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Abstract— The paper considers the analysis of the worst-
case input/output gain of an interconnection of a known
linear parameter varying system and a perturbation. The
input/output behavior of the perturbation is described by
an integral quadratic constraint (IQC). Recent results have
shown that under certain technical conditions IQCs can be
formulated as a finite horizon time domain constraint. The
worst-case input/output gain of the interconnection can then
be bounded using a dissipation inequality that incorporates
the IQCs. Unlike the classical frequency domain approach to
IQCs, this time domain interpretation opens up a new class
of IQCs, where the IQC itself is parameter-varying. Various
examples for parameter-varying IQCs for different classes of
perturbations are given. A simple numerical example shows
that the introduction of parameter-varying IQCs can lead to
less conservative bounds on the worst-case gain.

I. INTRODUCTION

Integral quadratic constrains (IQC) [1] provide a general
framework for robustness analysis. In the classical IQC
framework, an interconnection of a known linear time invari-
ant system and a perturbation is considered. The input/output
behavior of the perturbation is bounded by an integral
quadratic constraint in the frequency domain. The IQC itself
is defined by a multiplier which, in this approach, is a linear
time invariant system. Based on the results of [2], it has
been recently shown that an equivalent time domain approach
can be taken based on dissipation inequalities [3], [4]. These
results are summarized in Section II.

Using the time-domain viewpoint the IQC framework can
be extended to consider the interconnection of a known
linear parameter varying (LPV) system and a perturbation
described by a time-domain IQC [5], [6], [7], [8]. The work
in [5], [6], [7] consider LPV systems whose state matrices
have rational (linear fractional) dependence on the scheduling
parameters. The work in [8], on the other hand, provides
analysis conditions for LPV systems with arbitrary (possibly
non-rational) parameter dependence. This paper also focuses
on systems with arbitrary parameter dependence but most
results can be specialized to systems with rational parameter
dependence. A brief review of the related existing technical
results is presented in Section II.

The contribution of this paper is the introduction of a new
class of parameter-varying IQCs based on the dissipation
inequality framework. Unlike the classical frequency domain
approach to IQCs [1], the time domain interpretations allows
for the IQC multiplier to be time varying and/or nonlinear.
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In this work specifically parameter-varying IQCs are studied
for the analysis of an LPV system under a perturbation. In
Section III the notion of these parameter-varying IQCs is
defined and examples for different operators that can be
bounded by this new class of IQCs are given. Allowing
the IQC to be parameter varying gives additional flexibility
which can lead to less conservative results as is shown in the
numerical example given in Section IV.

Note that results for parameter-dependent multipliers exist
in the literature. For example, the results in [9], [10] consider
a known LTI system G interconnected with real parameter
uncertainty ∆ specified as the LFT Fu(G,∆). Analysis
conditions are developed based on a parameter-dependent
multiplier. The multiplier for ∆ depends on ∆ itself. This
paper considers different class of parameter-dependent mul-
tiplier. Specifically, the problem formulation considers the
interconnection Fu(Gρ,∆) of an LPV system Gρ and an
uncertainty ∆. The objective is to develop a multiplier for
∆ that depends on the parameter ρ that appears in the known
part of the model. This allows less conservative results for
example if ∆ itself depends on ρ as shown in [11].

II. BACKGROUND

A. Integral Quadratic Constraints

This section describes IQCs for a bounded, causal operator
∆ with the input/output behavior described by w = ∆(v).
The input/output signals of ∆ can be bounded by an IQC.
A precise definition is given below for an IQC in the time
domain.

Definition 1. Let M be a symmetric matrix, i.e. M =
MT ∈ Rnz×nz and Ψ a stable linear system, i.e. Ψ ∈
RHnz×(nv+nw)
∞ . A bounded, causal operator ∆ : Lnv2e →

Lnw2e satisfies an IQC defined by (Ψ,M) if the following
inequality holds ∀v ∈ Lnv2 [0,∞), w = ∆(v) and T ≥ 0:∫ T

0

z(t)TMz(t) dt ≥ 0 (1)

where z is the output of the linear system Ψ:

ẋψ(t) = Aψxψ(t) +Bψ1v(t) +Bψ2w(t), xψ(0) = 0

z(t) = Cψxψ(t) +Dψ1v(t) +Dψ2w(t)
(2)

The notation ∆ ∈ IQC(Ψ,M) is used if ∆ satisfies the IQC
defined by (Ψ,M).

Fig. 1 provides a graphic interpretation of the IQC. The
input and output signals of ∆ are filtered through Ψ. If ∆ ∈
IQC(Ψ,M) then the output signal z satisfies the constraint
in Equation (1) for any finite-horizon T ≥ 0.
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Fig. 1. Graphic interpretation of the IQC

The proposed approach applies to the more general IQC
framework introduced in [1] but with some technical restric-
tions. In particular, [1] provides a library of IQC multipliers
that are satisfied by many important system components,
e.g. saturation, time delay, and norm bounded uncertainty.
The IQCs in [1] are expressed in the frequency domain
as an integral constraint defined using a multiplier Π. The
multiplier Π can be factorized as Π = Ψ∗MΨ and this
connects the frequency domain formulation to the time-
domain formulation used in this paper. One technical point
is that, in general, the time domain IQC constraint only
holds over infinite horizons (T = ∞). The work in [1], [2]
draws a distinction between hard/complete IQCs for which
the integral constraint is valid over all finite time intervals
and soft/conditional IQCs for which the integral constraint
need not hold over finite time intervals. The formulation
of an IQC in this paper as a finite-horizon (time-domain)
inequality is thus valid for any frequency-domain IQC that
admits a hard/complete factorization (Ψ,M). While this is
somewhat restrictive, it has recently been shown in [2] and
[12] that a wide class of IQCs have a hard factorization.
The remainder of the paper will simply treat, without further
comment, (Ψ,M) as the starting point for the definition of
the finite-horizon IQC.

B. Robustness Analysis of LPV Systems

Linear Parameter Varying (LPV) systems are a class of
linear systems whose state space matrices depend on a time-
varying parameter vector ρ : R → Rnρ . The parameter is
assumed to be a continuously differentiable function of time
and admissible trajectories are restricted, based on physical
considerations, to a known compact subset P ⊂ Rnρ .
The state-space matrices of an LPV system are continuous
functions of the parameter, e.g. AG : P → Rnx×nx . Define
the LPV system Gρ with inputs (w, d) and outputs (v, e) as:

ẋG(t) = AG(ρ(t))xG(t) +BG(ρ(t))
[
w(t)
d(t)

]
[
v(t)
e(t)

]
= CG(ρ(t))xG(t) +DG(ρ(t))

[
w(t)
d(t)

] (3)

The state matrices at time t depend on the parameter vector
at time t. Hence, LPV systems represent a special class of
time-varying systems. Throughout this section the explicit
dependence on t is suppressed to shorten the notation.

An uncertain LPV system is described by the intercon-
nection of an LPV system Gρ and an uncertainty ∆. This
interconnection represents an upper linear fractional transfor-
mation (LFT), which is denoted Fu(Gρ,∆). The uncertainty
∆ is assumed to satisfy an IQC described by (Ψ,M). In the
basic interconnection Fu(Gρ,∆) the filter Ψ is included as

shown in Fig. 2. For fixed ∆, ‖Fu(Gρ,∆)‖ will denote the
largest L2 gain over all allowable parameter trajectories:

‖Fu(Gρ,∆)‖ = sup
ρ∈P

sup
0 6=d∈Lnd2 [0,∞), xG(0)=0

‖e‖
‖d‖

(4)
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Fig. 2. Analysis Interconnection

The dynamics of the interconnection in Fig. 2 depends on
an extended LPV system of the form:

ẋ = A(ρ)x+B1(ρ)w +B2(ρ)d

z = C1(ρ)x+D11(ρ)w +D12(ρ)d

e = C2(ρ)x+D21(ρ)w +D22(ρ)d,

(5)

where the state vector is x := [
xG
xψ ] ∈ RnG+nψ with xG

and xψ denoting the state vectors of the LPV system Gρ (3)
and the filter Ψ (2), respectively. A dissipation inequality
can be formulated to upper bound the worst-case L2 gain
of Fu(Gρ,∆) (over all uncertainties) using the system (5)
and the time domain IQC (1). This dissipation inequality
is concretely expressed as a linear matrix inequality in the
following theorem.

Theorem 1. Let ∆ satisfy IQC(Ψ,M) and assume
Fu(Gρ,∆) is well posed. Then ‖Fu(Gρ,∆)‖ ≤ γ if there
exists a scalar λ > 0 and a matrix P = PT ∈ RnG+nψ such
that P ≥ 0 and for all ρ ∈ P:[

PA+ATP PB1 PB2

BT1 P 0 0

BT2 P 0 −I

]
+ λ

[
CT1
DT11
DT12

]
M [C1 D11 D12 ]

+
1

γ2

[
CT2
DT21
DT22

]
[C2 D21 D22 ] < 0

(6)

In Equation (6) the dependency of the state space matrices
on ρ has been omitted to shorten the notation.

Proof. The proof is based on defining a storage function V :
Rnx+nψ → R+ by V (x) = xTPx. Left and right multiply
Equation (6) by [xT , wT , dT ] and [xT , wT , dT ]T to show that
V satisfies the dissipation inequality:

λz(t)TMz(t) + V̇ (t) ≤ γ2d(t)T d(t)− e(t)T e(t) (7)

The dissipation inequality Equation (7) can be integrated
from t = 0 to t = T with the initial condition x(0) = 0



to yield:

λ

∫ T

0

z(t)TMz(t) dt+ V (x(T )) ≤ (8)

γ2
∫ T

0

d(t)T d(t) dt−
∫ T

0

e(t)T e(t) dt

It follows from the IQC condition Equation (1), λ ≥ 0, and
the non-negativity of the storage function V that∫ T

0

e(t)T e(t) dt ≤ γ2
∫ T

0

d(t)T d(t) dt (9)

Hence ‖Fu(G,∆)‖ ≤ γ.

A detailed proof of Theorem 1 as well as an extension to
LPV systems with bounded parameter variation rates using
parameter dependent storage functions can be found in [8].
Note that Theorem 1 is a generalization of the Bounded Real
Lemma like condition for known LPV systems introduced in
[13]. The connection is shown in detail in [8].

III. PARAMETER-VARYING IQCS

The dissipation inequality framework opens up the possi-
bility for new classes of IQCs. Unlike the classical frequency
domain approach to IQCs, the time domain interpretation
allows for Ψ and/or M to be time varying and/or nonlinear.
This generalizes the theory in [1] which is restricted to
the case where Ψ and M are an LTI system and constant
matrix, respectively. As a specific example, Theorem 1
can be extended to consider parameter-varying IQCs where
Ψρ and/or Mρ could depend on ρ. A formal definition of
parameter-varying IQCs is now given which extends the one
given in Definition 1.
Definition 2. Assume Mρ : P → Rnz×nz , such that
Mρ(ρ) = Mρ(ρ)T for all ρ ∈ P . In addition, let Ψρ be
a stable LPV system of the form

ẋψ = Aψ(ρ)xψ +Bψ1(ρ)v +Bψ2(ρ)w, xψ(0) = 0

z = Cψ(ρ)xψ +Dψ1(ρ)v +Dψ2(ρ)w.
(10)

A bounded, causal operator ∆ : Lnv2e → Lnw2e satisfies an
parameter-varying IQC defined by (Ψρ,Mρ) if the following
inequality holds for all v ∈ Lnv2 [0,∞), w = ∆(v), ρ ∈ P
and T ≥ 0: ∫ T

0

z(t)TMρ(ρ(t))z(t) dt ≥ 0 (11)

where z is the output of the LPV system Ψρ.
The remainder of the section provides various examples

of parameter-varying IQCs for different classes of uncertain-
ties/nonlinearities. In general, IQCs can be categorized in
the following ways: First, either the described operator is
memoryless or not, meaning that ∆ may or may not include
internal dynamics. In the paper, examples for both of these
cases are given. Second, the IQC itself can be memoryless
or not. This implies that either Ψρ is a dynamical system
or the identity matrix. This paper only considers the latter
case where Ψρ = Inz . The consideration of a dynamical,
potentially parameter-varying Ψρ will be pursued in future
research.

A. Time-varying Parametric Uncertainties

The first example considers repeated time varying real
parameters, i.e. ∆(t) = δ(t)Inv , where δ : R → R with
‖δ‖∞ ≤ 1. For ∆ of this form a simple IQC in [1] is given
by Ψ := I2nv and M :=

[
X Y
Y T −X

]
where X ≥ 0 and

Y = −Y T . This IQC is equivalent to the use of constant
D and G-scales in classical robustness analysis, e.g. the
structured singular value µ [14], [15], [16]. Consider the
case of a parameter-varying system with this time-varying
real parameter uncertainty, i.e. Fu(Gρ,∆). The constant IQC
just described for ∆ is, in general, conservative in this case.
The conservatism can be reduced by allowing the IQC from
[1] to depend on ρ. The next Lemma demonstrates that a
parameter-dependent IQC is indeed a valid IQC for ∆.
Lemma 1. Let X : P → Rnv×nv and Y : P → Rnv×nv
satisfy X(ρ) ≥ 0 and Y (ρ) = −Y (ρ)T for all ρ ∈ P .
Then ∆ = δInv with δ : R → R, ‖δ‖∞ ≤ 1 satisfies the
IQC(Ψρ,Mρ) where Ψρ := I2nv and

Mρ(ρ(t)) :=

[
X(ρ(t)) Y (ρ(t))

Y (ρ(t))T −X(ρ(t))

]
(12)

Proof. Let v ∈ Lnv2 [0,∞). At each point in time, v(t) and
w(t) = ∆(t)v(t) satisfies the quadratic relation:[

v

w

]T [
X(ρ) Y (ρ)

Y (ρ)T −X(ρ)

][
v

w

]
=

vT [(1− δ2)X(ρ) + δ(Y (ρ) + Y (ρ)T )]v

(13)

The assumptions on δ, X , and Y immediately imply that
[ vw ]

T
Mρ(ρ) [ vw ] ≥ 0 at each point in time. Integration of

this quadratic constrain over any finite time interval [0, T ]
thus implies ∆ ∈ IQC(Ψρ,Mρ).

This parameter-varying IQC can be used within the dissi-
pation inequality framework to develop a less conservative
analysis condition for LPV systems under time-varying real
parametric uncertainties. Let Fu(Gρ,∆) denote a uncertain
LPV system and consider ∆ ∈ IQC(Ψρ,Mρ) as defined by
Lemma 1. The analysis interconnection (Fig. 2) simplifies in
this case because Ψρ = I2nv means that z = [ vw ]. This leads
to the following analysis result:
Corollary 1. Assume Fu(Gρ,∆) is well posed for all ∆ =
δIn with δ : R→ R, ‖δ‖∞ ≤ 1. Then ‖Fu(Gρ,∆)‖ ≤ γ if
there exists a scalar λ > 0 and a matrix P = PT ∈ Rnx+nψ
such that P ≥ 0 and for all ρ ∈ P Equation (6) holds where
M := Mρ and Ψρ are specified in accordance with Lemma 1.

Allowing X and Y to be a function depending on ρ
gives additional flexibility in comparison to restricting them
to be constant. This added flexibility comes at the cost of
introducing additional unknowns in the problem formulation.

B. Memoryless Nonlinearities in a Sector

The next example considers repeated monotonic nonlin-
earities described by an operator Φ : Rnv → Rnv that has
the form

Φ(v) = [φ(v1), . . . , φ(vnv )]T (14)



where φ is a scalar monotonically nondecreasing nonlinearity
belonging to a finite sector [0, k]. Note that by an operator φ
belonging to a sector [α, β], it is meant that (φ(v)−αv)(βv−
φ(v)) ≥ 0 for all v ∈ R. IQCs that bound the input/output
behavior of Φ are proposed in [17] which are extended in
this section into the parameter-varying IQC framework. The
key idea in [17] is to use diagonally dominant multipliers
as an extension of classical diagonal multipliers for repeated
nonlinearities.

Lemma 2. Let Q : P → Rnv×nv be diagonally dominant
for all ρ ∈ P , i.e. Qii(ρ) ≥

∑n
j=1,j 6=i |Qij(ρ)| ,∀i =

1, . . . , n. Assume Qij(ρ) ≤ 0 for all i 6= j and ρ ∈ P .
Then Φ as defined by Equation (14) with φ monotonic
nondecreasing and belonging to a finite sector [0, k] satisfies
the IQC(Ψρ,Mρ) where Ψρ := I2nv and

Mρ(ρ(t)) :=

[
0 Q(ρ(t))

Q(ρ(t)) 0

]
(15)

Proof. Let v ∈ Lnv2 [0,∞) and define w = Φ(v). At each
point in time v and w satisfy[

v

w

]T [
0 Q(ρ)

Q(ρ) 0

][
v

w

]
= wTQ(ρ)v. (16)

The remainder of the proof uses the given assumptions to
demonstrate that wTQ(ρ)v ≥ 0 at each point in time. First,
by symmetry of Q(ρ), Equation (16) can be written as

n∑
i=1

wiviQii(ρ) +
1

2

n∑
j=1,j 6=i

Qij(ρ)(wivj + wjvi) (17)

Next, the assumptions on φ can be used to show (Lemma 5
in the appendix) that the following inequality holds for each
i 6= j

wjvj + wivi ≥ wivj + wjvi (18)

Moreover, Equation (18) and the assumption Qij(ρ) ≤ 0 for
all i 6= j and all ρ ∈ P to imply the following inequality:

n∑
j=1,j 6=i

Qij(wivj + wjvi) ≥
n∑

j=1,j 6=i

− |Qij | (wivi + wivi)

(19)
This relation along with Equation (17) can be used to show
that

wTQ(ρ)v ≥
n∑
i=1

wivi

Qii(ρ)−
n∑

j=1,j 6=i

|Qij(ρ)|

 . (20)

Since Q(ρ) is diagonally dominant, the right hand side of
Equation (20) is ≥ 0. This implies that wTQ(ρ)v ≥ 0 at
each point in time. Integration over a finite time interval
yields the corresponding IQC.

It is straightforward to obtain an analysis result similar
to Corollary 1 for the interconnection of an LPV system
and a repeated monotonic nonlinearity. Analogously to the
approach in [17], the parameter varying IQC can be extended
to consider repeated nonlinearities belonging to a given

sector [α, β] with α < β, i.e. (φ(v) − αv)(βv − φ(v)) ≥ 0
∀v ∈ R.
Lemma 3. Let Q : P → Rnv×nv be diagonally dominant
for all ρ ∈ P and assume Qij(ρ) ≤ 0 for all i 6= j and
ρ ∈ P . Then Φ as defined by Equation (14), where φ is
monotonically nondecreasing and belongs to the sector [α, β]
with α < β, satisfies the IQC(Ψρ,Mρ) where Ψρ := I2nv
and

Mρ(ρ(t)) :=

[
−2αβQ(ρ(t)) (α+ β)Q(ρ(t))

(α+ β)Q(ρ(t)) −2Q(ρ(t))

]
(21)

Proof. The proof is similar to that given for the extension to
[α, β] in Theorem 1 of [17]. Perform the loop transformation
shown in Fig. 3 below.

Φ

1
β−αI

−αI

ṽ w̃v w

Φ̃

Fig. 3. Loop transformation on Φ

As shown in Claim A.3 of [17], Φ̃ is monotonically non-
decreasing and belongs to a finite sector [0, k] for some k <
∞. By Lemma 2, the input/output signals of Φ̃ satisfy a
quadratic inequality at each time[

ṽ

w̃

]T [
0 Q(ρ)

Q(ρ) 0

][
ṽ

w̃

]
(22)

Substitute for (ṽ, w̃) in terms of (v, w) to conclude that Φ
satisfies IQC(Ψρ,Mρ) with Ψρ := I2nv and Mρ as defined
in Equation (21).

C. Time Delays

A final example is given for the analysis of time-delayed
LPV systems. Unlike the previous examples, in the case of
the time-delay ∆ has an internal dynamics. A constant delay
w = Dτ (v) is defined by w(t) = v(t− τ) where τ specifies
the constant delay. To be precise the constant delay is defined
as Dτ : Ln2 [0,∞) → Lnv2 [0,∞) such that w = Dτ (v)
satisfies w(t) = 0 for t ∈ [0, τ) and w(t) = v(t − τ) for
t ≥ τ . The next lemma provides a parameter-varying IQC
for Dτ . Note that this IQC is delay independent i.e. it does
not depend on the amount of delay. The basic idea for the
proposed IQC is taken from [18] which develops stability
conditions for a delayed LPV system using the Lyapunov-
Krasovskii framework.
Lemma 4. Let Q : P → Rnv×nv satisfy Q(ρ) ≥ 0 for all
ρ ∈ P . Then Dτ ∈ IQC(Ψρ,Mρ) where Ψρ := I2nv and
Mρ :=

[
Q(ρ(t)) 0

0 −Q(ρ(t−τ))

]



Proof. Let v ∈ Lnv2 [0,∞) and define w = Dτ (v). The
assumption Q(ρ) > 0 implies that the following inequality
holds for all v ∈ Lnv2 [0,∞) and for all T ≥ 0:∫ T

T−τ
vT (t)Q(ρ(t))v(t) dt ≥ 0 (23)

This integral term appears as one term of the Lyapunov-
Krasovskii function of Theorem 4.1 in [18]. With some
algebra this expression can be re-written in the following
IQC form:∫ T

0

[
v(t)
w(t)

]T [
Q(ρ(t)) 0

0 −Q(ρ(t−τ))

] [
v(t)
w(t)

]
dt ≥ 0 (24)

Thus Dτ ∈ IQC(Ψρ,Mρ).

This IQC can be also be obtained via a scaling argument.
Specifically, the norm bound ‖Dτ‖ ≤ 1 leads to the simple
(constant) IQC Dτ ∈ IQC(Ψ,M) where Ψ = I2nv and
M =

[
Inv 0
0 −Inv

]
. The delay Dτ also satisfies the fol-

lowing swapping relation: DτX(ρ(t)) = X(ρ(t − τ))Dτ ,
see Fig. 4. Thus the matrix-scaled system ∆̄ = X(ρ(t −

DτX(ρ(t))−1 X(ρ(t− τ))
v̄ w̄v w

∆̄

Fig. 4. Scaling of the time delay Dτ

τ))DτX(ρ(t))−1 is also norm bounded by 1. The associated
input/output pair for the original system w = ∆(v) is related
to the input/output pair for the scaled system by w̄ = Xw
and v̄ = Xv. Using this relation and the condition

∥∥∆̄
∥∥ ≤ 1

leads to the conclusion of Lemma 4: Dτ ∈ IQC(Ψρ,Mρ)
where Q(ρ) = XT (ρ)X(ρ) > 0.

Due to the appearance of both terms Q(ρ(t)) and Q(ρ(t−
τ) in Lemma 4, Theorem 1 can not be applied directly to
obtain a bound on the worst case gain of the interconnection
Fu(Gρ,Dτ ). Instead the following slightly modified theorem
needs to be used.
Theorem 2. Assume Fu(Gρ,Dτ ) is well posed for the
constant delay τ > 0. Then ‖Fu(Gρ,Dτ )‖ < γ if there exists
a matrix P = PT > 0 and a function Q : P → Rnv×nv such
that ∀ρ1, ρ2 ∈ P Q(ρ1) > 0 andPA(ρ1) +A(ρ1)TP PB1(ρ1) PB2(ρ1)

B1(ρ1)TP 0 0

B2(ρ1)TP 0 −I



+

 C1(ρ1)T

D11(ρ1)T

D12(ρ1)T

Mρ(ρ1, ρ2)
[
C1(ρ1) D11(ρ1) D12(ρ1)

]

+
1

γ2

 C2(ρ1)T

D21(ρ1)T

D22(ρ1)T

[C2(ρ1) D21(ρ1) D22(ρ1)

]
< 0

(25)

where Mρ(ρ1, ρ2) :=
[
Q(ρ1) 0

0 −Q(ρ2)

]
.

Proof. The proof uses the IQC for Dτ defined in Lemma 4
and is similar to that given for Theorem 1. Details are
omitted.

IV. NUMERICAL EXAMPLE

A simple example is used to demonstrate the applica-
bility of the proposed method. The example is a feedback
interconnection of a second-order LPV system with an input
saturation and an anti-windup controller as shown in Fig. 5.
The LPV system Gρ is a second order system depending on

GρΦC1

C2 G̃

e d

u y

−

Fig. 5. Closed Loop Interconnection with Input Saturation

a single scheduling parameter ρ that can vary arbitrary fast
in the interval [0, 1]. It has the form

ẋG = A(ρ)xG +Bu y = C(ρ)xG with (26)

A(ρ) :=

[
−0.01 0

0 −0.01

]
− ρ

9

[
0.01 0

0 0.01

]
,

C(ρ) :=

[
0.4 −0.5

−0.3 0.4

]
+
ρ

9

[
0.4 −0.5

−0.3 0.4

]
.

(27)

The controller elements C1, C2 and G̃ represent an anti-
windup controller which has been designed in [19] for the
linear system Gρ(ρ = 0). The controller elements have the
following transfer matrices:

C1 :=
2.5(s+ 1)

(20s+ 1)(0.1s+ 1)

[
1.6s+ 1 2s

1.2s 1.6s+ 1

]
,

C2 :=
1

100s+ 1

[
99 −125(s+1)

0.1s+1
−75(s+1)
0.1s+1 99

]
,

G̃ :=
10

100s+ 1

[
4 −5

0.1s+1
−3

0.1s+1 4

]
.

(28)

The saturation Φ is a 2-by-2 MIMO operator. It is bounded
by the IQC(Ψρ,Mρ) as defined in Lemma 3 with the sector
bound set to [0, 1], i.e. Mρ(ρ) =

[
0 Q(ρ)

Q(ρ) −2Q(ρ)

]
.

The results of the study are summarized in Tab. I. First,
a linear analysis on the vertices of Gρ is performed to gain
some insight in the achievable worst case gain. The worst-
case gain is estimated at the frozen grid points ρ = 0 and
ρ = 1 using an LTI version of Theorem 1 with Q set to a
constant matrix (i.e. Theorem 2 in [17]). Next, Theorem 1 is
invoked using both a constant matrix Q and a parameter



varying Q(ρ) = Q0 + ρQ1. In general, Q can have an
arbitrary dependence on ρ. An affine dependence is sufficient
in the presented example, as the system itself only depends
affinely on ρ. Since the system Gρ depends affinely on ρ,
the LMI constraints only need to be enforced at ρ = 0 and
ρ = 1. This example shows the benefit of parameter varying
IQCs. Using a constant Q yields a significantly higher upper
bound on the worst-case gain than Q(ρ).

System Method Worst Case Gain

LTI: Gρ(ρ = 0) constant Q 15.18
LTI: Gρ(ρ = 1) constant Q 24.43

LPV: Gρ constant Q 80.09
LPV: Gρ parameter varying Q(ρ) 43.38

TABLE I
SUMMARY OF ROBUST PERFORMANCE OF THE LPV SYSTEM UNDER

SATURATION

V. CONCLUSION

This paper introduced a new class of IQCs based on
the time-domain viewpoint. In this time-domain framework
the IQC multiplier is no longer restricted to linear time
invariant systems. Allowing the multiplier itself to depend
on the scheduling parameter adds additional flexibility in the
robustness analysis of LPV systems. For different operators
parameter-varying IQCs are given which are extension of
known classical time invariant results. The potential advan-
tage of using parameter-varying IQCs was demonstrated with
a simple numerical example. Future work will explore the
usage of LPV filters in the IQC description, as well as
extending the operators that can be described by parameter-
varying IQCs.
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APPENDIX

The following Lemma is a simplified version of Lemma
A.1. from [17]. It is used to prove Lemma 2.
Lemma 5. Let φ : R → R be monotonically nondecreasing
and belonging to some finite sector [0, k] with k <∞. Then
the following inequality holds for all x, y ∈ R:

φ(x)x+ φ(y)y ≥ φ(x)y + φ(y)x (29)

Proof. The monotonicity of φ implies that the following in-
equality holds for any α, β ∈ R: (β−α)φ(β) ≥

∫ β
α
φ(v)dv.

Setting α = x and β = y yields

φ(y)y − φ(y)x ≥
∫ y

x

φ(v)dv. (30)

Similarly α = y and β = x gives

φ(x)x− φ(x)y ≥
∫ x

y

φ(v)dv = −
∫ y

x

φ(v)dv. (31)

Equations (30) and (31) can be used to bound the integral∫ y
x
φ(v)dv from above and below respectively.

φ(y)y − φ(y)x ≥
∫ y

x

φ(v)dv ≥ φ(x)y − φ(x)x (32)

Using these bounds and rearranging the terms finally yields

φ(x)x+ φ(y)y ≥ φ(x)y + φ(y)x (33)

which concludes the proof.


