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Abstract

In this paper, we describe a framework to efficiently assess the reliability of fault tolerant control systems

on low-cost unmanned aerial vehicles. The analysis is developed for a system consisting of a fixed number

of actuators. In addition, the system includes a scheme to detect failures in individual actuators and, as a

consequence, switch between different control algorithms for automatic operation of the actuators. Existing

dynamic reliability analysis methods are insufficient for this class of systems because the coverage parameters

for different actuator failures can be time-varying, correlated, and difficult to obtain in practice. We address

these issues by combining new fault detection performance metrics with pivotal decomposition. These new

metrics capture the interactions in different fault detection channels, and can be computed from stochastic

models of fault detection algorithms. Our approach also decouples the high dimensional analysis problem

into low dimensional sub-problems, yielding a computationally efficient analysis. Finally, we demonstrate the

proposed method on a numerical example. The analysis results are also verified by Monte Carlo simulations.
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1. Introduction

Commercial flight control electronics must not only be highly reliable but their reliability must also be

certified by aviation authorities. The system reliability requirements for civil aircraft are typically on the

order of no more than 10−9 catastrophic failures per flight hour [1, 2]. The aviation industry meets these

requirements by using fault tolerant designs that are based almost exclusively on physical redundancy. For

example, the Boeing 777 flight control electronics is implemented with multiply redundant flight computing

modules, sensors, and actuators [3]. The widely used triplex or quadruplex redundant designs can be viewed

as special cases of the “k-out-of-n: good” structure [4, 5], and the overall system reliability can be effectively
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computed via static reliability analysis tools, e.g. a fault tree analysis [6, 7]. Hence, the existing design and

analysis techniques provide a mature approach to build reliable but expensive aircraft.

Low-cost unmanned aerial vehicles (UAVs) also have numerous applications, e.g. for use in precision

agriculture [8]. These small UAVs cannot afford the full payload associated with physically redundant

architectures due to their more restrictive cost, size, power, and weight requirements. In fact, most low-

cost UAVs on the market are currently based on a two-actuator design without introducing fault tolerance

[9, 10]. However, the Modernization and Reform Act of 2012 requires the Federal Aviation Administration to

integrate UAVs into the national airspace in a reliable and safe way [11]. This creates new design challenges

in order to introduce fault tolerance into the UAV while maintaining low cost.

Fault tolerant control (FTC) provides an alternative design solution that is not exclusively reliant on

physical redundancy [12, 13, 14]. There exist different approaches to design fault tolerant controllers for

actuation systems [15, 16, 17]. The basic operation of a traditional physically redundant system and a

FTC system is summarized in the context of a conventional aircraft with three surfaces (aileron, rudder,

elevator). A traditional physically redundant design relies on a triplex actuation subsystem on each surface

for a total of nine actuators. Under nominal conditions a single (baseline) control algorithm coordinates all

the actuators to maneuver the aircraft. Any failed actuator is compensated by the other unfailed components

in the triplex actuation subsystem, and the aircraft continues with the baseline controller. A FTC system

can, in principal, be designed with a single actuator per surface for a total of only three actuators. The

FTC system consists of two key parts: a fault detection and isolation (FDI) scheme and a set of backup

controllers. The FDI scheme monitors the actuators using real-time measurements, dynamic models, and/or

data mining techniques [18, 19, 20]. The FTC handles any detected actuator failure by switching to a pre-

specified backup controller. For example, a failure in the rudder actuator would cause a switch to a backup

controller designed to maneuver the aircraft using only the remaining surfaces (elevator and aileron).

The reliability of a FTC system depends on the performance of its FDI algorithm. Integration of FDI

techniques and reliability analysis is an issue which has received increasing attention [21]. Proper FDI

reliability metrics are required when integrating the component reliabilities to the system reliability. The

existing tools quantify the FDI performance by coverage parameters, which can be time-varying, correlated,

and difficult to determine in practice. Single-frame detection and false alarm probabilities can also be used

as FDI metrics, but they do not model the time and space interactions in FDI residuals. A literature review

on related analysis tools will be presented in Section 2.4 after the FTC analysis problem is formulated.

The objective of this paper is to assess the impact of FTC on the overall system reliability. There are

two main contributions. First, we define a new reliability structure model, termed the FTC structure, in

Section 2. The FTC structure generalizes the existing structure function approach and captures the switching

nature of the active FTC system. This is a useful abstract reliability model for FTC systems designed for

low-cost UAVs. Second, we develop an approach to efficiently compute system failure probability per hour
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of the proposed FTC structure based on several new FDI performance metrics (Section 3). This approach

only requires information that can be easily obtained in practice. The proposed FDI performance metrics

capture the interactions in different FDI channels, and can be directly computed from the stochastic models

of FDI algorithms. The analysis is based on pivotal decomposition [4, 5] which allows the FTC reliability

analysis to be decoupled into low dimensional sub-problems. This simplifies the computation. Section 4

demonstrates the proposed approach on a numerical example and highlights the design trade-offs. The

results are also verified by Monte Carlo simulations.

2. Problem Formulation

We first introduce the notation (Section 2.1). In Section 2.2, we pose a minimum redundancy design

problem, which motivates the FTC reliability analysis problem formulated in Section 2.3. Section 2.4 reviews

related analysis tools and explains how our approach and existing tools can provide complementary benefits.

2.1. Notation

Our objective is to compute the failure probability of the FTC system within a time window. A FDI

scheme is typically implemented on a computer with a specified sampling frequency. One can either approx-

imate the discrete-time FDI performance with a continuous-time process or discretize the hardware failure

time based on the computer sampling frequency. Since the flight computer samples fast, both approaches

should lead to similar results. In this paper, we adopt a discrete-time approach with the specified period of

time denoted by N . One thing worth noting is that the discretized time step is determined by the computer

sampling rate. Hence the discretized time step is not a parameter which can be changed in the analysis.

Now consider a static system consisting of n components. The state of component i (i = 1, . . . , n) at

time k is described by a binary random variable xi(k): xi(k) := 1 if component i is operational at time k

and xi(k) := 0 if the component has failed. The failure time of component i is defined by TX,i := min{k >

0 : xi(k) = 0}. The subscript “X” indicates that the failure time is defined for a non-repairable hardware

component. Denote the vector of component states as x(k) = (x1(k), . . . , xn(k)) ∈ {0, 1}n which has 2n

realizations. The system state at time k is described by the structure function φ : {0, 1}n → {0, 1} defined

by φ (x(k)) := 1 if the system is operational at time k and φ (x(k)) := 0 if the system has failed. The system

failure time is defined as TX := min{k > 0 : φ (x(k)) = 0}. The system failure probability is P [TX ≤ N ].

Now we introduce the notation for different component failure modes. Let M0 denote the n-dimensional

vector whose entries are all 1. The event {x(N) = M0} denotes the mode with zero component failures in the

N -step window. Let Mi denote the n-dimensional vector whose entries are all 1 except the i-th entry which

is 0. The event {x(N) = Mi} denotes the case where only component i fails within the N -step window.

Define Mi to be the set of n-dimensional vectors with i entries equal to 0 and n− i entries equal to 1. The

3



event {x(N) ∈Mi} corresponds to i component failures in the N -step window. In particular, M0 = {M0}

andM1 = {M1, . . . ,Mn}. The 2n different realizations of x(N) are denoted by Mj where j = 0, . . . , 2n− 1.

The events {x(N) = Mj} (j = 0, . . . , 2n − 1) form a disjoint partition of the sample space. Failures can

be viewed as severe faults, but some faults are not failures [6]. Therefore, Mi (i 6= 0) can be referred to as

either a component failure mode or a system fault mode. Then pivotal decomposition can be expressed as

P [TX ≤ N ] =
∑

j:φ(Mj)=0

P [x(N) = Mj ] = 1−
∑

j:φ(Mj)=1

P [x(N) = Mj ] (1)

2.2. Motivating Study: UAV Actuation System

This section applies pivotal decomposition to study the reliability of an actuation system on a UAV. This

will motivate the FTC structure introduced in Section 2.3. The study focuses on the Ultra Stick 120 UAV

shown in Figure 1. This UAV, referred to as Faser, is one of the primary flight test vehicles used by the

University of Minnesota (UMN) UAV Research Group [22]. Faser is a commercially available, fixed-wing,

radio-controlled aircraft. It has a wing span of 1.92m, mass of 7.41kg, nominal cruise speed of 25m/s, and

endurance of 15 to 20min. The flight control computer runs at 50 Hz. Additional details on this research

infrastructure can be found in survey papers [23, 24, 25]. The standard configuration for Faser includes six

control surfaces: two ailerons, two flaps, one elevator, and one rudder. Flaps are not used since we will

consider a minimum redundancy design problem. Hence, the actuation system only includes the remaining

four control surfaces. Each surface has an independent actuator for a total of four actuators.

Figure 1: University of Minnesota Ultra Stick 120 UAV (Faser).

Consider the baseline actuation system with four actuator components numbered as shown in Figure

1. As defined previously, the failure time of component i is denoted by TX,i (i = 1, . . . , 4) and the failure

time of the actuation system is denoted by TX . Typical aerospace requirements are specified per hour

because flight times are approximately on this order. For example, a common UAV precision agriculture

mission would take about 1 hour. We are interested in reliability during this mission time, and we assume
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perfect maintenance between different missions. Hence, the goal is to compute P [TX ≤ N ] with time

window N corresponding to one hour. Specifically, the flight computer runs at 50Hz sample rate, and hence

N = 1.8×105 corresponds to the number of time steps at this specified sample rate. The computation of the

per-hour system failure probability P [TX ≤ N ] requires knowledge of the component failure probabilities

P [TX,i ≤ N ]. This information has been estimated as P [TX,i ≤ N ] ≈ 2.5× 10−3 for the four actuators used

on Faser [26]. In addition, all actuator components are assumed to be statistically independent.

The intended function of the actuation system is to safely fly the UAV. This includes straight and level

flight as well as coordinated turns with zero sideslip. The structure function of the actuation system is de-

termined by considering the baseline controller described in [23]. The baseline controller is a classical design

that coordinates the four actuators to achieve safe flight. Based on nonlinear simulations, we determined

that the actuation system fails to function properly in the event of a single actuator failure. Thus this design

is a series architecture, and the structure function is defined as φ (M0) := 1 and φ (x) := 0 otherwise. Now

(1) can be applied to compute the system failure probability per hour:

P [TX ≤ N ] = 1−
4∏
i=1

P [TX,i > N ] ≈ 1.0× 10−2 (2)

All actuator components have equivalent reliability in this example and P [TX ≤ N ] ≈
∑4
i=1 P [x(N) =

Mi]. Increasing the system reliability would require additional fault tolerance for all four component failure

modes in M1. There are several methods to introduce fault tolerance for one specific component failure

mode. For example, to handle the critical elevator failure mode M3, we can replace the current single elevator

actuator by a triplex actuation subsystem. An alternative strategy is to design the baseline controller so

that the aircraft continues safe flight in the event of an elevator failure, φ(M3) = 1 (passive FTC). The

problem formulation in Section 2.3 focuses on another possible design: active FTC. This approach requires

a method to detect the elevator actuator failure {x(k) = M3} and switch to a backup controller with a new

structure function φ3 such that φ3 (M3) = 1. A reliable design of low-cost UAVs tolerates each component

failure mode in M1 by one of the above three methods while using minimum number of actuators. Section

2.3 formulates a general FTC structure model based on this principle.

2.3. Problem Formulation: FTC Structure

This section formulates the reliability structure for a FTC system. The FTC system consists of a primary

controller K0, a FDI scheme, and a set of backup controllers {Ki}. The primary controller is initially used

and the system switches to one of the backup controllers if the FDI scheme detects a component failure.

The notation Mi was introduced to denote events with exactly i actuator failures. Let C ⊂ M1 denote

the single actuator failure modes that are passively tolerated by the primary controller K0. The system with

the primary controller K0 has a structure function φ0 satisfying φ0(x) = 1 for x ∈ M0 ∪ C and φ0(x) = 0
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otherwise. Let D ⊂ M1 denote the single actuator failure modes that are handled by active FTC. For

each event Mi ∈ D, there is a backup controller Ki such that the actuation system has a structure function

φi(x) = 1 for x ∈ {M0, Mi} and φi(x) = 0 otherwise. This structure function is compactly expressed

as φi(x) =
∏
j 6=i xj . In other words, the backup controller Ki uses the control authority in the remaining

unfailed components to tolerate a failure in component i. The structure function φi is non-decreasing and the

system fails after its first failure that occurs after switching to controller Ki. In practice the use of backup

controller Ki in the presence of the component failure mode Mi leads to a loss of aircraft performance but, if

properly designed, ensures continued safe flight. Aerospace systems typically have a requirement to tolerate

all single component failures. Hence we assume C ∪ D =M1. This assumption can be relaxed with minor

notational changes for systems with low probability, single component failures leading to system failure.

We further assume that the actuator failure time distributions do not change before and after the control

reconfiguration. The load on each actuator may be increased when the FTC system continues operation with

part of its actuators under a backup controller. However, it is reasonable to assume that the increased load

will not significantly change the actuator failure time distributions since the mission time is typically much

shorter than the mean value of the actuator failure time. Based on this assumption the backup controller

can be viewed as a “hot standby” of the primary controller.

The active FTC requires a FDI scheme to monitor component i for each component failure mode Mi ∈ D.

The monitoring channel for component i generates a logic signal di(k) at time k defined by di(k) := 1 if the

FDI scheme determines that component i is operational at time k and di(k) := 0 otherwise. We assume di(k)

remains equal to zero after the first time that the FDI scheme flags component i as failed. Thus the detection

time for component i, denoted TD,i, is uniquely defined by TD,i := min{k > 0 : di(k) = 0}. The subscript

“D” indicates that this is a detection time. The FTC system switches to the appropriate backup controller

at the first detection time TD,i of an actuator failure Mi ∈ D. The FTC structure is assumed to handle

only the first component failure, and there are no further reconfigurations after the first switch to a backup

controller. Therefore, the system switching time can be uniquely defined as TD := min{i:Mi∈D} TD,i. If two

or more component failures are detected simultaneously then any of the appropriate back-up controllers may

be selected. The choice is irrelevant as the FTC structure is assumed to tolerate at most one component

failure. The probability of multiple alarms at one time step given single or no component failures is neglected.

The proposed FTC structure is summarized as follows. The FTC system initially uses the primary

controller K0. Under this controller, the FTC structure has a structure function satisfying φ0(x) = 1 for

x ∈M0∪C. Several FDI channels are used to monitor the remaining single component failures Mi ∈ D that

lead to system failure under K0. The first failure detected in a certain component i causes a switch at time

TD = TD,i to backup controller Ki. Under Ki, the FTC structure has a structure function with φi(x) = 1

for x ∈ {M0,Mi}. Proper design of the FTC system ensures continued operation after this first detected

component failure. This FTC structure model captures the essential features of a real FTC system.
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Next we define a generalized, time-varying structure function φ(x, k) to model the jumps in the FTC

structure from φ0 to φi. Specifically, we define the generalized structure function as φ (x, k) := φi (x) if the

FTC structure is using controller Ki at time k. This generalized function indicates the state of the FTC

structure: φ (x(k), k) := 1 if the FTC structure is operational at time k and φ (x(k), k) := 0 if the FTC

structure is in a failed mode. A standard architecture with a fixed controller and non-repairable components

will fail after the first actuator failure. The FTC structure, on the other hand, is designed to tolerate specific

first component failures. This requires the component failure to be quickly detected so that the system does

not continue using a failed component. For example, the aircraft may tolerate an elevator actuator failure as

long as it switches in time to a backup controller that has been designed to handle this component failure.

Formally we require that a component failure Mj ∈ D be detected within a pre-specified maximum delay,

also referred to as a hard deadline [27] or hard time limit [28]. The maximum detection delay for different

component failure modes can be different. The maximum detection delay for the mode Mj ∈ D is denoted

as Nj . High fidelity simulations can be used to determine the maximum detection delay before the backup

controller is no longer able to recover the system. The FTC system failure is formally defined as follows.

Definition 1. The FTC structure fails at time T ≤ N if one of the following events occurs:

(a) There exists k0 ≤ N such that φ(x(k0), k0) = 0 for some x(k0) /∈ D.

(b) There exist j and k0 ≤ N such that for each k ∈ {k0, k0 + 1, . . . , k0 +Nj − 1} we have x(k) = Mj ∈ D

and φ (x(k), k) = 0.

It is important to emphasize that φ(x(k), k) = 0 does not necessarily imply failure of the FTC structure.

In particular, the FTC structure is designed to essentially self-repair in the event of a component failure

mode Mj ∈ D via transition to a backup controller. This self-repair is only successful if the component

failure Mj is detected within the maximum delay Nj . Event (b) in the definition above corresponds to the

case where the component failure Mj is not detected in time leading to failure of the FTC structure. Finally,

a minor point is that any system failure caused by a component failure initiated at time k0 ≤ N is counted

in this N -step window. Different boundary assumptions can be handled with minor notational changes.

We want to compute the probability of system failure within the N -step window, i.e. P [T ≤ N ]. To

compute this metric, we need to know the component failure models P [x(k) = Mj ], the structure functions

φj (x(k)) corresponding to the different controllers Kj , the maximum detection delay Nj , and various FDI

performance metrics. The first three pieces of information have already been discussed. Now we will briefly

introduce the FDI performance metrics required for the analysis in Section 3:

1. FDI False Alarm, P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
for Mj ∈ C:

This is the conditional probability that the FDI logic switches to a backup controller at time TD in

the N -step window given that the occurred component failure mode can be handled by the primary

controller. This is a false alarm probability over the N -step window.
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2. FDI Missed Detection, P
[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,mini 6=j TX,i > N}
]
:

This is defined for k = 1, . . . , N and {j : Mj ∈ D}. This is the conditional probability that the FDI

logic dj(k) does not detect the failure of actuator j at time k within the maximum delay Nj . This is

the probability of a missed detection conditioned on a component failure at time k.

3. FDI Bad Interaction, P
[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,mini6=j TX,i > N}
]
:

This is defined for k = 1, . . . , N and {j : Mj ∈ D}. This is the conditional probability that the FDI

channel dj(k) successfully triggers an alarm within the maximum delay Nj given a failure in actuator j

at time k. However the FTC structure fails to switch to the proper backup controller due to an alarm

in another channel of the FDI scheme. This metric accounts for bad interactions between different

FDI channels.

We will explain how to estimate these FDI performance metrics in Section 4.2.

The switching mechanism of FTC systems can be designed in many different ways. It is difficult to

seek a general formulation covering all FTC designs. For the sake of conciseness, this paper focuses on the

proposed FTC structure which is suitable for low-cost UAV applications. In this case, the required FDI

performance metrics will provide straightforward insights on how FDI performance interacts with hardware

failures (as further explained in Section 3). In principle, our analysis can be extended to more complex FTC

systems given proper modifications of FDI performance metrics. However, most extensions require additional

mathematical notations, and the resultant modified FDI performance metrics will be less intuitive than the

current FDI performance metrics. The details of these extensions are beyond the scope of this paper.

2.4. Literature Review of Related Dynamic Reliability Analysis Tools

The FTC structure formulated in Section 2.3 introduces two key issues. First, the FTC structure switches

between different controllers based on the FDI monitoring signals. As a result, the order of the component

failures and the FDI alarms has to be considered in the reliability analysis. Second, the FTC structure

depends on the FDI performance, and proper FDI performance metrics are required in the FTC reliability

analysis. There exist dynamic reliability analysis tools which can address the first issue. However, these

existing dynamic tools are not easily adapted to the FTC analysis problem mainly due to the second issue.

Markov and semi-Markov modeling techniques are flexible, and have strong modeling power in addressing

the ordering issue of the reliability analysis [29]. They have been extensively used to analyze the dynamic be-

havior of reconfigurable systems. However, Markov models can experience state space explosion and become

computationally intractable [30]. Under certain circumstances, more computationally efficient techniques

such as dynamic fault trees [31], coverage modeling [32, 33], discrete-time Bayesian network modeling [34],

sequential decision diagrams [35], and Petri nets [36] can be applied to solve dynamic reliability problems.

Incorporating FDI performance into FTC reliability is another main issue in the FTC reliability analysis

problem. Markov (or semi-Markov) models have been successfully applied to the FTC reliability analysis

8



when the FDI models are governed by constant transition matrices [37, 27]. In more general cases, coverage

modeling has been used to quantify the FDI performance [28, 38, 39]. However, it is not easy to get the

coverage parameter in applications. One can estimate this parameter by experimental data generated from

a full-scale simulator [28], but the time-varying and non-exponential nature poses difficulty for the accurate

estimate of this parameter based on limited data. Moreover, the coverage parameter mostly models short

term behaviors, such as FDI missed detections. Long term FDI behaviors, e.g. false alarms, are typically

not included in the coverage modeling.

Single-frame false alarm rates and missed detection rates have also been used as fault detection per-

formance metrics [40, 41, 42, 43]. These metrics can be integrated into system reliability analysis by an

extended fault tree [40], or stochastic activity networks [41, 42]. The continuous time counterparts of these

single-frame probabilities have also been used to model the diagnosis reliability [44]. False alarm rates and

missed detection rates can be directly computed from the stochastic model of the FDI residuals [40], or

indirectly estimated from Monte Carlo simulations of stochastic activity networks [45]. To further model

the maximum detection delay and the time correlations in the FDI residuals, new false alarm metrics and

missed detection metrics are proposed by incorporating time scales into the single-frame false alarm and

missed detection probabilities [46]. These fault detection performance metrics can be directly computed

from the stochastic model of the fault detection algorithm and aggregated to the system failure probability

per hour by the law of total probability. However, these metrics only apply for a dual redundant system

(consisting of only two hardware components) with one fault detection channel. A FTC system typically has

more than two components, and includes multiple FDI channels. In this case, more general FDI performance

metrics are required to model the interactions between different FDI channels.

In this paper, we generalize the results in [46] to a large class of FTC systems via a structure function

approach. Our method relies on the FDI performance metrics proposed in Section 2.3. These metrics can

also be computed from the stochastic model of the FDI algorithm. Correlations in FDI decision signals are

embedded in the proposed FDI metrics. Our proposed approach does not require the generation of Markov

or semi-Markov models. Moreover, our approach is computationally efficient and scales linearly with the

number of the components in the FTC system. The main limitation of our new analysis method is that it

is mainly developed for low-cost UAV FTC systems. Thus our proposed approach and existing techniques

(Markov approach, coverage modeling, stochastic activity networks, etc) provide complementary benefits.

3. FTC structure Reliability Analysis

This section gives a direct formula to compute the failure probability per hour P [T ≤ N ] for the FTC

structure. The analysis relies on pivotal decomposition which is a special application of the law of total

probability [4]. The law of total probability states: Let the events {Ωn : n = 0, 1, 2, . . .} form a disjoint
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partition of the sample space. Then for any other event A, the following is true:

P [A] =
∑
n

P [A ∩ Ωn] =
∑
n

P [A | Ωn]P [Ωn] (3)

3.1. General Approach

Since {x(N) = Mj : j = 0, 1, . . . , 2n − 1} form a disjoint partition of the sample space, we can directly

apply the law of total probability to express P [T ≤ N ] as:

P [T ≤ N ] =

2n−1∑
j=0

P [{T ≤ N} ∩ {x(N) = Mj}] (4)

Equation (4) is also referred to as pivotal decomposition. The basic idea is to determine how the 2n mutually

exclusive modes {Mj}2
n−1
j=0 can lead to FTC structure failure. The probability P [{T ≤ N} ∩ {x(N) = Mj}]

can be efficiently computed for any given Mj . Then we can compute the system failure probability per hour

by aggregating all 2n terms using Equation (4). Next we classify the component failure modes Mj into three

mutually exclusive categories:

1. Mj ∈ C: Component failure modes that can be tolerated by the primary controller.

2. Mj ∈ D: Component failure modes that can not be tolerated by the primary controller but can be

tolerated by a backup controller Kj .

3. Mj ∈ Cc∩Dc: All remaining component failure modes consisting of no failures M0 as well as all modes

with two or more component failures (M2,M3, . . .). The case with two or more component failures is

tolerated by no controllers.

Mj belongs to one and only one of the above three categories. Thus Equation (4) can be rewritten as a sum

of three terms:

P [T ≤ N ] =
∑

j:Mj∈Cc∩Dc
P [{T ≤ N} ∩ {x(N) = Mj}]

+
∑

j:Mj∈C
P [{T ≤ N} ∩ {x(N) = Mj}] +

∑
j:Mj∈D

P [{T ≤ N} ∩ {x(N) = Mj}]
(5)

Three technical lemmas are presented next and used to compute the various terms in this sum. Proofs of

all lemmas are presented in the appendix. First, Lemma 1 is used to compute the term associated with

Mj ∈ Cc ∩ Dc (category 3).

Lemma 1. If Mj ∈ Cc ∩ Dc ∩Mc
0, then P [{T ≤ N} ∩ {x(N) = Mj}] = P [{x(N) = Mj}].

Lemma 1 states that the component failure modes (x(N) = Mj) directly lead to the system failure

(T ≤ N) if none of the controllers (primary or backup) can tolerate these modes. It is clear that P [{T ≤
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N} ∩ {x(N) = M0}] = 0 since all controllers function properly in the presence of no actuator failures. The

probability of the system failure caused by component failure modes in Category 3 can be computed as

∑
j:Mj∈Cc∩Dc

P [{T ≤ N} ∩ {x(N) = Mj}] =
∑

j:Mj∈Cc∩Dc∩Mc
0

P [{x(N) = Mj}]

= 1−
∑

j:Mj∈C∪D∪M0

P [{x(N) = Mj}]
(6)

This term only involves hardware failure models and is unaffected by the FDI performance. We need only

n + 1 calculations to compute this term since the set C ∪ D contains all n possible single actuator failures.

This term scales linearly with the number of the components in the FTC system.

Next, the term in (5) associated with Mj ∈ C (category 1) is computed via the next lemma.

Lemma 2. If Mj ∈ C, then P [{T ≤ N} ∩ {x(N) = Mj}] = P [{TD ≤ N} ∩ {x(N) = Mj}].

Lemma 2 describes the case where the primary controller is working properly, the FDI logic triggers a

false alarm and then the backup controller fails. Lemma 2 directly gives:

∑
j:Mj∈C

P [{T ≤ N} ∩ {x(N) = Mj}] =
∑

j:Mj∈C
P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
P [{x(N) = Mj}] (7)

This term involves the FDI false alarm metric and scales linearly with the number of the elements in C.

The next lemma is used to compute the term associated with Mj ∈ D (category 2).

Lemma 3. The following statement holds:

∑
j:Mj∈D

P [{T ≤ N} ∩ {x(N) = Mj}] =

∑
j:Mj∈D

N∑
k=1

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P [TX,j = k,min

i 6=j
TX,i > N ]+

∑
j:Mj∈D

N∑
k=1

P

[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P [TX,j = k,min

i 6=j
TX,i > N ]

(8)

where P [TX,j = k,mini 6=j TX,i > N ] depends only on hardware component failure models.

Lemma 3 can be understood as follows. For Mj ∈ D, the component failure mode {x(N) = Mj} leads

to a system failure in two ways. Since Mj ∈ D, component j is monitored by the FDI decision logic dj(k).

If the FDI decision logic misses the detection of the failure in component j (TD,j ≥ TX,j + Nj) then the

FTC system fails. The probability of this event corresponds to the first term on the right hand side of (8)
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in Lemma 3, which is affected by the FDI missed detection metric. Even if the FDI channel on component

j works properly (TD,j < TX,j + Nj), the FTC system can fail because of a wrong switch to an improper

backup controller either due to an early false alarm (TD < TX,j and TD < TD,j) in other FDI channels or a

missed isolation in the FDI scheme (TX,j ≤ TD < TD,j). This event is described by the second term on the

right hand side of (8), which is affected by the FDI bad interaction metric. Notice that (8) scales with the

number of the elements in D, and can be efficiently evaluated.

Lastly, substitute (6), (7), and (8) into (5), and the final result becomes:

P [T ≤ N ] =∑
j:Mj∈Cc∩Dc∩Mc

0

P [{x(N) = Mj}] +
∑

j:Mj∈C
P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
P [{x(N) = Mj}]+

∑
j:Mj∈D

N∑
k=1

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P [TX,j = k,min

i 6=j
TX,i > N ]+

∑
j:Mj∈D

N∑
k=1

P

[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P [TX,j = k,min

i 6=j
TX,i > N ]

(9)

This equation provides an intuition for the basic causes of the FTC structure failure. The first term is due

to the hardware component failures which cannot be covered by FTC designs. The second term refers to

the component failure modes, which can be covered by the primary controller, but the FDI scheme triggers

a false alarm that leads to a system failure when a backup controller is improperly used. The third term

refers to the case where the FDI scheme fails to detect the actuator failures that should be covered by the

backup controller. The last term accounts for the improper interactions between different FDI channels and

refers to the case where the FTC system is switched to a wrong controller based on an early false alarm

or a missed isolation of the FDI scheme. Equation (9) decouples the causes of the system failure based on

hardware component failures and the FDI performance. This allows the effect of the FDI performance on

the total system reliability to be fully separated from the reliability of the hardware components. Section

4.2 will present an example to demonstrate the computation of the FDI performance metrics used in (9).

3.2. Example: Dual Redundant Systems

This section connects the general approach presented in Section 3.1 to a previous result for dual re-

dundant systems with a fault detection scheme [46]. The existing result was originally derived from an

exhaustive approach enumerating all failure possibilities. The structure function approach was not used

since it is straightforward to define the system failure for a dual system. The approach presented in Sec-

tion 3.1 generalizes the old result to FTC systems via pivotal decomposition of structure functions. This

demonstrates the generality of the new approach and provides a concrete example to clarify the notation.

The dual redundant system consists of one actuator as a primary component and another actuator as
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a standby. A fault detection scheme is used to monitor the primary actuator. When there is no failure

detected, the primary actuator is in active mode and the backup actuator is in passive mode. When a

failure on the primary actuator is detected, the primary actuator will become passive, and the backup

actuator will become active. The primary actuator is the only actuator being monitored, i.e. TD,1 = TD.

This dual redundant system can be viewed as a special case of the FTC structure proposed in Section 2.3.

In this case, n = 2. The primary controller K0 sends control commands to the first component, and sends

zero signals to the second component. The component failure mode {M2 = (1, 0)} is tolerated by K0. The

component failure mode {M1 = (0, 1)} is designed to be handled by the backup controller K1. We have

M0 = {(1, 1)}, C = {(1, 0)}, D = {(0, 1)}.

For Mj ∈ Cc ∩ Dc (category 3), (6) becomes:

∑
j:Mj∈Cc∩Dc∩Mc

0

P [x(N) = Mj ] = P [x(N) = (0, 0)] = P [TX,1 ≤ N,TX,2 ≤ N ] (10)

For Mj ∈ C (category 1), we need one computation since C has one element (1, 0). Controller K0 sends

zero signals to the backup actuator before switching. Hence this actuator does not affect the switching time

TD, and TD is statistically independent from TX,2. From (7) we get:

P [TD ≤ N,TX,1 > N,TX,2 ≤ N ] = P [TD,1 ≤ N | TX,1 > N ]P [TX,1 > N,TX,2 ≤ N ] (11)

For Mj ∈ D (category 2), we will use (8). D has one element (0, 1). The first term in (8) is
∑N
k=1 P [TD,1 ≥

k +N1, TX,1 = k, TX,2 > N ]. TD,1 is statistically independent of TX,2. Hence:

N∑
k=1

P [TD,1 ≥ k +N1, TX,1 = k, TX,2 > N ] =

N∑
k=1

P [TD,1 ≥ k +N1|TX,1 = k]P [TX,1 = k, TX,2 > N ]

(12)

Finally since TD,1 = TD, the probability that TD < TD,1 is always 0. Hence the second term in (8) is 0.

Therefore we sum all the terms to get:

P [T ≤ N ] =P [TX,1 ≤ N,TX,2 ≤ N ] + P [TD,1 ≤ N | TX,1 > N ]P [TX,1 > N,TX,2 ≤ N ]

+

N∑
k=1

P [TD,1 ≥ k +N1|TX,1 = k]P [TX,1 = k, TX,2 > N ]
(13)

which is the exact result presented in previous work [46].
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3.3. Simplifying Approximations: Guidelines for FDI Design

This section discusses a simplifying approximation for the FTC reliability formula (9). The simplifications

are based on approximations of the FDI performance metrics as detailed by supporting derivations in the

appendix. The simplifying approximation provides insights useful for FDI design.

We consider simplifying approximations for the system failure probability under different component

failure modes. For Mj ∈ Cc ∩ Dc, only hardware component failure models are required. For Mj ∈ C, the

FDI false alarm metric P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
is involved, and requires one computation.

For Mj ∈ D, both the FDI missed detection metric and the FDI bad interaction metric depend on

the time step k. For any fixed j, both these metrics require N computations. When the probability

P
[
TD ≤ N

∣∣∣ x(N) = M0

]
is significantly smaller than 1 (e.g. < 0.1), the following approximation can be

used for k = 1, 2, . . . , N :

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i 6=l

TX,i > N}
]
≈ P

[
{TD,j ≥ 1 +Nj}

∣∣∣ {TX,j = 1,min
i 6=l

TX,i > N}
]

(14)

The detailed derivation of (14) can be found in the appendix. Based on (14), the FDI missed detection metric

can be evaluated for all k = 1, 2, . . . , N using one calculation of the conditional probability that dj(k) = 1

for all k = 1, 2, . . . , Nj given that actuator j fails at the first time step (TX,j = 1). This probability can be

viewed as a missed detection probability in FDI channel j over a detection window with size Nj .

Similarly, the FDI bad interaction metric can be decoupled as:

P

[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i6=j

TX,i > N}
]

=

k+Nj−2∑
l=1

P

[
{TD = l, l < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

=

k−1∑
l=1

P

[
{TD = l, l < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

+

k+Nj−2∑
l=k

P

[
{TD = l, l < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

(15)

The first term accounts for the case where the FDI channel j sends an alarm before its maximum detection

delay, but the system switches to another wrong controller due to an early false alarm in other FDI channels.

This term can be approximated by a FDI false alarm metric on modeM0, which is P
[
TD ≤ N

∣∣∣ x(N) = M0

]
.

The second term refers to the case where the FDI scheme detects a failure after its occurrence but makes a

mistake in isolating the failure position. This metric can also be approximated from one term which does

not depend on k: P
[
{TD < TD,j < 1 +Nj}

∣∣∣ {TX,j = 1,mini 6=j TX,i > N}
]
. This term can be viewed as a

missed isolation probability over a time window of size Nj .
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Now we can simplify the formula for the system failure probability P [T ≤ N ] by an approximation. For

simplicity, the following are defined as:

q̂j := P [x(N) = Mj ] (16)

P̂F,j := P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
(17)

P̂MD,j := P

[
{TD,j ≥ 1 +Nj}

∣∣∣ {TX,j = 1,min
i 6=l

TX,i > N}
]

(18)

P̂MI,j := P

[
{TD < TD,j < 1 +Nj}

∣∣∣ {TX,j = 1,min
i 6=j

TX,i > N}
]

(19)

P̂B,j := P̂MD,j + P̂F,0 + P̂MI,j (20)

Each of these definitions has a clear meaning. q̂j is the hardware failure probability per hour due to mode

Mj . P̂F,j is the false alarm probability per hour under mode Mj . P̂MD,j is the missed detection probability

within the Nj-step detection window conditioned on the j-th component failure occurring at k = 1. P̂MI,j

is the missed isolation probability within the Nj-step detection window conditioned on the j-th component

failure occurring at k = 1. P̂B,j is the sum of probabilities that FDI channel j is doing bad work. The “hat”

denotes that these probabilities are valid over multiple steps, i.e. they are not single-frame probabilities.

With this notation, the system failure probability (9) is approximated as:

P [T ≤ N ] ≈
∑

j:Mj∈Cc∩Dc∩Mc
0

q̂j +
∑

j:Mj∈C
q̂jP̂F,j +

∑
j:Mj∈D

q̂jP̂B,j (21)

(21) is an approximation of (9). It provides insights for FTC design. The first term on the right side

of (21) can be expressed as 1 −
∑
j:Mj∈C∪D∪M0

q̂j . This provides a lower bound on the system failure

probability and only depends on the hardware model. No matter how well the FDI algorithm performs, the

FTC system failure probability will not be lower than this bound. To achieve this lower bound, roughly we

require that the second and third terms on the right side of (21) are significantly smaller than the first term.

The number of the elements in C ∪ D is n. Hence, a design requirement can be:

P̂F,j � (1−
∑

j:Mj∈C∪D∪M0

q̂j)/(nq̂j)

P̂B,j � (1−
∑

j:Mj∈C∪D∪M0

q̂j)/(nq̂j)
(22)

There is a design trade-off between these two requirements. When both requirements are satisfied, the FTC

design will significantly improve the system reliability. Notice the approximation holds when P̂F,j is small.

If the FDI system satisfies (22), the approximation automatically holds.
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4. Case Study: Reliability Analysis of a UAV FTC System

4.1. UAV FTC Structure

Linear system analysis can be used to study whether a FTC system can be designed given a certain

number of control surfaces [47]. A trim analysis can be performed to show that the minimum number of

actuators required to cover all single actuator failures is six. As shown in Figure 2, the rudder is split into

two pieces, each actuated by its own servo. A similar split rudder design can be found in [48]. The elevator

is split in a similar manner. The detailed design of the split rudder and elevator is documented in [49]. This

design adds two servos to the system. We will perform a numerical study on this six-actuator FTC design.

Figure 2: The split surfaces design of the Ultra Stick 120 UAV.

The components of this new design are numbered in Table 1. The primary controller K0 can be designed

to handle a single failure in either the upper or lower rudder servo [49]. Hence, we have C = {M5,M6} and

D = {M1,M2,M3,M4}. Four backup controllers are designed to cover all the single component failures in

D. Under controller Ki (i = 1, 2, 3, 4), the FTC system has a structure function φi =
∏
j 6=i xj , and hence

φi(Mi) = 1. Components 1-4 are monitored by a FDI scheme. Each component is monitored by one FDI

channel. The FTC system will switch to a backup controller in case of the first alarm in FDI channels.

Left Aileron Right Aileron Left Elevator Right Elevator Upper Rudder Lower Rudder
i 1 2 3 4 5 6

Table 1: Numbering Components for the Redesigned Actuation System

The FDI scheme monitoring the actuation system is assumed to be a model-based algorithm. A FDI

channel on component i is compromised of two parts: a filter that generates a residual ri(k) and a decision

function which determines the logic signal di(k) that indicates the status of actuator i. The filter output,
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ri(k), is a random variable which is designed to achieve a decoupling property: ri(k) has a zero mean when

the primary actuator is operational (xi(k) = 1) and a non-zero mean when a failure occurs (xi(k) = 0).

The decision logic generates the status signal di(k) based on ri(k). There are many different approaches

to design the FDI algorithm [19, 20]. The FDI channel on component i used in the current FTC design is

shown in Figure 3. At each sample time k, actuator i moves the control surface based on a control input

ui(k), which is a pulse-width modulation signal. The real control surface position si(k) is directly measured.

Suppose the actuator dynamics are perfectly known. An estimated control surface position can be computed

based on the control input ui(k) and the actuator model Actmodel. The residual ri(k) is generated from the

difference between the measured and estimated control surface positions. Assume any disturbances on the

primary actuator are negligible. Moreover, the noise affecting the measurement si(k) is assumed to be the

same for all i, and is modeled by an independent and identically distributed (i.i.d.) Gaussian process v(k)

with zero mean and variance σ2. Finally, the failure on actuator i that occurs when xi(k) = 0 is modeled

by an additive bias fi subject to si(k). Given these assumptions, the FDI residual ri(k) is modeled as:

ri(k) = v(k) + (1− xi(k)) fi (23)

Figure 3: Fault Detection and Isolation (FDI) logic monitoring component i

The decision logic uses a constant thresholding:

di(k) :=

 0 if |ri(k0)| > Hi for some k0 ≤ k

1 else
(24)

A failure is declared in actuator i when the residual magnitude exceeds the threshold Hi. After that, di(k)

remains at 0. This fault detection logic is i.i.d. in time before its first detection.

4.2. Required Information

To analyze the system reliability of the FTC structure presented in Section 4.1, we need to specify

hardware failure models and FDI performance metrics. In this paper, the actuator failure time is assumed
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to be governed by a continuous-time exponential distribution with a parameter λ = 1
MTBF , where MTBF

is the mean time between failures. The exponential distribution is a simple but reasonably realistic model.

Moreover, for UAV applications, the mission time is much shorter than the MTBF of components. It may

not be necessary to consider aging (Weibull distribution) in this case. The exponential distribution can then

be approximated using a discrete-time geometric distribution with a parameter q := 1−e−λ∆t [50] where ∆t

is the flight computer sample time 0.02 sec. Notice that ∆t is determined by the flight computer sampling

frequency. Hence, the discrete failure time TX,i (i = 1, . . . , n) has the probability mass function:

P [TX,i = k] = (1− q)k−1q (25)

Then the component failure probability P [TX,i ≤ N ] can be computed by:

P [TX,i ≤ N ] = 1− (1− q)N (26)

Note that for q � 1, P [TX,i ≤ N ] ≈ Nq. Since all the components have the same reliability, q̂ is used to

denote the component failure probability per hour. This is similar to the notation introduced in (16). Then

the component failure rate q can be estimated from the component failure probability per hour q̂.

The FDI channels are statistically independent from each other. Each FDI channel signal dj(k) is i.i.d.

in time before its first detection. For FDI channel j (j corresponds to a component failure mode Mj ∈ D) ,

let PF,j := P [dj(k) = 0 | xj(k) = 1, dj(k − 1) = 1] and PD,j := P [dj(k) = 0 | xj(k) = 0, dj(k − 1) = 1]. The

probabilities PF,j and PD,j denote the single-frame probability of false alarm and detection, respectively.

The residual is Gaussian at each time:

PF,j = 1−
∫ Hj

−Hj

1√
2πσ

e−
r2

2σ2 dr (27)

PD,j = 1−
∫ Hj

−Hj

1√
2πσ

e−
(r−fj)

2

2σ2 dr (28)

These single-frame probabilities can be accurately and efficiently computed using the error function erf in

Matlab. The multiple-frame FDI performance probabilities can be related to these single-frame probabilities

due to the assumption of FDI logic being independent in channel and i.i.d. in time before the first detection.

In addition, they are not affected by any actuator failure modes in C. First, we know C = {M5,M6}. For

Mj ∈ C, P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
is the conditional probability that at least one FDI channel triggers a

false alarm in the N -step window in case of no failures in the actuators monitored by the FDI scheme:

P
[
TD ≤ N

∣∣∣ x(N) = Mj

]
= 1−

∏
i:Mi∈D

(1− PF,i)N (29)
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which is the same for j = 5, 6 in our example.

Next, consider Mj ∈ D. We know that P
[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,mini 6=j TX,i > N}
]

is the condi-

tional probability that a failure is not declared in the FDI channel j in the first k+Nj − 1 time steps given

that the actuator j failed at time k. This probability is expressed as:

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i6=j

TX,i > N}
]

= (1− PF,j)k−1(1− PD,j)Nj (30)

Finally, P
[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,mini 6=j TX,i > N}
]

is the probability that the FDI chan-

nel j triggers an alarm before time k+Nj given actuator j failed at time k, but other FDI channels triggered

at least one alarm before the alarm in channel j so that the FTC structure does not switch to the right

backup controller. This probability is quantified by:

P

[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

=

k+Nj−2∑
l=1

P

[
{TD = l, l < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

=

k−1∑
l=1

 ∏
i:Mi∈D,i6=j

(1− PF,i)l−1PF,i

 (1− PF,j)l
(
1− (1− PF,j)k−l−1(1− PD,j)Nj

)

+

k+Nj−2∑
l=k

 ∏
i:Mi∈D,i6=j

(1− PF,i)l−1PF,i

 (1− PF,j)k−1(1− PD,j)l−k+1
(
1− (1− PD,j)Nj−l+k−1

)
(31)

The first term refers to the early false alarm metric and the second is the missed isolation metric. Finally

we can substitute (25)-(31) into (9) to solve the system failure probability P [T ≤ N ].

4.3. Numerical Results

Two benchmark architectures based only on physical redundancy are presented. In addition to these

benchmarks we also analyze a FTC structure using the techniques described in this paper. The reliability

of the two physically redundant designs are useful as comparisons for the third, FTC-based design.

The first benchmark is the four-servo actuation system design introduced in Section 2.2. In this case,

each of the four control surfaces (left aileron, right aileron, elevator, and rudder) is actuated by its own servo.

Hence, four actuators are used. As analyzed in Section 2.2, this four-actuator design has a per-hour failure

probability of 10−2. We can replace each actuator in this four-actuator design with a triplex redundant

actuation subsystem to improve the reliability. This is the second benchmark we consider. In this case,

each of the four control surfaces (left aileron, right aileron, elevator, and rudder) is actuated by three servos.

This is a twelve-actuator design. The actuation subsystem for each control surface has a “2-out-of-3: good”

structure [4]. As discussed in Section 2.2, the component failure probability per hour was estimated to be
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q̂ = 2.5 × 10−3 [26]. The triplex actuation subsystem fails if two of the three actuators fail and thus the

failure probability per hour for such a triplex subsystem is 3q̂2(1 − q̂) + q̂3 = 1.875 × 10−5. The system

failure probability per hour for the twelve-actuator design is 4× (1.875× 10−5) = 7.5× 10−5.

Next we consider the FTC design with six control surfaces each actuated by its own actuator as described

in Section 4.1. The reliability of this six-actuator FTC design is compared to the four-actuator and twelve-

actuator benchmarks. Recall the system runs at a 50Hz sample rate and N = 1.8 × 105 corresponds to

the one hour window. Since the component failure probability per hour is q̂ = 2.5 × 10−3, the component

failure rate is estimated to be q ≈ 1.39 × 10−8. For illustrative purposes, the maximum detection delay is

specified as Nj = 10 for j = 1, 2, 3, 4. In practical applications, the maximum detection delay depends on the

specific design of control algorithms. Given a primary controller and a backup controller, one can simulate

the reconfiguration process for any specific detection delay. When the detection delay is large enough, the

simulated results will show that the aircraft becomes unstable after the failure occurs. In this case, the FTC

design cannot reconfigure the aircraft successfully. The largest detection delay which does not lead to such

situations is determined from the simulations, and used as the maximum detection delay.

Applying the procedure introduced in Section 4.2, the system failure probability of the six-actuator FTC

system can be computed for specific values of the residual variance σ2, failure bias level fj , and threshold

Hj . First, we assume that the failure bias and FDI thresholds are all the same, i.e. fj = f and Hj = H.

Figure 4 shows the six-actuator FTC system failure probability P [T ≤ N ] as a function of the normalized

threshold H/σ for two values of the normalized failure bias level f/σ =1 and 10. The vertical axis is a

log-scale to highlight the changes in system performance as a function of the threshold. For f/σ =10, the

Monte Carlo verification is performed at several testing points and the results are also plotted in Figure 4.

For small thresholds the system will rarely have a missed detection, but will often trigger a false alarm. As

a result, for small thresholds, the FTC system will have low reliability. For any Mj ∈ C, the false alarm

directly leads to a system failure because the FTC switches to a back-up controller not designed for these

modes. For any Mj ∈ D, the FTC has a 25% chance to switch to the right controller Kj due to an early false

alarm in FDI channel j, and a 75% chance to switch to an incorrect backup controller due to an early false

alarm in other FDI channels. Based on this discussion, the system failure probability for small thresholds

can be estimated as the sum of 2q̂ (due to Mj ∈ C) and 3
4 × 4q̂ (due to Mj ∈ D). Hence the system failure

probability P [T ≤ N ] ≈ (2 + 3
4 × 4)q̂ = 1.25 × 10−2. We can see this is even worse than the four-actuator

design because now there are two more components that can fail. Notice when H is extremely small, the

analysis result is not accurate. Specifically, we assumed that multiple, simultaneous alarms are unlikely and

this is no longer valid for extremely small thresholds. This inaccuracy is not of great significance as FDI

systems would not be designed with such extremely low thresholds in practice. For large thresholds, the

system will rarely have a false alarm but it will also frequently have missed detections when failures occur.

Any Mj ∈ C will not lead to a system failure in this case. But any Mj ∈ D will lead to a system failure.
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Thus the FTC system failure probability for large thresholds is approximately P [T ≤ N ] ≈ 4q̂ = 10−2.

Figure 4: P [T ≤ N ] vs. H/σ when Hj = H for all j

For intermediate values of the threshold, the system failure probability depends on the ratio of the failure

bias to noise level. For large failure bias levels (f/σ = 10) the threshold can be chosen to achieve a system

failure probability near 9.3 × 10−5. This probabilistic performance is close to the reliability achieved by

the twelve-actuator design. This means that the FTC technique can potentially improve the system level

reliability if the failure bias size is not small and the FDI scheme is properly designed. Notice that there is

an interval of threshold values which will lead to the optimal system reliability in this case. The length of

this interval can be potentially used to quantify the robustness of the FDI design.

For f/σ =10, the Monte Carlo simulations are performed at several testing points. Figure 4 shows

that the Monte Carlo simulations give almost identical results as the proposed analysis method. While the

system failure probability can be computed by our proposed method simultaneously on a standard desktop,

the Monte Carlo simulations are time consuming. For example, Monte Carlo simulations require 5 × 104

replications to estimate the system failure probability when H/σ = 2.7. For each replication, the FDI

residuals will be generated on the N -step time window, and this leads to a long computational time since N

is quite large in our problem. We implement the Monte Carlo simulations in Matlab, and the computational

time for 5× 104 replications is roughly 20 minutes. For H/σ = 5.2, the system failure probability is smaller,

and we roughly require 5 × 105 replications and 4 hours to get an accurate estimate of the system failure

probability. Moreover, the Monte Carlo simulations for H/σ = 8 require 5 × 106 replications which take

about 40 hours. Since Figure 4 shows that our proposed analysis method is consistent with the Monte Carlo

simulations, we will only apply our proposed method from now on.

Given f = 10σ, the previous result tells us that high FTC system reliability will be achieved at the
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optimal threshold H = 8.4σ. Now we fix fj = 10σ and Hj = 8.4σ for j = 1, 2, 3. We want to understand

how the system reliability changes if one FDI channel has significantly different levels of performance.

Figure 5 shows P [T ≤ N ] as a function of the normalized threshold H4/σ for two values of the normalized

failure bias level f4/σ =1 and 10. We can see a similar trend as before. For small thresholds the system

will always trigger an alarm in FDI channel 4 and switch to controller K4. As a result, all Mj ∈ M1,

except M4, will lead to a system failure due to the false alarm in FDI channel 4. Hence the system failure

probability P [T ≤ N ] ≈ 5q̂ = 1.25 × 10−2. Again, this results in a worse system failure probability than

the four-actuator design. For large thresholds, the system will rarely have a false alarm in FDI channel 4.

However, it will also frequently have missed detections when failures in component 4 occur. M4 will lead

to a system failure in this case. Thus, the FTC system failure probability P [T ≤ N ] ≈ 2.5 × 10−3. For

intermediate values of the threshold and relatively large failure bias size, the FDI channel 4 will have good

performance and improve the system reliability given proper FDI designs. In this example, we can see the

poor performance in any of the FDI channels can severely degrade the system reliability. Hence we need to

design a FDI scheme with good performance in all channels so that the system reliability can be improved.

Figure 5: P [T ≤ N ] vs. H4/σ when fj = 10σ and Hj = 8.4σ for j = 1, 2, 3

The results in Figure 5 indicate the importance of proper threshold selection. In addition, Figure 5

shows that for f4/σ = 10 the optimal threshold is H∗4 = 8.4σ and this yields the optimal performance of

P ∗[T ≤ N ] ≈ 9.3× 10−5 for this failure bias level. More generally, let H∗4 (f4/σ) denote the threshold that

minimizes P [T ≤ N ] for a given failure bias level f4/σ. Since (20) introduced P̂B,4 as a measure for the

performance of FDI channel 4, now P̂ ∗B,4 denotes the performance metric of FDI channel 4 computed with the

optimal threshold. Figure 6 shows the optimal performance P ∗[T ≤ N ], the associated normalized threshold

H∗4/σ and the associated P̂ ∗B,4 as a function of the failure bias level. As expected, the optimal performance
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P ∗[T ≤ N ] decreases monotonically with increasing failure bias level. The FDI scheme is able to detect

larger failure bias levels (relative to the noise) more easily thus leading to reduced false alarms and missed

detections for a properly optimized threshold. Figure 6 also shows the limits of performance for the current

model-based FDI scheme. In particular, for small failure bias levels (f4/σ ≤ 3) the failure probability of the

FTC system is 2.5 × 10−3 even if the optimal threshold is chosen. This implies that more advanced filter

techniques and decision functions are required if the failure bias level is small relative to the noise. We can

also evaluate the performance of the FDI channel 4 based on the simplifying approximations. Recall (22) is

a rough requirement for good performance in FDI channel 4. Hence P̂ ∗B,4 � 9.3×10−2/(6×2.5) = 6.2×10−3

is a rough design requirement. From Figure 6 we roughly see when f4 = 6σ, the FTC failure probability

approaches its lower bound (P ∗[T ≤ N ] = 9.8 × 10−5 ≈ 9.3 × 10−5). The associated P̂ ∗B,4 = 1.3 × 10−3 is

shown by the squared locations in Figure 6. We can see 1.3× 10−3 � 6.2× 10−3, and our proposed design

requirement is satisfied. As expected, the FDI system failure probability achieves its lower bound when the

requirement (22) is satisfied. Furthermore, (22) and (29) show that a very low single-frame probability of

false alarm is required for good FDI performance.

Figure 6: Optimal performance P ∗[T ≤ N ], threshold H∗
4 /σ and FDI metric P̂ ∗

B,4 vs. f4/σ

5. Conclusion

This paper analyzes the reliability of a FTC system. Specifically, an actuation system is considered along

with a model-based FDI scheme used to monitor the component states. The system failure probability per

hour can be exactly computed provided that certain probabilistic information is known for actuator failures

and FDI performance. We also derive a simplifying approximation in the case that only restricted hardware

and FDI performance information is known. We apply the proposed analysis method to a UAV actuation

system. Numerical results are presented to highlight the overall impacts of FTC design on the UAV reliability,
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and the FDI design trade-offs. The proposed method is verified by Monte Carlo simulations. Our results

show that the FTC technique can significantly improve the system reliability given good FDI performance.

The results in this paper focus on the analysis of FTC systems. We have not addressed the design and

validation of the backup controllers for the UAV considered in the case study. That task is more related to

the control design theory, and will also be part of our future work in this area. In the example presented

in this paper, the FDI channels are independent from each other. There are also no time correlations

in the FDI residuals. In principle, our proposed method can be used to handle the correlations in FDI

residuals. However, the computation of FDI performance metrics for complex FDI schemes is worthy of

separate research efforts. For many FDI schemes, the FDI performance metrics can be formulated as a first

hitting time problem of stochastic processes or rare event analysis problem. Potential solutions for this topic

include importance sampling [51], Poisson clumping heuristic [52], and peak over threshold approach [53].

In the future, we will consider applying those candidate solutions to more complex FDI designs. Moreover,

phase mission models [54] and multi-state models [55, 56] have received increased attention from reliability

engineers. Integration of our approach with these general models will be considered in future work.
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Appendix A. Proofs of Lemmas

Proof of Lemma 1. We only need to show that {x(N) = Mj} ⊂ {T ≤ N} given Mj ∈ Cc ∩ Dc ∩Mc
0. We

can see this directly from Definition 1. If Mj ∈ Cc ∩Dc ∩Mc
0, then φi(Mj) = 0 for all i. We can set k0 = N

and get φ(x(k0), k0) = 0. Hence T ≤ N .

Proof of Lemma 2. We will first show that if TD ≤ N and x(N) = Mj , then T ≤ N . Given Mj ∈ C, we know

φi(Mj) = 0 for all i 6= 0. Since TD ≤ N , φ(x(N), N) = φi(Mj) for certain i 6= 0. We have φ(x(N), N) = 0.

Set k0 = N . We directly get T ≤ N .

Now we will show that if T ≤ N and x(N) = Mj , then TD ≤ N . We will use contradiction. Assume

TD > N . Then φ(x(k), k) = φ0(x(k)) = 1 for all k ≤ N . Clearly T > N in this case and this contradicts

the assumption T ≤ N . This completes the proof.
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Proof of Lemma 3. First we need to show that if Mj ∈ D, then:

P [{T ≤ N} ∩ {x(N) = Mj}] = P [{TD,j ≥ TX,j +Nj} ∩ {x(N) = Mj}]

+ P [{TD < TD,j < TX,j +Nj} ∩ {x(N) = Mj}]
(A.1)

We will show that if TD,j ≥ TX,j + Nj and x(N) = Mj , then T ≤ N . TD,j ≥ TX,j + Nj implies that

φ(Mj , k) 6= φj(Mj) for all k ≤ TX,j+Nj−1. Set k0 = TX,j , we have φ(x(k), k) = 0 for all k0 ≤ k ≤ k0+Nj−1

and hence T ≤ N .

Next, we show that if TD < TD,j < TX,j +Nj and x(N) = Mj , then T ≤ N . Since TD < TD,j , we know

φ(Mj , k) 6= φj(Mj) for all k. Set k0 = TX,j and φ(Mj , k) = 0 for all k ≥ k0. Therefore, T ≤ N .

Finally, we need to show that if T ≤ N and x(N) = Mj , then TD,j ≥ TX,j+Nj or TD < TD,j < TX,j+Nj .

We will prove this by contradiction. Suppose TD,j < TX,j + Nj and TD,j ≤ TD. Since we always have

TD ≤ TD,j , now TD = TD,j < TX,j + Nj . Since the probability of multiple alarms at the same time step

given single or no component failures is assumed to be negligible, we have φ(x(k), k) = φ0(x(k)) for k < TD

and φ(x(k), k) = φj(x(k)) for k ≥ TD, given that x(N) = Mj . Therefore, φ(x(k), k) = 1 for all k < TX,j and

k ≥ TD. Since TD < TX,j +Nj , we have TD − TX,j < Nj . Hence φ(x(k), k) = 0 for at most (Nj − 1) steps

during k ≤ N . Hence T > N . This contradicts the condition T ≤ N . We get the desired contradiction.

Now we can connect (A.1) to the FDI performance metrics presented in Section 2.3 using the law of

total probability. Notice that {TX,j = k : k = 1, 2, . . .} form a disjoint partition of the sample space, and

P [A ∩ {TX,j ≤ N} ∩ {TX,j = k}] = 0 for all k > N . Hence the first term on the right hand side of (A.1) is:

P [{TD,j ≥ TX,j +Nj} ∩ {x(N) = Mj}]

=

N∑
k=1

P

[
{TD,j ≥ k +Nj} ∩ {TX,j = k} ∩ {min

i 6=j
TX,i > N}

]

=

N∑
k=1

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P [TX,j = k,min

i 6=j
TX,i > N ]

(A.2)

Similarly, the second term on the right hand side of (A.1) can be rewritten as:

P

[
{TD < TD,j < TX,j +Nj} ∩ {TX,j ≤ N,min

i6=j
TX,i > N}

]
=

N∑
k=1

P

[
{TD < TD,j < k +Nj} ∩ {TX,j = k,min

i 6=j
TX,i > N}

]

=

N∑
k=1

P

[
{TD < TD,j < k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P [TX,j = k,min

i 6=j
TX,i > N ]

(A.3)

Substitute (A.2) and (A.3) into (A.1), and sum over {j : Mj ∈ D}. This completes the proof.
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Appendix B. Derivation of Simplifying Approximations

We derive simplifying approximations for FDI missed detection metric as follows:

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

1

= P

[
min

1≤l≤k+Nj−1
dj(l) = 1

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]

2

≤ P
[
{ min
k≤l≤k+Nj−1

dj(l) = 1}
∣∣∣ {TX,j = k,min

i 6=j
TX,i > N}

]
3

= P

[
{ min

1≤l≤Nj
dj(l) = 1}

∣∣∣ {TX,j = 1,min
i 6=j

TX,i > N}
]

4

= P

[
{TD,1 ≥ 1 +Nj

∣∣∣ {TX,j = 1,min
i 6=j

TX,i > N}
]

= P̂MD,j

(B.1)

The first and fourth steps follow from the definition of TD,j . The second step follows from the fact that

the probability of any set is always greater than or equal to the probability of its own subset. Notice that

dj(k) can be assumed to be a strong stationary process given no failure, and this leads to the third step.

From (B.1), we immediately see that P̂MD,j is an upper bound of the FDI missed detection metrics. To see

this is a tight bound, we assume that given the condition {TX,j = k,mini 6=j TX,i > N}, we can ignore the

dependence between the events {min1≤l≤k−1 dj(l) = 1} and {mink≤l≤k+Nj−1 dj(l) = 1}. Then we have:

P

[
{TD,j ≥ k +Nj}

∣∣∣ {TX,j = k,min
i6=j

TX,i > N}
]

= P

[
{ min

1≤l≤k−1
dj(l) = 1}

∣∣∣ {TX,j = k,min
i 6=j

TX,i > N}
]
P̂MD,j

= P
[
{TD ≥ k

∣∣∣ x(k − 1) = M0

]
P̂MD,j ≥ (1− P̂F,0)P̂MD,j

(B.2)

Since 1 − P̂F,0 ≈ 1, we conclude (14) is valid. The derivations for simplifying approximations of the early

false alarm case and the missed isolation case are almost identical to the above procedure, and are omitted.
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