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Abstract— Model-based fault detection methods have the
potential to reduce the size, weight, and cost of safety-critical
aerospace systems. One obstacle to the application of these
methods is a lack of appropriate tools to efficiently certify
their reliability. This paper focuses on the false alarm analysis
of a general fault detection scheme. The main difficulty of
the false alarm analysis is the time-correlations introduced
by the plant dynamics and the fault detection filter. This
paper proves product-type probability inequalities for general
stationary zero-mean Gaussian processes. These inequalities
are applied to provide converging bounds for the false alarm
probability over a given time window. A numerical example is
presented to demonstrate the proposed technique.

I. INTRODUCTION

Safety-critical aerospace systems must be reliable and their
reliability must also be certifiable. There is a need to certify
the reliability of an aerospace safety-critical system with
aviation authorities, e.g. the Federal Aviation Administration
in the United States or the European Aviation Safety Agency.
Commercial flight control electronics are required to have
no more than 10−9 catastrophic failures per flight hour [2],
[5]. The current design of safety-critical aerospace systems
is based on physical redundancy [24], whose performance
is relatively straightforward to certify using fault trees [15],
[16]. However, physically redundant architectures increase
the system size, weight, power, and cost. As a result,
there have been efforts to develop analytical redundancy as
an alternative approach to achieve fault tolerance, e.g. the
oscillatory monitors on the Airbus A380 [12]. Model-based
fault detection and isolation (FDI) is one method to realize
analytical redundancy [4], [14], [6]. The recent AddSafe
project in Europe [1] assessed the suitability of these ad-
vanced fault detection methods for commercial aircraft. In
addition, model-based FDI could significantly improve the
reliability of other safety-critical aerospace systems which
cannot afford the size, weight and power associated with
physical redundancy, e.g. Unmanned Aerial Vehicles and fly-
by-wire in business/general aviation aircraft.

However, the certification of analytically redundant sys-
tems is challenging due to nonlinear, time-varying and
uncertain aircraft dynamics, time-correlations in the resid-
uals introduced by filtering, potentially complex decision
functions, and stringent reliability requirements. One pos-
sible approach to validate the FDI performance involves
linearizing the aircraft dynamics at many trim conditions in
the flight envelope. Next, linear analysis tools are used to
rigorously assess the FDI performance at these operating
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conditions. Finally, high fidelity Monte Carlo simulations
can be performed to complement the linear analyses. This
approach is similar to the existing procedure to validate the
robustness and performance of flight control laws [18]. This
paper seeks an analytical solution for the false alarm analysis
of a FDI system at a trim condition. The main difficulty is
the time-correlations introduced by plant dynamics and the
FDI filter.

In the statistical process control (SPC) community, finite
state Markov chain approximations are used to compute
false alarm probabilities when the univariate control charting
statistic is governed by a first-order autoregressive model
[17]. This method could be useful for the false alarm analysis
of a first-order FDI system. However, one drawback of the
finite state Markov chain approximation is the “curse of di-
mensionality”. This makes the Markov chain approximation
computationally inefficient for more realistic FDI systems
which are governed by higher-order dynamics.

Probability inequalities are another potential solution for
false alarm analysis. Product-type inequalities were first de-
rived by Sidak [23] to study confidence intervals of multivari-
ate normal distributions. Glaz obtained a general form of the
product-type inequalities based on the property of absolute
value multivariate totally positive of order 2 (AMTP2) [8].
Product-type probability inequalities always provide better
bounds than Bonferroni-type inequalities which are another
class of probability bounds commonly used [13]. Although
product-type probability inequalities have been used widely
to study confidence intervals and time series models [10],
they have not been used to study the performance of fault
detection systems. The restriction of AMTP2 property is a
strong condition for false alarm analysis. This paper derives
a weaker condition where product-type inequalities can hold
so that product-type inequalities can be used to analyze false
alarm probabilities of general fault detection systems.

This paper formulates a false alarm analysis problem of
a typical model-based fault detection system in Section II.
Section III presents the main contribution of this paper:
deriving product-type inequalities for general stationary zero-
mean Gaussian processes. An efficient bounding method is
also presented to solve the false alarm analysis problem.
Finally, Section IV gives a numerical example to demonstrate
the utility of the proposed method.

The analysis in this paper is complementary to Monte
Carlo methods. In particular, Monte Carlo methods, such as
the importance sampling and splitting techniques [21], have
been used in rare event simulations. One potential drawback
of the Monte Carlo method is the high computational power
associated with the accuracy requirement and long length of
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There is a flaw in the proof of this paper. The flaw is in the proof of Lemma 3 in the appendix and highlighted by the yellow remarks in the appendix. Since the proof of the main result (Theorem 1 in Section III) of this paper heavily relies on Lemma 3, the main result in this paper is wrong. This paper claimed that it generalized the product-type inequality to any stationary Gaussian processes. But this is not true due to the flaw in Lemma 3. The product-type inequalities still only hold when the stochastic processes satisfy the AMTP2 condition (Table 1 in Ref [10]). 



the time window. Both methods should be complementary
to each other in order to provide a complete solution for the
false alarm analysis problem.

II. PROBLEM FORMULATION

Consider a typical fault detection scheme shown in Fig-
ure 1. Gθ denotes the monitored system, which depends
on a parameter θk. θk ∈ {0, 1} denotes the status of
the system at time k: θk = 0 if Gθ is operational and
θk = 1 if a fault has occurred. Gθ is also subjected to
known inputs uk and unknown disturbances wk. A fault
detection scheme is used to monitor the status of Gθ. The
fault detection scheme is compromised of two parts: a filter
that generates a scalar residual carrying the information of
the occurrence of the fault, and a decision function that
generates a logic signal indicating the status of the monitored
system. There are many approaches to design the FDI filter,
e.g. observer based methods, parity equation based methods,
parameter estimation methods, and advanced robust filter
design methods [4], [14], [6]. In most cases, the residual
rk is generated based on noisy measurement yk and known
input uk. Hence the residual rk can be viewed as an output of
the combined linear time-invariant (LTI) system comprised
of the monitored system and the FDI filter.

Fig. 1. Block diagram of a typical fault detection scheme.

The residual generator is typically designed in a way such
that rk is small when θk = 0, and large when a fault occurs.
Based on rk, the decision logic generates a signal dk to
indicate the status of Gθ, i.e. dk = 1 if a fault has been
detected and dk = 0 otherwise. There are many approaches
for designing decision function logic, such as thresholding,
statistical testing methods, and fuzzy logic [14], [6]. Our
analysis focuses on constant thresholding:

dk :=

{
0 if |rk| ≤ T
1 else (1)

A fault is declared when rk exceeds the threshold T .
Thresholding is widely used in industrial applications due to
its simplicity. The restriction to constant thresholds can also
be viewed as a steady-state approximation for time-varying
thresholds. This paper focuses on the difficulty of analysis
introduced by the complicated state-space model that governs
rk. Therefore, a simple decision function is considered.
This case provides a foundation for further research on FDI
schemes with more complex decision functions.

For safety-critical aerospace systems, system reliability
requirements are typically specified over a specified time
interval, e.g. flight control systems certified with the FAA

are required to have less than 10−9 catastrophic failures per
flight hour [5]. These system level requirements indicate that
the false alarm probability which is of interest in this paper
should also be specified over a time interval. This motivates
the following definition of false alarm probability:

Definition 1: The N -step false alarm probability, denoted
PN , is the conditional probability that dk = 1 for some k in
1 ≤ k ≤ N , given that θk = 0 for all k in 1 ≤ k ≤ N .

A false alarm is an event where the FDI scheme declares a
fault when no fault has occurred within the N -step window.
To compute PN , a specific mathematical model for rk is
needed. False alarm analysis only considers the fault free
case where θk = 0. As mentioned in the introduction this
paper seeks an analytical solution for the false alarm analysis
of a FDI system at a trim condition. Hence finally, assume
Gθ is in the trim condition so that uk = 0 and the system
is in the steady state. Then rk is governed by the following
discrete-time state-space model:

xk+1 = Axk +Bnk

rk = Cxk +Dnk
(2)

Here, xk ∈ Rh, nk ∈ Rl, A ∈ Rh×h, B ∈ Rh×l, C ∈
R1×h, and D ∈ R1×l. nk is an independent and identically
distributed (IID) Gaussian process with nk ∼ N (0,Σ). This
model is quite general since it is valid for the following two
classes of problems:

1) The unknown disturbances wk are deterministic and
the FDI filter realizes disturbances decoupling so that
wk does not affect rk.

2) The unknown disturbances wk are stochastic IID Gaus-
sian process.

For the first case define nk = vk. For the second case define
nk =

[
wk; vk

]
so nk contains the combined effects of both

the sensor noise and the stochastic disturbances. Then for
both cases Equation 2 is a suitable model describing the
dynamics governing rk. Assume the system is stable, hence
all eigenvalues of A have magnitude strictly less than 1. The
steady-state assumption implies that for any k, the marginal
distribution of {ri, ri+1, . . . , ri+k} does not depend on i.
Since nk is IID Gaussian noise with zero mean, rk is a
strictly stationary zero-mean Gaussian process. The steady
state covariance matrix Σx of the random vector xk can be
solved from the Lyapunov equation:

Σx = AΣxA
T +BΣBT (3)

Define RN =
[
r1 r2 r3 · · · rN

]T
. RN is a Gaussian

random vector. Let ΛN denote the covariance matrix of RN .
rk is a strictly stationary Gaussian process with zero mean
hence the covariance matrix of RN has a Toeplitz structure:

ΛN (i, k) =

{
CΣxC

T +DΣDT if i = k
CA|i−k|ΣxC

T + CA|i−k|−1BΣDT else
(4)

Therefore the probability density function of the residual



vector RN has the form:

fN (RN ) =
1√

(2π)N |ΛN |
e−

1
2R

T
NΛ−1

N RN (5)

To simplify notation, fN (r1, r2, · · · , rN ) := fN (RN ),
so there is no confusion when writing an expression such
as fN (c, r2, · · · , rN ). The lower index N emphasizes the
dimension of the residual vector RN .

It is straightforward to compute the probability of an
intersection of events based on a probability integral. Thus,
based on Definition 1, it is helpful to express PN as follows:

PN = P [∪Nk=1{|rk| > T}]
= 1− P [∩Nk=1{|rk| ≤ T}]

= 1−
∫ T

−T
fN (RN )dRN

(6)

To find PN from Equation 6, three main difficulties need to
be handled. First, rk are time-correlated due to the dynamics
of Equation 2. Second, N could be relatively large for our
analysis. For example, a system with a 100Hz sample rate
has N = 3.6 × 105 samples per hour. Finally, for good
FDI performance, safety-critical systems require PN to be
extremely small, and hence the accuracy requirement is very
stringent for false alarm analysis. Therefore, generally, PN
can not be solved by directly numerical integration from
Equation 6. Importance sampling is also time consuming
due to the large value of N . As a complementary approach,
Section III derives new probability bounds for stationary
zero-mean Gaussian processes in order to solve for PN .

III. FALSE ALARM ANALYSIS

This section presents a theoretical method to analyze
the false alarm probability, PN . Section III-A proves that
product-type inequalities hold for general stationary zero-
mean Gaussian processes and applies this result to obtain
bounds for false alarm probability, PN . Section III-B ex-
plains how the probability bounds can provide accurate
estimates of false alarm probability based on convergence
and perturbation arguments. Related work in the literature is
discussed at the end of each subsection.

A. Probability Bounds for False Alarm Probability

For simplicity, denote QN := 1 − PN . QN is the con-
ditional probability that no alarm is declared within the N -
step window given there is no fault. From Equation 6, it
is clear that QN =

∫ T
−T fN (RN )dRN . It is beneficial to

provide tight upper bounds for the false alarm probability,
PN . Hence, we seek lower bounds for QN . The next lemma
is used to derive a lower bound on QN .

Lemma 1: Suppose rk is a stationary zero-mean Gaussian
process. Then:

P [|rN | ≤ T | |rN−1| ≤ T, · · · , |r2| ≤ T, |r1| ≤ c] ≥
P [|rN | ≤ T | |rN−1| ≤ T, · · · , |r2| ≤ T ] (7)

where N ≥ 3 and c ≥ 0.

Proof: The right side of Inequality 7 can be expressed
as QN−1

QN−2
by the stationarity of rk. Define FN (c) = P [|rN | ≤

T, |rN−1| ≤ T, · · · , |r2| ≤ T, |r1| ≤ c]. The left side of In-
equality 7 can be expressed as FN (c)

FN−1(c) . Hence it is sufficient
to show that G(c) = FN (c)QN−2 − FN−1(c)QN−1 ≥ 0.

To simplify notation, define H(c) : [0,+∞) → [0, 1] as
follows:

H(c) = P [|rN | ≤ T | |rN−1| ≤ T, · · · , |r2| ≤ T, r1 = c]
(8)

where N ≥ 3. H(c) has an analytical expression:

H(c) =

∫ T
−T · · ·

∫ T
−T fN (c, r2, · · · , rN )dr2 · · · drN∫ T

−T · · ·
∫ T
−T fN−1(c, r2, · · · , rN−1)dr2 · · · drN−1

(9)

For simplicity, denote the numerator and the denominator as
U(c) and D(c), respectively.

To show G(c) ≥ 0, first notice limc→+∞ FN (c) = QN−1

and FN (0) = 0, so limc→+∞G(c) = 0 and G(0) = 0.
Apply the fundamental theorem of calculus (Theorem 6.19
in [22]) to compute the derivative of G(c) with respect to c
as follows:

dG

dc
= 2D(c)QN−2

(
H(c)− QN−1

QN−2

)
(10)

By Lemma 3, which is stated and proved in the appendix,
H(c) is a non-increasing function. For fixed N , QN−1

QN−2
is a

constant. Hence only two cases need to be considered. The
first case is that there exists a certain constant c∗ such that(
H(c)− QN−1

QN−2

)
is nonnegative for c ≤ c∗ and nonpositive

for c > c∗. Since D(c)QN−2 ≥ 0, limc→+∞G(c) = 0 and
G(0) = 0, the only possible result is that G(c) first increases
from 0 as c increases from 0 to c∗, and then decreases to
0 as c approaches +∞. So G(c) ≥ 0 for all c ≥ 0. The
second case is that

(
H(c)− QN−1

QN−2

)
is nonpositive for all c.

Since D(c)QN−2 ≥ 0, limc→+∞G(c) = 0 and G(0) = 0,
the only possible result is that G(c) = 0 for all c. For both
cases, G(c) ≥ 0 for all c ≥ 0. This completes the proof.

The main result can now be stated to provide upper bounds
for false alarm probability PN .

Theorem 1: Suppose rk is a stationary zero-mean Gaus-
sian process. Given N define

γ
(k)
N =

(
Qk
Qk−1

)N−k
Qk (11)

for 2 ≤ k ≤ N . Then

PN ≤ 1− γ(k)
N (12)

and the bounds γ(k)
N are non-decreasing in k.

Proof: It is trivial to verify γ(N)
N = QN . Now set c = T

in Lemma 1 to get:

QN
QN−1

≥ QN−1

QN−2
(13)



where N ≥ 3. The monotonicity of γ(k)
N can be shown as

follows:

γ
(k)
N =

(
Qk
Qk−1

)N−k
Qk ≤

(
Qk+1

Qk

)N−k
Qk = γ

(k+1)
N

(14)

Hence γ(1)
N ≤ . . . ≤ γ

(N)
N = QN , i.e. γ(k)

N is a lower bound
on QN for k = 2, . . . , N . The upper bounds on PN follow
immediately from PN = 1−QN .

This result provides a sequence of monotonically converging
product-type bounds for the false alarm probability PN .
Terms involving γ

(k)
N for small values of k can be used to

bound PN for large N . γ(k)
N is computed based on Qk and

Qk−1. For large N computing bounds on PN using this result
is significantly more efficient than directly computing PN .
For example, Q1 is a one-dimensional Gaussian integral, and
it can be accurately computed from the error function, e.g.
erf in Matlab. Q2 and Q3 correspond to two and three
dimensional Gaussian integrals, respectively. These integrals
can also be efficiently computed to within machine (double)
precision using the Matlab function mvncdf [7]. Hence
γ

(3)
N can be computed trivially to bound PN .
Glaz proved a similar product-type inequality assuming

the random variable satisfies the technical AMTP2 condition
[8], [10]. Theorem 1 generalizes this result and demonstrates
that the product-type inequality holds for general stationary
zero-mean Gaussian processes without assuming the AMTP2
condition which is strong and not easy to check as N
increases. Product-type inequalities have been applied to
obtain upper bounds for confidence intervals on multivariate
normal variables [10]. However, in those studies, N is
always chosen to be smaller than 100 and PN is not an
extremely small number close to 0. False alarm analysis faces
a significantly different situation where N is much larger and
PN is much smaller with a higher computational accuracy
requirement. Hence, the application of these inequalities in
false alarm analysis should be carefully justified. It must
be clarified when these probability inequalities can provide
accurate estimates for false alarm probability.

B. Convergence of the Probability Bounds

As shown in the proof of Theorem 1, γ(N)
N = QN . Hence

for fixed N the bounds γ(k)
N are non-decreasing in k and

convergent to QN . To see the convergence rate, the following
result is needed:

Corollary 1: Suppose rk is a stationary zero-mean Gaus-
sian process, then QN+1

QN
is a monotonically non-decreasing,

convergent sequence as a function of N .

Proof: The monotonicity of QN+1

QN
was demonstrated

in the proof of Theorem 1. Moreover, QN+1

QN
≤ 1 follows

since ∩N+1
i=1 {|ri| ≤ T} ⊂ ∩Ni=1{|ri| ≤ T}. It is also true that

QN+1

QN
is nonnegative. A bounded monotone sequence in R

converges to a finite limit (Theorem 3.14 in [22]). Therefore,
limN→∞

QN+1

QN
exists and is an upper bound for any element

of the sequence.

This corollary states that for a stationary zero-mean Gaus-
sian process, QN monotonically converges to a geometric
series. We can compute QN for relatively small N . As long
as QN+1

QN
converges to a constant, QN can be treated as a

geometric series. Based on the geometric ratio, computing
QN for large N is simple. For example, suppose QN
becomes a geometric series for N ≥ k. Then QN can be
computed as QN = Qk(Qk+1

Qk
)N−k = γ

(k+1)
N . Hence, in

this case, γ(k+1)
N can be used as an accurate estimate of QN

instead of just providing a bound.
If the convergence rate to the geometric series is extremely

slow, this geometric series approximation idea may not be
accurate. However, for false alarm analysis, QN typically
has fast convergence to a geometric series. To see this
heuristically, suppose the threshold for the decision logic is
T = ∞. Then, QN = 1 for any N . QN is a geometric
series from the first term. For fault detection problems, T is
chosen to be relatively large in order to make the false alarm
probability small. In this case, QN is a minor perturbation
from those where T =∞. It is expected that QN converges
to a geometric series very quickly. Hence, for a wide class
of problems where the convergence rate is fast enough, we
can estimate QN based on Q1, Q2 and Q3, all of which are
easily computable. Theorem 1 turns the previous argument
into a precise mathematical result that gives upper bounds
on false alarm probability PN .

Glaz has obtained a result similar to Corollary 1 when
rk is a moving sum of IID Gaussian random variables. He
applied γ

(k)
N as approximations of QN when product-type

inequalities can not be proved [9]. Here, Corollary 1 holds
as long as rk is a stationary zero-mean Gaussian process
regardless of whether the dynamic model governing rk is a
moving average model or not.

IV. NUMERICAL EXAMPLES

This section presents numerical examples to demonstrate
the results. All examples are based on a per-hour false alarm
requirement for a system whose sample rate is 100Hz. Thus
there are N = 3.6×105 sample frames per hour. In addition,
a steady state condition is assumed for false alarm analysis.

A. Benchmark Problem: First Order Process

First, the probability bounding technique is applied to a
benchmark problem which can also be solved by finite state
Markov chain approximation. For this case the FDI scheme
is assumed to be a first order autoregressive model:

rk+1 = ark + nk (15)

where 0 ≤ a < 1. nk is an IID Gaussian process with nk ∼
N (0, 1). For a first-order process, the finite-state Markov
chain approach can be used to efficiently compute the false
alarm probability PN . A basic review of this technique is
included in the appendix. As comparisons, γ(2)

N and γ
(3)
N

are also used to compute estimates of PN . The one-step
false alarm probability P1 is commonly referred to as the



false alarm rate (FAR), which can be expressed as a one-
dimensional Gaussian integral:

P1 = 1−
∫ T
√

1−a2

−T
√

1−a2

1√
2π
e−

x2

2 dx (16)

Table I shows the hourly false alarm probabilities PN
computed from Markov chain approximation for several
values of (a, T ) all chosen to have P1 = 10−11. The
values of (a, T ) that give P1 = 10−11 are those that satisfy
T
√

1− a2 = 6.807. Table I also shows the first two bounds
γ

(2)
N and γ

(3)
N given by Theorem 1. These bounds use Q1

computed by the erf function as well as Q2 and Q3

computed by the mvncdf function. Table I shows that, for a
fixed one-step FAR P1, an increase in a leads to a decrease
in the hourly probability PN . In other words, increased
correlation leads to a decrease in the per hour false alarm
probability. Note that 1 − QN1 ≈ NP1 = 3.6 × 10−6 is an
estimate of PN obtained by assuming independent residuals,
i.e. ignoring the time correlations. Based on Table I, the time
correlation has negligible effects (PN ≈ NP1) for a ≤ 0.8
and the effects of correlation appear for larger values of a.
For a = 0.999, PN is only 4% of the value NP1. The bounds
1−γ(i)

N are an improvement on the simple uncorrelated value
NP1. It is notable that the bounds 1− γ(i)

N also become less
accurate for values of a near 1. The first bound 1 − γ(2)

N is
very accurate for a < 0.9 and of reasonable accuracy up to
a < 0.99. There is not much difference between the first
two bounds. This supports the perturbation argument made
in Section III-B.

a T PN 1− γ(3)
N 1− γ(2)

N

0 6.81 3.60× 10−6 3.60× 10−6 3.60× 10−6

0.7 9.53 3.59× 10−6 3.59× 10−6 3.60× 10−6

0.8 11.3 3.52× 10−6 3.52× 10−6 3.53× 10−6

0.9 15.6 3.17× 10−6 3.17× 10−6 3.20× 10−6

0.99 48.3 9.64× 10−7 1.18× 10−6 1.36× 10−6

0.999 152 1.40× 10−7 3.40× 10−7 4.45× 10−7

TABLE I
FALSE ALARM PROBABILITIES AND BOUNDS FOR A FIRST ORDER

PROCESS. N = 3.6× 105 , P1 = 10−11 FOR EACH CHOICE OF (a, T ).

B. Higher order systems
This section presents an example of a second order process

which can not be solved by the Markov chain approximation.
Based on Table I, it is reasonable to hypothesize that the
performance of the bounds is dominated by the spectral
radius of the system state matrix. The example in this section
is used to confirm this hypothesis. The FDI residual is
assumed to be a second order process:

rk+1 = φ1rk + φ2rk−1 + nk (17)

where φ1 and φ2 satisfy the stability conditions: φ1+φ2 < 1,
φ2−φ1 < 1 and −1 < φ2 < 1. These conditions ensure that
the system poles all have magnitude strictly less than 1. nk
is an IID Gaussian process with nk ∼ N (0, 1).

Table II shows the bounds γ(2)
N and γ

(3)
N for the hourly

false alarm probabilities PN for real poles z1 and z2 with
corresponding threshold T chosen to satisfy FAR P1 =
10−11. z1 is the dominant pole. Hence φ1 = z1 + z2 and
φ2 = −z1z2. The process described by Equation 17 can be
recast into a state-space model governed by Equation 2 with

A =

[
φ1 φ2

1 0

]
, B =

[
1 0

]T
, C =

[
1 0

]
and D = 0.

Then from Equation 3 and 4, the steady state variance of
rk can be computed as Λ1 = CΣxC

T . T = 6.807
√

Λ1 so
that P1 = 10−11. Again 1 − QN1 ≈ NP1 = 3.6 × 10−6

is an estimate of PN obtained by assuming independent
residuals, i.e. ignoring the time correlations. Compare Tables
I and II, it is shown that the second order process can be
approximated by a first order process with a single pole z1

if z2 is significantly smaller than z1. When z2 approaches
to z1, the effect of correlation becomes significant and the
bounds decrease. The last line of Table II supports the
hypothesis that larger spectral radius of the system state
matrix leads to poorer performance of the bounds since the
two bounds become significantly different for z1 = 0.999
and the convergence argument is not convincing for this case.

z1 z2 T 1− γ(3)
N 1− γ(2)

N

0.7 0.1 10.3 3.56× 10−6 3.56× 10−6

0.7 0.7 22.8 2.79× 10−6 2.80× 10−6

0.99 0.1 53.6 1.09× 10−6 1.23× 10−6

0.99 0.99 3412 9.97× 10−8 9.99× 10−8

0.999 0.1 169 3.18× 10−7 4.01× 10−7

TABLE II
FALSE ALARM BOUNDS FOR A SECOND ORDER PROCESS.

N = 3.6× 105 AND P1 = 10−11 FOR EACH CHOICE OF (z1, z2, T ).

Table III presents the bounds γ(2)
N and γ

(3)
N for complex

poles ae±jψ with corresponding threshold T chosen to
satisfy FAR P1 = 10−11. And φ1 = 2a cosψ and φ2 = −a2.

a ψ T 1− γ(3)
N 1− γ(2)

N

0 0 6.81 3.60× 10−6 3.60× 10−6

0.7 0 22.8 2.79× 10−6 2.80× 10−6

0.7 π
4 10.4 3.58× 10−6 3.58× 10−6

0.7 π
2 7.81 3.59× 10−6 3.59× 10−6

0.7 3π
4 10.4 3.58× 10−6 3.58× 10−6

0.7 π 22.8 2.79× 10−6 2.80× 10−6

0.99 0 3412 9.97× 10−8 9.99× 10−8

0.99 π
4 48.5 3.57× 10−6 3.57× 10−6

0.99 π
2 34.4 1.84× 10−6 3.59× 10−6

0.99 3π
4 48.5 3.57× 10−6 3.57× 10−6

0.99 π 3412 9.97× 10−8 9.99× 10−8

TABLE III
FALSE ALARM BOUNDS FOR A SECOND ORDER PROCESS.

N = 3.6× 105 AND P1 = 10−11 FOR EACH CHOICE OF (a, ψ, T ).



The results for ψ = 0 again shows that repeated poles
significantly increase the effect of correlation and decrease
PN . Tables III shows the bounds are symmetric about ψ =
π
2 . For ψ near π

4 or 3π
4 , the time correlation has negligible

effects (PN ≈ NP1). For ψ near 0 or π, the system can
be approximated by a second order system with repeated
real poles. Compare Table I and III, we can see that, as ψ
approaches to π

2 , the second order system starts to behave
like a first order system with single pole a. It is interesting
to notice that for this case, the bound 1−γ(3)

N works well to
provide estimates of PN but the bound 1−γ(2)

N fails to work.
Finally it is worth mentioning that one can check numerically
that the first order autocorrelation E[rkrk+1]

E[r2k]
is closed to 1 for

all cases where time correlations cannot be ignored.
One thing worth noting is that the second order process

is AMTP2 only when φ2 < 0. It is obvious that when
both poles are real and positive, the process is not AMTP2.
The results in Section III-A demonstrate that the product-
type inequalities in [8] are still valid even if the AMTP2
conditions fail to be satisfied.

V. CONCLUSION

This paper analyzed the false alarm probability over a
given time window for a general fault detection system.
Product-type probability inequalities are proved for station-
ary zero-mean Gaussian processes. These inequalities are
applied to provide computationally cheap bounds on the
false alarm probability. A heuristic argument is made to
demonstrate the conditions under which the bounds actually
provide an accurate estimate of the false alarm probability.
Numerical examples are presented to demonstrate that the
proposed method can provide accurate results for false alarm
probability for a wide class of FDI systems. The effects of
correlation and pole positions have been investigated. Various
applications of the product-type inequalities proved in this
paper are being studied.
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APPENDIX

A. Supporting Lemmas

The next two lemmas are used to prove Lemma 1 in
Section III-A.

Lemma 2: Suppose ΛN ∈ RN×N is a symmetric positive
definite Toeplitz matrix where ΛN (i, 1) = βi−1. Then:

Λ−1
N (1, 1)− Λ−1

N−1(1, 1) ≥ 0 (18)

where Λ−1
N (i, j) denotes the (i, j)-th entry of matrix Λ−1

N .

The proof is based on a well-known result regarding
the inverse of a symmetric positive definite Toeplitz matrix
(Section 4.7.4 in [11]). It is a straightforward proof and hence
the detailed proof is omitted here. Lemma 2 leads to the
following fact stated in Lemma 3:



Lemma 3: Suppose rk is a stationary zero-mean Gaussian
process, and use the notation H(c), U(c) and D(c) intro-
duced in the proof of Lemma 1 in Section III-A. Then, H(c)
is a non-increasing function of c.

Proof: The first order derivative of H(c) with respect
to c is computed as follows:

dH

dc
=

dU
dc D(c)− U(c)dDdc

D2(c)
(19)

Equation 19 can be further simplified based the Lebesgue’s
dominated convergence theorem (Section 4.4 in [20]) and
the final result is:

dH

dc
=
−cU(c)

D(c)

(
Λ−1
N (1, 1)− Λ−1

N−1(1, 1)
)

(20)

Since ΛN is a symmetric positive definite Toeplitz matrix,
by Lemma 2, we have Λ−1

N (1, 1) − Λ−1
N−1(1, 1) ≥ 0. Since

U(c), D(c) and c are all nonnegative, Equation 20 shows
dH
dc ≤ 0. Therefore, H(c) is a non-increasing function.

B. Review of Finite State Markov Chain Approximation

The first-order autoregressive process in Equation 15 is
closely related to exponentially weighted moving average
(EWMA) charts in the statistical process control (SPC)
community going back to the initial work by Roberts [19].
The finite state Markov chain approximation have been used
to analyze the performances of EWMA charts [3], [17]. The
idea is based on the fact that Equation 15 ensures rk to be a
Markov chain. For finite state Markov chains, the false alarm
probability PN has an approximately geometric distribution
and the related distribution parameter has an eigenvalue
interpretation. This is a consequence of the Perron-Frobenius
theorem. The key result in [3] can be restated in a slightly
different way as the following theorem:

Theorem 2: Let M ∈ Rm×m be a finite substochastic
matrix which is irreducible and aperiodic. Let 1 ∈ Rm
be a vector whose elements are all 1. Let π0 ∈ Rm be a
vector whose elements are nonnegative. Let λ1 ≥ λ2 be the
eigenvalues of M with greatest modulus. YL and YR are the
corresponding eigenvectors Y TL M = λ1Y

T
L , MYR = λ1YR.

Then λ1 is real and has multiplicity 1. λ1 = 1 if M
is stochastic and 0 < λ1 < 1 otherwise. Moreover, the
following approximation holds as N →∞:

πT0 M
N−11 = c1λ

N−1
1

[
1 +O

((
|λ2|
|λ1|

)N−1
)]

(21)

where c1 =
πT
0 YRY

T
L 1

Y T
L YR

and the notation aN = O(bN ) means
there exists a number c0 > 0 and an integer N0 > 0 such that
|aN | ≤ c0|bN | ∀N ≥ N0. This also implies the convergence
to a geometric sequence:

lim
N→∞

πT0 M
N1

πT0 M
N−11

= λ1 (22)

This theorem is widely used, since for finite-state Markov
chains, since PN = πT0 M

N−11, where π0 is the initial
probability vector and M is a submatrix of the probability

transition matrix of the Markov chains. For continuous-state
Markov Chains, one can approximate PN by gridding the
continuous state. This approach is computationally tractable
for low-order systems. Sufficiently many grids can be used to
obtain a reasonably accurate result of PN . For higher order
processes, the approximation technique will not be practical
because thorough gridding in all dimensions of the random
variable will require unreasonable computation time.

Bin
高亮

Bin
附注
This step is wrong. There should be other non-zero terms on the right side of this equation.




