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Model-based fault detection algorithms can be used to improve the reliability of un-
manned aerial vehicles (UAVs) while still satisfying their restrictive size, power, and weight
requirements. However, the use of model-based algorithms introduces new failure modes
that do not exist in physically redundant architectures. Hence a certification process is
needed for such systems that incorporates analysis tools, high fidelity simulations, and
flight test data. This paper focuses on one aspect of such a process: the use of flight test
data to validate theoretical analysis results. Specifically, this validation is performed to
assess the false alarm probability of a simple, model-based UAV fault detection system.
This example highlights the main certification issues that arise due to limited flight data
and stringent reliability requirements. In addition, the flight test data shows non-Gaussian
statistical behavior that leads to some discrepancies with the analysis results. Further
discussions are presented for this observed behavior.

Nomenclature

PF Probability of false alarm
PD Probability of detection
v Lateral velocity, m/s
p Roll rate, rad/s
r Yaw rate, rad/s
φ Bank angle, rad
ψ Yaw angle, rad
δail Aileron deflection, rad
δrud Rudder deflection, rad

I. Introduction

Safety-critical aerospace systems must be designed for extremely high levels of reliability. In addition,
there is a need to certify the reliability of the system design with aviation authorities, e.g. the Federal
Aviation Administration (FAA) in the United States or the European Aviation Safety Agency. The system
reliability and safety requirements for commercial flight control electronics are typically on the order of no
more than 10−9 catastrophic failures per flight hour.1,2 The aircraft industry uses designs that are based
almost exclusively on physical redundancy, e.g. the Boeing 777 flight control system has multiple redundant
computing processors, actuators, and sensors.3,4 In a physically redundant configuration, a failed component
is detected by directly comparing the behavior of each redundant component. Hence, these schemes tend to
detect faults accurately, and their performance is relatively straightforward to certify using fault trees.5,6

The Modernization and Reform Act of 2012 requires the FAA to integrate unmanned aircraft in the
national airspace. In particular, Section 332 of HR658 requires the FAA to “provide for the safe integration
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This paper computes empirical and theoretical estimates of false alarm probabilities. A comparisons between these probabilities is used to validate the theoretical false alarm analysis tools (Theorem 1 in Section III) for a fault detection system. Theorem 1 is cited from a previous work (Ref 25). However a flaw has recently been found in the proof presented in Ref 25. Hence Theorem 1 does not hold for general Gaussian processes. Ref 26 proves that the theoretical false alarm probability bounding technique can still be applied when the stochastic processes are AMTP2 (absolutely multivariate totally positive of order 2). Hence, the work presented in this paper has one important missing piece, which is to show that the ARMA processes described by Equation 11 and Equation 13 are AMTP2. This is a non-trivial task and this work has not yet been done.  If these processes are not AMTP2, then the probability bounds presented in Theorem 1 can not be used. However, there are alternative Bonferroni-type inequalities that hold for general processes and they can be applied. The main contribution of this paper is a framework that uses limited flight test data to validate theoretical analysis tools.  This basic approach is unaffected by the validity of Theorem 1.



of civil unmanned aircraft systems into the national airspace system as soon as practicable, but not later than
September 30, 2015.” This creates new design challenges as UAVs typically cannot afford the full payload
associated with physically redundant architectures due to their more restrictive size, power, and weight
requirements. One alternative to physical redundancy is model-based fault detection and isolation (FDI).7–9

Model-based methods would enable some physically redundant components to be replaced with model-based
fault detection thus leading to a dramatic reduction in the system size, weight, and power consumption.
There have already been some efforts to implement analytical redundancy on commercial manned aircraft,
e.g. the oscillatory monitors on the Airbus A380.10 These considerations also motivated the recent AddSafe
project in Europe11 to assess the suitability of more advanced fault detection and isolation (FDI) methods
for manned commercial aircraft.

Model-based FDI is an important technology to enable safe integration of UAVs within the national
airspace. However, analytically redundant systems must rigorously demonstrate the required levels of relia-
bility to certification authorities before model-based FDI finds wide acceptance for UAV applications. The
use of models introduces new failure modes that do not exist in physically redundant architectures, e.g. the
system may fail due to incorrect detection of faults arising due to model uncertainty. Thus the standard
approaches to assess the reliability of physically redundant architectures, e.g. fault trees, can not be directly
applied for systems that use analytical redundancy. A certification process is needed that incorporates the-
oretical analyses, high fidelity nonlinear simulations, and flight tests. Flight tests are commonly used to
assess the system-level design prior to aircraft entry into service. However, flight tests alone are insufficient
to assess the reliability of a safety-critical systems because catastrophic failures are extremely rare events
by design. Moreover, the flight data is typically limited due to cost and time constraints. It is important
to complement flight test data with high fidelity simulations and theoretical analyses. One approach is to
linearize the system at many different trim conditions within the flight envelope and validate the reliability
of the FDI system at each trim condition using theoretical linear analysis tools. High fidelity Monte Carlo
simulations can be performed to complement the linear analyses and investigate the performance during
transient (non-trim) conditions. The high fidelity simulations and the linear analyses both assume certain
underlying models for the aircraft dynamics, hardware failure modes and the environmental conditions. The
limited flight data can be used to validate these assumptions and the results obtained by simulations and lin-
ear analyses. This approach is similar to the existing procedure to validate the robustness and performance
of flight control laws.12

This paper focuses on the use of limited flight test data to validate the results of linear analyses of
FDI performance. In particular, linear probabilistic analyses can provide estimates of key FDI performance
metrics including false alarm and detection probabilities. This paper uses experimental flight test data to
validate a theoretical false alarm analysis and discusses the gaps between theory and experiments. Section II
describes the flight test experiment, sets up a simple parity equation fault detection system, and defines the
false alarm and detection probability metrics for quantifying FDI performances. This section also describes
the major issues in using flight test data to validate the linear analysis results. Section III reviews theoretical
bounding methods for false alarm analyses of linear FDI systems and then introduces a framework to validate
the linear analyses based on flight test data. Section IV applies the validation framework to the UAV FDI
system introduced in Section II and provides both results and discussions. Gaps between the theoretical
results and flight data including the heavy tail phenomenon are discussed.

II. Problem Formulation

This section formulates the validation problem. First, UAV flight test data is presented with and without
simulated faults in the aileron and roll rate sensor. Next, a simple parity-equation based FDI algorithm is
described to detect the roll rate or yaw rate sensor fault. The performance metrics for the FDI system are
defined in terms of the false alarm and detection probabilities. A framework to validate the performance
of the FDI design using theoretical analysis, nonlinear simulations and limited flight test data is proposed.
This paper focuses on the use of flight test data to validate theoretical analyses.

A. Flight Test Experiment

The University of Minnesota (UMN) UAV Research Group13 has developed several low-cost experimental
platforms. The flight test experiment described in this paper is performed with an Ultra Stick 25e UAV

2 of 14

American Institute of Aeronautics and Astronautics



(Figure 1). This UAV, referred to as Thor in the remainder of the paper, is a commercially available, fixed-
wing, radio-controlled aircraft. Thor has a wing span of 1.27m, mass of 1.9kg, cruise speed of 17m/s, and
endurance of 15-20min. This aircraft is one of primary flight test vehicles operated by the UMN UAV research
group and additional details on this research infrastructure can be found in survey papers.14–16 There
are two important aspects that deserve further comments. First, the research group supports open-source
development with all design information and flight test data available online through the UMN UAV Research
Group website:13 www.uav.aem.umn.edu. Second, a high fidelity simulation model has been developed for
Thor with an aerodynamic model derived using frequency domain system identification techniques based on
flight test data.17,18

Figure 1. University of Minnesota Ultra Stick 25e UAV.

Figure 2 shows experimental flight test results performed using Thor. The figure shows the response of
the aircraft lateral dynamics (bank angle φ, roll rate p, yaw rate r) to a series of bank angle step commands
for nominal (unfaulted) and faulted scenarios. The faulted flight test scenario consists of simulated aileron
and roll rate faults. The aileron fault is an additive ramp starting at t = 7sec and increasing to a maximum
fault value of 5deg at t = 20sec. The roll rate sensor fault is a step bias of −80 deg/sec injected at t = 12sec.
The flight control computer operates at 50 Hz corresponding to a sampling time of 0.02 sec. Both flight
tests used the baseline lateral controller developed by the UMN UAV research group.14 This baseline lateral
controller consists of yaw rate feedback to the rudder, roll rate feedback to the aileron, and an outer-loop
bank angle tracking controller. The details of the baseline controller are included in the appendix. The
baseline controller trimmed Thor near a trim condition so that the closed-loop system of the aircraft can be
approximated as a linear system. The unfaulted flight test scenario was repeated 6 times and the faulted
scenario was repeated 3 times.
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Figure 2. Flight test data for unfaulted and faulted scenarios.

The flight test results for the faulted scenario indicate that the aileron ramp fault injected at t = 7sec
has minimal impact due to the compensation by the baseline lateral controller. The roll rate sensor fault
injected at t = 12sec is apparent in the second subplot of Figure 2 but it also has a small impact on the
bank angle tracking performance. This is again due to the compensation by the baseline lateral controller.
Although the baseline controller is robust to both injected faults it is still important to detect the failures.
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The controller is robust to constant sensor faults in the sense that these faults do not affect stability or
the steady-state tracking as long as the system could be approximated as linear systems at trim conditions.
However, a sufficiently large fault could cause a large deviation from the trim condition so that the nonlinear
dynamics may dominate the aircraft and even destabilize the closed-loop system. Moreover, the closed-loop
system may not be robust to transients faults rather than constant bias faults. Due to the high risk it is
difficult to perform flight test with the faults which could potentially destabilize the aircraft. The current
faulted scenario fits the purpose of FDI research. Study on the current flight data provides insight into the
fault detection problem with more complicated faults. The next subsection describes a simple closed-loop
parity equation fault detection system to detect the roll rate or yaw rate sensor fault.

B. Parity Equation Fault Detection System

Figure 3 shows a parity-equation fault detection scheme to detect the roll rate sensor fault discussed in the
previous subsection. Gθ denotes the monitored closed-loop system which includes the lateral/directional
dynamics and the baseline lateral control system. This paper considers an analysis in discrete-time. Hence
the subscript θ(k) ∈ {0, 1} denotes the status of the system at time k: θ(k) = 0 if the roll rate sensor is
operational and θ(k) = 1 if a sensor fault has occurred. The closed-loop dynamics may also be uncertain
as denoted in the figure by the linear fractional dependence on ∆. The input to the closed-loop system is
the bank angle reference command, φref . The output of Gθ, denoted y, refers to the roll rate p or yaw rate
r. The measured output, ymeas, includes the effects of sensor noise as well as any stochastic disturbances
acting on the aircraft, e.g. wind gusts. The combined stochastic effects of sensor noise and disturbances
can be modeled at the output of the closed-loop system through appropriate block diagram manipulation.
Specifically, the stochastic effects are modeled with an additive output signal of a linear system M driven
by an independent and identically distributed (IID) Gaussian process n. M will introduce time correlations
into the noise process, n. The dashed box in Figure 3 represents the entire picture of the closed-loop
lateral/directional dynamics control system including model uncertainty, stochastic disturbances, and fault.
A parity equation fault detection scheme is used to monitor the status of Gθ. The fault detection scheme
is compromised of two parts: a filter that generates a residual carrying the information of the occurrence of
the fault, and a decision function that generates a logic signal indicating the status of the monitored system.
The residual, denoted ey, carries the information regarding the occurrence of the injected sensor fault.
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Figure 3. A Parity Equation FDI System.

The residual is generated using the analytical (model-based) relationship between φref and y. Specifically,
an estimate of y, denoted ymodel, is generated using the dynamic model of the closed-loop system. Comparing
this estimate with the measured value, ymeas gives the following residual:

ey = ymeas − ymodel (1)

ymodel is directly computed from φref and Gmodel. Gmodel is the nominal closed-loop model of Thor and
is included in the appendix. The residuals computed from the flight data for both y = p and y = r are
shown in Figure 4. er will not be able to detect the roll rate sensor fault while ep immediately indicates the
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onset of the roll-rate sensor fault at t = 12sec. Conversely, it is expected that faults in the yaw rate sensor
would appear in er but not in ep.
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Figure 4. Residuals for unfaulted and faulted scenarios.

The residual generator is typically designed in a way such that ey is small when θ(k) = 0, and large
when a fault occurs. Based on ey, the decision logic generates a signal d(k) to indicate the status of Gθ,
i.e. d(k) = 1 if a fault has been detected and d(k) = 0 otherwise. There are many approaches for designing
decision function logic, such as thresholding, statistical testing methods, and fuzzy logic.8,9 Our analysis
focuses on constant thresholding:

d(k) :=

{
0 if |ey(k)| ≤ T
1 else

(2)

A fault is declared when ey(k) exceeds the threshold T . Thresholding is widely used in industrial appli-
cations due to its simplicity. The restriction to constant thresholds can also be viewed as a steady-state
approximation for time-varying thresholds. This paper focuses on the validation method rather than the
fault detection system design itself. There are many more advanced fault detection techniques than the
simple parity-equation approach described here.7–9 The parity-equation approach described here is used to
simplify the design. The focus of this paper is on certification issues and validation using flight test data.
The validation approach described in this paper could also be used for more advanced fault detection designs.

C. Performance Metrics

Commercial aircrafts achieve high levels of reliability almost exclusively through the use of hardware redun-
dancy. In a physically redundant configuration, a failed component is detected by directly comparing the
behavior of each redundant component. Hence, these schemes tend to detect faults accurately, and their
performance is relatively straightforward to certify using fault trees.5,6 In contrast, the use of model-based
FDI schemes will introduce new failure modes associated with the imperfect detection capabilities of the
model-based algorithm. These new failure modes must be considered in order to certify the performance
of a system designed with a model-based FDI algorithm. As an example, the extended fault tree technique
characterizes false alarms and missed detections as basic events that are incorporated into a fault tree.19,20

The extended fault tree technique ties the system level failure probabilities to the FDI detection performance
as well as the hardware component failure rates. In this approach, the probability of false alarm and prob-
ability of missed detection connect to the system failure rate. Hence these two quantities are used as the
probabilistic metrics for quantifying the performance of the FDI system. It is noted that missed detection
probability could also be equivalently expressed in terms of a detection probability. The probabilities of
false alarm and detection have been used in the literature on FDI, e.g.8,21 In this paper, the probability of
detection is used in place of the probability of missed detection.

System level reliability requirements for aircraft are typically specified per hour, e.g. flight control systems
certified by the FAA are required to have less than 10−9 catastrophic failures per hour.2 Thus it is reasonable

5 of 14

American Institute of Aeronautics and Astronautics



to expect that such system level requirements would be decomposed into per-hour requirements on the fault
detection false alarm and detection probability. The performance requirements are specified over a specified
N - step window in discrete-time domain. This motivates the following definitions.

Definition 1 The probability of false alarm, denoted PF (N), is defined as the conditional probability that
d(k) = 1 for some k in 1 ≤ k ≤ N given that θ(k) = 0 for all k in 1 ≤ k ≤ N .

Definition 2 The probability of detection, denoted PD(N), is defined as the conditional probability that
d(k) = 1 for some k in 1 ≤ k ≤ N given that θ(k) = 1 for all k in 1 ≤ k ≤ N .

These two metrics can be connected back to a system level failure rate in a rigorous way using the law of
total probability.19,20,22 Given a specified sample rate the per-hour false alarm probability can be converted
to the discrete-time window size N . For example, a system with a 50Hz sample rate has N = 1.8 × 105

samples per hour. The detection probability window size is typically much smaller. For example, a fault that
is required to be detected within 1sec corresponds to a detection window of N = 50 for a system with a 50Hz
sample rate. It is also important to note that the system dynamics and filters introduce time-correlations into
the fault detection residuals. Thus it is not possible, in general, to accurately assess the FDI performance
over N-step windows by using single frame probabilities. For example, if the probability of a false alarm
in a single frame is given by P0 then, due to the time correlations in the residual, the N -step false alarm
probability will not be simply 1− (1−P0)N . It is important to include the effects of these time correlations
in the analysis.

D. Certification

A certification process for UAV FDI systems should incorporate theoretical probabilistic analyses, high
fidelity Monte Carlo simulations and flight test validation. These methods have complementary benefits
and shortcomings that address the issues related to model fidelity and stringent reliability requirements.
Flight tests provide the highest fidelity as they validate the system performance in the actual operating
conditions. However, flight tests are typically limited because they are expensive and time consuming. High
fidelity nonlinear simulations can be used to assess the system reliability over a larger set of conditions. In
particular, the aircraft can operate at many different flight conditions and in different modes. Given the
stringent reliability requirements it can be costly to perform simulation for all possible situations. Theoretical
probabilistic analysis can be used to complement flight tests and high fidelity simulations. Theoretical
analysis can be used to assess performance at many flight conditions but under more restrictive modeling
assumptions. For example, the probabilities of false alarm and detection can be efficiently and accurately
calculated when the fault detection system is described as a linear time invariant system driven by Gaussian
noise (see Section III.A).

A basic framework to assess the FDI performance using analysis, simulations, and flight tests is as follows.
First, linearize the aircraft dynamics at a trim condition in the flight envelope. Next, apply the linear analysis
tools to rigorously assess the FDI performance at this trim condition under a variety of assumptions on the
environmental conditions (e.g. wind gusts) and model uncertainty. This linear analysis can be repeated
at a grid of trim operating conditions in the flight envelope. Next, high fidelity Monte Carlo simulations
can be performed to complement the linear analyses. The Monte Carlo simulations and the linear analyses
both assume certain underlying probability models for failure modes and environmental disturbances. Thus
finally, flight test data can be used to validate these assumptions and the results obtained by simulations
and linear analyses. The objective is to use the flight test data to validate the linear analyses for several
different typical flight conditions. If the results match then this gives further confidence in the linear analyses
performed for the remaining (non-flight tested) operating conditions. This certification approach is similar
to the framework used to evaluate flight control laws.12,23

The remainder of the paper focuses on the use of flight test data to validate theoretical probabilistic
analyses. For the flight test described in Section II.A, Thor was trimmed by the lateral directional controller
and hence the entire closed-loop FDI system can be approximated by a linear time-invariant system driven
by noise. Section III.A summarizes a theoretical method to compute the probability of false alarm PF (N) for
such systems. The theoretical analysis assumes the noise driving the linear time-invariant system is Gaussian
and IID. The theoretical analysis also neglects the model uncertainty and the time-varying dynamics. Thus
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it is important to use flight test data to validate the strong assumptions that underly the linear theoretical
analysis. It is also noted the fault detection residuals are correlated in time. Both the linear analysis and
the flight test validation will address these time correlations. The main challenges of the validation are due
to the limited flight data and the stringent reliability requirements. For example, for a system sampling at
50 HZ there are N = 1.8× 105 samples per hour. Moreover, the fault detection system should be designed
such that the false alarm probability PF (1.8 × 105) is very small. If PF (1.8 × 105) ≈ 0.01 then hour-long
experiments should be run for at least 1000 times in order to draw statistically meaningful conclusions. In
practice the costs and flight endurance limits prohibit such an extensive flight test campaign. For example,
the endurance limit for Thor is approximately 20 minutes. This complicates the validation of the linear
analyses. The goal of this paper is to find a reasonable validation framework to at least partially address
these difficulties. The objective is to assess the quality of the linear analyses of false alarm probabilities
within the constraints of limited flight data. The validation of linear analyses of probability of detection
PD(N) introduces additional difficulties that are discussed at the end of this paper.

III. Validation Approach

Section III.A summarizes a theoretical technique to bound the false alarm probability for linear time
invariant systems driven by Gaussian noise. Next, the approach to validate the linear analyses using flight
test data is described in Section III.B.

A. False Alarm Analysis of Linear FDI systems

Consider a discrete-time state-space system of the form:

x(k + 1) = Ax(k) +Bn(k)

ey(k) = Cx(k) +Dn(k)
(3)

Here, x(k) ∈ Rh, n(k) ∈ Rl, and ey(k) ∈ R with the state matrices (A,B,C,D) having compatible dimen-
sions. n(k) is an IID Gaussian process with n(k) ∼ N (0,Σ). This is reasonable to model the fault detection
system shown in Figure 3 if the nominal dynamics of the system (θ = 0 and ∆ = 0) are given by the model
Gmodel used in the parity equation. In this case all discrepancies between the measured and model-based
outputs is lumped in the stochastic errors driven by n.

For false alarm analysis, it it reasonable to assume the stochastic system is in the steady state. In this
case the residual ey(k) is a strictly stationary zero-mean Gaussian process.

Define EN =
[
ey(1) ey(2) ey(3) · · · ey(N)

]T
as the vector of residuals over the N -step window and

let ΛN denote the covariance matrix of EN . This covariance matrix can be computed as follows. First, the
steady state covariance matrix Σx of the random vector x(k) can be solved from the Lyapunov equation:

Σx = AΣxA
T +BΣBT (4)

Σx can be accurately and efficiently computed for given state-space data (A,B), e.g. using the Matlab

function dlyap.24 The covariance matrix of EN is then given by the following Toeplitz matrix:

ΛN (i, j) =

{
CΣxC

T +DΣDT if i = j

CA|i−j|ΣxC
T + CA|i−j|−1BΣDT else

(5)

The probability density function of the residual vector EN thus has the form:

fN (EN ) =
1√

(2π)N |ΛN |
e−

1
2E

T
NΛ−1

N EN (6)

Based on Definition 1, the probability of false alarm over the N -step window, PF (N), can be expressed in
terms of this density function. Specifically, this probability is given formally in terms of the residuals as
PF (N) = P [∪Nk=1{|ey(k)| > T}]. Using basic probability rules for mutually exclusive events, this can be
expressed as

PF (N) = 1− P [∩Nk=1{|ey(k)| ≤ T}] = 1−
∫ T

−T
fN (EN )dEN (7)

7 of 14

American Institute of Aeronautics and Astronautics



Let Q(N) := P [∩Nk=1{|ey(k)| ≤ T}] denote the probability of no false alarm over N steps and note that
Q(N) := 1− PF (N).

The main theoretical analysis result applied in this paper is the following theorem providing bounds on
PF (N) using product type inequalities:25,26

Theorem 1 Suppose ey is a stationary zero-mean Gaussian process and denote Q(0) := 1. Then:

γ
(k)
N = 1−

[
Q(k)

Q(k − 1)

]N−k
Q(k) (8)

PF (N) ≤ γ(k)
N (9)

where 1 ≤ k ≤ N and γ
(k)
N is decreasing in k.

The important aspect of this result is that N is typically large for false alarm analysis and hence this

makes it computationally intractable to directly evaluate PF (N). Since γ
(k)
N for 1 ≤ k ≤ 3 only depends on

low dimensional integrals Q(1), Q(2), and Q(3), this theorem bounds the false alarm probability also in terms
of Q(1), Q(2), and Q(3). Q(1) is a one-dimensional Gaussian integral that can be accurately computed from
the error function, e.g. erf in Matlab. Q(2) and Q(3) correspond to two and three dimensional Gaussian
integrals, respectively. These integrals can also be efficiently computed to within machine (double) precision
using the Matlab function mvncdf.27 The sequence of bounds can be extended to include higher dimensional
integrals (Q(k) for k ≥ 3) at the expense of additional computation. It can be proven under some technical
assumptions that these bounds converge to PF (N)25,28 and hence the bounds themselves can be used as
estimates of PF (N).

B. Validation of Linear Analysis

The linear analyses given in Theorem 1 provide theoretical bounds for the probability of false alarm. Flight
tests can also be used to compute sample estimates of the false alarm probability. The sample estimates
obtained from flight test data can be used to validate the theoretical bounds computed from linear analysis.
However, accurate calculation of sample estimates require a large amount of flight test data. This places
restrictions on the validation of PF (N) for large values of N . For example, only 6 unfaulted data sets each
of length 20seconds were performed on Thor. The system sample rate is 50Hz and hence the entire dataset
consists of 50× 20× 6 = 6000 samples. Additional data can be collected but basic limits on flight data will
always exist.

Given these limits, the flight data will be used to validate the linear analysis of PF (N) for small N . If
the theory and the flight data do not agree for small values of N then it is not likely that the linear analyses
will be accurate for large N . For concreteness, the flight data will be used to validate the linear analyses
for N = 5. To perform a linear analysis of PF (5), a stochastic model for the residuals is needed in the
form provided in Equation 3. As discussed previously, Thor is trimmed during the flight test and the FDI
system can be approximated as a linear system. It is assumed that the nominal dynamics of the closed-loop
system (θ = 0 and ∆ = 0) are given by the model Gmodel. In this case the residual generated by the simply
parity-equation architecture in Figure 3 is simply given by the output of the model M driven by noise n.
Thus the residuals ey are given in the form Equation 3 where the state-space system represents the dynamics
of M . One set of experimental data is used to identify an autoregressive moving average (ARMA) model
M whose output is the residual ey(k). The model selection is based on autocorrelation function (ACF) and
partial autocorrelation (PACF) function. The model identification is performed using the function sarima in
R studio, which is a commonly used software in statistics community. ARMA models are identified for both
the roll rate (y = p) and yaw rate (y = r) outputs. Both ARMA models can be recast into an equivalent
state space model described by Equation 3. The linear analyses can then be performed to estimate the
probability PF (5) based on Equations 4, 5 and Theorem 1.

Since one set of experimental data is used to fit a stochastic model for the FDI residual, only 5 datasets
remain for validation. This corresponds to a toal of 5000 time samples. The sample estimates of PF (5)
are computed from the data as follows. First, the data is binned into 1000 groups and a Bernoulli random
variable B(i) is assigned to each group for i = 1, 2, · · · , 1000. For the ith group of data, B(i) = 1 if the
magnitude of at least one residual in the group exceeds the threshold T . Otherwise set B(i) = 0. To avoid
time correlations, the results for odd bins are neglected, i.e. B(i) is only used for i even. This enables the

8 of 14

American Institute of Aeronautics and Astronautics

Bin
高亮

Bin
附注
This theorem is not true due to a flaw in its original proof in Ref 25. The bounds still hold if the Gaussian process satisfy the additional AMTP2 (absolutely multivariate totally positive of order 2) assumption. Hence, one must show that the processes governing the residual are AMTP2 before applying these bounds. This step is a non-trivial task.



application of the law of large numbers to estimate the true value of PF (5) based on the sample estimate
PF (5). The final sampled estimate of PF (5) is given by

PF (5) ≈
∑500
i=1 B(2i)

500
(10)

The sample estimate of PF (5) is compared with the results from the linear analysis to determine the accuracy
of the linear analysis. It is noted that the use of 500 groups places a fundamental bound on the accuracy
of the sample false alarm probability and for PF (5). In particular, a false alarm in no bin gives the sample
estimate PF (5) ≈ 0 while a false alarm in a single group gives the estimate PF (5) ≈ 1

500 . Thus the resolution
of the sample false alarm estimate is 1

500 and validation of the linear analysis can not be performed for false
alarm probabilities below this level.

IV. Results and Discussions

This section applies the theoretical method discussed in Section III.A to assess the false alarm probability.
The theoretical analysis is validated using the method described in Section III.B.

As described in Section II.A, there are a total of six unfaulted flight tests available for the validation of
the false alarm analysis. Given the modeling assumptions in Section III.B, the residuals are generated by
the stochastic system M which is driven by Gaussian noise n. One set of experimental flight data is used
to fit ARMA models for FDI residuals. There are many techniques for identifying time-series models.29,30

The ARMA model identification is only briefly described since this step is not the main focus of the paper.
Additional details of the model selection are included in the appendix. The ARMA models for the residuals
ep and er are identified using the basic procedure provided in Example 3.39 in Shumway’s textbook.29 First,
the ACF and PACF provide qualitative information about the order of the ARMA model to fit. Next, the
function sarima in R toolbox is used to fit ARMA model to FDI residuals. The ACF of the innovation term
n and Ljung-box statistic p-value are used to check the independence of n. Moreover, a normal quantile-
quantile (Q-Q) plot is used to check the normality of the innovation term. Finally, Akaike’s information
criterion (AIC), Bayesian information criterion (BIC) and bias corrected AIC (AICc) are used to pick up
the best ARMA models among all the candidates passing the diagnostics.

For the roll rate residual ep the final identified ARMA model is:

ep(k) = 1.0592ep(k − 1) + 0.2379ep(k − 2)− 0.4585ep(k − 3) + np(k) + 0.8141np(k − 1) + 0.0787np(k − 2)
(11)

where np(k) is an IID Gaussian process with np(k) ∼ N (0, 1.193× 10−3). Equation 11 can be recast into an
equivalent state space model described by Equation 3 with the following state-space data (A,B,C,D):

A =

1.0592 0.2379 −0.4585

1 0 0

0 1 0


B =

[
1 0 0

]T
C =

[
1.0000 0.8141 0.0787

]
D = 0

(12)

The driving noise for this state space system is the IID process np defined above. Theorem 1 provides a

sequence of bounds γ
(k)
5 on the false alarm probability over a five-step window, PF (5). The first three bounds

γ
(k)
5 (k = 1, 2, 3) are evaluated using the covariance matrix of the residual ep. This covariance matrix of the

residual ep is computed using Equations 4 and 5. The sample estimate of PF (5) is computed from Equation
10 with the remained five sets of flight data. Figure 5 shows the sampled estimate of PF (5) and the theoretical
estimates of PF (5) as functions of the threshold value T . The top subplot shows PF (5) on a log scale while

the bottom subplot shows PF (5) on a linear scale. The third bound γ
(3)
5 is almost identical to γ

(2)
5 and hence

it is omitted from the figure for clarity. For threshold values smaller than 0.5, the sampled estimate of PF (5)

9 of 14

American Institute of Aeronautics and Astronautics



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−4

10
−2

10
0

Threshold, T

P
F
(5

)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1

Threshold, T

P
F
(5

)
 

 

sampled P
F
(5)

γ
5
(1)

γ
5
(2)

Figure 5. FAR PF (5) vs T for roll rate residual ep.

is bounded by γ
(2)
5 . But for larger threshold values, the sampled PF (5) exceeds the theoretical bound and

shows heavy tail behavior. Further discussion of these results is given later in this section.
For the yaw rate residual er the final identified ARMA model for the FDI residual is:

er(k) = 1.7840er(k − 1)− 0.7997er(k − 2) + nr(k)− 0.3563nr(k − 1) (13)

where nr(k) is an IID Gaussian process with nr(k) ∼ N (0, 4.132×10−5). Equation 13 can also be recast into
an equivalent state space model described by Equation 3 with the following state-space data (A,B,C,D):

A =

[
1.7840 −0.7997

1 0

]

B =
[
1 0

]T
C =

[
1 −0.3563

]
D = 0

(14)

The driving noise for this state space system is the IID process nr defined above. The sampled estimates
and the theoretical bounds on PF (5) are shown in Figure 6 as functions of the threshold T . The top subplot
again shows PF (5) on a log scale and the bottom subplot is shown on a linear scale.
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Figure 6. FAR PF (5) vs T for yaw rate residual er.
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For both ep and er the sampled estimates of PF (5) are bounded by the theoretical γ
(2)
5 for small thresholds

T . For both cases, there exist non-Gaussian heavy tail behavior for larger thresholds. This heavy tail behavior
is also expected based on the the normal Q-Q plot in Figure 8 which is included in the appendix. Comparing
Figure 5 and 6, it appears that the theoretical bounds are more accurate for the yaw rate fault residual er.
This agrees with the normal Q-Q plots shown in Figure 8 which demonstrate that er has a much better
agreement with a Gaussian distribution than ep. The main cause of the heavy tail behavior could be the
time varying nature of the system during aggressive bank angle maneuvers. These aggressive bank angle
commands result in a non-constant variance of the driving noise process n. The sample ACF and PACF of
the squared innovation series show correlations which is consistent with this hypothesis. The time-varying
nature of the variance of ep is also observed in Figure 4. It is possible that the linear analysis tools will only
provide good estimates when the aircraft is not performing aggressive maneuvers. To verify this hypothesis,
further flight tests will be performed in the future. In particular, the bank angle reference signal φref should
be kept near 0 so that the UAV will remain near trim. The hypothesis will be confirmed if the variance of
the residual remains time-invariant during these flight tests.

As mentioned before, the validation of the linear analyses can not be performed for false alarm probabil-
ities below the resolution of the sampled false alarm probability. The current analysis only consists of 500
groups of flight data and hence this limits the resolution of the sampled false alarm probability to ≈ 1

500 .
More flight data is required to validate the linear analysis for lower false alarm probabilities. Hence an
important question is how to balance the trade-off between the resolution of validation approach and the
costs of flight test experiments.

For future research, the central limit theorem can be a useful tool to rigorously analyze the resolution of
the sampled false alarm probability. A typical procedure can be found in Chapter 1.1 of Rubino and Tuffin’s
textbook.31 The difficulty here is due to the correlations of the sampled data. Proper justifications must be
made to ensure the validity of the central limit theorem.

The experimental validation of the linear analyses of probability of detection requires repeatedly trimming
the aircraft and injecting the faults. This operation is more difficult due to the transient nature of this kind
of experiments. Future flight test should be designed to address this problem.

V. Conclusion

This paper discusses a process to certify a model-based fault detection system using theoretical analysis,
nonlinear simulations and flight test data. The main focus of the paper is a method to use limited flight
test data to validate theoretical, linear analyses of the false alarm probability. This validation approach is
applied to a simple UAV fault detection system for sensor faults. The sampled false alarm probability and
the theoretical bounds agree for small threshold values. However, the results diverge for larger thresholds. A
possible cause of this non-Gaussian heavy tail behavior is the aggressive bank angle maneuvers used in the
flight tests. Future research will include flight tests in trim conditions to confirm or deny this hypothesis.

Appendix

A. Closed-Loop Lateral/Directional System

This section provides the dynamic model of the closed-loop lateral directional system for completeness. A
block diagram of this control system is shown in Figure 7. AClat/dir represents the lateral dynamics of the
aircraft with inputs aileron (δail) and rudder (δrud) deflections. The units of all the signals are included in
the nomenclature section. The aircraft dynamics are linearized at 17m/sec and the linearized dynamics are
described by the following five state model:

d

dt


v

p

r

φ

ψ

 =


−0.6288 0.68 −16.37 9.794 0

−2.095 −13.53 3.861 0 0

1.002 −0.451 −2.466 0 0

0 1 0.04961 0 0

0 0 1.001 0 0




v

p

r

φ

ψ

 +


−1.552 2.242

−130 2.066

−1.933 −20.9

0 0

0 0


[
δail

δrud

]
(15)

The outputs used for feedback are bank angle (φ), roll rate (p), and yaw rate (r). The aileron and rudder
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actuators are modeled as

Act(s) =
50.272

s2 + 80.43s+ 50.272
τ(s) (16)

τ(s) is a sixth order Pade approximation for a 0.05sec time delay.
The control system has an inner/outer loop structure to achieve tracking of bank angle reference com-

mands, φref . The inner-loop roll rate damper (Kp) uses proportional gain to reject disturbances in turbulent
conditions:

Kp(s) = −0.07 (17)

An inner-loop yaw damper (Kr) applies a proportional gain to increase damping in the Dutch roll mode,
and a washout filter to avoid an adverse yaw effect during turns:

Kr(s) =
0.065s

s+ 2
(18)

Finally, an outer-loop proportional-integral controller (Kφ) is applied to track the bank angle reference
command:

Kφ(s) = −0.64− 0.2

s
(19)

The closed-loop model from bank angle reference commands to roll and yaw rate outputs can be completely
determined from the models for the aircraft, actuators and control laws.

φref- e - Kφ
- e - Act -

δail

δrud
Act -

AClat/dir

φ

r

p

Kr

Kp

�

-

�

66

Figure 7. Closed-loop Lateral/directional System.

B. ARMA Model Selection

This section briefly summarizes the process to identify ARMA models for the roll rate and yaw rate residuals.
First, the roll rate residual ep was computed as the difference between the roll rate measurement and the
estimate response computed using the closed-loop model described in Appendix A. This residual is assumed
to be entirely due to a stochastic system, denoted as M in Figure 3, driven by an IID Gaussian noise process
n. The sampled ACF and PACF of ep was used to identify an appropriate order for an ARMA model of M .
The sampled PACF dropped off after a lag of 3 and this indicates the suitability of a ARMA model with AR
order 3. Next, the function sarima in the R toolbox was used to fit the ARMA model to the residual ep. This
function generates several diagnostic plots that can be used to assess the model. Finally, several criterion
(e.g. AIC, BIC, and AICc) are used to pick up the best ARMA models among all the candidates passing
the diagnostics. For the roll rate residual ep, the final selected model is the ARMA(3,2) process given in
Equation 11. Overall the model fit was reasonable and several diagnostics were used to further evaluate the

12 of 14

American Institute of Aeronautics and Astronautics



quality of this model. The ACF of the innovation term np as well as the Ljung-box statistic both imply the
independence of this innovation term. However, the Q-Q plot shown in the top subplot of Figure 8 shows
a deviation of the data (circles) from the expected Gaussian distribution (solid line). This implies that the
distribution of the innovation has a heavy tail. Similar steps were used to identify the model for the yaw rate
residual. The result is the ARMA(2,1) process given in Equation 13. The ACF of the innovation term nr as
well as the Ljung-box statistic again both imply the independence of this innovation term. In addition, the
Q-Q plot shown in the bottom subplot of Figure 8 shows the innovation nr has a much better agreement
with a Gaussian distribution except several outliers and does not have the strong heavy tail phenomenon
observed with np.

Figure 8. Normal Q-Q plots for innovation terms np and nr.

Acknowledgments

The authors would like to thank Brian Taylor and Andrei Dorobantu for providing support with the exper-
imental data and aircraft modeling. This work was partially supported by the National Science Foundation
under Grant No. NSF-CMMI-1254129 entitled CAREER: Probabilistic Tools for High Reliability Moni-
toring and Control of Wind Farms. It was also partially supported the NASA Langley NRA Cooperative
Agreement NNX12AM55A entitled Analytical Validation Tools for Safety Critical Systems Under Loss-of-
Control Conditions, Dr. Christine Bel-castro technical monitor. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect the views
of the NSF or NASA.

13 of 14

American Institute of Aeronautics and Astronautics



References

1Bleeg, R., “Commercial jet transport fly-by-wire architecture considerations,” AIAA/IEEE Digital Avionics Systems
Conference, 1988, pp. 399–406.

2Collinson, R., Introduction to Avionic Systems, Kluwer, 2003.
3Yeh, Y., “Triple-triple redundant 777 primary flight computer,” Proceedings of the 1996 IEEE Aerospace Applications

Conference, 1996, pp. 293–307.
4Yeh, Y., “Safety critical avionics for the 777 primary flight controls system,” Proceedings of the 20th Digital Avionics

Systems Conference, 2001, pp. 1.C.2.1–1.C.2.11.
5Krasich, M., “Use of fault tree analysis for evaluation of system-reliability improvements in design phase,” IEEE Proc.

Reliability and Maintainability Symposium, 2000, pp. 1–7.
6Lee, W., Grosh, D., Tillman, A., and Lie, C., “Fault tree analysis, methods, and applications: a review,” IEEE Trans.

on Reliability, Vol. 34, No. 3, 1985, pp. 194–203.
7Chen, J. and Patton, R., Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer, 1999.
8Ding, S., Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer-Verlag, 2008.
9Isermann, R., Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer-Verlag, 2006.

10Goupil, P., “Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy,”
Control Engineering Practice, Vol. 18, No. 9, 2010, pp. 1110–1119.

11“ADDSAFE: Advanced Fault Diagnosis for Sustainable Flight Guidance and Control,” http://addsafe.deimos-space.com/,
2012, European 7th Framework Program.

12Renfrow, J., Liebler, S., and Denham, J., “F-14 flight control law design, verification, and validation using computer
aided engineering tools,” IEEE Conference on Control Applications, 1994, pp. 359–364.

13“University of Minnesota UAV Research Group,” http://www.uav.aem.umn.edu/, 2013.
14Dorobantu, A., Johnson, W., Lie, F. A., Taylor, B., Murch, A., Paw, Y. C., Gebre-Egziabher, D., and Balas, G., “An

Airborne Experimental Test Platform: From Theory to Flight,” Proceedings of the American Control Conference, 2013.
15Paw, Y., Synthesis and Validation of Flight Control for UAV , Ph.D. thesis, University of Minnesota, 2009.
16Murch, A., Paw, Y., Pandita, R., Li, Z., and Balas, G., “A Low Cost Small UAV Flight Research Facility,” Advances in

Aerospace Guidance, Navigation and Control , 2011, pp. 29–40.
17Dorobantu, A., Murch, A., Mettler, B., and Balas, G., “Frequency Domain System Identification for a Small, Low-Cost,

Fixed-Wing UAV,” AIAA Atmospheric Flight Mechanics Conference and Exhibit , 2011.
18Dorobantu, A., Murch, A., Mettler, B., and Balas, G., “System Identification for Small, Low-Cost, Fixed-Wing Unmanned

Aircraft,” AIAA Journal of Aircraft , 2013.
19Aslund, J., Biteus, J., Frisk, E., Krysander, M., and Nielsen, L., “Safety analysis of autonomous systems by extended

fault tree analysis,” International Journal of Adaptive Control and Signal Processing, Vol. 21, No. 2-3, 2007, pp. 287–298.
20Gustafsson, F., Aslund, J., Frisk, E., Krysander, M., and Nielsen, L., “On threshold optimization in fault-tolerant

systems,” IFAC World Congress, 2008.
21Willsky, A. S. and Jones, H. L., “A generalized likelihood ratio approach to the detection and estimation of jumps in

linear systems,” IEEE Transactions on Automatic Control , Vol. 21, 1976, pp. 108–112.
22Hu, B. and Seiler, P., “A probabilistic method for certification of analytically redundant systems,” Submitted to 2nd

International Conference on Control and Fault-Tolerant Systems, 2013.
23Buus, H., McLees, R., Orgun, M., Pasztor, E., and Schultz, L., “777 Flight Controls Validation Process,” IEEE Trans-

actions on Aerospace and Electronic Systems, Vol. 33, No. 2, 1997, pp. 656–666.
24Hammarling, S. J., “Numerical solution of the stable, non-negative definite Lyapunov equation,” IMA J. Numer. Anal ,

Vol. 2, 1982, pp. 303–323.
25Hu, B. and Seiler, P., “Probability Bounds for False Alarm Analysis of Fault Detection Systems,” Submitted to 51st

Annual Allerton Conference on Communication, Control, and Computing, 2013.
26Glaz, J. and Johnson, B., “Probability Inequalities for Multivariate Distributions with Dependence Structures,” Journal

of the American Statistical Association, Vol. 79, No. 386, 1984, pp. 436–440.
27Genz, A., “Numerical computation of rectangular bivariate and trivariate normal and t Probabilities,” Statistics and

Computing, Vol. 14, 2004, pp. 251–260.
28Glaz, J. and Johnson, B., “Boundary Crossing for Moving Sums,” Journal of Applied Probability, Vol. 25, No. 1, 1988,

pp. pp. 81–88.
29Shumway, R. and Stoffer, D., Time Series Analysis and Its Applications: With R Examples, Springer, 3rd ed., 2011.
30Ljung, L., System Identification: Theory for the User , Prentice-Hall, 2nd ed., 1999.
31Rubino, G. and Tuffin, B., Rare Event Simulation using Monte Carlo Methods, Wiley, 2009.

14 of 14

American Institute of Aeronautics and Astronautics




