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Abstract— This paper considers the performance of a gain
scheduled flight control law for an aeroelastic aircraft. A nonlin-
ear aeroelastic model of the Rockwell B-1 Lancer is used as the
application example. Gain scheduling via interpolation of point
designs is the predominant method used in industry to develop
a full-envelope flight control law. Certification and validation of
these nonlinear gain-scheduled algorithms traditionally depends
on linear metrics of robustness and massive nonlinear simu-
lations efforts. The framework of Linear Parameter-Varying
(LPV) systems offers a rigorous methodology for analysis
that compliments traditional methods. New results on robust
performance conditions in the LPV framework allows the
analysis to take into account uncertainty in the aircraft model.
The performance of the B-1 aircraft gain scheduled controller
is evaluated using LPV metrics of robustness.

I. INTRODUCTION

Lightweight flexible aircraft are a promising direction in
aircraft design that has the potential to significantly increase
aircraft fuel efficiency and operating range. Flexible aircraft
require less structural mass than traditional aircraft, but the
structural modes migrate to lower frequencies as the structure
is made more flexible. Coupling between aerodynamic forces
and the flexible modes of the aircraft structure (aeroelas-
ticity) becomes a significant issue when the frequency of
flexible modes falls inside the bandwidth of the aircraft’s
rigid body dynamics. In a worst-case scenario this coupling
causes an uncontrollable oscillation, called flutter, in the
aircraft structure that can destroy it.

The dynamic response of the flexible aircraft is hard
to characterize because it depends on an accurate model
of inertial, elastic and aerodynamic forces, and a correct
representation of their coupling. These aeroelastic effects
can be neglected in modeling of rigid aircraft but must
be captured accurately for more flexible aircraft. The flight
control law must be robust to aeroelastic effects as well as
uncertainty in the approximate mathematical model.

Gain scheduling via interpolation of point designs is
the predominant method used in industry to develop a
full-envelope flight control law. Certification and valida-
tion of these nonlinear gain-scheduled algorithms tradition-
ally depends on linear metrics of robustness, e.g. classical
gain/phase/delay margins and/or MIMO robustness margins
computed with the structured singular value, µ . It is impor-
tant to note that classical robustness metrics assume linear
time-invariant dynamics and hence time-variations between
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flight conditions are neglected. Evaluation of the system
performance using Monte Carlo simulation techniques are
often used to complement linear robustness analysis.

This paper considers a more rigorous robustness analy-
sis for a gain-scheduled aeroelastic control system within
the framework of Linear Parameter-Varying (LPV) systems.
LPV systems are a class of linear systems where the state
matrices depend on (measurable) time-varying parameters.
The existing analysis results for such systems can roughly
be categorized based on how the state matrices depend on the
scheduling parameters. One approach is to assume the state
matrices of the LPV system have a rational dependence on
the parameters. In this case finite dimensional semidefinite
programs (SDPs) can be formulated to assess the stability
and input/output gain for the LPV system [1], [2], [3], [4].
An alternative approach is to assume the state matrices have
an arbitrary dependence on the parameters. The analysis
problem can be formulated as an infinite collection of
parameter-dependent linear matrix inequalities (LMIs) [5],
[6]. The latter approach is more suitable for the application
to aeroelastic systems where the arbitrary dependence on the
flight condition appears by linearization of nonlinear models.

An aeroelastic model of the Rockwell B-1 Lancer is used
as the application example for the robustness analysis [7],
[8]. This aircraft had ride quality issues due to aeroelastic
phenomena and a special structural mode control system
was designed to deal with its aeroelastic issues. The perfor-
mance, robustness and worst-case performance of this gain-
scheduled controller will be analyzed in this paper across
the flight envelope using the LPV framework. As noted
above, uncertainty in the model plays a significant role for
aeroelastic vehicles. The robust performance condition in [9]
for uncertain LPV systems will be applied. This analysis
result applies to LPV systems with arbitrary dependence on
the parameters and uses the Integral Quadratic Constraint
(IQC) [10] framework to model the uncertainty. Similar IQCs
robustness results for LPV systems whose state matrices have
rational dependence on the scheduling parameters can be
found in [11], [12].

The LPV framework is well suited for aeroelastic systems
because it can handle the variation in the aircraft dynam-
ics with flight condition. This allows the analysis to take
into account drastic changes in flutter modes across the
flight envelope. The robust performance conditions add the
capability of accounting for uncertainty in the dynamics
when working in the LPV framework. Hence, uncertainty
in the models of flexible modes, and their coupling with
the aerodynamics, can be included explicitly in the analysis.
The robust performance condition in [9] is chosen for this



analysis because in it the parameter dependence of the LPV
model does not need to be modeled explicitly. The nonlinear
simulation model is linearized on a grid of parameter values
that spans the flight envelope, to yield look-up tables that
describe the dynamics of the nonlinear model at each point
on the grid. This formulation allows for arbitrary dependence
of the dynamics on the scheduling parameters. This approach
to robust performance analysis in the LPV framework is
a natural extension of analysis involving traditional linear
metrics of performance which rely on the same look-up
tables of linearized dynamics.

II. TECHNICAL BACKGROUND

A. LPV Systems

Linear parameter varying (LPV) systems are a class of
systems whose state space matrices depend on a time-
varying parameter vector ρ : R+ → Rnρ . The parameter is
assumed to be a continuously differentiable function of time
and admissible trajectories are restricted, based on physical
considerations, to a known compact subset P ⊂ Rnρ . In
addition, the parameter rates of variation ρ̇ : R+ → Ṗ are
assumed to lie within a hyperrectangle Ṗ defined by

Ṗ := {q ∈ Rnρ | ν i ≤ qi ≤ ν̄i, i = 1, . . . ,nρ}. (1)

The set of admissible trajectories is defined as A := {ρ :
R+→ Rnρ : ρ(t) ∈P, ρ̇(t) ∈ Ṗ ∀t ≥ 0}. The parameter
trajectory is said to be rate unbounded if Ṗ = Rnρ .

The state-space matrices of an LPV system are continuous
functions of the parameter: A : P→Rnx×nx , B : P→Rnx×nd ,
C : P → Rne×nx and D : P → Rne×nd . An nth

x order LPV
system, Gρ , is defined by

ẋ(t) = A(ρ(t))x(t)+B(ρ(t))d(t)

e(t) =C(ρ(t))x(t)+D(ρ(t))d(t)
(2)

Hence, LPV systems represent a special class of time-
varying systems. The explicit dependence on t is occasionally
suppressed to shorten the notation.

B. Integral Quadratic Constraints

IQCs were introduced in [10] to provide a general frame-
work for robustness analysis. An IQC is defined by a sym-
metric matrix M = MT ∈ Rnz×nz and a stable linear system
Ψ ∈ RHnz×(m1+m2)

∞ . Ψ is denoted as

Ψ( jω) :=Cψ( jωI−Aψ)
−1[Bψ1 Bψ2]+ [Dψ1 Dψ2] (3)

A bounded, causal operator ∆ : L m1
2e →L m2

2e satisfies an IQC
defined by (Ψ,M) if the following inequality holds for all
v ∈L m1

2 [0,∞), w = ∆(v) and T ≥ 0:∫ T

0
z(t)T Mz(t)dt ≥ 0 (4)

where z is the output of the linear system Ψ:

ẋψ(t) = Aψ xψ(t)+Bψ1v(t)+Bψ2w(t), xψ(0) = 0 (5)
z(t) =Cψ xψ(t)+Dψ1v(t)+Dψ2w(t) (6)

The notation ∆ ∈ IQC(Ψ,M) is used if ∆ satisfies the IQC
defined by (Ψ,M).

Reference [10] provides a library of IQC multipliers that
are satisfied by many important system components, e.g.
saturation, time delay, and norm bounded uncertainty. The
IQCs in [10] are expressed in the frequency domain as
an integral constraint defined using a multiplier Π. The
multiplier Π can be factorized as Π = Ψ∗MΨ and this
connects the frequency domain formulation to the time-
domain formulation used in this paper. One technical point
is that, in general, the time domain IQC constraint only
holds over infinite horizons (T = ∞). The work in [10], [13]
draws a distinction between hard/complete IQCs for which
the integral constraint is valid over all finite time intervals
and soft/conditional IQCs for which the integral constraint
need not hold over finite time intervals. The formulation of an
IQC in this paper as a finite-horizon (time-domain) inequality
is thus valid for any frequency-domain IQC that admits a
hard/complete factorization (Ψ,M). While this is somewhat
restrictive, it has recently been shown that a wide class of
IQCs have a hard factorization [13]. The remainder of the
paper will simply treat, without further comment, (Ψ,M) as
the starting point for the definition of the finite-horizon IQC.

C. LPV Robustness Analysis

This section briefly summarizes the main technical result
in [9] which provides a parameterized linear matrix inequal-
ity (LMI) condition to assess the robustness of an uncertain
LPV systtem. An uncertain LPV system is described by the
interconnection of an LPV system Gρ and an uncertainty
∆, as depicted in Figure 1. This interconnection represents
an upper linear fractional transformation (LFT), which is
denoted Fu(Gρ ,∆). The uncertainty ∆ is assumed to satisfy
an IQC described by (Ψ,M). Note that the perturbation ∆

can include hard nonlinearities (e.g. saturations) and infinite
dimensional operators (e.g. time delays) in addition to true
system uncertainties. The term ”uncertainty” is used for
simplicity when referring to the the perturbation ∆.

The robust performance of Fu(Gρ ,∆) is measured in
terms of the worst case induced L2 gain from the input d
to the output e. The worst-case gain is defined as

sup
∆∈IQC(Ψ,M)

ρ(·)∈A

‖Fu(Gρ ,∆)‖. (7)

Gρ

w v

ed

∆

Ψ
z

Fig. 1. Analysis Interconnection Structure

The analysis interconnection in Figure 1 includes the filter
Ψ. The dynamics of this interconnection are described by



w = ∆(v) and

ẋ = A(ρ)x+B1(ρ)w+B2(ρ)d

z =C1(ρ)x+D11(ρ)w+D12(ρ)d

e =C2(ρ)x+D21(ρ)w+D22(ρ)d,
(8)

where the state vector is x = [xG;xψ ] with xG and xψ being
the state vectors of the LPV system Gρ and the filter Ψ

respectively. The uncertainty ∆ is shown in the dashed box
in Figure 1 to signify that it is removed for the analysis.
The signal w is treated as an external signal subject to the
constraint in Equation 4. This effectively replaces the precise
relation w = ∆(v) with the quadratic constraint on z.

A dissipation inequality can be formulated to upper bound
the worst-case L2 gain of Fu(Gρ ,∆) using the system
Equation 8 and the time domain IQC Equation 4.

Theorem 1: [9] Assume Fu(Gρ ,∆) is well posed for all
∆ ∈ IQC(Ψ,M). Then the worst-case gain is ≤ γ if there
exists a continuously differentiable P : P→ Snx and a scalar
λ > 0 such that ∀(p,q) ∈P×Ṗ , P(p)> 0,[

P(p)A(p)+A(p)T P(p)+∂P(p,q) P(p)B1(p) P(p)B2(p)
B1(p)T P(p) 0 0
B2(p)T P(p) 0 −I

]
+

+λ

[
C1(p)T

D11(p)T

D12(p)T

]
M [C1(p) D11(p) D12(p) ]

+
1
γ2

[
C2(p)T

D21(p)T

D22(p)T

]
[C2(p) D21(p) D22(p) ]< 0

(9)

where ∂P is defined as: ∂P(p,q) = ∑
nρ

i=1
∂P(p)

∂ pi
qi

III. B-1 AIRCRAFT

The Rockwell B-1 Lancer is a supersonic bomber that
was introduced in the 1970s. The B-1 has four turbofan
engines and variable wing sweep. The aircraft is equipped
with control surfaces on the vertical and horizontal stabilizer,
as well as spoilers on the wings. The B-1 had serious
ride quality issues at subsonic speeds due to aeroelastic
effects. These issues were resolved by adding canard control
surfaces to the front of the aircraft, controlled by a dedicated
Structural Mode Control System (SMCS) that uses them to
damp out the aircraft’s flexible modes. The aeroelastic issues
seen on the B-1 spurred an interest in modeling and control
of aeroelastic aircraft. Several papers that aimed at modeling
the B-1 aircraft’s aeroelastic issues were published in the
1970s and 1980s [14], [15], [16], [17], [18].

A. Nonlinear Simulation Model

A nonlinear simulation model approximating the B-1
aircraft was developed in Simulink from data in the open
literature and made freely available online [8]. The objective
for the development of this nonlinear simulation is to provide
the community with a benchmark example of an aeroelastic
aircraft. The nonlinear simulation model includes six rigid
body degrees of freedom, and five elastic degrees of freedom.
Each of the flexible modes has two states associated with it:
xe = (e1, ė1,e2, ė2,e3, ė3,e4, ė4,e5, ė5) Where ei denotes the
generalized coordinate associated with the ith elastic mode.

Modes e1, e2 and e3 describe the three lowest-frequency
symmetric elastic modes of the B-1 aircraft, while modes
e4 and e5 describe the two lowest-frequency anti-symmetric
elastic modes. The first symmetric (e1) and the second anti-
symmetric mode (e5) contribute most to the vibrations that
are felt in the cockpit, which necessitated the addition of the
canards and SMCS.

The states associated with the rigid body dynamics are
U , V , W , p, q, r, φ , θ and ψ , which represent the x-, y-,
and z-axis velocity expressed in the body-coordinate system,
the roll, pitch, and yaw rate at the aircraft Center of Gravity
(CG), and the bank angle, pitch angle and yaw angle of the
aircraft, respectively. The simulation includes measurements
of the states associated with the rigid body dynamics, as
well as a measurement of the aircraft’s airspeed VT , angle of
attack α , sideslip angle β , lateral acceleration at the CG and
cockpit, ny,cg and ny,cp respectively, and vertical acceleration
at the CG and cockpit, nz,cg and nz,cp respectively.

B. Control Systems

The B-1 aircraft is equipped with a Stability Augmentation
System (SAS) [19], [20], [16], and a Structural Mode Control
System (SMCS) [19], [20]. This paper will focus on the
longitudinal dynamics of the B-1 aircraft, and the pitch axis
SAS and plunge axis SMCS.

The pitch axis SAS is used to shape the stick-to-pitch rate
response of the aircraft and tune the aircraft’s short-period
mode to deliver satisfactory natural frequency and damping
across the flight envelope. It takes in stick input for pitch,
qre f [deg], a measurement of the pitch rate, q [deg/s], and
outputs a deflection command to the horizontal stabilizer, δH
[deg],

δH = Kq(h)q+qre f (10)

The SAS is a gain scheduled controller, and the Kq gain is
scheduled on altitude, h [ft],

Kq(h) = 0.306+
0.544
55000

h (11)

The SMCS was added to the B-1 to damp out the elastic
modes of the aircraft, and prevent an unacceptable level of
cockpit vibration. The plunge axis SMCS (Figure 2) takes
in vertical accelerations at the aircraft’s center-of-gravity
and cockpit, nz,cg [ft/s2] and nz,cp [ft/s2] respectively, and
outputs deflection commands to the canard control vanes,
δcvsym [deg]. The plunge axis SMCS is a gain scheduled
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Fig. 2. Interconnection of the gain-scheduled plunge axis SMCS.

controller, and the Knz(q̄in f ) gain is scheduled on dynamic
pressure, q̄in f [psf], as seen in Figure 3.
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Fig. 3. The Knz (q̄in f ) gain in the plunge axis SMCS.

IV. PROBLEM FORMULATION

A. Linearization

This paper investigates the performance of the B-1 gain-
scheduled control system as the aircraft flies at Mach num-
bers between 0.6 and 0.8, and altitudes between 5,000 ft
and 10,000 ft. The nonlinear simulation model of the B-1
aircraft is trimmed and linearized at a straight and level flight
condition on the grid (Mach,altitude) = [0.6, 0.7, 0.8] ×
[5000, 10000] ft. These flight conditions describe the flight
envelope for this analysis. The SIMULINK model is trimmed
using the findop function in MATLAB, and linearized
using the linearize function. The linearization procedure
yields a 3× 2 grid of linearized models arranged by Mach
and altitude values.

This paper will focus on the longitudinal dynamics of the
B-1 aircraft, and utilize a reduced order model of the B-
1. The lateral and longitudinal dynamics of the B-1 aircraft
exhibit minimal coupling at the flight conditions where the
model was linearized. Hence, a longitudinal model of the B-
1 aircraft is extracted at each linearization point by removing
the states associated with the lateral dynamics: V , p, r, φ ,
e4, ė4, e5, and ė5. These states are truncated from the model.

The longitudinal dynamics of the B-1 aircraft are dom-
inated by the short period and phugoid modes, and by the
lowest frequency elastic mode (e1). The analysis in this paper
will focus on the frequency range which encompasses these
modes. Hence, the h, e2, ė2, e3, and ė3 states are removed
from the model because their dynamics have minimal effects
in this frequency range. These states are truncated from the
model, to yield a reduced order model of the B-1 aircraft’s
longitudinal dynamics, represented by the U , W , q, θ , e1,
and ė1 states.

These linearized models are used to form an LPV model
of the B-1 aircraft that is scheduled on altitude and Mach.
Together the linear models form a grid-based LPV model of
the aircraft dynamics, in the form of equation 2, that can be
used for analysis in the LPV framework [5], [9], [21]. The
gain-scheduled SAS and SMCS control laws are likewise
evaluated at each of these grid points, and modeled in LPV
form to correspond to the LPV B-1 aircraft model.

B. Model Matching Performance Problem

The performance of the gain-scheduled controller across
the prescribed flight envelope is of interest. The controller
performance is evaluated in the LTI framework at individ-
ual linearization points using traditional metrics of perfor-

mance (e.g. Gain and Phase Margins, µ). The performance
of the gain-scheduled controller is also evaluated analyti-
cally through a model-matching formulation, using the LPV
framework described in Section II.

In this model matching formulation, the desired response
of the closed-loop system is characterized by a reference
model, which the output of the actual closed-loop system
is compared against. The performance of the gain-scheduled
controller is measured by the error between the reference
model and the output of the closed-loop system. This error
is measured by the induced L2 norm of the model matching
interconnection.
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Fig. 4. Interconnection for B-1 aircraft model matching formulation.

Figure 4 shows the interconnection that forms the model-
matching problem that is studied here. The focus is on the
stick-to-pitch rate response achieved by the combined SAS
and SMCS. This response is dominated by the short-period
mode, the phugoid mode, and aeroelastic effects associated
with the lowest frequency elastic mode (e1). Hence, the
weights used in the model matching problem are selected
to focus the analysis on the 0.05 rad/s - 11 rad/s frequency
range, where the performance of the SAS and SCMCS is
most critical.

Wre f weights the input stick command. Wre f is chosen to
be a first order system: Wre f =

10
s+10 , which limits the stick

command input to 10 rad/s, where Wre f starts to roll off.
Wq is the reference model that defines the desired stick-

to-pitch rate response of the vehicle. The reference model is
chosen to match the pitch rate response of the closed-loop
system at Mach = 0.7 and h = 5000 ft in the frequency range
0.05 rad/s - 11 rad/s. Wq is a combination of three second
order systems: The first describes the short period mode
and has a zero at −0.563, and poles at −1.92± 0.977 j.
The second approximates the phugoid mode and has zeros
at −0.016± 0.022 j, and poles at −0.007± 0.086 j. The
third approximates the effects of the lowest frequency elastic
mode (e1) and has zeros at −0.73± 7.845 j, and poles at
−2.135±10.77 j. The gain of the combined system is −11.4.

The permissible error in the pitch rate response is char-
acterized by the weight Wper f , which acts on the difference
between the reference model and the output of the closed-
loop system. The pitch rate response of the closed-loop
system due to a qre f command should closely match that



of Wq in the frequency range of interest. Hence, the Wper f
weight is chosen such that the error between the reference
system and the closed-loop response is less than 10% at
0.05 - 11 rad/s,

Wper f =
110s

(s+0.05)(s+11)
(12)

A multiplicative input uncertainty is added to the output
of the SAS in the model matching performance problem.
This multiplicative dynamic uncertainty ||∆(s)||∞ ≤ 1, is
weighted by W∆ ∈ R+. W∆ is a bound on the magnitude of
the uncertainty in the δH channel: ||∆(s)W∆||∞ ≤W∆.

The model matching interconnection will be used to
evaluate the performance of the B-1 gain-scheduled flight
controller in both the LTI and LPV framework.

V. ANALYSIS RESULTS

A. Software

MUSYN Inc. is developing a software tool, LPVTools, to
aid in modeling, analysis, controller synthesis, and simula-
tion of LPV systems. LPVTOOLS is a software suite that
provides parameter-varying data structures for modeling of
LPV systems within the MATLAB/SIMULINK software envi-
ronment, and extends the functionality of standard functions
from Control System and Robust Control Toolbox to the LPV
framework [22]. Tools specific to the LPV framework are
also provided, to aid in model reduction, analysis and control
design. The LPVTOOLS software is used to generate all the
results in the LPV framework in this paper.

B. Core Analysis

The closed-loop LTI system formed by the linearized B-1
aircraft model and the linearized SAS, and SMCS controllers
can be analyzed at each trim point: (Mach, Altitude) ∈
[0.6, 0.7, 0.8]× [5,000ft, 10,000ft]. Each closed-loop system
describes the dynamics of the aircraft as it cruises straight
and level at a fixed speed and altitude.

The gain and phase margins of the closed-loop system
are computed channel-by-channel for both the inputs and
outputs of the B-1 model. The gain and phase margins at
the input to the B-1 model are obtained by breaking the
closed-loop where the δH and δcvsym commands enter the
model, and margins at the output are obtained by breaking
the closed-loop where the q, nz,cg and nz,cp measurements
exit the model. The gain-scheduled controllers yield adequate
gain and phase margins. The gain margins are larger than
6 dB and the phase margins are larger than 28 deg, for each
input/output channel at every flight condition.

The effect of the modeled uncertainty is studied by
computing the worst-case gain of the model matching in-
terconnection shown in Figure 4. An LTI model match-
ing interconnection is formed at each Mach and altitude
grid point for analysis. The worst-case gain is computed
using the command wcgain in the Robust Control Tool-
box in MATLAB. Figure 5 shows how the worst-case gain
changes as a function of the uncertainty magnitude W∆ at
(Mach, Altitude) ∈ [0.6, 0.8]× [5,000ft, 10,000ft]. In terms

of robust performance, the closed-loop system is least robust
at Mach = 0.6 and altitude = 5,000 ft, where it can tolerate
20% dynamic uncertainty before the error grows beyond the
prescribed limit.
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Fig. 5. Induced L2 norm of LTI model matching interconnection as a
function of uncertainty, at fixed Mach and altitude.

The LPV framework allows the analysis to take into
account the time-varying nature of both the aircraft dy-
namics and the gain-scheduled controller, as they change
with altitude and Mach. In this case the LPV models of
the B-1 aircraft, and the SAS and SMCS controllers are
used to form the model matching interconnection in LPV
form. The LPV model matching interconnection is used to
evaluate the performance of the nonlinear gain-scheduled
controller across the whole grid of altitude and Mach values
simultaneously. Both the nominal LPV interconnection (no
uncertainty), and the uncertain LPV interconnection (with
uncertainty) are used in the analysis.

Figure 6 shows the upper bound on the induced L2 norm
of the nominal LPV model matching interconnection (no
uncertainty). The induced L2 norm grows with permissible
rate of change in Mach, but the change in the norm due to the
rate of change in altitude is very small within the modeled
flight envelope. The gain-scheduled controller maintains the
desired performance for climb/descent rates of 800 ft/s and
d
dt Mach ≤ 0.06 (equivalent to approximately 66ft/s2 rate of
change in airspeed at the modeled flight conditions).
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Fig. 6. Induced L2 norm of LPV model matching interconnection.

Figure 7 shows the upper bound on the worst-case induced
L2 norm of the uncertain LPV model matching interconnec-
tion. As seen in Figure 7, the performance specification, of
having the error in the pitch rate response of the closed-loop



system remain less than 10% in the target frequency range,
can not be met for d

dt Mach= 0.1 and ḣ= 200 ft/s. In contrast,
the controller will achieve robust performance for up to 15%
dynamic uncertainty for d

dt Mach≤ 0.01 and ḣ = 200 ft/s.
The LTI worst-case gain results shown in Figure 5, pre-

dicted robust performance to at least 20% dynamic uncer-
tainty in the SAS output. However, the LPV worst-case gain
results in Figure 7 indicate that the gain-scheduled controller
becomes less robust to uncertainty as the rate of change in
Mach grows.

The algorithm to find the worst-case induced L2 norm of
an LPV system is only capable of finding an upper bound
on the norm, and not a lower bound. Without a rigorous way
of finding the lower bound for a worst-case norm of a LPV
system, the lower bound can be approximated by bounding
the norm from below by the norm of the nominal LPV
system. The solid blue line in Figure 7 shows the induced
L2 norm of the nominal LPV system at d

dt Mach≤ 0.01 and
ḣ = 200 ft/s. When the uncertainty is very small the worst-
case norm of the uncertain LPV system converges to the
norm of the nominal LPV system.
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Fig. 7. Induced L2 norm of uncertain LPV model matching interconnection

In summary, Figure 5 shows that as the aircraft cruises
at straight and level, and at fixed speed and altitude, the
gain-scheduled controller will achieve the desired level of
performance at each (Mach,altitude) grid point, in the pres-
ence of up to 20% uncertainty in the SAS output. Figure 6
shows that the gain-scheduled controller can maintain this
performance at very aggressive d

dt Mach and ḣ rates when
there is no uncertainty in the system. Figure 7 illustrates that
performance degrades when the aircraft is subjected to si-
multaneous variations in altitude and Mach, with uncertainty.
For relatively small rates of change in Mach and altitude the
level of uncertainty that can be tolerated while meeting the
desired level of performance is lowered significantly (e.g.
for d

dt Mach ≤ 0.01 and ḣ = 200 ft/s, the tolerable level of
uncertainty is only 15%, instead of 20% as in LTI case.)

VI. CONCLUSIONS

This paper analyzed a gain-scheduled controller for an
aeroelastic aircraft. The analysis shows that the controller

performs well across the modeled flight domain. Its perfor-
mance is guaranteed analytically for various climb/descent
rates and rates of change of Mach, using the LPV framework.
Further work will extended the analysis to include the lateral-
directional dynamics, and study the effects of uncertainty
in the aircraft aerodynamic coefficients and elastic modes.
Further work is also needed to derive conditions for the lower
bounds on the worst-case induced L2 norm for LPV systems.
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