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Abstract— Wind turbines in a wind farm are operated
individually to maximize their own power regardless of the
impact of aerodynamic interactions on neighboring turbines.
There is the potential to increase power and reduce overall
structural loads by properly coordinating the turbines. To
perform control design and analysis, a model needs to be of low
computational complexity but retain the necessary dynamics
seen in high-fidelity models. This paper addresses a model
reduction approach that computes the dominant modes of the
flow that capture the energy and frequency characteristics of
the system. Specifically, the paper uses the balanced proper
orthogonal decomposition technique to construct the dominant
input/output modes. Using these modes, a low-order model of
a wind farm is constructed that can be used for control design.

I. INTRODUCTION

In the United States, many states have a Renewable
Portfolio Standard (RPS) or Goal. For example, Minnesota
has a RPS target of 25% renewable energy by 2025 [1].
Wind energy will be a significant factor in achieving this
goal. As suitable land for wind farm development decreases,
wind energy will need to become more efficient. Wind farm
control can be used to increase wind energy efficiency by
maximizing power in wind farms that are already installed.
It can also be used to mitigate structural loads to maximize
the lifetime of the turbines and better integrate wind energy
into the energy market. Performing wind farm control re-
quires an understanding of the aerodynamic interactions in a
wind farm. Some studies have been done to understand the
turbulent structures generated behind the turbines [2], [3],
[4]. These turbulent structures propagate downstream and
affect the overall power output and the structural loads on
downstream turbines.

Currently, turbines in a wind farm are operated to maxi-
mize their own performance. Many studies have been done
showing that operating all turbines at their optimal operat-
ing point leads to sub-optimal performance. Implementing
coordinated wind farm control strategies has the potential
to increase the overall performance of a wind farm [5],
[6], [7], [8], [9], [10], [11]. A variety of wake models
exist in literature that are useful for studying wind farm
control. The simplest models are the Park model [12] and the
eddy viscosity model [13]. These models provide a quick,
preliminary description of the wake interactions in a wind
farm. Several high fidelity CFD models have been developed
as well, including [14], [15]. These high fidelity models are
more accurate tools and can be used for evaluating wind farm
controllers. However, they are computationally expensive.

In literature, low- and high-fidelity models have been
used to evaluate wind farm control strategies. The analysis
provides conflicting results based on the wake model chosen

for control design. For example, control strategies using
simple static models often report significant improvements in
wind farm performance [8]. However, an analysis of similar
control strategies using high fidelity simulations results in
minimal to no improvement in wind farm performance [16].

This paper addresses a way to take advantage of the
knowledge of aerodynamic interactions in a wind farm
gathered from high-fidelity simulations or field experiments
to construct low-order models that can be used for control.
For simplicity, this paper will use a medium-fidelity model,
described in Section II, to highlight some of the advantages
of this approach with the intention of extending this work to
high-fidelity models in future work. Section III describes two
existing techniques to characterize the dominant structures in
the flow field: proper orthogonal decomposition (POD) and
balanced POD (BPOD). Both techniques have been widely
used in the fluids literature [17], [18]. The POD technique
focuses on the overall flow field and has been recently
applied to wind farm dynamics [19] to obtain a low-order
approximation of the flow field. BPOD focuses on retaining
modes of the flow that have the dominant effect from a
specific input(s) to a specific output(s). Section III-C uses
BPOD to construct a low-order model that approximates the
dynamics and input/output characteristics of a wind farm.
The results of this low-order model are presented in Section
IV. Finally, conclusions and suggestions for future work are
given in Section V.

II. ACTUATOR DISK MODEL

A. Wind Farm Setup

Consider a wind farm with N number of turbines located
on an arbitrary grid with arbitrary locations defined by
(xi, yi) where i refers to the turbine i in the wind farm.
Each turbine has an input axial induction factor, ai. The axial
induction for a single turbine is defined as a := 1 − u1

Uin
,

where u1 denotes the average horizontal speed across the
rotor plane, and Uin denotes the average inflow velocity. In
addition, the power of each turbine can be measured, Pi.
The power generated by each turbine depends on the inflow
wind speed as well as the axial induction factor. The power
captured from turbine i, Pi [W ], is given by:

Pi =
1

2
ρAu3iCP,i (1)

where ρ [kg/m3] is the air density, A [m] is the area swept
by the rotor, ui [m/s] is the wind speed perpendicular to the
rotor plane, and CP,i is the power coefficient, which is a
function of the axial induction factor [20]:



CP,i = 4ai(1− ai)2 (2)

Individual turbines typically try to maximize their own
power by operating at an optimal axial induction factor. The
optimal induction factor corresponding to the optimal power
coefficient is a = 1

3 . Additional details and references about
single turbine control can be found in [8], [21], [20].

The turbines operating at the front of the wind farm disturb
the flow through the wind farm and this impacts turbines
operating downstream. The wind farm control problem can
be thought of as a multi-input, multi-output system where the
axial induction factors at each turbine would be the inputs
and the power measured at each turbine would be the outputs.
By properly coordinating the turbines in a wind farm, there is
the potential to maximize power and reduce overall structural
loads. A few control strategies have been investigated in-
cluding yaw control and axial-induction-based control. This
paper focuses on the modeling aspects and does not include
details on a specific control strategy. More information can
be found in [7], [8], [22], [23]. The effective design and
analysis of such control strategies require wake models of
sufficient accuracy but low computational complexity. The
remainder of this paper will address the development of a
low-order model suitable for control.

B. Governing Equations

The actuator disk model is considered in this paper [24],
[25]. This model solves the 2D unsteady, incompressible,
Reynolds Averaged Navier-Stokes (RANS) equations. The
typical operating wind speeds in a wind farm do not exceed
25 m/s. This is low relative to the speed of sound at
sea level (∼300 m/s) and hence it is sufficient to assume
incompressibility [26]. Let (u, v) denote the streamwise
and spanwise velocity components and (x, y) denote the
downstream and spanwise distances. The streamwise and
spanwise components are decomposed, using the Reynolds
decomposition, into u = 〈U〉+ u

′
and v = 〈V 〉+ v

′
, where

〈U〉 and 〈V 〉 are the Reynolds averages and u
′

and v
′

are
the fluctuations. The RANS governing equations are:

∂〈U〉
∂x

+
∂〈V 〉
∂y

= 0 (3)

∂〈U〉
∂t

+〈U〉∂〈U〉
∂x

+ 〈V 〉∂〈U〉
∂y

= −1

ρ

∂〈P 〉
∂x

ν

(
∂2〈U〉
∂x2

+
∂2〈U〉
∂y2

)
+
∂〈u′

v
′〉

∂y
+
〈u′2〉
∂x

+ fx

(4)

∂〈V 〉
∂t

+〈U〉∂〈V 〉
∂x

+ 〈V 〉∂〈V 〉
∂y

= −1

ρ

∂〈P 〉
∂x

+

ν

(
∂2〈V 〉
∂x2

+
∂2〈V 〉
∂y2

)
+
∂〈u′

v
′〉

∂x
+
〈v′2〉
∂y

(5)

where ν [m2/s] is the kinematic viscosity and fx [N/m3]
is a volume force on the turbine in the x direction. The

Reynolds stresses, specifically 〈u′2〉, 〈u′
v

′〉, and 〈v′2〉, are
present in turbulent flows. These terms cause the diffusion
of momentum normal to the flow direction and enhance the
viscous effects in the flow. This mixing causes the wake to
recover more quickly downstream of the turbine. There are
various ways to model this stress. For simplicity, the mixing
length hypothesis is used to model these Reynolds stresses
[26].

The loading of each turbine is defined linearly. Specifi-
cally, assume that all spatial units have been nondimension-
alized by the turbine diameter D. If the hub of the upstream
turbine i is placed at x = xi and y = yi then the rotor plane
lies within yi− 1

2 ≤ y ≤ yi+ 1
2 . The forcing term introduced

by the turbines is then given by:

fx(x, y, t) :=

{
kCT,i(t)|y − yi| if x = xi & |y − yi| ≤ 0.5
0 else

(6)

where k := ρAU2
in and CT,i is the thrust coefficient of the

turbine i. The thrust coefficient for each turbine is a function
of the axial induction factor and is defined as CT,i(t) =
4ai(t)(1−ai(t)) where ai(t) is the time varying single input
to the turbine i. This linear profile is smallest at the rotor hub
and grows linearly at the blade tips. The loading magnitude,
as specified by the input ai(t), can be changed on a real
turbine via blade pitch or changing the tip speed ratio via
generator torque control [20], [27].

These equations are solved using standard CFD methods
[28]. The grid is defined by Nx points in the streamwise x
direction and Ny point in the spanwise y direction. Typically,
for this actuator disk model, the spacing between grid points
is δx = 0.05 and δy = 0.05 with a time step of δt =
0.01. Fig. 1 and 2 show an example of a 4 × 4 wind farm
where mean streamwise and spanwise velocity are computed
for the actuator disk model. In these figures, the turbines
are separated by 3D in the spanwise y direction and 4D in
the streamwise x direction. The velocities are normalized by
U∞.
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Fig. 1. Mean streamwise velocity computed using the actuator disk model
for a 4× 4 wind farm with 3D spacing in the y direciton and 4D spacing
in the x direction
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Fig. 2. Mean spanwise velocity computed using the actuator disk model
for a 4× 4 wind farm with 3D spacing in the y direciton and 4D spacing
in the x direction

The boundary conditions of this model are:

u(x = 0, y, t) = u(x, y = 0, t) = u(x, y = L, t) = U∞

v(x = 0, y, t) = v(x, y = 0, t) = v(x, y = L, t) = 0
(7)

where L is the total spanwise distance. In this example, L =
14D, the kinematic viscosity is ν = 1.461× 10−5 m2/s, and
U∞ = 8 m/s.

Note the turbines are modeled as actuator disks. The wakes
directly behind real turbines are dominated by tip vortices
that are generated based on the blade geometry. The blades
are not modeled in this simulation and as a result, this model
cannot accurately depict this near wake region. However,
this model captures the effects of the flow far downstream,
greater than 3D, where the flow is less dependent on turbine
geometry. Therefore, this model is useful for studying the
far wake of a turbine in steady and unsteady flows. It should
be noted that changing wind speed and direction are not
addressed in this paper. Possible approaches include running
multiple simulations and developing controllers to be gain
scheduled in a similar manner as is done at the single turbine
level [29]. Additional work is being done in this area.

C. Linearized Equations

The first step in producing a model suitable for controls is
to linearize the equations of the actuator disk model. For the
purposes of this paper, the actuator disk equations will be
linearized around a base flow of U = (U(x, y), V (x, y), 0)
where U(x, y) and V (x, y) define the baseflow that corre-
sponds to all turbines operating at their peak efficiency.

The linearized governing equations about the baseflow,
after some algebraic manipulation, can be rewritten as:

∂

∂t

[
u

′

v
′

]
= A

[
u

′

v
′

]
+Ba(t) (8)

where u
′ ∈ R(Nx×Ny)×1 denotes the fluctuations from the

baseflow in the streamwise direction, v
′ ∈ R(Nx×Ny)×1

denotes the fluctuations from the baseflow in the span-
wise direction, A ∈ R(2×Nx×Ny)×(2×Nx×Ny) contains
the discretization information of the flow field, B ∈

R(2×Nx×Ny)×Nturb contains the location of the turbines,
and a(t) ∈ RNturb×1 is the input to the turbines with
Nturb denoting the number of inputs, which in this case is
the number of turbines. The power, Pi, at each turbine is
measured, recall (1).

Linearizing (1), the measurement equation can be rewritten
as:

P =
[
C 0

] [u′

v
′

]
+Da(t) (9)

where C ∈ RNturb×(Nx×Ny) contains the locations of the
measurements with Nturb number of outputs, and D ∈
RNturb×Nturb contains information about the turbine effi-
ciency. More details on the linearization can be found in
[30]. In this representation, the linearized system is given by
a dynamic system of the form:

ẋ = Ax+Ba

y = Cx+Da
(10)

where x :=

[
u

′

v
′

]
. This linearized model contains 2×Nx×Ny

states and is not suitable for control design and analysis. The
model reduction techniques described in the next section can
be used to obtain a low-order model of the wind farm.

III. MODEL REDUCTION FORMULATION

A. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) provides a low-
order approximation that captures the dominant turbulent
structures in the flow. Specifically, POD can be used to
extract dominant spatial features from both simulation and
experimental data that can be used to dynamically reconstruct
the structures in a flow field [17]. This can be done by
projecting the velocity field on to a set of orthogonal basis
functions. A projection matrix is constructed to minimize the
error between the full and reduced order systems:∫ Tmax

0

‖x(t)− Prx(t)‖2 dt (11)

where Tmax is the total simulation time, x(t) is the simulated
variable, and Pr is the projection matrix. The projection
matrix can be defined in terms of the basis functions:

Pr =

r∑
k=1

ϕkϕ
∗
k (12)

where ϕk are the POD modes and r represents the reduced
order of the system. The eigenfunctions of the flow field are
shown to produce the optimal projection that minimizes the
total error between the full system and the reduced order
system. See [17], [31], [32], [33] for more details.

The computed POD modes can be used to reconstruct
the flow using the Galerkin projection [17]. This projection
uses a separation of variables approach where the flow field
variable can be defined as:



u(x, t) =

r∑
j=1

bj(t)ϕj(x) (13)

where b are the temporal coefficients. In this way, the system
(4) and (5) can be rewritten as an ordinary differential
equation:

ḃk =

r∑
i=1

r∑
j=1

bibjQijk +

r∑
i=1

biDik + ck + f
′

x (14)

where Q represents the nonlinear terms in the flow field
u, D represents the linear terms, c represents the constant
terms, and f

′

x represents the fluctuations in the forcing term
in the x direction. The matrices, Q and D, are made up
of the POD modes. Detailed expressions of these matrices
can be found in [34]. In this way, a set of POD modes
can be used to approximately describe the evolution of the
flow field [31]. POD modes are good at representing specific
datasets. However, POD modes do not necessarily provide a
good description of a dynamically evolving flow driven by
a forcing input.

B. Balanced Truncation

POD tries to capture the energy in the flow with a small
number of modes. A more relevant objective for wind farm
control is to capture the most relevant flow dynamics that
connect the upstream turbine input to the downstream turbine
output. A typical model reduction approach is known as
balanced truncation [35], [36], [37]. Consider the linearized
actuator disk model (10). To perform balanced truncation on
this problem, the controllability and observability gramians
need to be computed to understand the influence of the states
on the inputs and outputs of the system. Specifically, the
controllability gramian specifies the minimum control energy
required to reach any specific state. States that require less
energy to reach are more controllable and hence have a
greater influence on the input/output dynamics. Similarly,
the observability gramian specifies the energy in the output
measurement when the system evolves from a given initial
state (with zero input). States that produce more energy in
the output are more observable and hence have a greater
influence on the input/output dynamics. The gramians can
be computed by solving the Lyapunov equations:

AWc +WcA
∗ +BB∗ = 0

A∗Wo +WoA+ C∗C = 0
(15)

where Wc is the controllability gramian and Wo is the
observability gramian.

The gramians are defined by specific coordinates. These
coordinates define in which directions the strongest states are
aligned. The controllability and observability gramians can
have different coordinates. This makes it difficult to choose
states to retain since a state may be strongly observable,
but not controllable and vice versa. A transformation can
be applied to align the properties of the controllability and

observability gramians, which allows you to retain states
that are strongly controllable and/or observable. A coordinate
transformation T can be constructed to diagonalize both the
controllability and observability gramians:

T−1Wc(T
−1)∗ = T ∗WoT = Σ = diag(σ1, ..., σn) (16)

where σ are the Hankel singular values that are independent
of the coordinate transformation. Under this transformed
system, the states that are significantly influenced by the
inputs are also the states that have a significant impact on
the outputs. However, this approach becomes intractable for
large systems as it requires the solution of the two Lyapunov
equations (15). See additional details in [37] and [38].

C. Balanced Proper Orthogonal Decomposition

The combination of POD modes and balanced truncation
can be used to implement a method known as balanced
proper orthogonal decomposition (BPOD) [31], [32], [33].
Consider the linearized actuator disk system (10). The so-
lution x(t) is found by solving ẋ = Ax where the inputs
have been set to 0. The initial conditions are defined as the
columns of B. This system will be referred to as the forward
system for the remainder of this paper.

In addition to computing the solution for the forward
system, the solution to the adjoint system can be found by
integrating the system:

ż = A∗z (17)

with the initial conditions defined as the columns of C.
Again, in the case of the two-turbine example, there is only
one output, i.e. z(0) = CT . Physically, the adjoint system
is used to evaluate the sensitivity of the system due to some
perturbation [39], [40], [41], [42].

Using the solutions, x(t) and z(t), the data matrices are
formed with the snapshots gathered in the simulations.

X = [x(t1), x(t2), ..., x(tm)]

Y = [z(t1), z(t2), ..., z(tm)]
(18)

where m is the number of snapshots. At this point, the
BPOD modes can be computed from the singular value
decomposition of Y ∗X:

Y ∗X =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V1
V2

]
(19)

where Σ1 is a matrix (r × r) and r is the reduced order of
the system. The transformation matrices, T and S, can be
defined as:

T = XV1Σ
− 1

2
1

S = Σ
− 1

2
1 U∗1Y

∗
(20)

The reduced order system is now:



ẋr = SATx+ SBf

y = CT
(21)

Note the X and Y matrices are n × m matrices where
n is the state dimension, which is typically very large,
i.e. tens of thousands or more, while m is the number
of snapshots, which is typically on the order of hundreds.
The Lyapunov equations in (15) are of dimension n and
directly solving these equations is prohibitive as solving a
Lyapunov equation scales with O(n3) [43]. The product of
Y ∗X requires O(m2n) operations which scales linearly in
n. The resulting matrix is only m×m and hence the singular
value decomposition in (19) can be performed at a reasonable
computational cost.

IV. RESULTS AND DISCUSSION

The results section of this paper focuses on obtaining
a low-order model for a two-turbine array shown in Fig.
3. The dynamic system (10) becomes a single-input-single-
output system. In this two-turbine example, the downstream
turbine is held constant at an optimal operating point. The
single input in this scenario is the axial induction factor
of the upstream turbine. The single output is the power
measured at the downstream turbine. Fig. 4 shows computed
mean streamwise velocity. The turbines are located at 5D
and 10D. The simulation used Nx = 300 points between
[0, 15D] in the streamwise x direction and Ny = 100
points between [0, 5D] in the spanwise y direction. This
yields a total of 30,000 grid points with two velocities
(u, v) defined at every point resulting in 60,000 states. A
direct application of the stand balanced truncation technique
requires the solution of the Lyapunov equations in (15). This
is computationally intractable for this system. The BPOD
method is implemented to obtain a reduced order model that
retains the input/output behavior of the system. In addition,
the BPOD method is compared to the input/output model
obtained when using only the POD modes of the forward
system.
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Fig. 3. Two Turbine Setup

We start by computing the POD modes of the forward
system. Fig. 6 and 5 shows the computed POD modes for the
actuator disk model. Note that modes 1 and 2 capture the low
frequency, high energy structures in the model. The velocities
are normalized by U∞. Physically, when considering the
flow behind the turbine, the lower POD modes correspond
to larger frequency events such as large eddies generated in
the wake of the turbine.
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Fig. 4. Mean streamwise velocity computed using the actuator disk model

Fig. 5. Streamwise velocity POD mode 1

Fig. 6. Streamwise velocity POD mode 2

Using these POD modes and the Galerkin projection,
described in Section III-A, the flow field can be reconstructed
with relatively good agreement, see Fig. 7. For this example,
10 POD modes were used to reconstruct the flow. Again, this
demonstrates that the POD modes are good at approximating
specific snapshots of data.

Next, the BPOD modes were computed and the energy in
the POD modes was compared to the energy in the BPOD
modes. Fig. 8 shows that the percent of energy in the BPOD
modes drops off faster than in the POD modes. This affects
the way in which the reduced order models are constructed,
i.e. fewer BPOD modes are needed to obtain a low-order
input/output model.

Fig. 9 and 10 show the frequency response of the full
order actuator disk model and the frequency response of
the reduced order model constructed using POD and BPOD
modes. Specifically, Fig. 9 shows the frequency response
using 5 modes. The reduced order model using BPOD modes
is better able to represent the frequency response with 5
modes than the reduced order model constructed using POD
modes. As more modes are included in the reduced order
model, the systems using POD and BPOD modes obtain
the same frequency response. This highlights the benefit of
using BPOD in that fewer modes are needed to represent the
desired input/output response of the system.

Specifically, these BPOD modes provide a better repre-
sentation of the input/output behavior than using only the
POD modes for the forward system or the POD modes of the
adjoint system. The forward system provides a representation
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Fig. 7. Reconstructed flow using POD modes and the Galerkin projection.

Fig. 8. Percentage of energy in each POD mode in the actuator disk model.

Fig. 9. Frequency response of the full order system and the reduced order
system using 5 POD and 5 BPOD modes.

Fig. 10. Frequency response of the full order system and the reduced order
system using 20 POD and 20 BPOD modes.

of the effects of specific inputs to the system. The adjoint
system provides a representation of the effects due to a
perturbation at the output of the system. By combining the
information from the two systems, it is possible to say
something about the input-to-output behavior of the whole
system.

Note, there is a small, but noticeable mismatch between
the reduced order models and the full order model at frequen-
cies below 0.2 Hz in both Fig. 9 and 10. The accuracy of the
reduced order models at these low frequencies can be im-
proved by increasing the simulated time Tmax. Specifically,
these snapshots are collected over a certain time interval
[0, Tmax]. Thus very low frequencies are not captured by
these snapshots, i.e. roughly frequencies below 1

Tmax
rad/s

are not captured in the BPOD snapshots. The simulated time
in this example is 10s. In addition, the sampling of snapshots
from the simulation limits the high frequency component
of the reduced order model. For this case, the sampling
frequency was 10−4 and 1kHz is the highest frequency this
model can capture. Thus the reduced order model provides a
good input/output model for frequencies in this middle band.

V. CONCLUSIONS AND FUTURE WORK

This paper used BPOD to develop a low-order model that
can be used for wind farm control design and analysis. This
approach takes advantage of characterizing the dominant
dynamics in the flow and provides a low-order approximation
of the flow. Using this low-order approximation, a reduced
order model can be constructed that retains the input-to-
output behavior seen in the full order model. This reduced
order model has a low computational intensity and contains
the necessary dynamics that are important for wind farm
control.

Future work includes extending this model reduction tech-
nique to high-fidelity models, such as large-eddy simulations.
In addition, preliminary wind farm controllers will be devel-
oped using these low-order models and validated in high-
fidelity simulations and field tests.
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