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Abstract Fuel efficiency, endurance, and noise requirements are pushing modern
aircraft to lighter, more flexible designs. This causes the structural modes to occur
at lower frequencies increasing the coupling with the rigid body dynamics. The tra-
ditional approach to handle aeroservoelastic interaction is to design gain-scheduled
flight control laws based on the rigid body dynamics and then use filters to avoid
exciting the structural modes. This decoupled approach may not be possible in fu-
ture, more flexible aircraft without reducing the flight control law bandwidth. Lin-
ear parameter varying (LPV) techniques provide a framework for modeling, analy-
sis, and design of the control laws across the flight envelope. This chapter applies
LPV techniques for the roll control of NASA Dryden’s X-53 Active Aeroelastic
Wing testbed. LPV techniques are first used to analyze a gain-scheduled classical
controller. Gain scheduling is still the dominant design method in industrial flight
control laws and LPV analysis tools can play an important role in certifying the per-
formance of these systems. Next, an LPV controller is designed and its performance
is compared against the gain-scheduled classical controller. All results are obtained
with a set of LPV tools which makes use of object oriented programming to enable
easy construction and manipulation of LPV models.

1 Introduction

Increased fuel efficiency and operational range are significant design drivers for
modern commercial aircraft, e.g. the Boeing 787. Similar design objectives are also
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critical for future military aircraft, e.g. the SensorCraft concept aircraft [14, 18, 31].
In both cases, lighter aircraft are required to meet these objectives. The reduction in
weight is typically achieved by reducing the structure in the wings and fuselage of
the aircraft. This makes the aircraft more flexible and causes the structural modes
to occur at lower frequencies. The main consequence is that lighter, more flexible
aircraft have tight coupling between the rigid body and elastic structural modes. This
increases the likelihood of adverse aeroservoelastic phenomena including flutter and
control surface reversal.

The traditional approach to handle aeroservoelastic interaction is to design the
flight control laws based on the rigid body dynamics and then use filters to avoid
exciting the structural modes. The control laws are typically designed at various
points in the flight envelope and then gain-scheduled by interpolating these point
designs. This gain-scheduled approach may not be possible on future, more flexible
aircraft for which the structural modes to occur at lower frequencies. The design
will need to consider coupling between the rigid body dynamics, structural modes,
and the time-varying gain-scheduled controller. Flexible aircraft would significantly
benefit from an integrated aeroservoelastic and rigid body control system.

Several issues must be addressed to enable integrated active control to become
a reality. First, the aeroelastic effects involve unsteady flows [16, 17, 15]. In addi-
tion, there can be nonlinear effects, e.g. nonlinear coupling between the structural
modes and the aerodynamics [17, 5]. Advanced tools are needed to model these ef-
fects across the entire flight envelope. A second issue is that an integrated control
design must account for the tight coupling between the rigid body and structural
modes. This will likely require novel sensors that can measure, in real-time, the
aerodynamic flow around the aircraft structures. Such sensors are currently being
developed [16, 17, 15] and new control architectures may be required to take advan-
tage of these novel measurements. A third issue is that analysis tools are required
to certify that the designed feedback system meets structural load requirements and
is free from aeroservoelastic instabilities. Existing approaches based on robust flut-
ter margins [8, 13, 6] form a starting point but may need to be extended to handle
the complexities introduced by the integrated design approach. To summarize, ad-
vanced tools are required for modeling, integrated controller synthesis, and analysis
of flexible aircraft.

This chapter investigates the use of linear parameter varying (LPV) analysis
and control techniques for flexible aircraft control. There are two main objectives
of this chapter. The first is to introduce new software tools LPV modeling, anal-
ysis, and control synthesis. These tools implementexisting analysis and synthe-
sis conditions drawn from the large body of literature on LPV systems including
[27, 20, 28, 33, 4, 1, 34, 19, 25, 24, 32]. Implementation of the LPV algorithms
makes use of object oriented programming to enable easy construction and manip-
ulation of LPV models. The second objective is to apply LPV techniques to NASA
Dryden’s X-53 Active Aeroelastic Wing (AAW) testbed [23, 21, 22]. The AAW
is an experimental flight test capability for aeroservoelastic control research. This
chapter will focus on roll rate control of the AAW in the supersonic regime.
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The remainder of the chapter has the following outline. First, a brief review of
the AAW program is given in Section 2. The LPV software data structures and their
functionality are described in Section 3. Next, the AAW rigid body and aeroelastic
dynamics are described in Section 4. A gain-scheduled classical control law is de-
signed and analyzed in Section 5. Gain-scheduled classical control is the standard
in industry for flight control design. LPV analysis tools can play an important role
in certifying the performance of these systems and identifying potential issues due
to fast variations in the gain scheduling parameters. The LPV analysis tools provide
a useful complement to existing approaches, e.g. margin requirements at each flight
condition or robust flutter margins [8, 13, 6]. Section 6 describes an LPV controller
for the AAW and compares this design against the gain-scheduled classical design.
Finally, conclusions are given in Section 7. Early versions of these results appear in
[26].

2 Active Aeroelastic Wing

NASA Dryden’s X-53 Active Aeroelastic Wing (AAW) [23, 21, 22] is an exper-
imental flight test capability for aeroservoelastic control research. NASA and the
USAF developed this test bed to investigate the use of aeroelastic flexibility for
improved performance of high aspect ratio wings. The effectiveness of the conven-
tional aircraft surfaces, e.g. ailerons and trailing edge flaps, is reduced at higher
dynamic pressures due to the flexibility of the wing. This can lead to control rever-
sal at sufficiently high dynamic pressures. The standard solution is to reduce wing
flexibility by adding structure, and hence additional weight, to the wings.

The main objective of the AAW Flight Research program was to test an alterna-
tive concept that uses wing flexibility to improve control effectiveness. The AAW
has inner and outer flaps on the leading edge of the wings. Small movements of
these surfaces cause the wing to twist in the direction that increases the local angle
of attack and induces a rolling moment on the aircraft. These flaps do not undergo
a control reversal and, in fact, their effectiveness increases at higher dynamic pres-
sures. Thus the wing flexibility and twist act in a direction beneficial for control.

To test this concept, the AAW wings were modified from the standard F/A-18
wings to reduce the torsional stiffness [22]. This increases the wing flexibility and
reduces the frequency of the flexible modes. Advanced tools are required to model
the aeroelastic effects because they involve unsteady flows [16, 17, 15] and there
can be nonlinearities [17, 5]. For control design, linear models of the rigid body and
aeroelastic dynamics are obtained at each flight condition via linearization. This
naturally falls within the class of linear parameter varying (LPV) models that are
scheduled as a function of the flight condition.

The flight-tested AAW control architecture is a modified version of the produc-
tion F/A-18 control laws [11]. The basic architecture uses roll rate feedback to track
roll rate commands from the pilot lateral stick inputs. The lateral controller com-
mands the aileron, trailing edge flaps, inner leading edge flaps and outer leading
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edge flaps. Each surface command is the sum of a proportional roll rate feedback
term and a proportional roll rate tracking error term. The control gains were tuned to
maximize roll rate performance while satisfying structural load and handling quality
requirements [11]. The gains were tuned using the multi-objective optimization tool
CONDUIT [30]. This tool performs nonlinear optimization incorporating results
from a high fidelity simulation model.

The AAW control laws were designed and flight tested at separate design points
in the flight envelope [10]. These control laws were tested during 34 Phase II test
flights conducted from December 2004 through March 2005 [22]. The tests spanned
the transonic and supersonic flight conditions and included 360o rolling maneuvers,
5g wind up turns, and 4g rolling pullouts. The flight test program validated the
Active Aeroelastic Wing concept and was deemed a success. Additional details on
the existing AAW flight control laws and flight tests can be found in [22, 11, 10].

3 Tools for LPV Analysis and Design

Linear Parameter Varying (LPV) models are time-varying, state-space models of the
form: [

ẋ(t)
y(t)

]
=
[

A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

][
x(t)
u(t)

]
(1)

where A(ρ(t)) is the state matrix, B(ρ(t)) is the input matrix, C(ρ(t)) is the output
state matrix, D(ρ(t)) is the input transformation matrix, ρ ∈ Rnρ is a vector of
measurable parameters, x∈Rnx is the state, y∈Rny is the measurement, and u∈Rnu

is the control input. The dimensions of (A,B,C,D) are compatible with the signal
dimensions.

LPV models arise in many contexts. In industrial settings, a finite collection of
linear models is often used to describe the behavior of a system throughout an op-
erating envelope. The linearized models describe the small signal behavior of the
system at a specific operating point. The collection is parameterized by one or more
physical variables whose values represent the operating point. For example, the LPV
design model used in this chapter for the Active Aeroelastic Wing roll rate dynam-
ics is based on a parameterized family of linearizations. The models are scheduled
across the aircraft (Altitude,Mach) flight envelope. Alternatively LPV models can
be constructed by considering state transformations on a class of nonlinear ’quasi-
LPV’ systems [27]. This method essentially ignores some nonlinear relationships in
the system dynamics and hence introduces conservatism in the control design.

LPV software tools have been developed to enable the modeling, analysis, con-
troller synthesis, and simulation for LPV systems. One issue is that several differ-
ent methods have arisen for representing the parameter dependence in LPV models
(Equation 1). These include linear fractional transformations [19, 20, 25, 24, 1], lin-
earizations on a gridded domain [4, 33, 34], and polytopic (affine) dependence of
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the state matrices on the parameters [29, 2, 9, 3]. Each of these different representa-
tions has benefits and drawbacks in terms of the modeling effort and model structure
that can be exploited in developing computational algorithms. It would be useful for
the controls community to have a single LPV toolbox that easily supports the dif-
ferent representations. Ideally this would include tools to transform an LPV model
in one representation to another representation. This would enable easy comparison
between the various LPV methods and with classical gain-scheduling approaches.

As a starting point, the initial implementation of the LPV algorithms focuses on
models defined on gridded domains. This is motivated by aircraft aeroelastic control
problems for which models are typically constructed as linearizations around vari-
ous flight operating points. A key component of the software tools is the core LPV
data structure object, referred to as a pss (denoting parameter-varying state space
model). The LPV systems in Equation 1 are conceptually represented by a state-
space system S that depends on a parameter vector ρ in some domain of Rnρ . For
general LPV systems this conceptual representation requires storing the state space
system at an infinite number of points in the domain of ρ . The data structure object
pss approximates this conceptual representation by storing the LPV system as a
state space array defined on a finite, gridded domain. As a simple example, consider
an LPV system S(ρ) that depends on a single parameter ρ in the domain ρ ∈ [a,b].
The infrastructure requires the user to specify the domain with a finite grid, e.g. N
points in the interval [a,b]. The software tools include an rgrid data object to fa-
cilitate the creation and manipulation of the multivariable parameter domains. The
user must also specify the values of the state space system S at each point ρ in this
gridded domain. The pss object stores the state-space array data using the standard
MATLAB Control System Toolbox ss object. Thus the pss can be viewed as the
parameter-varying extension of the standard ss object. To summarize, the LPV sys-
tem S(ρ) is represented by a pss data object which stores the gridded domain and
the array that defines the state-space data at each point in the domain.

The notions of parameter-varying matrices and parameter-varying frequency re-
sponses arise naturally to complement the pss objects. LPV systems are time-
varying and hence frequency responses can not be used to represent the system
behavior as parameters vary. However frequency responses are useful to gain intu-
ition about the system performance at fixed locations in the operating domain. The
parameter varying matrices and frequency responses are repersented by pmat and
pfrd data objects, respectively. These two data objects are both stored as a data
array defined on a gridded domain. Table 1 shows the relation between the LPV
data objects (pmat, pss, pfrd) and existing MATLAB objects. The first row of
the Table (“Nominal”) shows the basic MATLAB objects: matrices are double ob-
jects, state-space systems are ss objects, and frequency responses are frd objects.
double objects are in the standard MATLAB release while the ss and frd objects
are part of the Control System Toolbox. The second row of Table 1 (“Parameter
Varying”) shows the core LPV objects. The LPV objects (pmat, pss, pfrd) can
be viewed as parameter-varying extensions of the standard objects MATLAB and
Control Toolbox objects (double, ss, frd).
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Table 1: Relation between MATLAB objects

Object Block Matrix System Frequency
Type Response

Nominal

y
� M

u
�

double ss frd

Parameter Varying

y
� M(ρ)

u
�

pmat pss pfrd

Uncertain

y
� M u

�

- ∆

�

umat uss ufrd

Uncertain

y
� M(ρ) u

�

- ∆

�

pumat puss pufrd
Parameter Varying

The third row of the table (“Uncertain”) shows the equivalent objects used to rep-
resent uncertainty: uncertain matrices, state space systems, and frequency responses
are represented by umat, uss, and ufrd objects, respectively. These objects are
part of the MATLAB Robust Control Toolbox. The Robust Control Toolbox models
the uncertainty as a perturbation ∆ wrapped in feedback around a nominal part M,
i.e. uncertainty is represented using a linear fractional transformation. Real para-
metric, complex parametric, and unmodeled dynamic uncertainties can be modeled.
The last row of Table 1 (“Uncertain Parameter Varying”) shows the corresponding
parameter-varying objects with uncertainty: uncertain parameter-varying matrices,
state space systems, and frequency responses are represented by pumat, puss,
and pufrd objects, respectively. The parameter-varying uncertain objects are not
yet implemented but they are essential to developing robustness analysis and de-
sign tools for LPV systems. There is also a natural overlap with the linear fractional
representation for LPV systems.

The LPV objects are being developed within MATLAB’s object-oriented pro-
gramming framework. A benefit of object-oriented programming is that key opera-
tions can be overloaded to provide seamless, consistent functionality across a variety
of objects. For example, if A and B are double objects then the syntax A*B simply
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multiplies the matrices. If A and B are pmat objects then the syntax A*B multi-
plies the parameter-varying matrices at each point in the parameter domain. The
manipulation of parameter-varying objects is facilitated by this extension of the *
operation to a meaningful, intuitive operation for pmat objects. In addition, stan-
dard MATLAB syntaxes, e.g. M(i,j) to index into the (i, j) element of an array,
have been overloaded and extended for parameter-varying objects. Object-oriented
programming enables this overloading of key functions and this enables meaningful,
intuitive extensions for parameter-varying objects.

To summarize, development of object-oriented LPV software tools will help ex-
pand the functionality and tools for LTI systems, as developed in the MATLAB Con-
trol and Robust Control Toolboxes, to linear parameter-varying systems. SIMULINK
blocks have also been developed to simulate LPV systems. There are several chal-
lenges and open issues going forward. These include the numerical stability and
scalability of the algorithms, incorporation of uncertainty analysis, and development
of the data infrastructure and tools to encompass the various LPV representations.
The remainder of the chapter will demonstrate the application of LPV analysis and
control design techniques to the AAW control design example.

4 AAW Roll Rate Model

The AAW rigid body roll rate dynamics are given by:

ṗ = Lp(h,M)p+Lδ (h,M)δ (2)

where p is roll rate (deg/sec) and δ is the outer leading edge flap position (deg). The
outer leading edge flap (OLEF) is effective across the supersonic flight envelope of
interest. Thus only this surface is used for roll rate control design in this chapter.
The rigid body LPV model from outer leading edge flap to roll rate (Equation 2) is
denoted Grig.

Lp and Lδ are defined on a grid of altitude h (ft) and Mach M (unitless) with
values provided in Tables 2 and 3. This data was constructed from non-dimensional
aerodynamic coefficients obtained from NASA Dryden [7]. The non-dimensional
Lδ data was re-scaled to obtain a mean gain of 2 over the flight envelope. Hence the
variations of the Lδ data in Table 3 across the flight envelope accurately represent
the AAW OLEF gain but the absolute magnitude contains a scaling factor. This
scaling will be discussed in the following paragraphs.

The AAW wings were modified for increased flexibility leading to flexible modes
occurring at lower frequencies. Models of the AAW aeroelastic dynamics were ob-
tained from NASA Dryden [7] on a grid of altitude, Mach, and remaining fuel. The
dependence on remaining fuel is neglected and the models at 60% fuel are used for
the design and analysis. The aeroelastic dynamics are defined on the same (h,M)
grid used to define the rigid body dynamics, i.e. the aeroelastic dynamics are de-
fined on the grid h = {10000,15000,20000,25000} ft and M = {1.1,1.2,1.3}. At
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Table 2: AAW Rigid Body Data, Lp

M=1.1 M=1.2 M=1.3
h=10k -0.5652 -0.4614 -0.4009
h=15k -0.5415 -0.4363 -0.3737
h=20k -0.5165 -0.4128 -0.3606
h=25k -0.5034 -0.3982 -0.3531

Table 3: AAW Rigid Body Data, Lδ

M=1.1 M=1.2 M=1.3
h=10k 1.2916 1.3756 1.2425
h=15k 0.9305 1.0524 1.1958
h=20k 0.6032 0.7009 0.8326
h=25k 0.3056 0.4110 0.5258

each flight condition the aeroelastic dynamics are modeled as a state-space system
with 164 states. This model includes 64 states for the first 32 flexible modes and an-
other 100 states for aerodynamic lags. The aerodynamic lag states can be truncated
at each point in flight envelope with minimal impact on the OLEF to roll rate dy-
namics. The resulting aeroelastic model, denoted G f lex, has 64 states at each (h,M)
flight condition.

The aeroelastic dynamics are added in parallel to the rigid body dynamics to
obtain the full 65 state model, G f ull = Grig + G f lex. Figure 1 shows the open-loop
Bode plots of G f ull from OLEF to roll rate at each point in the (h,M) domain. As
noted above, the Lδ data was rescaled to give a mean gain of 2 across the flight
envelope. This effectively increases the significance of the flexible modes relative to
the rigid body dynamics. In particular, several of the flexible modes have magnitude
exceeding 15dB at points in the flight envelope. The first cluster of flexible modes
occur around 55-65 rad/sec. The OLEF actuator has a bandwidth of 75 rad/sec. This
bandwidth is not fast enough to actively suppress these flexible modes. The origi-
nal intent was to use LPV techniques to actively control the AAW flexible modes.
The AAW aircraft does not require active attenuation of the flexible modes nor is
the OLEF actuator sufficiently fast to suppress these modes. Thus any control law
must roll-off to avoid exciting these modes. Since the OLEF actuator dynamics are
substantially faster than the AAW roll subsidence mode (Lp) these dynamics will be
neglected in most of the design and analysis in the subsequent sections.

Figure 2 shows the open-loop roll rate responses due to an OLEF step of magni-
tude δ = 1 deg. The top plot shows the response over an 8 second time scale and the
bottom plot zooms in on the transient response over the first second. In both plots the
solid curves are the rigid body responses at each point in the (h,M) domain while
the dashed curves are the responses of the full model with the flexible modes. The
rigid body responses in the top plot show the variation in DC gain and time constant
across the flight envelope. Based on the data in Table 2, the time constant varies
from a minimum of 1.77 sec to a maximum of 2.83 sec. The responses of G f ull
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Fig. 1: Open loop Bode plots from OLEF to roll rate

show the transient effects of the flexible modes which are excited by the step input.
The bottom plot more clearly shows this transient response. The flexible modes cre-
ate a roll rate oscillation with an amplitude of approximately 0.6 deg/sec in the first
0.5 to 1.0 seconds of the step responses. These lightly-damped oscillations decay to
a negligible amplitude after 2-3 seconds.

As described in Section 3, the core infrastructure for LPV modeling was devel-
oped using MATLAB object-oriented class programming. The overloading of key
functions enables easy manipulation and analysis of these gridded models.

5 Gain Scheduled Classical Control

Gain scheduling via interpolation of point designs is still the predominant method
used in industry to develop a full-envelope flight control law. LPV analysis can play
an important role in certifying the performance of these control laws. Moreover,
LPV analysis tools can uncover potential stability and performance degradations
caused by rapid variations in the operating condition. This is especially important
for systems with significant aeroelastic effects because flexible modes may be ex-
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Fig. 2: Open loop step responses from OLEF to roll rate (Top: Long time scale,
Bottom: Zoom on transient response)

cited during aircraft maneuvers. This section analyzes the performance of a gain
scheduled classical roll rate control design using LPV techniques.



LPV Control for the AAW 11

5.1 Control Design

The primary flight control objective is to design a feedback law to track roll rate
commands. The variation in the speed of response and gain of the AAW rigid body
dynamics across the (h,M) flight envelope (Tables 2 and 3) poses one issue for the
control design. The roll subsidence mode varies from -0.56 rad/sec to -0.35 rad/sec
and the input gain varies from 0.31 to 1.29. A gain scheduled controller is designed
to achieve a consistent bandwidth of 1.25 rad/sec and zero steady state error due
to step roll rate commands across the envelope. Another design issue is that the
controller must be robust to the flexible modes. The gain scheduled controller is de-
signed so that, in closed-loop, the flexible modes have magnitude less than -20dB
at each point in the flight envelope. This is to ensure the flexible wing modes are
not excited by the flight control system. In addition the gain scheduled controller
should achieve 6dB of gain margin and 45degs of phase margin at each point in the
envelope. These are standard margin requirements for military aircraft. The margin
specifications at each point in the envelope essentially assume a quasi-steady ap-
proximation for (h,M). LPV analysis tools will be used to determine the impact of
variations in (h,M) on the closed-loop performance.

A classical gain-scheduled controller is designed to achieve these objectives.
The basic idea is to invert the rigid body dynamics and replace them with a de-
sired loop shape. In other words, the controller is given by Kcl = GinvGls where
Ginv inverts the plant dynamics and Gls is the desired loop shape. At each flight
condition the AAW rigid body roll-rate dynamics are given by Lδ

s+Lp
. The rigid

body-dynamics are, in general, time-varying due to the dependence on (h,M) and
hence the transfer function representation is not correct. However, this representa-
tion will be used to provide the basic insight into the control design. The controller
inverts the rigid body dynamics up to a bandwidth ωro to prevent exciting the flexi-
ble modes, Ginv = s+Lp

Lδ

ωro
s+ωro

. The roll-off is chosen to be ωro = 12.5 rad/sec. This
is fast enough to have minimal impact on the roll-rate response but slow enough to
avoid excessive excitation of the flex modes at 55-65 rad/sec. The desired loop shape

is Gls = ω2
d

s2+2ζ ωd
. The values used in the control design are ζ = 0.8 and ωd = 1.25

rad/sec. This desired loop shape provides a second order step response with small
overshoot, zero steady state error, and a rise time of approximately 2.2 seconds.

As noted above, the plant and controller are both, in general, time-varying sys-
tems and transfer function representations are not meaningful. State-space represen-
tations should be used instead. The gain scheduled classical controller Kcl = GinvGls
is given by the state-space representations:

[
Als Bls
Cls Dls

]
:=

−2ζ ωd 1 0
0 0 ωd

ωd 0 0

 (3)

[
Ainv Binv
Cinv Dinv

]
:=

[
−ωro ωro

−Lp(h,M)+ωro
Lδ (h,M)

ωro
Lδ (h,M)

]
(4)
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The dependence on (h,M) has been made explicit for clarity. The controller state
matrices are defined on the 4× 3 (h,M) grid for which plant data is available (see
Tables 2 and 3). The classical controller is gain-scheduled by linearly interpolating
the state matrices for Gls and Ginv.

A simple, but important observation is that time-varying systems, in general,
do not commute. Thus the closed-loop performance will be impacted by reorder-
ing the controller as GlsGinv or using an alternative state-space realization for Ginv.
The realization of Ginv in Equation 4 isolates all time-variations in the output and
feedthrough matrices. This realization enables to the controller to instantly cancel
variations in the plant dynamics. A drawback is that this realization of the controller
will be sensitive to errors in the AAW gain-scheduled model.

5.2 LTI Point Analysis

Insight into the control design and feedback system can be obtained by studying the
LTI performance at each point in the flight envelope. Figure 3 shows the Bode plots
for the classical controller Kcl at each point in the flight envelope. The controller has
proportional-integral action at low frequencies with a second order roll-off beyond
ωro to avoid exciting the flexible modes. These Bode plots show an intuitive classical
design at each point in the flight domain.

Figure 4 shows the Bode plots for the (open) loop function G f ullKcl at each point
in the flight envelope. The loop function again shows integral action at low frequen-
cies. In addition, the loop function G f ullKcl shows significant attenuation of the
flexible modes in comparison with the open loop Bode G f ull (Figure 1). The loop
G f ullKcl has all modes below -19dB at all points in the flight envelope. In closed
loop the flexible modes are still well attenuated. The closed-loop response from roll
rate command to roll rate has the flexible modes below -18.5dB at all points in the
domain. The loop function G f ullKcl has gain and phase margins exceeding 21.3dB
and 65.9 degs at each point in the flight domain. Thus the classical controller has
good gain and phase margins at each point in the flight envelope.

Figure 5 shows the closed-loop unit step responses to a 1 deg roll rate command at
all points in the flight envelope. The full model with flexible modes G f ull and gain-
scheduled classical controller Kcl are used to generate these closed-loop responses.
The top plot shows the roll rate response and the bottom plot shows the OLEF
position. The blue solid curve in the top plot shows the ideal closed-loop response
given by the open loop specification Gls. The red dashed curves in both plots show
the closed loop responses at each point in the (h,M) domain. The classical controller
achieves consistent dynamic performance across the flight envelope with zero steady
state error (top plot). The bottom plot shows the variation in the control actuation
required to achieve this uniform tracking performance. In addition, the closed loop
step responses (top plot of Figure 5) indicate only small oscillations in the initial
transient due to the flexible modes. This is due to the high frequency roll-off of Kcl
which attenuates the flexible modes. Finally, the closed-loop responses (top plot)
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Fig. 3: Bode plots of classical controller

have a small deviation from the ideal response. This is due to the high-frequency
roll-off in Ginv to avoid exciting the flexible modes.

The closed-loop performance can be evaluated using the induced L2 norm of var-
ious closed-loop sensitivity functions in the feedback loop. Table 4a shows results
computed for the feedback system consisting of the rigid body dynamics Grig and
the gain-scheduled classical controller Kcl . The rows labeled Si, Ti, So, and To pro-
vide induced L2 norm bounds for the input sensitivity, input complementary sensi-
tivity, output sensitivity, and output complementary sensitivity. The second column,
labeled Point H∞, is the maximum H∞ norm over all points in the flight envelope. For
the row labeled Si, this was result was obtained by computing the H∞ norm of the
input sensitivity function at each point in the flight envelope and then maximizing
over the flight envelope. The results in the other rows were obtained similarly. Each
data point in this column took, on average, 0.21 seconds to compute on a laptop with
a dual-core 2.16GHz Intel processor. At a fixed point in the flight envelope, the H∞

norm for each sensitivity function is equal to its induced L2 norm. This is a lower
bound on the actual induced L2 norm for the gain-scheduled system since it does not
account for parameter variations. The results for the input and output functions are
equal because the feedback loop is SISO and the point-wise H∞ norm assumes time-
invariant dynamics at each point in the domain. The remaining columns in Table 4a
are discussed in the following subsection.

The pointwise H∞ analysis can also be used to investigate the impact of the
flexible modes at each point in the domain. The full model G f ull with rigid body
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Fig. 4: Bode plots of loop function G f ullKcl

and aeroelastic dynamics has 65 states. For this analysis a reduced order model,
Gred , that captures the first three flexible modes was constructed by residualizing
the higher frequency flexible modes at all points in the flight envelope. Gred has a
total of seven states: one state for the rigid body dynamics and six states for the
first three flexible modes. The closed loop sensitivity functions are then formed
with Gred and Kcl . Table 4b shows the various norms computed for the closed loop
sensitivity functions with Gred and Kcl . The rows and columns of this table can be
compared with the previous analysis for the closed loop with the rigid body dynam-
ics (Table 4a). The maximum H∞ norm over the flight envelope (column: Point H∞)
shows only minor differences with the results for the rigid body dynamics. Thus the
H∞ norms computed at each point in the flight domain indicate that the aeroelastic
dynamics will have minimal impact on the gain scheduled performance.

5.3 LPV Analysis

The analysis of the gain-scheduled classical controller has, up to this point, focused
on the performance at each point in the (h,M) flight envelope. This analysis neglects
the impact of time variations in altitude and Mach. The induced L2 norm for an LPV
system is the maximum input/output gain over all inputs and a class of allowable pa-
rameter trajectories. A generalization of the Bounded Real condition leads to linear



LPV Control for the AAW 15

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Time (seconds)

R
ol

l R
at

e 
(d

eg
/s

ec
)

Roll Rate Step Command

 

 

Ideal
CL

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

Time (seconds)

O
LE

F
 P

os
 (

de
g)

Roll Rate Step Command

 

 

CL

Fig. 5: Closed-loop responses to step roll rate command with Kcl

matrix inequality (LMI) conditions for computing bounds on the induced L2 norm.
A brief review is provided in Appendix 8.

Upper bounds on the induced L2 norm of the various closed-loop sensitivity
functions were computed to gain insight into the effect of variations in (h,M).
The results for the closed loop with Grig and Kcl are given in the columns LPV1,
LPV2, and LPV3 of Table 4a. The results in these columns involve LPV induced
L2 norm upper bounds of various complexity. The column labeled LPV1 used con-
stant Lyapunov matrices in the induced L2 norm LMI conditions. This is equiv-
alent to an analysis that assumes no knowledge of the parameter rates. The re-
sults in columns LPV2 and LPV3 both assume the rate bounds |Ṁ| ≤ 0.02 1/sec
and |ḣ| ≤ 1000 ft/sec. LPV2 uses a parameter dependent Lyapunov function of the
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Table 4: L2 induced norms for closed-loop sensitivity functions with gain-scheduled
classical controller

(a)

Closed-loop with (Grig,Kcl)
Point H∞ LPV1 LPV2 LPV3

Si 1.292 3.786 2.222 1.590
Ti 1.000 3.685 2.116 1.431
So 1.292 1.295 1.296 1.298
To 1.000 1.000 1.000 1.001

(b)

Closed-loop with (Gred ,Kcl)
Point H∞ LPV1 LPV2 LPV3

Si 1.314 Inf 2.202 1.548
Ti 1.000 Inf 2.143 1.418
So 1.314 Inf 2.406 1.347
To 1.000 Inf 2.096 1.009

form X(ρ) = X0 +MX1 +hX2 while LPV3 also includes quadratic bases functions,
X(ρ) = X0 + MX1 + hX2 + M2X3 + MhX4 + h2X5. In theory the upper bounds on
the induced L2 norm should progressively decrease from analysis LPV1 to LPV2
to LPV3. The results for So and To in Table 4a do not demonstrate this theoretical
trend but the results are within the stopping tolerances of the optimization solver.

There are several interesting aspects to the LPV analysis results in Table 4a.
First, the output sensitivity functions, So and To, have an induced norm almost ex-
actly equal to the pointwise H∞ lower bound. This is because the classical controller
perfectly cancels the rigid body dynamics for reference commands that enter at the
plant output. However, the cancellation is not perfect for disturbances that enter at
the plant input. Thus there is a gap between the upper bounds for Si and Ti and
the pointwise H∞ lower bounds. The gap is reduced by including additional bases
functions in the LPV analysis. The price paid for this improved upper bound is an
increased computational complexity. Each LPV1, LPV2, and LPV3 analysis took
0.75, 10.1, and 37.6 seconds, on average. These results indicate that the variations
in (h,M) are unlikely to affect the reference tracking but it may have some effect on
disturbance rejection at the plant input.

It should also be re-emphasized that the performance depends on the state real-
ization for Ginv. An alternative realization for Ginv is given by Binv = ωro

Lδ (h,M) and
Cinv = −(Lp(h,M)+ ωro) with the same Ainv and Dinv given in Equation 4. The al-
ternative realization is identical to the original realization for fixed flight conditions
and hence it yields the same pointwise H∞ norms as in Table 4a. However, the LPV3
analysis results yield norms of 3.433, 3.416, 1.365, and 1.107 for Si, Ti, So, and To,
respectively. These are significantly larger than the LPV3 results in Table 4a for
the original state-space realization of Ginv in Equation 4. It should be noted that the
alternative state-space realization for Ginv has parameter dependence in the input
matrix. This parameter dependence must pass through the Ginv dynamics before it is
able to cancel the variations in the plant dynamics. Thus one might have anticipated
that this alternative realization leads to degraded performance when compared to the
original realization in Equation 4. This analysis demonstrates that the LPV induced
norm bounds can be used to aid the design engineer in selecting the best realization
for gain scheduling.
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The LPV analysis can also be used to investigate the impact of the flexible modes.
As described in the previous subsection, a reduced order, 7-state aeroelastic model
was obtained by retaining the first three flexible modes in the full model. This model
reduction was mainly motivated by the computational complexity of the LPV anal-
ysis condition with respect to the plant state dimension. The 65-state model G f ull is
too large to be handled by current optimization solvers but the 7-state reduced or-
der model can be analyzed in a reasonable amount of time. Columns LPV1, LPV2,
and LPV3 in Table 4b shows the LPV upper bounds computed for the closed loop
sensitivity functions with Gred and Kcl . The rows and columns of this table can be
compared with the previous analysis for the closed loop with the rigid body dynam-
ics (Table 4a). The LPV upper bounds computed with using linear and quadratic
basis functions (column LPV3 in Table 4b) are roughly the same as the results ob-
tained with the rigid body dynamics (column LPV3 in Table 4a). This indicates that
the aeroelastic dynamics will have minor impact the gain-scheduled closed-loop
performance. This agrees with the results obtained using pointwise H∞ norms. The
results labeled In f in column LPV1 indicate that no provable upper bound on the
induced L2 norm can be obtained using constant, quadratic Lyapunov functions.

The LPV analysis (Tables 4a and 4b) has gaps between the pointwise H∞ lower
bounds and the LPV3 analysis upper bound. The user could continue adding bases
functions and see if the LPV3 analysis bound can be reduced. However, there is a
computational penalty to be paid for adding bases functions. Each Point H∞, LPV1,
LPV2, and LPV3 analysis in Table 4b took 0.08, 0.58, 91.6 and 360.6 seconds, on
average. An alternative is to compute improved lower bounds via simulation. This
is discussed in the next subsection.

5.4 Worst-case Simulation

A SIMULINK block has been developed to enable easy simulation of LPV systems.
This block is similar to the SIMULINK state space block but with an additional
input to specify the parameter trajectory. The function wcsim has been developed
to perform a worst-case LPV analysis directly on a SIMULINK model. “Worst-case”
refers to maximizing or minimizing a user-specified cost over a set of parameter
trajectories subject to user-specified constraint functions.

wcsim works directly on a SIMULINK model that contains feedback intercon-
nections of LTI and/or LPV systems. The user specifies ρ to be a linear combination
of piecewise continuous functions, i.e. ρc(t) ∈P := {ρ(t) = ∑

nb
i=1 ciρi(t)} where

{ρi} are the user-specified basis functions. Let yc : [0, t f ]→ Rny denote the vector
of output signals from the SIMULINK diagram for a given choice of the parameter
vector coefficients, c ∈ Rnb . The worst-case simulation problem is:

max
c∈Rnb

G(yc) (5)

subject to: C ≤C(yc)≤ C̄
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G : Lny
2 [0, t f ]→ R denotes the objective functional that quantifies the performance

of the output by G(yc). C : Lny
2 [0, t f ]→ Rm denotes a constraint function that de-

fines a set of m constraints on the output. C and C̄ ∈ Rm specify the lower and
upper bounds on the constraint function. Maximization is without loss of generality.
The objective and constraint functions for a worst-case simulation are specified with
specialized SIMULINK Objective Function and Constraint Function
blocks. These blocks are similar to a standard To Workspace block except their
dialog boxes contain additional fields to specify the objective and constraint func-
tions.

The wcsim function optimizes the objective function over the set of allow-
able parameter trajectories subject to the specified constraints. The basic syntax
is wcrho = wcsim(’mdl’). The input specifies the SIMULINK diagram with
LPV blocks, Objective Function and (optionally) Constraint Function
blocks. wcsim returns the worst-case parameter trajectory. No assumptions are
made about the objective function G or constraint function C. As a result, the opti-
mization is, in general not convex and it may have many local optima that are not
global optima. wcsim simply uses gradient-based optimization to find a parame-
ter trajectory that achieves a local maxima. While this does not necessarily find the
global optima it does provide a means to improve upon ’bad’ parameter trajectories
found with other heuristic methods.

The gradient-based optimization is performed by fmincon and thus requires
the MATLAB Optimization toolbox. At each iteration fmincon requires multi-
ple evaluations of the objective and constraint functions in order to compute nu-
merical gradients. An evaluation of all objective and constraint functions specified
in a SIMULINK diagram requires one simulation of the model. At each iteration
fmincon evaluates the objective function at the current value c ∈ Rnb of the pa-
rameter trajectory coefficients well as at small perturbations along each coefficient
direction. If the parameter trajectory contains nb coefficients, fmincon will per-
form approximately nb + 1 simulations at each iteration. Simulating the system is
typically responsible for the bulk of the computation time to perform a worst-case
simulation. Thus the total time for wcsim with no constraint blocks will be roughly
(nc +1)Niτ where τ is the computation time for one simulation and Ni is the number
of iterations. If the model contains constraint blocks then fmincon will typically
perform additional function evaluations, and hence additional simulations, per iter-
ation.

Figure 6 shows the SIMULINK diagram used to investigate the AAW closed-loop
roll-rate tracking performance. The diagram contains the controller Kcl in the LPV
block labeled “Gain-Scheduled Controller”. The LPV block labeled “LPV AAW”
contains the full AAW model, G f ull . In addition, the OLEF actuator dynamics have
been included in the feedback loop. The diagram contains inputs for roll-rate com-
mand and plant step input disturbance. The LPV analysis in the previous section
indicated that the input sensitivity functions were more likely to be affected by pa-
rameter variations. This section focuses on the OLEF actuator position response due
to the step input disturbance. The roll rate command is set to zero.
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The model was simulated at each point in the flight domain to investigate the
closed-loop performance. The L2 norm of the OLEF actuator position response to
the input step disturbance varied from 2.720 to 2.723 across the flight domain. This
indicates uniform disturbance rejection performance at each point in the flight en-
velope. The OLEF response due to the input step disturbance is shown as the solid
line (‘Nominal’) in the top subplot of Figure 7. This simulation was performed at
the center of the flight envelope, i.e. (h,M) = (17500 f t,1.2). The response is well
damped and shows no oscillations due to the flexible modes. In addition, the OLEF
position cancels the disturbance in steady state. The average time to complete one
simulation is 25.3 sec.

Next wcsim is used to perform a search for time-varying trajectories that de-
grade the disturbance rejection performance. For this example, wcsim maximizes
the L2 norm of the OLEF position by searching over parameter trajectories of the
form c0 +c1t +c2 cos(t)+c3 sin(t) where ci are constants to be optimized. Both the
Mach and Altitude parameter trajectories are restricted to have this form and thus
there are a total of eight coefficients to be optimized. The objective function is spec-
ified using the block labeled “Objective” in Figure 7. For this example, the wcsim
objective is maximize the L2 norm of the OLEF position response due to the input
step disturbance.

Initially no constraints are placed on the parameter trajectory and parameter rates.
The trajectories are projected to lie within the bounds of the (h,M) parameter do-
main at all times using a saturation block. After Ni = 4 gradient steps, wcsim
finds a parameter trajectory that achieves an OLEF position L2 norm of 3.096. The
worst-case OLEF position response due to the step input disturbance is shown as the
dashed curve in the top subplot of Figure 7. The worst-case Mach trajectory com-
puted by wcsim is shown as the dashed curve in the bottom subplot of Figure 7.
The worst-case altitude trajectory is not shown since it is a constant 17500 ft to
within 0.25 ft. These results indicate that variations in altitude have a small impact
on the closed-loop disturbance rejection. The expected computation for this wcsim
is (nc +1)Niτ ≈ 910 sec based on nc = 8 coefficients, Ni = 4 iterations, and τ = 25.3
seconds per simulation. The actual wcsim optimization ran 60 simulations and took
1735 sec to complete. The worst-case Mach trajectory (bottom subplot of Figure 7)
shows fast variations with a peak rate of |Ṁ| ≈ 0.156 1/sec. These are unrealistic
Mach rates for the actual AAW aircraft.

Another wcsim optimization is run with the constraint |Ṁ| ≤ 0.02 1/sec. This
constraint is enforced in the “Parameter Rate Constraint” subsystem in Figure 6
using an approximate derivative and a wcsim Constraint Function block.
The altitude was held constant at 17500 ft for this optimization since altitude vari-
ations appear to have minor impact on the OLEF position response. Thus wcsim
only optimizes over the four coefficients in the Mach trajectory. After Ni = 6 gra-
dient steps, wcsim finds a parameter trajectory that achieves an OLEF position
L2 norm of 2.948. The worst-case OLEF position response due to the step input
disturbance is shown as the dash-dotted curve in the top subplot of Figure 7. The
worst-case Mach trajectory computed by wcsim is shown as the dash-dotted curve
in the bottom subplot of Figure 7. The worst case trajectory returned by wcsim
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satisfies |Ṁ| ≤ 0.202 1/sec. This slight violation of the enforced constraint is due
to the restriction of Ni = 6. The Mach trajectory computed by wcsim simply slows
the AAW down from its upper Mach limit to its lower limit over the ten second sim-
ulation. The expected computation for this wcsim is (nc + 1)Niτ ≈ 759 sec based
on nc = 4 coefficients, Ni = 6 iterations, and τ = 25.3 seconds per simulation. The
actual wcsim optimization ran 38 simulations and took 1154 sec to complete.
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Fig. 6: AAW LPV SIMULINK diagram

6 LPV Control Design

This section describes an LPV control design that provides guaranteed performance
with respect to time variations in the (h,M) parameters. The design approach is
based on signal-weighted induced L2 norms. Figure 8 shows the design intercon-
nection used for the control synthesis. The performance objective is to minimize the
induced L2 norm from the design interconnection inputs to the outputs. The various
I/O signals are weighted to obtain the desired trade-offs between reference tracking,
disturbance/noise rejection, and actuation usage.

The rigid body AAW dynamic models Grig are used in the design. The design
interconnection formulates a model-matching problem. The key performance ob-
jective is for the closed-loop response from pcmd to p to match the ideal response

given by Gideal = ω2
d

s2+2ζ ωds+ω2
d

. The ideal response natural frequency and damp-

ing are given by ζ = 0.8 and ωd = 1.25 rad/sec. This is the same ideal response
given by the loop shape Gls in the gain-scheduled classical design. The actuation
and performance penalties are given by Wa = 100s+25

s+2500 and Wp = 0.01s+12.5
s+0.125 . This em-

phasizes tracking of the ideal response up to ≈ 11.25 rad/sec and penalizes control
usage at higher frequencies. The input disturbance and noise weights are chosen
as Wd = 0.1 and Wn = 0.01. The small values are chosen to emphasize the actua-
tion / performance trade-off. The ideal model and all weights are independent of
the flight condition. Thus the performance objective aims to achieve similar perfor-
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Fig. 7: Simulation results due to step input disturbance

mance across the flight envelope. The standard Robust Control Toolbox command
sysic has been overloaded to allow interconnections of pss objects and standard
MATLAB system objects. This overloaded sysic command was used to generate
the LPV design interconnection shown in Figure 8.

To understand the limits of performance, the H∞ optimal control problem spec-
ified by this design interconnection was solved at each point in the flight enve-
lope. The optimal performance varied from a minimum of γ = 1.008 at (h,M) =
(25000 f t,1.1) to a maximum of γ = 3.726 at (h,M) = (15000 f t,1.3). The op-
timal performance of any LPV design must be greater than or equal to the op-
timal H∞ performance achieved at any point in the domain. Hence γ = 3.726 is



22 Seiler, Balas, and Packard

- Grig p

?

6

e� Wn �
n

e?
Wd

?

d

-
6

Wa

6

K-e-pcmd

6

- Gideal - e - Wp -

Fig. 8: Design interconnection AAW roll rate control

a lower bound on the achievable performance by the optimal LPV controller. For
comparison, the gain-scheduled classical controller, Kcl , achieves a minimum gain
of γ = 1.000 at (h,M) = (25000 f t,1.1) and a maximum gain of γ = 3.857 at
(h,M) = (15000 f t,1.3).

Next, an LPV controller was synthesized without using knowledge about the
rate variations of altitude and Mach. This control synthesis is performed using
the function lpvsyn which solves a set of parameterized LMIs using a constant
(non-parameter varying) Lyapunov function. The parameterized LMI conditions are
based on results in [33]. The non-rate bounded bounded design achieves an optimal
gain of γl pv,nr = 3.844. This is very close to the performance lower bound computed
based on the point-wise H∞ designs. The design interconnection has a total of five
states: one for the rigid body AAW dynamics, two for the ideal response model
and one each for the actuation and performance weights. The non-rate bounded
controller Kl pv has the same number of states as the design interconnection, i.e.
Kl pv has five states. A rate-bounded LPV controller was also synthesized assum-
ing |Ṁ| ≤ 0.02 and |ḣ| ≤ 1000 ft/sec and using basis functions {1,M,h}. The rate
bounded design achieved a gain of γl pv,rb = 3.797. This is a small improvement over
the non-rate bounded design. Hence the bound on the rate of the parameter variation
does not play a significant role in the AAW design. The remainder of the section will
focus on the non-rate bounded control design.

Figure 9 shows the Bode plots for the the non-rate bounded LPV controller Kl pv
at each point in the flight envelope. The controller has proportional-integral action
at low frequencies and a second order roll-off beyond ωro to avoid exciting the
flexible modes. Both these characteristics are similar to gain-scheduled classical
design shown in Figure 3. One difference is that Kl pv has additional phase lead
between 1 to 10 rad/sec. In addition, Kl pv has the same high frequency gain at all
points in the flight envelope while the high frequency gain of the classical design Kcl
varies with the flight condition. The point-wise Bode plots of Kl pv show an intuitive
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classical design at each point in the flight domain and this provides confidence in
the LPV design tools. One benefit of the LPV design tools, even for single-input
single-output gain scheduling, is that the designer does not have to worry about the
impact of the differing state space realizations. The impact of the state realization
on the gain-scheduled performance is built into the design.
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Fig. 9: Bode magnitude plots of LPV controller

Figure 10 shows the Bode plots for the (open) loop function G f ullKnr at each
point in the flight envelope. The loop function again shows integral action at low
frequencies. The loop G f ullKnr has all modes below -12.0dB at all points in the
flight envelope. In closed-loop, the response from roll rate command to roll rate has
the flexible modes below -12.4dB at all points in the domain. This is slightly less
attenuation than achieved by the gain-scheduled classical controller. The additional
phase lead in Knr is evident from 1 to 10 rad/sec in the Bode plot of G f ullKnr. The
loop function G f ullKcl has gain and phase margins exceeding 18.8dB and 66.7 degs
at each point in the flight domain. This a slightly smaller gain margin than Kcl but
the phase margins of Kcl and Knr are essentially the same.

Figure 11 shows the closed-loop unit step responses to a 1 deg roll rate command
at all points in the flight envelope. The full model with flexible modes G f ull and LPV
controller Knr are used to generate these closed-loop responses. The top plot shows
the roll rate response and the bottom plot shows the OLEF position. The blue solid
curve in the top plot shows the ideal closed-loop response specified by the ideal
model Gideal . The red dashed curves in both plots show the closed loop responses at
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Fig. 10: Bode plots of loop function G f ullKnr

each point in the (h,M) domain. The LPV controller achieves consistent dynamic
performance across the flight envelope with good attenuation of the flexible modes.
The LPV controller provides slightly better tracking of the ideal response when
compared to the classical design (Figure 5). Both Knr and Kcl have similar actuator
usage for the step roll rate command.

Tables 5a and 5b show the bounds on the LPV induced L2 norms of the various
closed-loop sensitivity functions. Table 5a was computed using Grig and Kl pv while
the results in Table 5b were computed with the reduced aeroelastic model Gred and
Kl pv. These results can be compared with the gain scheduled classical controller per-
formance Kcl in Tables 4a and 4b. The LPV controller has slightly achieves slightly
better performance based on the rate-bounded upper bounds computed using the
linear and quadratic basis functions (column LPV3).

7 Conclusions

This chapter investigated the use of LPV techniques for the roll control of NASA
Dryden’s X-53 Active Aeroelastic Wing (AAW) testbed. LPV analysis of a gain-
scheduled classical controller indicated that variations in scheduling parameter
would have minimal impact on reference tracking but may have some impact on
disturbance rejection at the plant input. An LPV controller was also synthesized us-
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Fig. 11: Closed-loop responses to step roll rate command with Knr

ing a model matching design. The LPV controller has an intuitive classical control
characteristics and its performance was similar to the gain-scheduled classical de-
sign. All results were obtained using new LPV modeling, analysis and design soft-
ware tools. Future work will consider the scalability of the numerical algorithms,
incorporation of uncertainty analysis, and development of the data infrastructure
and tools to encompass the various LPV representations.
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Table 5: L2 induced norms for closed-loop sensitivity functions with LPV controller

(a)

Closed-loop with (Grig,Kl pv)
Point H∞ LPV1 LPV2 LPV3

Si 1.302 3.682 2.063 1.434
Ti 0.995 3.586 2.004 1.358
So 1.302 1.315 1.309 1.306
To 0.995 1.002 0.998 0.998

(b)

Closed-loop with (Gred ,Kl pv)
Point H∞ LPV1 LPV2 LPV3

Si 1.328 Inf 2.087 1.450
Ti 0.995 Inf 2.036 1.360
So 1.328 Inf 1.356 1.357
To 0.995 Inf 1.007 0.999

8 Acknowledgments

This research was supported under the NASA Dryden SBIR NNX11CD58P enti-
tled “Adaptive Linear Parameter-Varying Control for Aeroelastic Suppression”. The
technical contract monitor is Dr. Martin J. Brenner.

References

1. Apkarian, P., P.Gahinet: A convex characterization of gain-scheduled H∞ controllers. IEEE
Transactions on Automatic Control 40(5), 853–864 (1995)

2. Balas, G., Bokor, J., Szabo, Z.: Invariant subspaces for LPV systems and their applications.
IEEE Transactions on Automatic Control 48(11), 2065–2069 (2003)

3. Baranyi, P., Yam, Y., Varlaki, P.: Tensor Product Model Transformation in Polytopic Model-
Based Control. Taylor & Francis (2011)

4. Becker, G.: Quadratic stability and performance of linear parameter dependent systems. Ph.D.
thesis, University of California, Berkeley (1993)

5. Boehm, B., Flick, P., Sanders, B., Pettit, C., Reichenbach, E., Zillmer, S.: Static aeroelas-
tic response predictions of the active aeroelastic wing (AAW) flight research vehicle. In:
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference,
AIAA 2001-1372 (2001)

6. Brenner, M.: Aeroservoelastic model uncertainty bound estimation from flight data. AIAA
Journal of Guidance, Control, and Dynamics 25(4), 748–754 (2002)

7. Brenner, M.: (2011). Personal Communication
8. Brenner, M., Lind, R.: Wavelet-processed flight data for robust aeroservoelastic stability mar-

gins. AIAA Journal of Guidance, Control, and Dynamics 21(6), 823–829 (1998)
9. Bruzelius, F., Breitholtz, C.: Gain scheduling via affine linear parameter-varying systems and

h∞ synthesis. In: IEEE Conference on Decision and Control, pp. 713–718 (2001)
10. Clarke, R., Allen, M., Dibley, R., Gera, J., Hodgkinson, J.: Flight test of the F/A-18 active

aeroelastic wing airplane. Tech. Rep. TM-2005-213664, NASA (2005)
11. Dibley, R., Allen, M., Clarke, R., Gera, J., Hodgkinson, J.: Development and testing of control

laws for the active aeroelastic wing program. Tech. Rep. TM-2005-213666, NASA (2005)
12. Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: LMI control toolbox user’s guide. Tech.

rep., The Mathworks (1995)
13. Lind, R., Brenner, M.: Analyzing aeroservoelastic stability margins using the µ method. In:

AIAA Structures, Structural Dynamics, and Materials Conference, AIAA 98-1895, pp. 1672–
1681 (1998)



LPV Control for the AAW 27

14. Lucia, D.: The sensorcraft configurations: A non-linear aeroservoelastic challenge for avia-
tion. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Con-
ference and Exhibit, AIAA-2005-1943 (2005)

15. Mangalam, A., Mangalam, S., Flick, P.: Unsteady aerodynamic observable for gust load alle-
viation and flutter suppression. In: AIAA Atmospheric Flight Mechanics Conference, AIAA
2008-7187 (2008)

16. Mangalam, A., Moes, T.: Real-time unsteady loads measurements using hot-film sensors. In:
AIAA Applied Aerodynamics Conference, AIAA 2004-5371 (2004)

17. Mangalam, S., Flick, P., Brenner, M.: Higher level aerodynamics input for aeroservoelastic
control of flexible aircraft. In: AIAA Atmospheric Flight Mechanics Conference, AIAA 2007-
6380 (2007)

18. Martinez, J., Flick, P., Perdzock, J., Dale, G., Davis, M.: An overview of sensorcraft capabil-
ities and key enabling technologies. In: AIAA Applied Aerodynamics Conference, AIAA-
2008-7185 (2008)

19. Packard, A.: Gain scheduling via linear fractional transformations. Systems and Control Let-
ters 22(2), 79–92 (1994)

20. Packard, A., Kantner, M.: Gain scheduling the LPV way. In: IEEE Conference on Decision
and Control, pp. 3938–3941 (1996)

21. Pendleton, E., Bessette, D., Field, P., Miller, G., Griffin, K.: Active aeroelastic wing flight
research program: Technical program and model analytical development. Journal of Aircraft
37(4), 554–561 (2000)

22. Pendleton, E., Flick, P., Voracek, D., Reichenbach, E., Griffin, K., Paul, D.: The X-53: A sum-
mary of the active aeroelastic wing flight research program. In: AIAA Structures, Structural
Dynamics, and Materials Conference (2007). Paper 2007-1855

23. Pendleton, E., Griffin, K., Kehoe, M., Perry, B.: A flight research program for active aeroelastic
wing technology. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference and Exhibit (1996). Paper 96-1574-CP

24. Scherer, C.: LPV control and full block multipliers. Automatica 37(3), 361–375 (2001)
25. Scherer, C., Weiland, S.: Linear Matrix Inequalities in Control. DISC Lecture Notes (2000)
26. Seiler, P., Balas, G., Packard, A.: Linear parameter varying control for the X-53 active aeroe-

lastic wing. In: AIAA Guidance, Navigation, and Control Conference (2011)
27. Shamma, J., Athans, M.: Gain scheduling: potential hazards and possible remedies. In: Amer-

ican Control Conference, pp. 516–521 (1991)
28. Sharuz, S., Behtash, S.: Design of controllers for linear parameter-varying systems by the

gain-scheduling technique. In: IEEE Conference on Decision and Control, pp. 2490–2491
(1990)

29. Sun, X., Postlethwaite, I.: Affine LPV modeling and its use in gain-scheduled helicopter con-
trol. In: UKACC International Conference on Control, pp. 1504–1509 (1998)

30. Tischler, M., Colbourne, J., Morel, M., Biezad, D., Levine, W., Moldoveanu, V.: CONDUIT:
A new multidisciplinary integration environment for flight control development. In: AIAA
Guidance, Navigation, and Control Conference, AIAA-1997-3773 (1997)

31. Vartio, E., Shimko, A., Tilman, C., Flick, P.: Structural mode control and gust alleviation for a
sensorcraft concept. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference and Exhibit, AIAA-2005-1840 (2005)

32. Veenman, J., Scherer, C.: On robust LPV controller synthesis: A dynamic integral quadratic
constraint based approach. In: IEEE Conference on Decision and Control, pp. 591–596 (2010)

33. Wu, F.: Control of linear parameter varying systems. Ph.D. thesis, University of California,
Berkeley (1993)

34. Wu, F., Yang, X., Packard, A., Becker, G.: Induced l2 norm control for LPV systems with
bounded parameter variation rates. International Journal of Nonlinear and Robust Control 6,
983–998 (1996)



28 Seiler, Balas, and Packard

Appendix: Induced L2 analysis for LPV systems

This appendix briefly defines the L2 norm for LPV systems and a provides a set of
conditions for computing a bound on this norm. The presentation essentially follows
that given in [33].

Consider an LPV system of the form:[
ẋ(t)
y(t)

]
=
[

A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

][
x(t)
u(t)

]
(6)

where (A,B,C,D) are continuous functions of ρ defined on a compact set P ⊂Rnρ .
The signal dimensions are ρ ∈ Rnρ , y ∈ Rny , u ∈ Rnu , and x ∈ Rnx . The dimensions
of the state matrices are compatible with these signal dimensions.

ρ is a piecewise continuous function from R to Rnρ . It is assumed that ρ(t) ∈P
∀t. In addition, it is assumed that there exist {νi}

nρ

i=1 ∈ R such that |ρ̇i| ≤ νi ∀t.
In other words, the {νi}

nρ

i=1 are known rate bounds on the parameter trajectories.
Let FP,ν denote the set of piecewise continuous parameter trajectories that are
restricted to P and whose rates satisfy the bounds specified by {νi}

nρ

i=1.
Let G denote the LPV system along with the set of allowable parameter trajecto-

ries FP,ν . The induced L2 norm of G is defined as:

‖G‖i,2 := sup
ρ∈FP,ν

sup
u∈L2
‖u‖2 6=0

‖y‖2

‖u‖2
(7)

where ‖ · ‖2 denotes the L2 norm. In calculating this induced norm it is assumed
that x(0) = 0. This norm is the maximum input/output gain over all inputs and all
allowable parameter trajectories.

The following theorem, taken from [33], gives a condition for an upper bound on
the induced L2 norm.

Theorem 1. If there exists a piecewise continuous function X : Rnρ →S nx×nx such
that X(ρ) > 0 andAT (ρ)W (ρ)+W (ρ)A(ρ)+∑

nρ

i=1 βi
∂W
∂ρi

W (ρ)B(ρ) γ−1CT (ρ)
BT (ρ)W (ρ) −Inu γ−1DT (ρ)

γ−1C(ρ) γ−1D(ρ) −Iny

< 0 (8)

∀ρ ∈P and |βi| ≤ νi (i = 1, . . . ,nρ ) then:

1. the system G is parametrically-dependent stable over P .
2. ∃k with 0≤ k < γ such that ‖G‖i,2 ≤ k.

Functions to compute an upper bound on the induced L2 norm for an LPV sys-
tem based on this result have been developed. There are two implementations of
the induced LPV norm. The first computes an upper bound Gamma on the induced
L2 norm of the pss G using a constant (parameter independent) Lyapunov matrix
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X(ρ) = X . The use of a constant X is equivalent to computing the induced norm
with no parameter rate bounds, i.e. a parameter-independent Lyapunov function can
be used for rate unbounded analysis.

The second implementation computes a tighter (less conservative) bound on
the induced L2 norm by using a parameter dependent matrix Lyapunov X(ρ) and
bounds on the parameter rates of variation. X(ρ) is assumed to be a linear combina-
tion of basis functions specified by

X(ρ) =
nb

∑
j=1

f j(ρ)X j (9)

The functions f j : Rnρ → R are piecewise continuous functions specified by the
input Xb. The parameter rate bounds are specified by RateUB and RateLB. The
toolbox searches for {X j}nb

j=1 such that X(ρ) satisfies the conditions in the theo-
rem. The norm bound computed by this second syntax is less conservative at the
expensive of higher computational complexity.

The conditions in Theorem 1 are a parameterized set of linear matrix inequalities
(LMIs) that must be verified for all ρ ∈P and all |βi| ≤ νi. The function lpvnorm
approximately solves these conditions by enforcing the LMIs on a set of gridded
points of P . The terms involving parameter rates are handled by exploiting the
fact that the βi enter affinely in Equation 8. Specifically, if the LMIs hold for all
combinations of βi =±νi (a total of 2nρ combinations) then they hold for all |βi| ≤
νi.

The computational growth of these conditions is an issue. Let ng denote the total
number of grid points used to approximate P . A rate bounded analysis must enforce
the LMI conditions at all ng grid points and for all 2nρ combinations of βi = ±νi.
Thus there are a total of ng2nρ constraints each of dimension (nx +nu +ny). If there
are nb basis functions, then the Lyapunov matrix has nb symmetric matrix decision
variables {X j}nb

j=1 each of dimension nx× nx. This gives a total of nb
nx(nx+1)

2 in-
dividual decision variables in the rate bounded analysis. LMI optimization solvers
have an asymptotic complexity that depends on both the number of decision vari-
ables and the number/dimension of LMI constraints. For example, LMILab has a
floating point operation growth of O(nrn3

v) where nr is the total row dimension of
the LMI conditions and nv is the total number of decision variables [12]. This com-
plexity assumes the default Cholesky factorization of the Hessian matrix is used to
solve the least squares problem that arises in each iteration. Thus the complexity
of solving the LPV analysis condition is roughly O

(
ng2nρ (nx +nu +ny)

(
nbn2

x
)3
)

.
This growth limits the analysis to a modest number of parameters, grid points, and
basis functions.


