0 and V (x) ≥ 0 ∀x ∈ R
nx

• {(x, u) ∈ R
nx+nu : V (x) ≤ R2} ⊆ {(x, u) ∈ R

nx+nu : ∂V
∂x
f(x, u) ≤

uTu− γ−2yT y}

then x(0) = 0 and ‖u‖2 ≤ R implies ‖y‖2 ≤ γ‖u‖2.

Proof:

A sketch of the proof is provided. Assume that ∂V
∂x
f(x, u) ≤ uTu−γ−2yT y

holds along the trajectories of the system S from time 0 to T . Integrating with
respect to time yields:
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V (x(T ))− V (x(0)) ≤

∫ T

0

(

uTu− γ−2yT y
)

dt (20)

If x(0) = 0 and ‖u‖2 ≤ R then Equation (20) implies that V (x(T )) ≤ ‖u‖22 ≤
R2. Thus the state trajectories satisfy V (x(T )) ≤ R2 ∀T ≥ 0 and it is valid to
assume ∂V

∂x
f(x, u) ≤ uTu−γ−2yTy holds along the system trajectories. More-

over, Equation (20) implies that
∫ T

0

(

yT y
)

dt ≤ γ2
∫ T

0

(

uTu
)

dt since V (0) = 0
and V (x) ≥ 0 ∀x. ‖y‖2 ≤ γ‖u‖2 follows by letting T → ∞. �

Lemma 3 provides a sufficient condition to prove ‖S‖R ≤ γ in terms
of a storage function, V . This lemma involves one non-negativity condition
on the storage function and one set containment condition. The generalized
S-procedure (Lemma 2) can again be used to convert the set containment
condition into a function non-negativity constraint. This leads to the following
optimization for computing upper bounds on the local L2-L2 gain:

γ∗ := min
V,s,γ

γ (21)

subject to:

s(x, u) ∈ Σ[x, u], V (x) ∈ Σ[x], V (0) = 0 (22)

uTu− γ−2h(x)Th(x)−∇V · f(x, u)− s(x, u)
(

R2 − V (x)
)

∈ Σ[x, u]
(23)

The constraint in Equation (23), if satisfied, ensures that {(x, u) ∈ R
nx+nu :

V (x) ≤ R2} ⊆ {(x, u) ∈ R
nx+nu : ∂V

∂x
f(x, u) ≤ uTu − γ−2yT y}. Since

SOS polynomials are non-negative everywhere this follows by applying the
generalized S-procedure in Lemma 2. By Lemma 3, ‖S‖R ≤ γ for any γ for
which the constraints are valid. γ∗ is the smallest upper bound on ‖S‖R which
can be found with this sufficient condition.

This optimization problem involves SOS constraints on s(x, u) and V (x)
(Equation (22)). The coefficients of the polynomials s(x, u) and V (x) are deci-
sion variables in the optimization. The constraint in Equation (23) is an SOS
constraint on a polynomial of x and u. Unfortunately this constraint is bilin-
ear in the decision variables since it involves a term of the form s(x, u) ·V (x).
This problem is nonconvex in the decision variables and again heuristics are re-
quired. This can be solved directly using bilinear matrix inequality solvers [17].
Alternatively, a V -s iteration can be formulated for this input-output gain
problem. This iteration can be initialized with V as the quadratic storage
function obtained from linear analysis [6]. Simulation data can also be used
to construct a good initial candidate V for this iteration [17].

3.3 Reachable Sets

Again consider nonlinear dynamical systems, S, in the form of Equation (19).
The reachable set G(γ) is the set of states that can be reached from x(0) = 0
with an input satisfying ‖u‖22 ≤ γ. Formally,
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G(γ) := {xf ∈ R
n : ∃T, u(t) defined on [0, T ] s.t. ||u||22 ≤ γ and x(T ) = xf}

(24)

The reachable set depends on the input energy to the system. Lemma 4 pro-
vides a sufficient condition for computing an outer bound on G(γ) [14, 19].
Similar reachable set results for linear systems can be found in [21].

Lemma 4. If there exists a γ > 0 and a continuously differentiable function

V : Rn → R such that:

• V (0) = 0 and V (x) ≥ 0 ∀x ∈ R
nx

• {(x, u) ∈ R
nx+nu : V (x) ≤ γ} ⊆ {(x, u) ∈ R

nx+nu : ∇V ·f(x, u) ≤ uTu}

then G(γ) ⊆ {x : V ≤ γ} := Ωγ

As in the previous sections, the generalized S-procedure can be used to
convert the set containment constraint into an SOS constraint. Also, an el-
lipsoidal approximation of Reach(γ) is easier to visualize and understand. As
in the ROA estimation problem, a shape function p(x) := xTNx and level
set Eβ := {x ∈ R

n : p(x) ≤ β} can be introduced. The problem is then to
find the smallest ellipsoid Eβ that contains G(γ). Eβ then provides an outer
approximation for the reachable set. This leads to the following optimization
problem:

β∗ := min
V,s,γ,β

β (25)

subject to:

s(x, u) ∈ Σ[x, u], V (x) ∈ Σ[x], V (0) = 0

(β − p)− (γ − V )s2 ∈ Σ[x]

− ((∇V · f − uTu) + (γ − V )s1) ∈ Σ[x, u]

Again this problem is bilinear due to the V s1 term in the last constraint.
A V -s iteration can be used to compute an ellipsoidal bound Eβ on G(γ) for
any value of γ.

3.4 Summary of Approach

The computational tools for other nonlinear problems (estimating regions of
attraction, reachability sets, input-output gains with other signal norms, and
robustness with respect to uncertainty) all essentially follow the same steps
as used in the previous sections. Specifically, a Lyapunov or storage func-
tion type theorem is used to derive a sufficient condition for the nonlinear
system to have a particular performance/stability property. Lyapunov and
storage functions are naturally restricted to be positive definite and this can
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be enforced using SOS constraints. Additional conditions can typically be for-
mulated as set containment conditions. These set containment conditions can
then be converted into function non-negativity constraints using the gener-
alized S-procedure. Since SOS polynomials are non-negative everywhere, the
non-negativity constraints can be relaxed and written as SOS constraints. In
many cases this sequence of constraint reformulations leads to either a linear
or bilinear SOS programming problem which yields a bound on a particular
systems property (e.g. inner approximations to regions of attraction or upper
bounds on system gains). Bilinear problems can be solved using one of the
methods described above. Simulations or gradient searches can be used to
compute dual bounds (e.g. outer approximations to regions of attraction or
lower bounds on system gains). For example, lower bounds on the local gain
can be computed using a power method derived for a finite horizon optimal
control problem [40]. This approach provides an improvement over linearized
analysis in that the results are valid over a provable region of the state/input
space rather than for an infinitesimally small neighborhood of the equilibrium
point/null input. Further details on this statement can be found in [20].

4 Examples

This section performs nonlinear analyzes for an F/A-18 and NASA’s Generic
Transport Model. The software used to perform these analyses is available
at [31].

4.1 ROA Estimation for an F/A-18

The US Navy F/A-18 A/B/C/D Hornet aircraft with the original baseline
flight control law experienced a number of out-of-control flight departures
since the early 1980’s. Many of these incidents have been described as a falling
leaf motion of the aircraft [41]. The falling leaf motion has been studied exten-
sively to investigate the conditions that lead to this behavior. The complex
dynamics of the falling leaf motion and lack of flight data from the depar-
ture events pose a challenge in studying this motion. An extensive revision
of the baseline control law was performed by NAVAIR and Boeing in 2001
to suppress departure phenomenon, improve maneuvering performance and
to expand the flight envelope [41]. The revised control law was implemented
on the F/A-18 E/F Super Hornet aircraft after successful flight tests. These
flight tests included aggressive maneuvers that demonstrated successful sup-
pression of the falling leaf motion by the revised control law. This section uses
nonlinear region of attraction estimation to compare the closed-loop stability
properties of the baseline and revised control laws. Additional details on this
analysis can be found in [42].

The falling leaf motion of an aircraft can be characterized as large, cou-
pled out-of-control oscillations in the roll (p) and yaw (r) direction combined
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with large fluctuations in angle-of-attack (α) and sideslip (β) [41, 43]. Fig-
ure 1 shows the main characteristics of the falling leaf motion [41, 43]. This
out-of-control mode exhibits periodic in-phase roll and yaw rates with large
amplitude fluctuations about small or zero mean. The roll and yaw rate gen-
eration is mainly due to the large sideslip oscillation. During large sideslip
and angle-of-attack motion, the dihedral effect (roll caused by sideslip) of the
aircraft wings becomes extremely large and the directional stability becomes
unstable. The like-signs of these two values are responsible for the in-phase mo-
tion. The roll rate motion can easily reach up to ±120◦/s, while the yaw rate
motion can fluctuate around ±50◦/s. During this motion, the value of angle-
of-attack can reach up to ±70◦ with sideslip oscillations between ±40◦ [43].
The required aerodynamic nose-down pitching moment is exceeded by the
pitch rate generation due to the inertial coupling of the in-phase roll and yaw
rates. The reduction in pitching moment is followed by a reduction in normal
force, eventually causing a loss of lift in the aircraft. A distinguishing feature
of the falling leaf motion is that α vs. β plot produces a mushroom shape
curve as seen in Figure 1. For more details on the falling leaf motion, readers
are encouraged to refer to the papers by Jaramillo & Ralston [43] and Heller,
David & Holmberg [41].

Fig. 1. Characteristic Behavior of Falling Leaf Motion

The F/A-18 Hornet is a high performance, twin engine fighter aircraft
built by the McDonnell Douglas (currently known as the ‘Boeing’) Corpo-
ration. Each engine is a General Electric, F404-GE-400 rated at 16,100-lbf
of static thrust at sea level. The aircraft features a low sweep trapezoidal
wing planform with 400 ft2 area and twin vertical tails [44]. Table 1 lists the
aerodynamic reference and physical parameters of the aircraft. The conven-
tional F/A-18 Hornet has five pairs of control surfaces: stabilators, rudders,
ailerons, leading edge flaps, and trailing edge flaps. However, only the sym-
metric stabilator, differential aileron and differential rudder are considered as
control effectors for the analysis performed in this section. Longitudinal con-
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trol or pitch control is provided by the symmetric deflection of the stabilators.
Deflection of differential ailerons is used to control the roll or lateral direc-
tion, while differential deflection of rudders provide directional or yaw control.
There is a coupling between roll and yaw dynamics.

Table 1. Aircraft Parameters

Wing Area, Sref 400 ft2

Mean Aerodynamic Chord (c) 11.52 ft
Wing Span, bref 37.42 ft

Weight 33310 lbs
Ixx 23000 slug-ft2

Iyy 151293 slug-ft2

Izz 169945 slug-ft2

Ixz -2971 slug-ft2

The conventional 6DOF aircraft equations of motion are described in Sten-
gel [45], Cook [46], and Napolitano and Spagnuolo [47] are primarily driven
by the aerodynamic forces and moments acting on the aircraft. Many flight
experiments have been performed to estimate the stability and control deriva-
tives of the F/A-18 High Alpha Research Vehicle (HARV) [48–51]. The F/A-18
HARV has similar aerodynamic characteristics as the F/A-18 Hornet [52] with
the exception of the F/A-18 HARV having thrust vectoring control. Hence,
the F/A-18 HARV aerodynamic data are used to construct the aerodynamic
coefficient data.

The nonlinear region of attraction analysis requires the aircraft dynamics
to be described via a polynomial model. The computational burden of SOS
optimization also restricts the model to cubic degree polynomials. Hence, a
six state cubic degree polynomial model of the F/A-18 aircraft for roll-coupled
maneuvers [53] was constructed for the region of attraction estimation. The
polynomial model captures the key characteristics of the full 6 DOF model.
This polynomial model is derived based on the characteristics of the falling
leaf motion. During the falling-leaf motion, the velocity is usually on the
order of 250 ft/s [43]. Hence velocity is assumed to be constant and equal
to 250 ft/s in the construction of the 6-state polynomial model. Aggressive
maneuvers, like bank turns, are more likely to put the aircraft in the falling
leaf motion compared to straight and level flight. Hence, steady bank turn
maneuvers with zero climb rate (θ̇ = 0) are considered. As a result two other
states, pitch angle (θ) and yaw angle (ψ), can be assumed constant in the
six state model. Thrust effects in the sideslip direction are also neglected.
Small angle approximations are used for the trigonometric terms in the full
6 DOF model to derive a polynomial representation of the aircraft dynamics.
Finally, a polynomial least squares fit of the aerodynamic data over a gridded
α - β space of −20◦ ≤ β ≤ 20◦, and −10◦ ≤ α ≤ 40◦ is performed to
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obtain the cubic polynomial model. Further details of this polynomial model
approximation are provided in [42].

The baseline controller structure for the F/A-18 aircraft closely follows
the Control Augmentation System (CAS) presented in the report by Buttrill,
Arbuckle, and Hoffler [44]. The revised F/A-18 flight control law is described
in the papers by Heller, David, & Holmberg [41] and Heller, Niewoehner, &
Lawson [54]. The objective of the revised flight control law was to improve
the departure resistance characteristics and full recoverability of the F/A-18
aircraft without sacrificing the maneuverability of the aircraft [41]. The signif-
icant change in the revised control law was the additional sideslip (β in rad)
and sideslip rate (β̇ in rad/s) feedback to the aileron actuators. The sideslip
feedback plays a key role in increasing the lateral stability in the 30−35◦ range
of angle-of-attack. The sideslip rate feedback improves the lateral-directional
damping. Hence, sideslip motion is damped even at high angles-of-attack. This
feature is key to eliminating the falling leaf mode, which is an aggressive form
of in-phase Dutch-roll motion. There are no direct measurements of sideslip
and sideslip rate. Therefore, these signals are estimated for feedback. The
sideslip and the sideslip rate feedback signals are computed based on already
available signals from the sensors and using the kinematics of the aircraft.

The remainder of this section compares the regions of attraction for
the baseline and revised control laws. The V -s iteration described in Sec-
tion 3.1 is used to compute these ROA estimates. The analysis is per-
formed for the F/A-18 aircraft operating at a steady (β = 0) bank turn
of φ = 60o. This ROA analysis uses the cubic polynomial models for 60o

steady bank turn maneuver. The ordering of the state vector is xT :=
[β, p, r, φ, α, q, xc]. The shape matrix for the ellipsoid is chosen to be
N := (5)2 · diag(5o, 20o/s, 5o/s, 45o, 25o, 25o/s, 25o)−2. This roughly scales
each state by the maximum magnitude observed during flight conditions. The
factor of (5)2 normalizes the largest entry of the matrix N to be equal to
one. The ellipsoid, xTNx = β, defines the set of initial conditions for which
the control law will bring the aircraft back to its trim point. This provides
valuable information about the closed-loop stability characteristics. If the air-
craft is perturbed due to a wind gust or other upset condition but remains in
the ellipsoid then the control law will recover the aircraft and bring it back to
trim. In other words the ellipsoid defines a safe flight envelope for the F/A-18.
Hence, the ROA provides a measure of how much perturbation the aircraft
can tolerate before it becomes unstable. The value of the β can be thought of
as ’nonlinear stability margin’.

As previously mentioned, increasing the degree of the Lyapunov function
will improve the lower bound estimate of the ROA. ROA bounds were first
computed using the quadratic Lyapunov function from linearized analysis.
This method has been proposed for validation of flight control laws [55].
The bound β

LIN
= 8.05 × 10−5 was computed for the baseline control law

and β
LIN

= 1.91 × 10−4 for the revised control. Unfortunately these lower
bounds are not particularly useful since they are two to three orders of mag-
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nitude smaller than the corresponding upper bounds computed via Monte
Carlo search. Next, lower bounds were computed with the V -s iteration us-
ing quadratic (degree 2) and quartic (degree 4) Lyapunov functions. The V -
s iteration with quadratic Lyapunov functions gives β

2
= 3.45 × 10−3 for

the baseline control law and β
2
= 9.43 × 10−3 for the revised control law.

These bounds took several minutes to compute. The V -s iteration with quar-
tic Lyapunov functions is β

4
= 1.24 × 10−2 for the baseline control law and

β
4
= 2.53× 10−2 for the revised control law. The bounds for the baseline and

revised controllers took seven and five hours, respectively, to compute. These
bounds are significantly larger than the bounds obtained for the linearized
Lyapunov function. A sixth order Lyapunov function would lead to improved
lower bounds but with a significant increase in computation time.

The Monte Carlo search, described in Section 3.1, was used to compute
an upper bound on the ROA estimate. A search was performed with 2 million
simulations each for the baseline and revised control laws. The baseline control
law provides an upper bound of β̄MC = 1.56 × 10−2 whereas the revised
control law provides an upper bound of β̄MC = 2.95× 10−2. The search also
returns an initial condition x0 on the boundary of the ellipsoid, i.e. p(x0) =
xT0Nx0 = β̄MC , that causes the system to go unstable. Hence, the value of
the β̄MC provides an upper bound of the ROA for the F/A-18 aircraft. This
is complementary information to that provided by the Lyapunov-based lower
bounds. The Monte Carlo search returned the following initial condition for
the closed system with the baseline control law:

x0 = [−1.1206o, −12.3353o/s, 1.5461o/s, −5.8150o, 28.9786o, 9.9211o/s, 0]T

This initial condition satisfies p(x0) = 1.56× 10−2 and the closed-loop system
with the baseline control law diverges from this initial condition. Decreasing
the initial condition slightly leads to a stable response. For the revised control
law the Monte Carlo search returned the following initial condition:

x0 = [0.3276o, −8.0852o/s, 2.8876o/s, −2.1386o, 44.8282o, 9.9829o/s, 0]
T

This initial condition satisfies p(x0) = 2.95× 10−2 an the closed-loop system
with the revised control law diverges from this initial condition. Decreasing
the initial condition slightly leads to a stable response.

The lower and upper bounds on β∗ can be visualized by plotting slices of
the ellipsoidal approximation. Figures 2 and 3 show slices of the inner/outer
approximations of the best ellipsoidal ROA approximation for both the base-
line and revised control laws. The slices are in the α-β (Figure 2) and p-r
(Figure 3) planes. The solid lines show the slices of the inner bounds obtained
from quartic Lyapunov analysis. Every initial condition within the solid el-
lipses will return to the trim condition (marked as a ’+’). The dashed lines
show the slices of the outer bounds obtained from Monte Carlo analysis. There
is at least one initial condition on the outer ellipsoid which leads to a diver-
gent trajectory. The initial condition leading to a divergent trajectory does not
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necessarily lie on the slice of the ellipsoid shown in the figure. The closeness
of the inner and outer ellipsoids means that we have solved, for engineering
purposes, the best ROA ellipsoid problem. Recall the aerodynamic coefficients
were fitted over a gridded α - β space of−20◦ ≤ β ≤ 20◦, and−10◦ ≤ α ≤ 40◦.
Hence, the model is not valid over the entire region shown in this figure. The
lower bounds for the revised controller are larger than the upper bounds for
the baseline controller. Thus the ROA for the revised controller is provably
larger than the ROA for the baseline controller.

Fig. 2. ROA Estimates in α-β plane for Baseline and Revised Flight Control Law
around Steady 60o Bank Turn

4.2 Reachable Set Estimation for NASA’s GTM

NASA’s Generic Transport Model (GTM) is a remote-controlled 5.5 percent
scale commercial aircraft [56, 57]. The main GTM aircraft parameters are
provided in Table 2. NASA constructed a high fidelity 6 degree-of-freedom
Simulink model of the GTM with the aerodynamic coefficients described as
look-up tables. This section describes the construction of a polynomial model
for the longitudinal dynamics of the GTM. This polynomial model is then used
to estimate the reachable set for the open-loop longitudinal dynamics. Details
on the polynomial modeling are provided in [58]. [59] provides additional
motivation for using reachable sets for estimating the safe flight envelope for
an aircraft.
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Fig. 3. ROA Estimates in p-r for Baseline and Revised Flight Control Law around
Steady 60o Bank Turn

Table 2. Aircraft and Environment Parameters

Wing Area, S 5.902 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.542 slugs

Pitch Axis Moment of Inertia, Iyy 4.254 slugs-ft2

Air Density, ρ 0.002375 slugs/ft3

Gravity Constant, g 32.17 ft/s2

The longitudinal dynamics of the GTM are described by a standard four-
state longitudinal model [60]:

V̇ =
1

m
(−D −mg sin (θ − α) + Tx cosα+ Tz sinα) (26)

α̇ =
1

mV
(−L+mg cos (θ − α)− Tx sinα+ Tz cosα) + q (27)

q̇ =
(M + Tm)

Iyy
(28)

θ̇ = q (29)

where V is the air speed (ft/s), α is the angle of attack (rad), q is the pitch
rate (rad/s) and θ is the pitch angle (rad). The control inputs are the elevator
deflection δelev (deg) and engine throttle δth (percent).

The drag forceD (lbs), lift force L (lbs), and aerodynamic pitching moment
M (lb-ft) are given by:
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D = q̄SCD(α, δelev , q̂) (30)

L = q̄SCL(α, δelev , q̂) (31)

M = q̄Sc̄Cm(α, δelev , q̂) (32)

where q̄ := 1
2ρV

2 is the dynamic pressure (lbs/ft2) and q̂ := c̄
2V q is the

normalized pitch rate (unitless). CD, CL, and Cm are unitless aerodynamic
coefficients computed from look-up tables provided by NASA.

The GTM has one engine on the port side and one on the starboard side
of the airframe. Equal thrust settings for both engines is assumed. The thrust
from a single engine T (lbs) is a function of the throttle setting δth (percent).
T (δth) is specified as a ninth-order polynomial in NASA’s high fidelity GTM
simulation model. Tx (lbs) and Tz (lbs) denote the projection of the total
engine thrust along the body x-axis and body-z axis, respectively. Tm (lbs-ft)
denotes the pitching moment due to both engines. Tx, Tz and Tm are given
by:

Tx(δth) = nENGT (δth) cos(ǫ2) cos(ǫ3) (33)

Tz(δth) = nENGT (δth) sin(ǫ2) cos(ǫ3) (34)

Tm(δth) = rzTx(δth)− rxTz(δth) (35)

nENG = 2 is the number of engines. ǫ2 = 0.0375 rad and ǫ3 = −0.0294 rad are
angles that specify the rotation from engine axes to the airplane body axes.
rx = 0.4498 ft and rz = 0.2976 ft specify the moment arm of the thrust.

The following terms of the longitudinal are approximated by low-order
polynomials:

1. Trigonometric functions: sin(α), cos(α), sin(θ − α), cos(θ − α)
2. Engine model: T (δth)

3. Rational dependence on speed:
1

V
4. Aerodynamic coefficients: CD, CL, Cm

Constructing polynomial approximations for the trigonometric functions, en-
gine model, and rational dependence on speed is relatively straight-forward.
The trigonometric functions are approximated by Taylor series expansions:
sin z ≈ z − 1

6z
3 and cos z ≈ 1 − 1

2z
2 for z in units of radians. For the en-

gine model, a least squares technique is used to approximate the ninth order
polynomial function T (δth) by a third order polynomial. The least squares

technique is also used to compute a linear fit to
1

V
over the desired range of

interest from 100 ft/s to 200 ft/s. Finally, polynomial least squares fits are
computed for the aerodynamic coefficient look-up table provided by NASA. A
degree seven polynomial model is obtained after replacing all non-polynomial
terms with their polynomial approximations. The polynomial model takes the
form:

ẋ = f(x, u) (36)
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where x := [V (ft/s), α(rad), q(rad/s), θ(rad)], and u := [δelev(deg), δth(%)].
The degree seven polynomial model f(x, u) is provided in [58]. The quality of
the polynomial approximation was assessed by comparing the trim conditions
and simulation responses of the polynomial model and the original model with
look-up tables.

The remainder of the section describes the estimation of the reachable set
for the open-loop longitudinal dynamics of the GTM. The trim condition for
the analysis is:

xtrim := [150 ft/s, 0.047 rad, 0 rad/s, 0.047 rad] (37)

The throttle input is held at its trim value and the reachable set is computed
for elevator inputs around the trim elevator input. The shape function is
p(x) := xTNx where:

N := diag(50 ft/s, 0.35 rad, 0.87 rad/s, 0.35 rad)−2 (38)

Upper bounds β̄ were computed such that Gγ ⊆ Eβ̄ . These bounds were
computed for many values of γ using the method described in Section 3.3. A
nonlinear optimal control problem can be approximately solved to compute
“worst-case” inputs for this reachable set problem [40]. The inputs are worst-
case in the sense of maximizing p(xf ) subject to the constraint ‖u‖

2
2 ≤ γ2. This

worst-case algorithm provides lower bounds β for the reachable set problem.
These lower bounds provide complementary information to the upper bounds
computed using SOS methods. Specifically the lower bounds prove that there
is an xf ∈ Gγ such that p(xf ) = β

Figure 4 shows the lower and upper bounds computed for the GTM. The
upper bounds computed using quadratic and quartic (degree 4) storage func-
tions are shown in squares and diamonds, respectively. Each point on the
upper bound curve with quadratic storage functions took several minutes to
compute. Only three points were computed for quartic storage functions since
each data point on this curve took several hours to compute. Degree six stor-
age functions would lead to improved bounds but with a significant increase
in computation time. The lower bound computed using the method in [40]
is shown with circles. This curve is quite far from the quartic upper bound.
The reachable set for the linearized plant is drawn as a black dashed curve.
This is a straight line because scaling the norm of the input scales the dis-
tance that can be reached. The optimal input for the linear plant can be
computed via an optimal control problem. This worst-case input computed
from the linear plant is shown in Figure 5. Simulating the nonlinear system
with this worst-case input (scaled to achieve ‖u‖22 = γ) achieved the lower
bound shown in squares in Figure 4. This lower bound is very close to the
quartic upper bound. Thus the worst-case input computed from the linear
plant is also a bad input for the nonlinear plant. It appears that the GTM
dynamics are well-approximated by the linearization at this flight condition.
This statement was further investigated by simulating the full 6DOF GTM
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model with the worst-case input computed from the linear plant (scaled to
have ‖u‖22 = 1). The 6DOF GTM model includes many additional modeling
details including lateral dynamics, actuator dynamics, etc. Surprisingly the
response of the full 6DOF GTM model with this input was very similar to
the response of the polynomial model with this input. A comparison of the
simulation responses is shown in Figure 6. The states (α,θ,q) have units of
(rad,rad,rad/s) but are plotted in units of (deg,deg,deg/s) for ease of inter-
pretation. For this input the polynomial model achieved β = 0.4803 and the
full GTM achieved β = 0.3478. This nonlinear reachable analysis provides
confidence that the linear model can be used as a good approximation at this
flight condition.
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Fig. 4. Reachable Set Bounds

5 Conclusion

This chapter described the use of sum-of-squares optimizations for analyz-
ing nonlinear polynomial systems. In particular, optimizations with SOS con-
straints were formulated for computing region of attraction estimates, bounds
on L2 to L2 gain, and reachable sets. Many other nonlinear analysis problems
can be formulated within this optimization framework. The approach was ap-
plied to compare the performance of two F/A-18 control laws in suppressing
a loss-of-control motion known as the falling leaf mode. The reachable set
for NASA’s Generic Transport Model was also estimated. These nonlinear
analysis tools can fill the gap between linear analyses, which are valid only
for infinitesimally small neighborhoods about an equilibrium, and nonlinear
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Fig. 6. Simulation of Polynomial and 6DOF GTM Models with Worst-case input

simulations. These tools can be used to provide additional confidence when
validating the performance of a flight control law. Significant work remains to
be done to reduce the computational cost and enable these techniques to be
applied to moderate-sized systems (systems with more than ≈ 8 states).



Title Suppressed Due to Excessive Length 25

Acknowledgments

This research was partially supported under the NASA Langley NRA contract
NNH077ZEA001N entitled “Analytical Validation Tools for Safety Critical
Systems” and the NASA Langley NNX08AC65A contract entitled ’Fault Di-
agnosis, Prognosis and Reliable Flight Envelope Assessment.” The technical
contract monitors are Dr. Christine Belcastro and Dr. Suresh Joshi respec-
tively.

References

1. P. Parrilo, “Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization,” Ph.D. dissertation, California Institute of
Technology, 2000.

2. ——, “Semidefinite programming relaxations for semialgebraic problems,”
Mathematical Programming Ser. B, vol. 96, no. 2, pp. 293–320, 2003.

3. B. Tibken, “Estimation of the domain of attraction for polynomial systems via
LMIs,” in Proceedings of the IEEE Conference on Decision and Control, 2000,
pp. 3860–3864.

4. O. Hachicho and B. Tibken, “Estimating domains of attraction of a class of
nonlinear dynamical systems with LMI methods based on the theory of mo-
ments,” in Proceedings of the IEEE Conference on Decision and Control, 2002,
pp. 3150–3155.

5. Z. Jarvis-Wloszek, “Lyapunov based analysis and controller synthesis for poly-
nomial systems using sum-of-squares optimization,” Ph.D. dissertation, Univer-
sity of California, Berkeley, 2003.

6. Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard, “Some controls
applications of sum of squares programming,” in Proceedings of the 42nd IEEE

Conference on Decision and Control, vol. 5, 2003, pp. 4676–4681.
7. W. Tan and A. Packard, “Searching for control Lyapunov functions using sums

of squares programming,” in 42nd Annual Allerton Conference on Communica-

tions, Control and Computing, 2004, pp. 210–219.
8. G. Chesi, “On the estimation of the domain of attraction for uncertain poly-

nomial systems via LMIs,” in Proceedings of the IEEE Conference on Decision

and Control, 2004, pp. 881–886.
9. A. Papachristodoulou, “Scalable analysis of nonlinear systems using convex op-

timization,” Ph.D. dissertation, California Institute of Technology, 2005.
10. Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard, Positive Poly-

nomials in Control, ser. Lecture Notes in Control and Information Sciences.
Springer-Verlag, 2005, vol. 312, ch. Controls Applications of Sum of Squares
Programming, pp. 3–22.

11. G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Lmi-based computation of op-
timal quadratic lyapunov functions for odd polynomial systems,” International

Journal of Robust and Nonlinear Control, vol. 15, pp. 35–49, 2005.
12. S. Prajna, “Optimization-based methods for nonlinear and hybrid systems ver-

ification,” Ph.D. dissertation, California Institute of Technology, 2005.



26 Peter Seiler, Gary J. Balas, and Andrew K. Packard

13. W. Tan, A. Packard, and T. Wheeler, “Local gain analysis of nonlinear systems,”
in Proceedings of the American Control Conference, 2006, pp. 92–96.

14. W. Tan, “Nonlinear control analysis and synthesis using sum-of-squares pro-
gramming,” Ph.D. dissertation, University of California, Berkeley, 2006.

15. B. Tibken and Y. Fan, “Computing the domain of attraction for polynomial
systems via BMI optimization methods,” in Proceedings of the American Control

Conference, 2006, pp. 117–122.
16. U. Topcu, A. Packard, P. Seiler, and T. Wheeler, “Stability region analysis using

simulations and sum-of-squares programming,” in Proceedings of the American

Control Conference, 2007, pp. 6009–6014.
17. W. Tan, U. Topcu, P. Seiler, G. Balas, and A. Packard, “Simulation-aided reach-

ability and local gain analysis for nonlinear dynamical systems,” in Proceedings

of the IEEE Conference on Decision and Control, 2008, pp. 4097–4102.
18. U. Topcu, A. Packard, and P. Seiler, “Local stability analysis using simulations

and sum-of-squares programming,” Automatica, vol. 44, no. 10, pp. 2669–2675,
2008.

19. U. Topcu, “Quantitative local analysis of nonlinear systems,” Ph.D. dissertation,
University of California, Berkeley, 2008.

20. U. Topcu and A. Packard, “Linearized analysis versus optimization-based non-
linear analysis for nonlinear systems,” in submitted to the 2009 American Control

Conference, 2009.
21. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities

in System and Control Theory, ser. Studies in Applied Mathematics. SIAM,
1994, vol. 15.

22. B. Reznick, “Some concrete aspects of Hilberts 17th problem,” Contemporary

Mathematics, vol. 253, no. 251-272, 2000.
23. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review,

vol. 38, no. 1, pp. 49–95, 1996.
24. J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones,” Optimization Methods and Software, pp. 625–653, 1999.
25. ——, “SeDuMi version 1.05,” http://fewcal.kub.nl/sturm/software/sedumi.html,

2001.
26. B. Reznick, “Extremal PSD forms with few terms,” Duke Mathematical Journal,

vol. 45, no. 2, pp. 363–374, 1978.
27. M. Choi, T. Lam, and B. Reznick, “Sums of squares of real polynomials,” Pro-

ceedings of Symposia in Pure Mathematics, vol. 58, no. 2, pp. 103–126, 1995.
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