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Abstract— Determining the induced L2 norm of a linear,
parameter-varying (LPV) system is an integral part of many
analysis and robust control design procedures. In general, this
norm cannot be determined explicitly. Most prior work has
focused on efficiently computing upper bounds for the induced
L2 norm. This paper presents a complementary algorithm to
compute lower bounds for this norm. The proposed approach
is based on restricting the parameter trajectory to be a periodic
signal. This restriction enables the use of recent results for exact
calculation of the L2 norm for a periodic time varying system.
The proposed lower bound algorithm has two benefits. First, the
lower bound complements standard upper bound techniques.
Specifically, a small gap between the bounds indicates that
further computation, e.g. upper bounds with more complex
Lyapunov functions, is unnecessary. Second, the lower bound
algorithm returns a worst-case parameter trajectory for the
LPV system that can be further analyzed to provide insight
into the system performance. Numerical examples are provided
to demonstrate the applicability of the proposed approach.

I. INTRODUCTION
Determining the induced L2 norm of a linear, parameter-

varying (LPV) system is an integral part of many analysis
and robust control design procedures. In general, this norm
cannot be determined exactly. Most prior work focuses on
the approximation of the upper bound of the induced L2

norm. The method used to compute the upper bound depends
primarily on the structure of the LPV system. For LFT-
type LPV systems, where the system matrices are rational
functions of the parameter, the upper bound can be computed
using scaled small gain theorems with multipliers and the
full block S-procedure [1], [6]. For LPV systems where
the parameter dependence is arbitrary, the upper bound is
computed using a dissipation inequality evaluated over a
finite set of parameter grid points [8], [9], [5].

This paper addresses the complementary problem, i.e. the
approximation of the lower bound of the L2 norm. The
simplest way to compute a lower bound is to consider the LTI
systems obtained at frozen parameter values and to take the
maximum of these point-wise L2 norms. Unfortunately, this
approach produces very conservative results in many cases
as it neglects the variation of the scheduling parameter. To
compute a better estimate, the L2 norm has to be evaluated
over time varying parameter trajectories. This concept in-
duces a complex optimization problem, where the evaluation
of the cost function requires the computation of the L2

norm of LTV systems. Since this problem is still numerically
demanding a different approach is proposed in the paper. Our
approach is to restrict the scheduling trajectories to periodic
signals, since in this case recent results for exact calculation
of the L2 norm of periodic, linear time-varying (PLTV)
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systems can be applied. It will be shown, by numerical
simulations, that an efficient algorithm can be constructed,
which produces improved estimate for the lower bound of
the L2 gain of the LPV system.

The method presented in this paper is based mainly on the
algorithm proposed by Cantoni and Sandberg [2] to compute
the exact L2 norm of continuous-time, PLTV systems. The
characterisation of the L2 gain for PLTV systems has been
well-known for some time [3]. However, the accurate compu-
tation of the L2 gain is numerically demanding, particularly
when the period is large ([7]). Therefore, most available
methods are approximation-based approaches. The most rel-
evant methods involve the skewed truncation of a frequency
domain operator in [13], [12] and the fast-sampling approach
in [11]. The accuracy of skewed truncation and fast sampling
methods is improved as the truncation order and number
of samples, respectively, is increased. In both cases, the
improved accuracy comes with increasing computational
cost. In contrast to prior works, the algorithm of Cantoni
and Sandberg transforms a condition for the L2 gain of the
PLTV system into an equivalent condition for the `2 gain
of a finite-dimensional, discrete-time, linear, time-invariant
system. The state-space representation for the discrete-time
system can be constructed from the point solutions of well-
behaved matrix Riccati differential equations. The algorithm
can be reliably implemented by using standard numerical
methods which makes it promising for the application to the
LPV lower bound problem.

The paper is organised as follows: in the next section the
recent results for computing L2 gain of periodic systems are
reviewed. Our approach for computing lower bounds on L2

norm of LPV systems is presented in section III. Section IV
is devoted to the numerical simulations and analysis. The
conclusions are drawn in section V.

II. COMPUTING THE INDUCED L2 NORM OF PERIODIC
LTV SYSTEMS

This section recalls the main elements of the algorithm
proposed by Cantoni and Sandberg [2] for computing the
induced L2 norm of continuous-time, periodic linear time-
varying (PLTV) systems. The state-space matrices of a PLTV
system are assumed to be piecewise continuous functions of
the time: A : R+ → Rn×n, B : R+ → Rn×p, C : R+ →
Rq×n and D : R+ → Rq×p. In addition, these state matrices
are assumed to have a period h, i.e.(

A(t) B(t)
C(t) D(t)

)
=

(
A(t+ h) B(t+ h)
C(t+ h) D(t+ h)

)
∀t

An nth
x order PLTV system, G, is then defined by

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(1)



The induced L2 norm of this system is defined in the standard
way as

‖G‖ = sup
u6=0,u∈L2

‖y‖
‖u‖ , (2)

where ‖ · ‖ represents the signal L2-norm, i.e.
‖u‖ = (

∫∞
0
u(t)Tu(t) dt)

1
2 . The initial condition is

assumed to be x(0) = 0. Throughout the remainder of
the paper the explicit dependence on t is occasionally
suppressed to shorten the notation.

In the algorithm presented in [2] the following three
differential Riccati equations play the key role:

Ż = −(HTZ + ZH + γZBR−1BTZ + γCTS−1C)

(3a)

Ẋ = (H + γBR−1BTZ)X (3b)

Ẏ = HY + Y HT + γY CTS−1CY + γBR−1BT (3c)

where

H := A+BR−1DTC

R := γ2I −DTD

S := γ2I −DDT

and the time dependence is supressed in these equations. The
basic algorithm in [2] involves a bisection on γ. At each step
a value for γ is selected and then the following steps are used
to determine if γ is an upper or lower bound on ‖G‖. A
necessary condition for ‖G‖ > γ is given by the inequality
γ2I −D(t)TD(t) > 0 for all t ∈ [0, h]. Assuming that this
condition is satisfied then first solve the Riccati differential
equation in Z over the interval [0, h] with boundary condition
Z(h) = 0. It is shown in [2] that if Z(t) fails to have a
bounded solution on [0, h] then ‖G‖ > γ. If the solution
Z(t) exists and is uniformly bounded on [0, h] then further
calculations are needed to determine if γ is an upper or lower
bound on ‖G‖. For this, the remaining differential equations
in X and Y have to be solved with boundary conditions
X(0) = I and Y (0) = 0, respectively. The point solutions
X(h) and Y (h) are used to construct the following discrete-
time system:

ξk+1 = Aγξk +Bγµk

ζk = Cγξk
(4)

where Aγ := X(h) and Bγ , Cγ are chosen to satisfy Z(0) =
CTγ Cγ and Y (h) = BγB

T
γ . Let ‖Aγ , Bγ , Cγ‖∞ denote the

induced `2 norm of (4). The next theorem follows from the
results in [2]

Theorem. Assume γ > 0 is such that γ2I−D(t)TD(t) >
0 for all t ∈ [0, h] and (3a) has a solution Z(t) bounded over
[0, h]. Then ‖G‖ < γ if and only if ‖Aγ , Bγ , Cγ‖∞ < 1.

This result forms the basis for the following bisection
algorihm in [2]. Select γ > 0 such that γ2I−D(t)TD(t) > 0
for all t ∈ [0, h] and γ̄ such that ‖G‖ < γ̄. The bisection is
summarized as:

1) Stop if γ̄ − γ is within a desired stopping error ε.
Otherwise, select γ := 1

2 (γ̄ + γ).

2) Integrate (3a) starting from the boundary condition
Z(h) = 0. If the solution goes unbounded then set
γ := γ and return to step 1. If the solution is bounded
on [0, h] then continue to step 3.

3) Solve (3b) and (3c) for X(t) and Y (t) starting from
X(0) = I and Y (0) = 0. Form the discrete-time
system as described above. If ‖Aγ , Bγ , Cγ‖∞ < 1
then set γ̄ := γ. Otherwise set γ := γ. Continue to
step 1.

The output of the algorithm are the tight bounds [γ, γ] for
the induced gain: γ ≤ ‖G‖ ≤ γ and γ − γ ≤ ε.

III. COMPUTATION OF A LOWER BOUND FOR THE
INDUCED L2 NORM OF LPV SYSTEMS

This section considers the computation of a lower bound
on the induced L2 norm for a linear parameter varying (LPV)
system. The LPV system is assumed to be given in state-
space form as follows:

G :
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))w(t)
z(t) = C(ρ(t))x(t) +D(ρ(t))w(t)

(5)

where the system matrices are continuous functions of the
parameter ρ. In addition, ρ(·) is a piecewise continuous
function of time, ρ : R+ → Rm, that is assumed to satisfy
the known bounds

ρi ≤ ρi(t) ≤ ρi, µi ≤ ρ̇i(t) ≤ µi, ∀t, 1 ≤ i ≤ m (6)

The set of parameter vectors ρ ∈ Rm satisfying the mag-
nitude constraints in (6) is denoted by P and the set of
admissible trajectories containing all piecewise continuously
differentiable trajectories that satisfy both the magnitude and
the rate constraints in (6) is denoted by A. The performance
of G can be specified in terms of its induced L2 gain from
input w to output z assuming x(0) = 0:

‖G‖ = sup
06=w∈L2(Rp),ρ(·)∈A

‖z‖
‖w‖

The class of LPV system given above has an arbitrary
dependence on the parameter. For this class of systems
there are known linear matrix inequality (LMI) conditions
to efficiently compute an upper bound on the induced L2

gain [10], [9].

Our aim is to use the results of the previous section to
determine a lower bound for the induced L2 gain of the
LPV system above. This is done by restricting the scheduling
parameter trajectories to a linear combination of periodic
basis functions. Specifically, let φk : R→ R (k = 1, . . . , R)
denote continuously differentiable, periodic basis functions
of period 1, i.e. φk(t + 1) = φk(t) ∀t. Let then the set of
admissible periodic trajectories be defined as follows:

Ap = {ρ(·, c) | ρ(·, c) ∈ A}
where

ρ(t, c) =

R∑
k=1

ckφk(t/h),

c := [cT1 , . . . , c
T
R, h]T ∈ RmR+1, ck ∈ Rm. (7)

Note that the parameter vector c contains the period h, so
this is also tuned by the algorithm described below. We can



also define the set of admissible parameters Cp as Cp = {c ∈
RmR+1|ρ(·, c) ∈ Ap}. The magnitude and rate constraints
(6), which ensure the relation Ap ⊆ A, give infinite number
of constraints for c. By defining a suitable dense grid {ti}Ti=0
over [0, 1], i.e. 0 = t0 < t1 < . . . < tT = 1 then these
infinite constraints can be ’approximated’ by a finite set of
linear constraints in the following form:

φ1(ti)I . . . φN (ti)I 0
−φ1(ti)I . . . −φN (ti)I 0

φ̇1(ti)I . . . φ̇N (ti)I −µ
−φ̇1(ti)I . . . −φ̇N (ti)I µ

 · c ≤
 ρ
−ρ
0
0

 (8)

Since the constraints are linear, Cp is a polytope and it
is characterized as Cp = {c ∈ RmR+1 | c satisfies (8)}.
Note that (8) guarantees the satisfaction of the magnitude
and rate constraints only at the grid points t0, t1, . . . , tT .
Therefore the admissibility of every parameter trajectory
obtained by using this ’approximation’ has to be checked
before the trajectory is accepted as a potential parameter
variation of (5). This analysis can be done e.g. by checking
the inequalities above over a denser time grid having break
points in every interval (ti, ti+1), i = 0, . . . , T − 1.

Let Gρ(·,c) denote the PLTV system obtained by evaluating
the LPV system G along the periodic trajectory specified by
ρ(·, c). The method described in the previous section can thus
be used to evaluate the gain ‖Gρ(·,c)‖. It follows immediately
from Aφ ⊂ A that ‖Gρ(·,c)‖ ≤ ‖G‖ for all ρ(·, c) ∈ Ap. The
lower bound on the induced L2 gain of G is thus defined as
follows:

γlb = sup
ρ(·,c)∈Ap

‖Gρ(·,c)‖ = sup
c∈Cp
‖Gρ(·,c)‖ (9)

This is a finite dimensional optimization with linear
programming constraints and nonlinear objective function
that can be evaluated (within some tolerance) using the
bisection algorithm summarized in the previous section. This
problem is non-convex in general. However any nonlinear,
optimization algorithm can be applied to this problem since a
local maxima still yields a lower bound on ‖G‖. One issue is
that a single, accurate evaluation of ‖Gρ(·,c)‖ requires many
bisection steps and, as a consequence the matrix differential
equations (Equations (3b), (3c) and (3a)) must be integrated
many times for a single evaluation of the objective function.
Thus the evaluation of ‖Gρ(·,c)‖ is computationally costly.

A significant reduction in computation time can be
achieved as follows. Let γub denote an upper bound on
the gain of the LPV system, i.e. γub ≥ ‖G‖. Such an
upper bound can be determined by using standard methods
based on dissipativity relation (e.g. Bounded Real type
LMI conditions) [10], [9]. For any ρ(·, c) ∈ Ap, the γub
is also an upper bound on the resulting PLTV system
Gρ(·,c). As a result, the matrix differential equations (3)
will have a well-defined, bounded solution. Moreover, let
(Aγub,ρ(·,c), Bγub,ρ(·,c), Cγub,ρ(·,c)) denote the discrete-time
system computed from the PLTV system Gρ(·,c) with the
value γub. Let ν(c, γub) denote the induced `2 (standard
H∞) norm of this discrete-time system. The bound γub ≥
‖Gρ(·,c)‖ implies that ν(c, γub) < 1. It is reasonable to
maximize ν(c, γub) in c, i.e. to bring its value closer to
1, since in this case the lower bound, corresponding to the

trajectory assigned by the optimal c∗ value, will be ”large”
and thus it provides better estimate for the lower bound on
the L2 norm of the LPV system. Formally, this maximization
can be defined by the following optimization problem:

c∗ = arg sup
c∈Cp

ν(c, γub) (10)

The objective function of this optimization only requires a
single integration of the matrix differential equations. Thus
ν(c, γub) can be evaluated with significantly less computation
than ‖Gρ(·,c)‖. Solving this related optmization yields a
parameter vector c∗ that achieves a (local or global) maxima.
After this optimization, the bisection algorithm of Cantoni
and Sandberg is run once to compute ‖Gρ(·,c∗)‖ and this
yields a lower bound γlb on ‖G‖.

IV. NUMERICAL EXAMPLES

In this section two numerical examples are presented to
demonstrate the applicability of the proposed method. To
initialize our algorithms we need to determine an upper
bound γub for the induced L2 gain. In all examples γub is
computed by solving the following optimization problem:

min
V (x,ρ)

γ

V (x, ρ) > 0, V̇ (x, ρ, ρ̇) ≤ γ2wTw − zT z (11)

where the Lyapunov (storage) function V (x, ρ) was cho-
sen to be quadratic: V (x, ρ) = xTP (ρ)x, P (ρ) =
P (ρ, P0, P1, . . . , PM ) and Pi-s denote the free (matrix)
variables to be found. The infinite LMI constraints obtained
were transformed to a finite set by choosing a suitable dense
grid Γ over the parameter domain P and only the inequalities
evaluated at the grid points are considered [8]. (By using
this grid-based relaxation, we implicitly assume that the γopt
value obtained from (11) converges to an upper bound of the
induced norm as the density of the grid increses.)

A. LPV system with gain-scheduled PI controller

The first example, taken from [4] is a feedback intercon-
nection of a first-order LPV system with a gain-scheduled
proportional-integral controller (see Fig. 1). The state-space
matrices of the closed-loop system are as follows

A(ρ) :=

[ − 1
τ(ρ) (1 +Kp(ρ)K(ρ)) 1

τ(ρ)

−Ki(ρ)K(ρ) 0

]
B(ρ) :=

[
1

τ(ρ)Kp(ρ)

Ki(ρ)

]
,

C(ρ) := [−K(ρ) 0],

D := 1

(12)

where τ(ρ) :=
√

133.6− 16.8ρ, K(ρ) :=
√

4.8ρ− 8.6 and

Kp(ρ) =
2ξclωclτ(ρ)− 1

K(ρ)
, Ki(ρ) =

ω2
clτ(ρ)

K(ρ)
,

ξcl = 0.7, ωcl = 0.25.

The scheduling parameter is assumed to vary in the interval
[2, 7] and ρ̇ ∈ [−1, 1]. We are interested in the induced L2

norm between r(t) and e(t). By performing the optimization



(11) with

V (x, ρ) = xT

(
P0 +

6∑
k=1

ρkPk +
1

ρ
P7 +

1

ρ2
P8 +

1

ρ3
P9

)
x

Γ = {ρ1 = 2, . . . , ρ100 = 7}, ρk+1 − ρk = 5/99

we got γub = 2.964 for the upper bound. Using the parameter
values in Γ the frozen lower bound was also computed as
γlb,fr = maxk ‖Gρk‖, ρk ∈ Γ, where Gρk denotes the LTI
system obtained by substituting ρ(t) = ρk for all t. The
lower bound we obtained is γlb,fr = 1.1066. To compute
the lower bound by using the algorithm introduced in the
previous section, we chose the following structure for the
periodic trajectories:

ρ(t, c) =

9∑
k=1

ck cos(kt/h)

and we let the algorithm tune the period in the interval
[hmin hmax] = [12 20]. The lower bound we obtained is
γlb = 2.5862, at h = 13.8. The nonlinear optimization (10)
was solved by the patternsearch solver of MATLAB. The
worst case scheduling trajectory can be seen in Fig. 2. Note
that, γlb is very close to γub: the difference is only γub−γlb =
0.3838. This means that we have very tight bounds on the
norm of G: 2.5862 = γlb ≤ ‖G‖ ≤ γub = 2.964.

+
Controller Plant

PI(⇢) Go(⇢)

-
r(t)

e(t)

y(t)

Fig. 1. The closed loop interconnection of the parameter-varying plant and
the gain-scheduled PI controller in example IV-A.
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Fig. 2. The worst case parameter trajectory and its time derivative for the
example in Section IV-A.

B. Input and output scaled LTI system
The next example was constructed by taking two copies

of the simple LTI system 1/(s+ 1), scaling the input of the
first and he output of the second by the same time varying

parameter and computing the difference of the two outputs
(see Fig. 3). The system matrices of the LPV system obtained
are as follows:

A :=

[
−1 0
0 −1

]
, B(ρ) :=

[
1
ρ

]
C(ρ) :=

[
ρ −1

]
, D := 0;

We assumed that ρ ∈ [−1 1] and ρ̇ ∈ [−µ µ]. The bounds
on the induced norm between w(t) and z(t) was computed
for different values of µ. It follows from the structure of
the system that if ρ is constant then the difference between
the input and the output scaled systems is 0. This implies
that γlb,fr = 0. Next, the upper bound γub was computed by
using (11) with the following strorage function and parameter
grid:

V (x, ρ) = xT

(
P0 +

10∑
k=1

ρkPk

)
x

Γ = {ρ1 = −1, . . . , ρ100 = 1}, ρk+1 − ρk = 2/99

The upper bounds obtained are collected in Table I. To com-
pute the lower bound we constructed the periodic trajectories
as a sum of sinus functions:

ρ(t, c) =

9∑
k=1

ck sin(kt/h)

During the optimization the period h was constrained to
be smaller than 20. The nonlinear optimization (10) was
solved again by the patternsearch solver of MATLAB. The
computation time was in each case approx. 200 sec. The
lower bounds and the period of the worst-case scheduling
trajectories obtained for the different µ values are collected
in Table I. The lower and upper bounds are also plotted
in Fig. 4. It can be seen that the upper and lower bounds
are very close to each other, which means that by using
the upper and lower bound algorithms together we could
precisely compute the norm of this LPV system. In two
particular cases, µ = 1 and µ = 2, we plotted also the worst
case scheduling trajectories in Fig. 5 and Fig 6, repectively.

ẋ1 = �x1 + u1

y1 = x1

⇢(t)

⇢(t)

+

-
w(t) z(t)

ẋ2 = �x2 + u2

y2 = x2

Fig. 3. The LPV system in Section IV-B.

V. CONCLUSION

In the paper a numerical method is proposed for computing
the lower bound of the induced L2-gain of continuous-
time, LPV systems. The algorithm finds this bound by using
nonlinear optimization over periodic scheduling parameter
trajectories. Restricting the domain of parameter trajecto-
ries to periodic signals enables to use the recent results
for exact calculation of the L2 norm for a periodic time
varying system. It was shown that the proposed algorithm
can be reliably implemented by standard numerical tools and
provides suitable precise approximation for the L2 bound.



µ γlb γub γub − γlb h
0.1000 0.0825 0.1087 0.0262 19.9990
0.4000 0.3174 0.3342 0.0168 20.0008
0.7000 0.4567 0.4805 0.0238 14.1852
1.0000 0.5448 0.5766 0.0318 14.1736
1.3000 0.6143 0.6435 0.0292 9.7496
1.6000 0.6386 0.6924 0.0538 8.9974
2.0000 0.6893 0.7403 0.0510 7.2397

TABLE I
UPPER AND LOWER BOUNDS ON THE L2 NORM OF THE LPV SYSTEM

DEFINED IN SECTION IV-B
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Fig. 4. Upper and lower bounds on the induced L2 norm computed for
the LPV system in Section IV-B. The bounds are plotted as a functions of
the rate limit µ.
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Fig. 5. The worst case parameter trajectory and its time derivative for the
example in Section IV-B in case of µ = 1.

ACKNOWLEDGMENTS

The authors greatly acknowledge the help of Henrik
Sandberg for making the MATLAB code of the numerical
example presented in [2] available for the purpose of this
research.

0 5 10 15 20

−1

−0.5

0

0.5

1

ρ

0 5 10 15 20

−2

−1

0

1

2

d
ρ
 /

 d
t

Time [sec]
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