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Abstract— Model-based fault detection methods can be used
to reduce the size, weight, and cost of safety-critical aerospace
systems. However, the implementation of these methods is based
on models. Therefore, disturbance and model uncertainty must
be considered in order to certify the fault detection system. This
paper considers the worst-case false alarm probability over a
class of stochastic disturbances and model uncertainty. This
is one analysis needed to assess the overall system reliability.
The single step, worst-case false alarm probability is shown to
be equivalent to a robust H2 analysis problem. Hence known
results from the robust H2 literature can be used to upper
bound this worst-case probability. Next, bounds are derived
for the worst-case false alarm probability over multiple time
steps. The multi-step analysis is important because reliability
requirements for aerospace systems are typically specified over
a time window, e.g. per hour. The bounds derived for the multi-
step analysis account for the time correlations introduced by the
system dynamics and fault detection filters. Finally, a numerical
example is presented to demonstrate the proposed technique.

I. INTRODUCTION

The reliability of safety-critical aerospace systems must be
certified with aviation authorities, e.g. the Federal Aviation
Administration in the United States or the European Aviation
Safety Agency. The system reliability and safety require-
ments for commercial flight control electronics are typically
no more than 10−9 catastrophic failures per flight hour [3].
The aircraft industry uses designs that are based almost
exclusively on physical redundancy, whose performance is
relatively straightforward to certify using fault trees [12].

Replacing some physically redundant components with
model-based fault detection and isolation (FDI) algorithms
[2], [11], [5], [10] would lead to a dramatic reduction in
the system size, weight, and power consumption. In addi-
tion, model-based methods could significantly improve the
reliability of smaller unmanned aerial vehicles which cannot
carry the payload associated with physical redundancy. The
recent AddSafe project in Europe [1] dealt with the future
green aircraft and assessed the suitability of these more
advanced fault detection methods for optimizing the aircraft
design. However, despite the benefits of FDI methods, new
challenges come up in the certification phase of these model-
based methods. Rigorously certifying the performance of
model-based FDI would require a worst-case reliability anal-
ysis of fault detection systems due to nonlinear, time-varying
and uncertain aircraft dynamics. The worst case reliability
is also important for understanding the trade off between
the robustness against uncertainty and good attenuation for
disturbance. For example, the full-state observer-based FDI
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design can completely reject the disturbance when model is
known perfectly [15]. However this method can be sensitive
to model uncertainty. A worst-case analysis is needed to un-
derstand the overall performance of this FDI design method.

A direct worst-case reliability analysis is difficult to
perform. In [8], the overall reliability is decoupled into
false alarm analysis and missed detection analysis under
reasonable assumptions. The focus of this paper is on the
worst-case false alarm analysis problem which is required to
determine the overall reliability of an analytically redundant
system. Monte Carlo simulations provide a general solution
to estimate the worst-case false alarm probability. However,
numerous simulations may be needed due to the model
uncertainty. An analytical method is provided in this paper
to complement the Monte Carlo approach.

This paper formulates the worst-case false alarm analysis
problem for a typical model-based fault detection system
(Section II). In Section III the solution of worst-case single-
step false alarm probability is connected to the robust H2

performance analysis problem. The main contribution of this
paper is presented in Section IV. Two different upper bounds
are developed for the worst-case false alarm probability over
a time window. The first upper bound is also based on the
robust H2 performance analysis problem. The second upper
bound is better in the stochastic sense but may be conser-
vative for some model uncertainty. A numerical example is
given in Section V to demonstrate the proposed method.

II. PROBLEM FORMULATION

Consider the uncertain aircraft model shown in Figure 1
where uk and yk are the control inputs and measurements at
the discrete time k, respectively. The signals wk and vk rep-
resent stochastic process and sensors noises. A multiplicative
uncertainty set [20] is used to describe the uncertain (healthy)
aircraft dynamics linearized at some flight condition:

SM := {G0(I + ∆Wu) : ‖∆‖∞ ≤ 1} (1)

G0 represents the nominal (and healthy) aircraft dynamics
and Wu is a stable minimum phase transfer function whose
magnitude specifies the uncertainty at each frequency. The
true aircraft dynamics, when healthy, is assumed to be in this
uncertainty set SM . An additive signal fk is used to model
the effects of aircraft faults.

A parity-equation approach, shown in Figure 2, can be
used to detect aircraft faults. The aircraft is assumed to be
operating in closed-loop with controller K used to track
reference commands hk. The parity equation compares the
expected response, ŷk, obtained from the nominal model G0

to the measured value, yk. A residual signal is generated from
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One important remark: the work presented in Section III and Section IV.A is correct since first order Sidak's bound always holds. The work presented in Section IV.B has an issue. Specifically, it cites a previous result in Ref[9], which says that the second order Sidak's bound (Inequality 20) is true for any stationary Gaussian process. This is a false statement. The original proof for this statement in Ref[9] has a flaw and Inequality 20 only holds under AMTP2 (absolutely multivariate totally positive of order 2) condition. If the AMTP2 condition holds then the worst case false alarm probability presented in Section IV.B is valid. 

If the AMTP2 condition fails to hold then one can instead use the second order Bonferroni type inequality to replace the inequality in Equation 20. The second order Bonferroni type bound is weaker than the inequality in Equation 20 and is given as follows:
     P_N<= 1-(N-1)Q_2+(N-2)Q_1
This Bonferroni inequality holds for any general process. One can prove a lemma similar to Lemma 2 and then conclude the worst-case second order Bonferroni's bound has to be achieved by some point on certain curves. Then Lemma 4 can still be used to generate a fine grid of the candidate points and then the worst-case second order Bonferroni's bound can be fast searched on this grid. When false alarm probability is small, the Bonferroni's bounds are slightly weaker than Sidak's bounds with the same order. Hence the worst-case second order Bonferroni's bound can be better than the worst-case first-order Sidak's bound.



Fig. 1. Uncertain aircraft model with additive fault

this comparison as rk = yk − ŷk. The residual is typically
small when fk = 0 and large when a fault occurs. Based on
rk, the decision logic generates a signal dk to indicate the
health status, i.e. dk = 1 if a fault has been detected and
dk = 0 otherwise. Fixed thresholding is considered here:

dk :=

{
0 if |rk| ≤ T
1 else (2)

where T is the decision logic threshold. A fault is declared
when rk exceeds the threshold T .

Fig. 2. Simple parity equation fault detection system

A false alarm is generated if a fault is declared (dk = 0)
when the aircraft is healthy (fk = 0). This may occur due to
the process and/or sensor noises. The false alarm probability
depends on the aircraft dynamics and hence it depends on the
model uncertainty. This paper presents analytical methods to
bound the worst-case false alarm probability achieved by any
model in the uncertainty set SM .

A formal statement of the analysis problem is now pro-
vided. Consider the case of steady flight and hence the
linearized reference commands satisfy hk = 0. In this case,
the parity equation system in Figure 2 can be redrawn, via
block diagram manipulation, to be in the form shown in
Figure 3. The system M can be easily computed from the
parity equation diagram and depends on K, Wu, and G0. It
is assumed that the input nk is an IID, zero-mean, Gaussian
stochastic process. When wk and vk are colored noises driven
by linear time-invariant (LTI) models, the dynamics part can
always be absorbed into the system M so that nk only
represents the innovation of these noises. It can further be
assumed that the process is unit variance, nk ∼ N (0, I).
The unit variance assumption is without loss of generality
as the variance of nk can be absorbed into the system M .
The uncertainty is shown entering in a feedback fashion. Let
∆ ? M denote the (upper) linear fractional transformation
[20] that relates input n to output r:

r =
(
M22 +M21(I −M11∆)−1M12

)
n (3)

where Mij denote the blocks of M partitioned according to
the dimensions of ∆. The discussion focused on the specific
case of multiplicative uncertainty and a parity-equation fault
detection system. To generalize the discussion, let M be any
LTI, discrete-time system of appropriate dimensions and ∆
a set of (possibly structured) parametric and dynamic LTI
uncertainty. It is assumed that the system is robustly stable,
i.e. ∆?M is assumed to be stable for all ∆ ∈∆. Finally for
false alarm analysis, it is reasonable to assume the system is
in steady state and hence the residual rk is a stationary zero-
mean Gaussian process. The worst-case, single-step false
alarm analysis problem is now formally defined.

Fig. 3. Uncertain system for analysis of worst-case false alarm probability

Definition 1: For any fixed ∆ ∈ ∆, the per-frame false
alarm probability, denoted P1(∆), is the conditional proba-
bility that dk = 1 given that fk = 0. The worst-case per-
frame false alarm probability is P ∗1 := max∆∈∆ P1(∆).

The per-frame false alarm probability P1(∆) is also called
the false alarm rate (FAR). For safety-critical aerospace sys-
tems, system reliability requirements are typically specified
over a time window. For example, flight control systems
certified with the FAA are required to have less than 10−9

catastrophic failures per flight hour [3]. These system level
requirements indicate that the false alarm probability should
also be specified over a time window. This motivates the
following definition of a multi-step false alarm probability:

Definition 2: For any fixed ∆ ∈ ∆, the N -step false
alarm probability, denoted PN (∆), is the conditional prob-
ability that dk = 1 for some k in 1 ≤ k ≤ N , given that
fk = 0 for all k in 1 ≤ k ≤ N . The worst-case N -step false
alarm probability is P ∗N := max∆∈∆ PN (∆).

The problem formulation contains several assumptions.
First, the presentation assumed a simple parity-equation fault
detection system. There are more advanced approaches to
design the fault detection system, e.g. observers, parameter
estimators, and robust filtering [2], [11], [5], [10]. Most of
these advanced methods fit within the general framework
in Figure 3 as long as the fault detection filter is LTI.
Next, the discussion focused on an uncertain aircraft model
with a single multiplicative uncertainty. As noted above,
the problem formulation is sufficiently general to handle
structured LTI uncertainties. Simple constant thresholding
was assumed for the threshold logic. Thresholding is widely
used in commercial aerospace applications due to its sim-
plicity. There are many other approaches for designing the
decision logic, e.g. time-varying thresholds, statistical testing
methods, and fuzzy logic [10], [11], [5]. The restriction to



constant thresholds can be viewed as a steady-state approxi-
mation for time-varying thresholds. The analysis in this paper
forms a foundation to investigate more complicated decision
functions. Finally, additive faults were considered in Figure
1. In fact, the form of the fault is unimportant because false
alarm analysis only considers the fault free case.

A few basic facts are required before proceeding. Based
on the assumptions, the residual rk is a stationary zero-
mean Gaussian process. For fixed ∆ ∈ ∆, the autoco-
variance function is defined as βl(∆) := E[rkrk+l]. Note
that β0(∆) := E[r2

k] is the variance of the stationary
residual process. The autocovariance sequence βl(∆) can
be computed based on a frequency domain approach. The
transfer function from input nk to the FDI residual rk is
given by Tn→r(z,∆) := ∆ ? M(z). Thus the spectrum of
the residual rk is given by

ΦR(ω,∆) = Tn→r(e
jω,∆)TTn→r(e

−jω,∆) (4)

It is well-known [13] that the spectrum is related to the
autocovariance coefficients by:

ΦR(ω,∆) =

∞∑
l=−∞

βl(∆)e−jlω (5)

Hence the autocovariance coefficients can be extracted as:

βl(∆) =
1

2π

∫ π

−π
ΦR(ω,∆)ejlωdω

=
1

π

∫ π

0

ΦR(ω,∆) cos(lω)dω

(6)

III. WORST-CASE FALSE ALARM RATE

This section considers the worst-case single step false
alarm probability, i.e. the worst-case FAR P ∗1 . The main
result is that a robust H2 performance analysis problem can
be used to obtain an upper bound on P ∗1 .

For fixed ∆ ∈ ∆ the variance of the residual process is
given by β0(∆) := E[r2

k]. Thus the FAR can be computed
via a one-dimensional Gaussian integral:

P1(∆) = P [|r1| > T ]

= 1− 1√
2πβ2

0(∆)

∫ T

−T
e
− r21

2β2
0(∆) dr1

(7)

The worst-case FAR is given by

P ∗1 = max
∆∈∆

[
1− 1√

2πβ2
0(∆)

∫ T

−T
e
− r21

2β2
0(∆) dr1

]
(8)

The next lemma is useful for solving this optimization.
Lemma 1: Define

Q1 :=
1√

2πβ0

∫ T

−T
e
− r21

2β2
0 dr1 (9)

Q1 monotonically decreases with β0 ∈ (0,+∞).
Proof: By a change of variables Q1 can be written as

Q1 =
1√
2π

∫ T
β0

− T
β0

e−
r21
2 dr1 (10)

T
β0

monotonically decreases with β0 and hence so does Q1.

By Lemma 1 the worst-case false alarm probability is

P ∗1 = 1− 1√
2π

∫ T/β∗0

−T/β∗0
e−

r21
2 dr1 (11)

where β∗0 is the worst-case variance:

β∗0 = max
∆∈∆

β(∆) (12)

Next note that Equation 6 with l = 0 implies that the variance
can be computed as

β0(∆) =
1

2π

∫ π

−π
Tn→r(e

jω,∆)TTn→r(e
−jω,∆)dω (13)

The integral in this equation is precisely the discrete time
H2 norm of Tn→r, i.e. the variance is given by β0(∆) =
‖Tn→r(∆)‖2. Thus the worst-case variance optimization in
Equation 12 is equivalent to a robust H2 analysis problem:

β∗0 = max
∆∈∆

‖Tn→r(∆)‖2 (14)

Previous results on robust H2 performance analysis can be
found in [6], [14], [18] and the references contained therein.
Standard multiplier techniques have been applied to compute
upper bounds on the worst-case H2 norm for uncertain sys-
tems. This ultimately leads to convex, Semidefinite Programs
(SDP) to compute the bounds. These existing methods to
compute upper bounds on the robust H2 upper bound for
the worst-case, single-step false alarm probability P ∗1 .

IV. WORST-CASE FALSE ALARM PROBABILITY

As noted previously, it is important in aerospace appli-
cations to compute upper bounds on P ∗N . This is the worst
case false alarm probability over a fixed N -step window.
This section presents two tractable upper bounds for P ∗N .
For notational convenience define QN (∆) := 1 − PN (∆).
For fixed ∆ ∈ ∆, QN (∆) is the probability that no alarm
is declared within the N -step window conditioned on the
absence of a fault. For N = 1, this definition reduces to
Q1(∆) = 1 − P1(∆) = P [|rk| ≤ T ]. The worst-case, N -
step false alarm probability can thus be expressed as

P ∗N = 1− min
∆∈∆

QN (∆) (15)

A. Worst-case: Sidak’s Bound

Based on Definition 2, PN (∆) can be expressed as

PN (∆) = P [∪Nk=1{|rk| > T}]
= 1− P [∩Nk=1{|rk| ≤ T}]

(16)

The residual rk is a zero-mean Gaussian process for each
∆ ∈ ∆. The explicit dependence of rk on ∆ has not been
denoted for simplicity. Sidak’s probability bound (Theorem
1 in [16]) can be used to obtain the following inequality:

PN (∆) ≤ 1−ΠN
k=1P [|rk| ≤ T ] (17)

Since rk is stationary P [|rk| ≤ T ] = Q1(∆) for each k and
hence PN (∆) ≤ 1−QN1 (∆). This yields an upper bound on



the worst-case false alarm probability:

P ∗N ≤ max
∆∈∆

[
1−QN1 (∆)

]
≤ 1− min

∆∈∆
QN1 (∆) (18)

By Lemma 1, a worst-case ∆ maximizes the variance. Thus
the N -step worst-case false alarm probability is bounded as:

P ∗N ≤ 1− (1− P ∗1 )N (19)

where P ∗1 is the worst-case single-step false alarm proba-
bility. Equation 19 provides a simple bound on the N -step
worst-case false alarm probability. This bound neglects time-
correlations that may exist in the residual process due to FDI
filters and/or aircraft dynamics. For comparison with the next
section define γ(1)

N (∆) = QN1 (∆) so that Sidak’s bound is
PN (∆) ≤ 1− γ(1)

N (∆).

B. Worst-case: Extended Sidak’s Bound

Sidak’s bound was recently extended to derive a sequence
of monotonically improving bounds on PN (∆) [9]. The
bounds apply to zero-mean stationary Gaussian processes.
The first order bound used in the previous subsection is
PN (∆) ≤ 1−QN1 (∆) and this corresponds to Sidak’s orig-
inal result. For fixed ∆ ∈ ∆, Q1(∆) is a one-dimensional
Gaussian integral. Given the variance β0(∆), this computa-
tion is easy, e.g. using the Matlab function erf.

The second-order bound derived in [9] is given by:

PN (∆) ≤ 1−
(
Q2(∆)

Q1(∆)

)N−2

Q2(∆) (20)

where Q2(∆) := P [|rk| ≤ T, |rk+1| ≤ T ]. For fixed
∆ ∈ ∆, Q2(∆) is a two-dimensional Gaussian integral.
Given the variance and one step covariance, i.e. β0(∆)
and β1(∆), this integral can be efficiently computed in
Matlab, e.g. using the mvncdf function [7]. This second-
order bound is no worse than the first-order bound and
it typically is significantly better. The improved second-
order bound requires increased computation since a two-
dimensional integral must be evaluated in addition to a one-
dimensional integral. The results in [9] provide a sequence of
improving bounds (third-order, etc) that rely on increasingly
higher dimensional Gaussian integrals. In this paper only the
second order bound defined above will be considered.

Define γ(2)
N (∆) :=

(
Q2(∆)
Q1(∆)

)N−2

Q2(∆). With this nota-
tion, a tighter bound of P ∗N is given by:

P ∗N ≤ 1− min
∆∈∆

γ
(2)
N (∆) (21)

Thus another bound of P ∗N can be obtained by solving:

γ̄
(2)
N := min

∆∈∆
γ

(2)
N (∆) = min

(β0,β1)∈Υ1

γ
(2)
N (β0, β1) (22)

where Υ1 is a subset of R2:

Υ1 = {(β0, β1) : βl =
1

π

∫ π

0

ΦR(ω,∆) cos(lω)dω,∆ ∈∆}

There is a slight abuse of notation at this point. In partic-
ular, γ(2)

N is a function of the uncertainty ∆. The notation
γ

(2)
N (β0, β1) indicates that this bound can be written in a

functional form that only shows its explicit dependence on
β0 and β1. γ(2)

N still depends on ∆ implicitly since β0 and
β1 are functions of ∆. Similar notations such as Q1(β0) and
Q2(β0, β1) will also be used for simplicity.

Directly solving γ̄
(2)
N on Υ1 is difficult. One alternative

approach is enlarging Υ1 to a larger set where the mini-
mization could be easily solved and then obtaining a lower
bound for γ̄(2)

N . Let Φ be a set of spectrum functions:

Φ := {ΦR(ω,∆) : ∆ ∈∆} (23)

which is a subset of Φ̃:

Φ̃ :=

{
ΦR : inf

∆∈∆
ΦR(ω,∆) ≤ ΦR ≤ sup

∆∈∆
ΦR(ω,∆)

}
Then a bigger set of (β0, β1) is defined as:

Υ̃1 :=

{
(β0, β1) : βl =

1

π

∫ π

0

ΦR(ω) cos(lω)dω,ΦR ∈ Φ̃

}
Since Φ ⊂ Φ̃, hence Υ1 ⊂ Υ̃1. A lower bound of γ̄(2)

N is:

γ̃
(2)
N := min

(β0,β1)∈Υ̃1

γ
(2)
N (β0, β1) ≤ γ̄(2)

N (24)

Φ̃ is a convex set and the mapping from Φ̃ to Υ̃1 is affine,
hence Υ̃1 is a convex set. One can search γ̃

(2)
N on a small

subset of Φ̃ based on the convexity and the following lemma:
Lemma 2: For fixed β0, γ(2)

N (β0, β1) is an even function
of β1 and is monotonically non-decreasing for β1 ≥ 0.

Proof: It is trivial to check that Q2(β0, β1) is an
even function of β1 and so is γ(2)

N (β0, β1) . For fixed β0,
Q2(β0, β1) is a non-decreasing function of the correlation
coefficient β1

β0
on the interval [0, 1) (Theorem 1 in [17]).

Since β0 is fixed, Q2(β0, β1) is also non-decreasing with
β1 ≥ 0 and so is γ(2)

N (β0, β1).
Υ̃1 is a convex set, hence at least one point satisfying

β1 = 0 or at the boundary of Υ̃1 achieves γ̃(2)
N based on

Lemma 2. Denote the boundary of Υ̃1 as ∂Υ̃1. To be more
specific, define the following two classes of boundary points:

∂Υ̃+
1 := {(β0, β1) : β1 = max

(β′0,β
′
1)∈Υ̃1,β′0=β0

β′1} (25)

∂Υ̃−1 := {(β0, β1) : β1 = min
(β′0,β

′
1)∈Υ̃1,β′0=β0

β′1} (26)

The above definitions make perfect sense geometrically due
to the convexity of Υ̃1. It is clear ∂Υ̃1 = ∂Υ̃+

1

⋃
∂Υ̃−1 . An

efficient algorithm searching γ̃(2)
N relies on the next lemma:

Lemma 3: There exists at least one point (β̃0, β̃1) ∈ ∂Υ̃1

such that γ(2)
N (β̃0, β̃1) = γ̃

(2)
N .

Proof: The set of points with β1 = 0 is defined as:

B1(Υ̃1) := {(β0, β1) : (β0, β1) ∈ Υ̃1, β1 = 0} (27)

Then set B(Υ̃1) := ∂Υ̃1

⋃
B1(Υ̃1). Lemma 2 and the

convexity of Υ̃1 imply that at least one point in B(Υ̃1)

achieves γ̃(2)
N . Since Υ̃1 is convex, Υ̃1 and the β0-axis can

have 0 or 2 intersections (identical or not). When they have 0
intersection, B1(Υ̃1) is an empty set so there exists at least
one point (β̃0, β̃1) ∈ ∂Υ̃1 such that γ(2)

N (β̃0, β̃1) = γ̃
(2)
N .
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As noted on the front page, we recently found that this bound fails to hold for general Gaussian processes. This bound holds for processes that satisfy the additional AMTP2 assumption. If the AMTP2 assumption fails to hold then the following second order Bonferroni's bound (which hold for general processes) can be used:
   P_N<=1-(N-1)Q_2+(N-2)Q_1
This can be used to compute an upper bound (sometimes less conservative than the worse-case first order Sidak's bound) for the worst-case false alarm probability.

Bin
高亮

Bin
附注
A similar lemma can be proved when the second order Bonferroni's bound is used. One can show that (N-1)Q_2-(N-1)Q_1 is an even function of beta_1 and is monotonically non-decreasing for beta_1>=0.
This lemma and Lemma 4 in the appendix can be together used to compute worst-case second order Bonferroni bounds.



When they have 2 intersections, denote the intersections as
(β

(1)
0 , 0)) and (β

(2)
0 , 0)) and suppose β

(1)
0 ≤ β

(2)
0 . Hence

B1(Υ̃1) = {(β0, β1) : β
(1)
0 ≤ β0 ≤ β

(2)
0 , β1 = 0}. Then for

any (β0, β1) ∈ B1(Υ̃1), Lemma 1 implies: γ(2)
N (β0, β1) =

γ
(2)
N (β0, 0) = QN1 (β0) ≥ QN1 (β

(2)
0 ) = γ

(2)
N (β

(2)
0 , 0). Since

(β
(2)
0 , 0) ∈ ∂Υ̃1, hence the stated lemma is true.
Based on Lemma 3, a basic idea of solving γ̃(2)

N is finding
out ∂Υ̃1 and then searching for γ̃(2)

N on a finite grid of ∂Υ̃1.
The main task is to find an efficient way to generate a dense
grid on the set ∂Υ̃1. Theory of uniformly continuous operator
is now applied to realize this goal.

From now on, denote φ1(ω) := inf∆∈∆ ΦR(ω) and
φ2(ω) := sup∆∈∆ ΦR(ω). Let M− : [0, π] → R2 denote
the operator that maps c to (β0, β1) = M−(c) by

β0 =
1

π

∫ c

0

φ1(ω)dω +
1

π

∫ π

c

φ2(ω)dω (28)

β1 =
1

π

∫ c

0

φ1(ω) cos(ω)dω +
1

π

∫ π

c

φ2(ω) cos(ω)dω

(29)

In a similar manner, define operator M+ : [0, π] → R2

mapping c to (β0, β1) = M+(c) by

β0 =
1

π

∫ c

0

φ2(ω)dω +
1

π

∫ π

c

φ1(ω)dω

β1 =
1

π

∫ c

0

φ2(ω) cos(w)ωdω +
1

π

∫ π

c

φ1(ω) cos(ω)dω

One can show M− and M+ are both uniformly continuous.
The range spaces I(M−) = ∂Υ̃−1 and I(M+) = ∂Υ̃+

1 .
For details, see Lemma 4 and its proof in Appendix. Hence
a sufficient dense finite grid on ∂Υ̃1 can be generated by
applying M− and M+ on a sufficiently dense grid of c on
[0, π]. Then one can compute γ(2)

N (β0, β1) for points on the
generated grid of ∂Υ̃1 and search the minimum value as γ̃(2)

N .
To sum up, the algorithm is first generating a grid of c on

[0, π], and then applying the integral operator M+ and M−

numerically to get a grid of (β0, β1) in R2. The next step is
computing γ

(2)
N (β0, β1) on this resulted grid and searching

the minimum value as γ̃(2)
N . Finally an upper bound of worst-

case N -step false alarm probability P ∗N can be obtained by
α

(2)
N := 1− γ̃(2)

N ≥ P ∗N .
For realistic application, φ1(ω) and φ2(ω) sometimes may

be hard to obtain. Then any lower bound of φ1(ω) and
upper bound of φ2(ω) can be used as replacements to
obtain the set Φ̃. If Φ̃ happens to contain the worst-case
spectrum associated with the worst-case ∆, α(2)

N will always
be tighter than the worst-case Sidak’s bound in Inequality
19. Otherwise, α(2)

N could become conservative.

V. NUMERICAL EXAMPLES

This section presents a numerical example to demonstrate
the proposed worst-case false alarm analysis method. A
simple fault detection scheme for monitoring additive aileron
faults is considered. Consider again the parity-equation
scheme in Figure 2. The healthy, nominal dynamics for the

aircraft roll mode are modeled by a first order process from
aileron to roll-rate: G0 = − 0.0161

z−0.9878 . This is a discrete-
time version of Example 7.2 in [4] assuming a 100Hz
sample rate. For simplicity the uncertainty is modeled as
multiplicative, real gain uncertainty at the input. In particular,
Wu = 0.1 and ∆ ∈ [−1, 1] represent a 10% gain uncertainty.
Proporitional control with a gain K = −5 is used to track
roll-rate commands. The measurement noise vk is assumed
to be an IID Gaussian process with vk ∼ N (0, 1). The
disturbance, e.g. wind gusts, has slower dynamics and hence
wk is modeled by a first-order autoregressive model with
transfer function 0.5

z−0.995 and an IID Gaussian innovation
∼ N (0, 1.3). The example analyzes the per-hour false alarm
probability. For a 100Hz sample rate, this corresponds to
N = 3.6× 105 sample frames per hour. The decision logic
threshold is chosen to be T = 45.

The worst-case extended Sidak’s bound α
(2)
N = 1 − γ̃(2)

N

will be computed based on the method proposed in Sec-
tion IV-B. For this simple problem, one can directly grid
∆ ∈ [−1, 1] and compute the bounds

(
1− γ(2)

N (∆)
)

and(
1− γ(1)

N (∆)
)

over this grid of ∆. This will benchmark the

performance of α(2)
N . The set Φ̃ for this case can be easily

specified since φ1(ω) and φ2(ω) can be numerically searched
for any fixed frequency over the set ∆ ∈ [−1, 1]. chebfun
[19] is one Matlab toolbox used for computations. Its
ability of handling complex variables can be explored to
conveniently compute the spectrum of rk when G0, K and
∆ are all specified. chebfun handles numerical integration
also well so that the spectrum function can then be directly
integrated to get β0 and β1 based on Equation 6. The
Matlab function mvncdf [7] is then used to compute
probability bounds based on β0 and β1.

Figure 4 shows a comparison of α(2)
N and the sampled

bounds. One can see
(

1− γ(2)
N (∆)

)
are better bounds than(

1− γ(1)
N (∆)

)
since the time correlations introduced by the

system dynamics and the FDI filter cannot be ignored in
this case. The solution α

(2)
N obtained from analysis method

proposed in Section IV-B is a very tight worst-case bound
for

(
1− γ(2)

N (∆)
)

over ∆ ∈ [−1, 1] and hence should be
a good upper bound for the worst-case N -step false alarm
probability P ∗N . It meets the expectation since one can check
that the set Φ̃ contains the worst-case spectrum associated
with the worst-case ∆ = 1.

This benchmark problem is artificial in the way that Φ̃
happens to contain the worst-case spectrum in set Φ. For
realistic problems, the worst-case spectrum in set Φ may
not be contained in Φ̃. Then α(2)

N could be conservative.

VI. CONCLUSION

This paper analyzed the worst-case false alarm probability
of a FDI system over a class of stochastic disturbances and
model uncertainty. The single step, worst-case false alarm
probability is shown to be equivalent to a robust H2 analysis
problem. Next, two upper bounds are derived for the worst-
case false alarm probability over multiple time steps. The
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worst-case Sidak’s bound is also related to the worst-case
FAR. The worst-case extended Sidak’s bound accounts for
the time correlations introduced by the system dynamics and
FDI filters. A numerical example is used to demonstrate
the proposed technique. In the future, the proposed analysis
method will be explored in more complicated applications.
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APPENDIX

Lemma 4: M− and M+ are uniformly continuous. The
range space of M− is denoted by I(M−). Then I(M−) =
∂Υ̃−1 . The range space of M+ is denoted by I(M+). Then
I(M+) = ∂Υ̃+

1 .
Proof: We will only prove the uniform continuity of

M− and I(M−) = ∂Υ̃−1 . The proof for M+ is just identical.
Due to the fact that |φ1(ω)− φ2(ω)| ≤ sup0≤ω≤π |φ1(ω)−
φ2(ω)|, the uniform continuity of M− is straightforward to
prove by applying an ε-δ argument and triangle inequality.

To prove ∂Υ̃+
1 ⊂ I(M−), suppose (β′0, β

′
1) ∈ ∂Υ̃−1 , it

suffices to prove (β′0, β
′
1) ∈ I(M−). All points in Υ̃1 satisfy:

β0 =
1

π

∫ π

0

φ1(ω)dω ≤ β0 ≤
1

π

∫ π

0

φ2(ω)dω = β̄0 (30)

And so does β′0. Notice the mapping from c to β0 described
by Equation 28 is continuous. The mapping also maps c = 0
to β0 = β0 and maps c = π to β0 = β̄0. Hence there exists

c′ ∈ [0, π] such that β′0 = 1
π

∫ c′
0
φ1(ω)dω + 1

π

∫ π
c′
φ2(ω)dω.

To prove ∂Υ̃−1 ⊂ I(M−), it is sufficient to show that
M−(c′) = (β′0, β

′
1). Hence, one only needs to show that

β1 ≥ 1
π

∫ c′
0
φ1(ω) cos(ω)dω + 1

π

∫ π
c′
φ2(ω) cos(ω)dω for all

points (β0, β1) ∈ Υ̃1 satisfying β0 = β′0. It is equivalent to
show that 1

π

∫ π
0

ΦR(ω) cos(ω)dω ≥ 1
π

∫ c′
0
φ1(ω) cos(ω)dω+

1
π

∫ π
c′
φ2(ω) cos(ω)dω holds for any ΦR ∈ Φ̃ under the con-

straint 1
π

∫ π
0

ΦR(ω)dω = 1
π

∫ c′
0
φ1(ω)dω + 1

π

∫ π
c′
φ2(ω)dω.

This statement can be easily proved based on the monotonic-
ity of cos(ω) for ω ∈ [0, π] by:

∫ c′
0

(ΦR − φ1) cos(ω)dω ≥
cos(c′)

∫ c′
0

(ΦR − φ1) dω = cos(c′)
∫ π
c′

(φ2 − ΦR) dω ≥∫ π
c′

(φ2 − ΦR) cos(ω)dω.
Finally to prove I(M−) ⊂ ∂Υ̃−1 , it suffices to show

that M−(c) ∈ ∂Υ̃−1 for any c ∈ [0, π]. It is equivalent to
show that 1

π

∫ π
0

ΦR(ω) cos(ω)dω ≥ 1
π

∫ c
0
φ1(ω) cos(ω)dω +

1
π

∫ π
c
φ2(ω) cos(ω)dω holds for any ΦR ∈ Φ̃ under the

constraint 1
π

∫ π
0

ΦR(ω)dω = 1
π

∫ c
0
φ1(ω)dω+ 1

π

∫ π
c
φ2(ω)dω.

This has already been proved in last paragraph.




