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Abstract— The paper considers a general approach for gain
scheduling of Lipschitz continuous nonlinear systems. The
approach is based on a linear parameter varying system (LPV)
representation of the nonlinear dynamics along with integral
quadratic constraints (IQC) to account for the linearization
errors. Past results have shown that Jacobian linearization leads
to hidden coupling terms in the controlled system. These terms
arise due to neglecting the higher order terms of the Taylor
series and due to the use of constant (frozen) values of the
scheduling parameter. This paper proposes an LPV control
synthesis method that accounts for these shortcomings. The
higher order terms of the linearization are treated as a mem-
oryless uncertainty whose input/output behavior is described
by a parameter varying IQC. It is also shown that if the
rate of the scheduling parameter is measurable then it can be
treated as a known disturbance in the control synthesis step.
A simple numerical example shows that the proposed control
design approach leads to improved control performance.

I. INTRODUCTION

Gain scheduling is a common approach to nonlinear
control design [1], [2], [3], [4]. The starting point for
gain scheduling design is an LPV model of the nonlinear
plant generally obtained by Jacobian linearization about a
family of equilibrium (trim) points as given in Section II. A
linear controller is designed at each trim point of the plant
ensuring that the performance criteria are met locally. The
nonlinear controller is constructed by interpolating between
the linear controllers based on the scheduling parameter. Two
main directions exist for LPV system representation, linear
fractional transformation (LFT) based LPV systems [4], [5],
[6] and ”grid-based” LPV systems [7], [8]. The former
requires rational dependence on the parameters, but leads
to more computationally tractable linear matrix inequality
(LMI) conditions while the latter offers arbitrary dependence
on the parameter. The paper follows the grid-based approach,
but the results may be extended to LFT type LPV systems.

The main advantage of gain scheduling is that it applies
well developed linear design tools to nonlinear problems.
The induced L2 control design approach is given in Section
III-A. On the other hand, a major limitation of gain schedul-
ing is that the closed-loop system fulfills the stability and
performance criteria only in the vicinity of the trim points.
It was shown in [2], [9], [10], [11], [12], [13], [14] that
hidden coupling terms can appear in the closed loop due to
neglecting the higher order terms of the Taylor series in the
linearization and due to variation in the scheduling parameter.
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The aim of the paper is to propose a control synthesis
method that accounts for these shortcomings of gain schedul-
ing. The paper considers Lipschitz-continuous nonlinear sys-
tems. The higher order terms of the linearization of such
systems can be treated as a memoryless uncertainty whose
input/output signals are described by a parameter varying
IQC. IQCs provide a general framework for robustness anal-
ysis [15], where the interconnection of a linear system and
a perturbation is considered and the input/output behavior
of the perturbation is bounded by an IQC in the frequency
domain (Section III-B). The IQC framework is extended to
the time domain based on the dissipation inequality in [6],
[16] and parameter varying IQCs are introduced in [17], [18].
Hidden couplings arise in the linearization process due to the
time variation of the scheduling parameter. This variation can
be treated as a disturbance in the design (synthesis) model.
In addition, the LPV controller can explicitly depend on the
parameter rate of variation if it is measurable [7], [8]. This
offers guarantees on stability and performance in the case of
time-varying scheduling parameter(s). The proposed control
design and a numerical example are given in Sections IV–V.

II. PROBLEM FORMULATION

A. Assumptions
Consider the following nonlinear system G:

ẋ(t) = f(x(t), d(t), u(t), ρ(t))

e(t) = h1(x(t), d(t), u(t), ρ(t))

y(t) = h2(x(t), d(t), u(t), ρ(t))

(1)

where f , h1 and h2 are differentiable functions. The signals
are input u(t) ∈ Rnu , disturbance d(t) ∈ Rnd , measured
output y(t) ∈ Rny , performance output e(t) ∈ Rne and state
variable x(t) ∈ Rnx . Finally, ρ(t) ∈ Rnρ is a measurable
exogenous parameter vector, called the scheduling parameter.
ρ is assumed to be a continuously differentiable function and
the admissible trajectories are restricted based on physical
considerations to a known compact subset P ⊂ Rnρ . The
rates of the parameter variation ρ̇ are assumed to be bounded
in some applications. The present paper investigates the
unbounded rate case for simplicity. The results carry over
to the rate bounded case with a more complex notation. The
dependence on time t is suppressed to shorten the notation.

Assumption 1: f , h1 and h2 are Lipschitz-continuous:
‖f(α1)− f(α2)‖ ≤ Lf ‖α1 − α2‖ ∀α1, α2 ∈ dom f

‖h1(α1)− h1(α2)‖ ≤ Lh1 ‖α1 − α2‖ ∀α1, α2 ∈ domh1

‖h2(α1)− h2(α2)‖ ≤ Lh2 ‖α1 − α2‖ ∀α1, α2 ∈ domh2

(2)

where Lf , Lh1
, Lh2

∈ R+
0 are the Lipschitz constants for f ,

h1 and h2, respectively.



Assumption 2: There is a family of equilibrium points
(x̄(ρ), d̄(ρ), ū(ρ)) such that

f(x̄(ρ), d̄(ρ), ū(ρ), ρ) = 0, ∀ρ ∈ P (3)

The parameterized trim outputs are defined as

ē(ρ) = h1(x̄(ρ), d̄(ρ), ū(ρ), ρ), ∀ρ ∈ P
ȳ(ρ) = h2(x̄(ρ), d̄(ρ), ū(ρ), ρ), ∀ρ ∈ P

(4)

The general control objective is to ensure that x tracks
x̄(ρ). Note that ρ specifies the desired operating point and
is effectively a reference command.

B. Jacobian Linearization of Nonlinear Systems
The nonlinear system G given by (1) can be linearized

about the equilibrium points via Jacobian linearization based
on Taylor series expansion. Define the deviation variables as

δx := x− x̄(ρ), δu := u− ū(ρ), δe := e− ē(ρ)

δy := y − ȳ(ρ), δd := d− d̄(ρ)
(5)

Differentiating the δx term of (5) results in

δ̇x = ẋ− ˙̄x(ρ) = f(x, d, u, ρ)− ˙̄x(ρ) (6)

The Taylor series expansion of f , h1 and h2 about the
equilibrium point yields

δ̇x = ∇xf |0 δx + ∇df |0 δd + ∇uf |0 δu + εf (δx, δd, δu, ρ)− ˙̄x(ρ)

δe = ∇xh1|0 δx + ∇dh1|0 δd + ∇uh1|0 δu + εh1(δx, δd, δu, ρ)

δy = ∇xh2|0 δx + ∇dh2|0 δd + ∇uh2|0 δu + εh2(δx, δd, δu, ρ)
(7)

where the |0 denotes evaluation at the trim point
(x̄(ρ), d̄(ρ), ū(ρ), ρ). Terms εf , εh1 and εh2 represent the
higher order terms of the Taylor series expansion. The term
˙̄x(ρ) arises due to the time variation in ρ. The linearization
is performed with respect to (x, d, u) but the nonlinear
dependence on ρ is retained. Define L(ρ) := −∇x̄(ρ). The
linearization about the family of trim points becomes

δ̇x =A(ρ)δx +Bd(ρ)δd +Bu(ρ)δu + L(ρ)ρ̇+ εf (δx, δd, δu, ρ)

δe =Ce(ρ)δx +Ded(ρ)δd +Deu(ρ)δu + εh(δx, δd, δu, ρ)

δy =Cy(ρ)δx +Dyd(ρ)δd +Dyu(ρ)δu + εh(δx, δd, δu, ρ)
(8)

where the parameter-dependent state matrices are given by
the gradients appearing in (7), e.g. A(ρ) := ∇xf |0. The LPV
system is commonly obtained by assuming that εf , εh1 , εh2 ≈
0. In addition, it is typically assumed that the parameter
variation is sufficiently slow, thus ρ̇ ≈ 0. Under these
assumptions, the LPV system Gρ is given by

δ̇x =A(ρ)δx +Bd(ρ)δd +Bu(ρ)δu

δe =Ce(ρ)δx +Ded(ρ)δd +Deu(ρ)δu

δy =Cy(ρ)δx +Dyd(ρ)δd +Dyu(ρ)δu

(9)

The goal of the paper is to propose an LPV control synthesis
method, which addresses these shortcomings of the Jacobian
linearization. The terms εf , εh1 and εh2 are treated as a
memoryless uncertainty satisfying a parameter varying IQC.
The term L(ρ)ρ̇ is treated as a disturbance in the design
(synthesis) model.

III. BACKGROUND

This section reviews existing material on LPV systems and
IQCs.

A. Induced L2 Control of LPV Systems
Consider an LPV system Gρ, obtained via Jacobian lin-

earization of the nonlinear system G,ẋe
y

 =

 A(ρ) Bd(ρ) Bu(ρ)
Ce(ρ) Ded(ρ) Deu(ρ)
Cy(ρ) Dyd(ρ) Dyu(ρ)

xd
u

 (10)

The δ notation that appears in (9) for the (linearized)
deviation variables is dropped here in order to simplify the
notation. Let Kρ be an LPV controller of the form:[

ẋK
u

]
=

[
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

] [
xK
y

]
(11)

The controller Kρ generates the control input u with a
linear dependence on the measurement y but an arbitrary
dependence on the scheduling parameter ρ. A lower LFT
Fl(Gρ,Kρ) defines the closed-loop interconnection of Gρ
and Kρ (see Fig. 1.a). The performance of Fl(Gρ,Kρ) can
be specified in terms of the induced L2 gain from d to e
over all allowable parameter trajectories as

‖Fl(Gρ,Kρ)‖ = sup
d 6=0,d∈L2,ρ∈P,xcl(0)=0

‖e‖
‖d‖ (12)

where xcl denotes the closed loop state variables. The
objective is to synthesize a controller Kρ to minimize the
closed-loop induced L2 gain from d to e. The following
theorem gives the sufficient condition to upper bound the
induced L2 gain of Fl(Gρ,Kρ).

Theorem 1: ([7], [8]): The interconnection Fl(Gρ,Kρ) is
exponentially stable and ‖Fl(Gρ,Kρ)‖ ≤ γ if there exists a
matrix P = PT ∈ Rnxcl×nxcl such that P ≥ 0 and ∀ρ ∈ P[

PAcl +ATclP PBcl
BTclP −I

]
+

1

γ2

[
CTcl
DT
cl

] [
Ccl Dcl

]
< 0 (13)

where subscript cl stands for closed loop. The dependence
of the state matrices on ρ has been omitted in (13).

Proof: The proof is based on a dissipation inequality
satisfied by the storage function V : Rnxcl×nxcl → R+ given
as V (xcl) := xcl

TPxcl. Multiplying (13) on the left/right by
[xcl

T , dT ] and [xcl
T , dT ]T gives

V̇ ≤ dT d− γ−2eT e (14)

The dissipation inequality (14) can be integrated with the
initial condition xcl(0) = 0, which yields ‖e‖ ≤ γ ‖d‖.
This analysis theorem forms the basis for the induced L2

norm controller synthesis of [7], [8], achieved by solving
bounded-real type LMI conditions that are sufficient to upper
bound the gain of an LPV system. The LMI conditions and
the controller reconstruction steps are given in [7], [8].

B. Robustness Analysis of LPV Systems via Integral
Quadratic Constraints

IQCs provide a framework for robustness analysis [15].
The IQC specifies constraint on the input/outputs signals of
the perturbation.

Definition 1: Let M be a symmetric matrix, i.e. M =
MT ∈ Rnz×nz and Ψ a stable linear system, i.e. Ψ ∈
RHnz×(nv+nw). Operator ∆ : Lnv2e → Lnw2e satisfies IQC
defined by (M,Ψ) if the following inequality holds for all
v ∈ Lnv2e [0,∞), w = ∆(v) and T ≥ 0:∫ T

0

zTMzdt ≥ 0 (15)



where z is the output of the linear system Ψ with inputs
(v, w) and zero initial conditions.

The notation ∆ ∈ IQC(Ψ,M) is applied if ∆ satisfies IQC
defined by (Ψ,M). Fig. 1.b shows a graphic interpretation
of the IQC, where the input and output signals of ∆ are
filtered through Ψ. There is a wide class of IQCs available for

Gρ

Kρ

de

uy

(a) LFT for LPV synthesis

∆

Ψ
z

v w

(b) Graphic interpretation of IQCs

Fig. 1. Graphic interconnection for LPV synthesis and IQCs

various uncertainties or nonlinearities. The remainder of the
section focuses on IQCs for a memoryless operator ∆ based
on time varying sector bounds. The input/output behavior of
∆ is described by w = ∆(v, ρ) where signals v and w are
assumed to satisfy the following condition:

vTST (ρ)S(ρ)v − wTw ≥ 0, ∀v ∈ Rnv , w ∈ Rnw , ρ ∈ P (16)

where S(ρ) is a parameter dependent diagonal matrix that
scales signal v. The uncertainty ∆ therefore satisfies the
quadratic constraint (QC)[

v
w

]T
M(ρ)

[
v
w

]
≥ 0, ∀v ∈ Rnv , w ∈ Rnw , ρ ∈ P (17)

where M(ρ) is defined as

M(ρ) :=

[
S(ρ)TS(ρ)Inv 0

0 −Inw

]
(18)

Selecting Ψ = Inv+nw , therefore z =
[
vT wT

]T
, and

integrating (17) implies ∆ ∈ IQC(I,M(ρ)).
The uncertain LPV system denoted by upper LFT as

Fu(Hρ,∆) is defined by the interconnection of an LPV
system Hρ and uncertainty ∆. Hρ is defined asẋv

e

 =

A(ρ) Bw(ρ) Bd(ρ)
Cv(ρ) Dvw(ρ) Dvd(ρ)
Ce(ρ) Dew(ρ) Ded(ρ)

xw
d

 (19)

The worst-case L2 gain of Fu(Hρ,∆) can be defined as

γ := sup
∆∈IQC(I,M(ρ)),ρ∈P

‖Fu(Hρ,∆)‖ (20)

An upper bound to the worst-case L2 gain γ can be defined
as a dissipation inequality based on equations (17) and (19)
in the form of an LMI [17], [18].

Theorem 2: Assume Fu(Hρ,∆) is well posed for all ∆ ∈
IQC(I,M(ρ)). Then ‖Fu(Hρ,∆)‖ ≤ γ if there exists matrix
P = PT ∈ Rnx×nx and a scalar λ ≥ 0 such that P ≥ 0 and
∀ρ ∈ PPA+ATP PBw PBd

BTwP 0 0
BTd P 0 −I

+
1

γ2

 CTeDT
ew

DT
ed

 [Ce Dew Ded
]

+ λ

 CTv 0
DT
vw I

DT
vd 0

M [
Cv Dvw Dvd
0 I 0

]
< 0

(21)

The dependence on ρ has been omitted in (21).
Proof: The proof is based on defining the storage

function V : Rnx×nx → R+ by V (x) := xTPx. Left and
right multiply (21) by [xT , wT , dT ] and [xT , wT , dT ]T to
show that V satisfies the dissipation inequality:

λ

[
v
w

]T
M

[
v
w

]
+ V̇ ≤ γ2dT d− eT e (22)

The dissipation inequality (22) can be integrated from t =
0 to t = T with the initial condition x(0) = 0. The QC
condition (17) along with λ ≥ 0 and P ≥ 0 imply ‖e‖ ≤
γ ‖d‖. Details of the proof are given in [16], [18].
The results of the section can be considered as a specific case
of parameter varying IQCs, where uncertainty ∆ satisfies
a more strict QC. The theory of IQC is more general in
principle [6], [15], [16], [17], which can contain dynamic,
parameter varying filters and integral constraints.

IV. THE PROPOSED CONTROL DESIGN

Consider the LPV system Gρ given by (9), obtained by
Jacobian linearization of G in (1). Gρ is an approximation
of G since terms εf , εh1 , εh2 and L(ρ)ρ̇ are considered
negligible in the linearization step. The aim of this section is
to propose an LPV control design method for Gρ based on
[7], [8] that accounts for these neglected terms. These terms
can be formulated as perturbations to system Gρ and can be
sorted into two groups.

The goal is to treat the higher order terms εf , εh1 and
εh2

as a memoryless uncertainty ∆ whose input/output
signals satisfy a QC. Uncertainty ∆ can be derived based on
Assumption 1. Interconnection Fu(Gρ,∆) allows IQC-based
robustness analysis. Additionally, the aim is apply scalings
to Gρ and ∆ such that LMI (21) becomes equivalent to LMI
(13) for the resulting interconnection. Therefore, the LPV
control synthesis of [7], [8] accounts for terms εf , εh1

and
εh2

of the interconnection. The term L(ρ)ρ̇ can be treated as
an additional disturbance or it can be incorporated as an input
to the controller in the LPV design in case ρ̇ is measurable.
By accounting for these terms, the proposed control synthesis
method gives an upper bound for the induced L2 gain from
input d to output e for interconnection of the resulting LPV
controller and the original nonlinear system G.

A. Quadratic Constraints for the Higher Order Terms of
Taylor Series Expansion

The first goal of this section is to derive uncertainty ∆
that satisfies a QC and captures the terms εf , εh1

and εh2
.

The second aim is to apply scalings to Gρ and ∆ in order
to bring LMI (21) to the form of LMI (13) for the resulting
interconnection. This can be achieved by two scalings. The
first scaling accounts for the parameter dependent M(ρ)
of (17). M(ρ) is transformed to an identity matrix via
parameter dependent scalings. The second scaling accounts
for optimizing over λ by keeping λ = 1 in LMI (21). The
optimal value of λ can be found by evaluating analysis over
a gridded domain of λ.

Lemma 1: Let the nonlinear system G of (1) fulfill As-
sumptions 1 and 2. Then terms εf , εh1 and εh2 of (7) are



also Lipschitz-continuous. The behavior of these terms can
be captured by a memoryless uncertainty ∆. The input/output
signals of uncertainty ∆ satisfy a QC.

Proof: Consider the first element of εf , denoted by εf1
,

which can be expressed based on (8) as

εf1(δx, δd, δu, ρ) = f1(x, d, u, ρ)− f1(x̄, d̄, ū, ρ)−A1(ρ)δx

−Bd1(ρ)δd −Bu1(ρ)δu = f1(x̄+ δx, d̄+ δd, ū+ δu, ρ)

− f1(x̄, d̄, ū, ρ)−A1(ρ)δx −Bd1(ρ)δd −Bu1(ρ)δu
(23)

where A1(ρ), Bd1
(ρ) and Bu1

(ρ) denote the first rows of
matrices A(ρ), Bd(ρ) and Bu(ρ) respectively. The norm of
(23) satisfies the following inequality
‖εf1(δx, δd, δu, ρ)‖ ≤∥∥f1(x̄+ δx, d̄+ δd, ū+ δu, ρ)− f1(x̄, d̄, ū, ρ)

∥∥
+ ‖A1(ρ)δx‖ ‖Bd1(ρ)δd‖+ ‖Bu1(ρ)δu‖
≤
∥∥f1(x̄+ δx, d̄+ δd, ū+ δu, ρ)− f1(x̄, d̄, ū, ρ)

∥∥
+ ‖A1(ρ)‖ ‖δx‖+ ‖Bd1(ρ)‖ ‖δd‖+ ‖Bu1(ρ)‖ ‖δu‖

(24)

Substituting Lipschitz condition (2) into (24) results in

‖εf1(δx, δd, δu, ρ)‖ ≤ Lf1(ρ)
∥∥∥[δTx δTd δTu

]T∥∥∥
+ ‖A1(ρ)‖ ‖δx‖+ ‖Bd1(ρ)‖ ‖δd‖+ ‖Bu1(ρ)‖ ‖δu‖

(25)

The following inequality holds based on the Euclidean norm

‖εf1(δx, δd, δu, ρ)‖2 ≤ ((Lf1(ρ) + ‖A1(ρ)‖) ‖δx‖
(Lf1(ρ) + ‖Bd1(ρ)‖) ‖δd‖+ (Lf1(ρ) + ‖Bu1(ρ)‖) ‖δu‖)2

(26)

Applying Jensen’s inequality to (26) leads to

‖εf1(δx, δd, δu, ρ)‖2 ≤ 3((Lf1(ρ) + ‖A1(ρ)‖) ‖δx‖)2

+ 3((Lf1(ρ) + ‖Bd1(ρ)‖) ‖δd‖)2

+ 3((Lf1(ρ) + ‖Bu1(ρ)‖) ‖δu‖)2

= a2
xεf1

(ρ) ‖δx‖2 + a2
dεf1

(ρ) ‖δd‖2 + a2
uεf1

(ρ) ‖δu‖2

(27)

Finally, the following inequality can be obtained for εf1

εf1(δx, δd, δu, ρ)2

≤ a2
xεf1

(ρ)δTx δx + a2
dεf1

(ρ)δTd δd + a2
uεf1

(ρ)δTu δu
(28)

Let signals wεf1 and vεf1 be defined as wεf1 := εf1 and
vεf1 :=

[
δTx δTd δTu

]T
. Then the following QC holds[

vεf1
wεf1

]T
Mεf1

(ρ)

[
vεf1
wεf1

]
≥ 0

∀vεf1 ∈ R
nvεf1 , wεf1 ∈ R

nwεf1 , ρ ∈ P
(29)

where Mεf1
(ρ) is given as

Mεf1
(ρ) :=


a2
xεf1

(ρ)Inx 0 0 0

0 a2
dεf1

(ρ)Ind 0 0

0 0 a2
uεf1

(ρ)Inu 0

0 0 0 −1


(30)

A memoryless uncertainty ∆εf1
can be constructed whose

input/output behavior is given by wεf1 = ∆εf1
(vεf1 , ρ) and

∆εf1
∈ QC(I,Mεf1

(ρ)). QCs can be constructed for each
term of εf , εh1

and εh2
in the same manner. A block diagonal

∆ can then be constructed as

∆ =

∆εf1

. . .
∆εhny

 (31)

where input/output behavior of ∆ ∈ QC(I,M(ρ)) is given

by w = ∆(v, ρ) where v =
[
vTεf1

. . . vTεh2ny

]T
and w =[

wεf1 . . . wεh2ny

]T
.

Note that using a single IQC to cover all the Taylor series
linearization errors can be very conservative. In practice it is
possible to exploit the structure of the problem and bound
each term individually. This would give (possibly many)
IQCs each with their own scaling variable. Efficient methods
to implement/solve this could be explored as future work.

The LPV system Ǧρ can be obtained by extending Gρ
with signals v and w asẋve

y

 =

 A(ρ) Bw(ρ) Bd(ρ) Bu(ρ)
Cv(ρ) Dvw(ρ) Dvd(ρ) Dvu(ρ)
Ce(ρ) Dew(ρ) Ded(ρ) Deu(ρ)
Cy(ρ) Dyw(ρ) Dyd(ρ) Dyu(ρ)


xwd
u

 (32)

Given LPV controller Kρ, IQC-based robust stability anal-
ysis can be done for the interconnection Fu(Fl(Ǧρ,Kρ),∆).
The aim is however, to propose an LPV control design
method that accounts for the effect of ∆ already in the design
step. For this the following two scalings are applied to Ǧρ
and ∆ as depicted in Fig. 2.

Gρ

Kρ

S(ρ)
√
λ
−1 √

λ

G̃ρ

∆S(ρ)−1
√
λ

√
λ
−1

∆̃

de

wvv̄

uy

ṽ w̃

v̄ v w

Fig. 2. Scaled system

The first scaling accounts for the term M(ρ) of LMI (21).
Signal v can be scaled in the following way

v̄ = S(ρ)v (33)

where S(ρ) is defined as

S(ρ) :=

axεf1 (ρ)Inx
. . .

aεh2ny
(ρ)Iny

 (34)

∆̄ can be constructed as w = ∆̄(v̌, ρ). The input/output
behavior of ∆̄ satisfies

v̄T v̄ − wTw ≥ 0, ∀v̄ ∈ Rnv̄ , w ∈ Rnw (35)

The uncertainty ∆̄ therefore satisfies the QC[
v̄
w

]T
M̄

[
v̄
w

]
≥ 0, ∀v̄ ∈ Rnv̄ , w ∈ Rnw (36)



where M̄ is defined as

M̄ :=

[
Inv̄ 0
0 −Inw

]
(37)

The second scaling accounts for the optimization over λ. The
aim is to pull λ out from LMI (21) and treat it as scalings
to Ḡρ and ∆̄. This can be achieved by scaling Ḡρ and ∆̄ as

G̃ρ =

[√
λ
−1
Inv̄ 0

0 Ine+ny

]
Ḡρ

[√
λInw̄ 0
0 Ind+nu

]
∆̃ =

√
λ∆̄
√
λ
−1

(38)

B. Rate of Variation of ρ as an External Disturbance
The aim of this section is to include the effect of L(ρ)ρ̇

into G̃ρ. ρ̇ can be treated as an additional disturbance signal.
Therefore, signal d can be extended as d̂ =

[
dT ρ̇T

]T
. Ĝρ

can be derived from G̃ρ by extending the input matrices

B̂d(ρ) =
[
Bd(ρ) L(ρ)

]
, D̂vd(ρ) =

[
Dvd(ρ) 0

]
,

D̂ed(ρ) =
[
Ded(ρ) 0

]
, D̂yd(ρ) =

[
Dyd(ρ) 0

] (39)

Ĝρ and ∆̃ form the basis of the following theorem.
Theorem 3: Let the interconnection of controller Kρ in

the form of (11) and the nonlinear system G of (1) be
denoted by T . Assume that Fu(Ĝρ, ∆̃) is well posed for all
∆̃ ∈ QC(I,M̄ ). Then controller Kρ can be designed such that
‖T‖ ≤ γ if there exists γ ≤ 1, matrix P = PT ∈ Rnxcl×nxcl
such that P ≥ 0 and ∀ρ ∈ P[

PÂcl + ÂTclP PB̂cl
B̂TclP −I

]
+

1

γ2

[
ĈTcl
D̂T
cl

] [
Ĉcl D̂cl

]
< 0 (40)

where Âcl, B̂cl =
[
B̂wcl B̂d̂cl

]
, Ĉcl =

[
ĈTvcl ĈTecl

]T
and

D̂cl =

[
D̂vwcl D̂vd̂cl

D̂ewcl D̂ed̂cl

]
are the state matrices for the closed

loop lower LFT Fl(Ĝρ,Kρ). The dependence of the state
matrices on ρ has been omitted in (40).

Proof: Note that LMI (40) can be derived from
LMI (21). This comes from substituting (37) into (21) and
applying λ = 1 based on (38). The third term of (21)
can be multiplied by γ−2 without loss of generality. The
proof is based on the dissipation inequality satisfied by the
storage function V : Rnxcl×nxcl → R+ as V (xcl) :=
xcl

TPxcl. LMI (40) can be multiplied on the left/right by[
xcl

T w̃T d̂T
]

and
[
xcl

T w̃T d̂T
]T

to show that V
satisfies the dissipation inequality:

V̇ −
[
w̃T d̂T

] [w̃
d̂

]
+

1

γ2

[
ṽT eT

] [ṽ
e

]
=

V̇ +
1

γ2
ṽT ṽ − w̃T w̃ +

1

γ2
eT e− d̂T d̂ < 0

(41)

Integrating the dissipation inequality and applying condition
(35) and (38) results in ‖e‖ ≤ γ

∥∥∥d̂∥∥∥ for Fu(Fl(Ĝρ,Kρ), ∆̃)

in case γ ≤ 1. The condition γ ≤ 1 can be always achieved
by scaling signal d̂. ‖e‖ ≤ γ

∥∥∥d̂∥∥∥ implies ‖e‖ ≤ γ ‖d‖ based
on∥∥∥Fu(Fl(Ĝρ,Kρ), ∆̃)

∥∥∥ = sup
d̂6=0,d̂∈L2,ρ∈P,x(0)=0

‖e‖∥∥∥d̂∥∥∥ ≥
sup

d̂ 6=0,ρ̇=0,d̂∈L2,ρ∈P,x(0)=0

‖e‖∥∥∥d̂∥∥∥ = sup
d6=0,d∈L2,ρ∈P,x(0)=0

‖e‖
‖d‖

(42)

The inequality follows because sup
d̂6=0,d̂∈L2,ρ∈P,x(0)=0

‖e‖
‖d̂‖ can

only decrease if the constraint ρ̇ = 0 is added. Ĝρ and
∆̃ capture all the terms that are neglected in the Jaco-
bian linearization of the nonlinear system G. Therefore,∥∥∥Fu(Fl(Ĝρ,Kρ), ∆̃)

∥∥∥ ≤ γ implies ‖e‖ ≤ γ ‖d‖ for Kρ

interconnected with the nonlinear system G.
The form of dissipation inequality (41) implies a connec-

tion to nominal induced L2 gain performance. Therefore,
controller Kρ can be designed based on [8], [7]. The optimal
value of λ can be found by constructing Ĝρ and ∆̃ and
evaluating LMI (40) over a gridded domain of λ. The condi-
tions of Theorem 3 can be relaxed by applying Zames-Falb
multipliers and/or using multiple IQCs for ∆ and solving the
synthesis problem as presented in [19].

V. EXAMPLE
A simple numerical example is presented to show the

benefits of the proposed control design method. Consider
the nonlinear system (similar to the example in [13]) given
by[
ẋ1

ẋ2

]
=

[
−1 0
1 0

] [
x1

x2

]
+

[
1
0

]
u+

 0
2

1 + e−2x2
+ 1

 , y = x2

(43)

The aim is to design an output-feedback controller Kρ, which
ensures step response settling time of less than 2 seconds
with zero steady state error. The scheduling parameter ρ :=
x2 is restricted to the interval [-10,10] with a grid of 5
equidistant points. The trim points (x̄1(ρ), ρ, ū(ρ)) are

x̄1(ρ) = ū(ρ), x̄1(ρ) = 1−
2

1 + e−2ρ
(44)

The LPV system Gρ is obtained by Jacobian linearization of
(43) about the trim points. It is assumed that ρ̇ is measurable
and can be incorporated as an input to the controller in
the LPV design. Four control design cases are examined
as given in Table I. The linearization error terms that are
accounted for in the control design are denoted by X. The
synthesis interconnection is shown in Fig. 3. Fig. 3.a gives
the interconnection for Cases 1–2 (term ∆̃ is omitted in Case
1). Fig. 3.b depicts the interconnection for Cases 3–4. The

TABLE I
CONTROL DESIGN CASES

Taylor series error Time variation of ρ
Case 1 – –
Case 2 X –
Case 3 – X
Case 4 X X

tracking error e1 is specified by weighting function W1 and
the control signal is penalized by the weighting function W2,
both with a bandwidth of 25 rad/s as

W1(s) =
0.33s+ 23.69

s+ 2.369
, W2(s) =

0.0004s+ 8.66−5

s+ 43.3
(45)

A robust LPV controller is designed for each case using
the proposed method given in Section IV. All controllers
achieve similar worst case gain of γ ≈ 0.12. The effect of
parameter λ on the worst case gain γ is shown in Fig. 4.a.



The responses of the four controllers interconnected with the
nonlinear system are depicted in Fig. 4.b, which shows that
Cases 2–4 clearly outperform the nominal control design.

G̃ρ

∆̃

0.1

KρW2 0.01

W1
d1

e2

w̃ ṽ

y

e1

d2u

e3

(a) Case 1 and Case 2

Ĝρ

∆̃
0.01

KρW2 0.01

W1

d̂3 = ρ̇

u

w̃

e4

d̂1

e2

y e1

d̂2

e3

ṽ

(b) Case 3 and Case 4

Fig. 3. Synthesis interconnections
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Fig. 4. Results of parameter λ and reference tracking performance: Case
1 ( ); Case 2 ( ); Case 3 ( ); Case 4 ( ); reference( )

VI. CONCLUSIONS

The paper proposed an approach for gain scheduling
of Lipschitz continuous nonlinear systems based on LPV
system representation along with parameter varying IQC
with the aim to account for the Jacobian linearization errors.
These errors lead to hidden coupling terms in the controlled
system. The higher order terms of the Taylor series expansion
are treated as a memoryless uncertainty whose input/output
behavior is described by a parameter varying IQC. The effect

of the time variation of the scheduling parameter is captured
by an additional disturbance. The resulting control synthesis
gives guarantees for the interconnection of the nonlinear
system and the resulting LPV controller. The benefits of the
proposed method are shown by a simple numerical example.
Future work will consider extending the results, with some
restrictions, to non Lipschitz continuous nonlinear systems.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation under Grant No. NSF-CMMI-1254129 entitled ”CA-
REER: Probabilistic Tools for High Reliability Monitoring
and Control of Wind Farms.” This work was also supported
by the University of Minnesota Institute on the Environment,
IREE Grants No. RS-0039-09 and RL-0011-13.

REFERENCES

[1] J. Shamma and M. Athans, “Analysis of gain scheduled control for
nonlinear plants,” IEEE Transactions on Automatic Control, vol. 35,
no. 8, pp. 898–907, Aug. 1990.

[2] W. Rugh, “Analytical framework for gain scheduling,” IEEE Control
Systems, vol. 11, no. 1, pp. 79–84, Jan. 1991.

[3] W. J. Rugh and J. S. Shamma, “Research on gain scheduling,”
Automatica, vol. 36, no. 10, pp. 1401–1425, Oct. 2000.

[4] A. Packard, “Gain scheduling via linear fractional transformations,”
Systems & Control Letters, vol. 22, no. 2, pp. 79–92, Feb. 1994.

[5] P. Apkarian and P. Gahinet, “A convex characterization of gain-
scheduled H∞ controllers,” IEEE Transactions on Automatic Control,
vol. 40, no. 5, pp. 853–864, May 1995.

[6] J. Veenman and C. W. Scherer, “Stability analysis with integral
quadratic constraints: A dissipativity based proof.” IEEE, Dec. 2013,
pp. 3770–3775.

[7] F. Wu, “Control of linear parameter varying systems,” Ph.D. disserta-
tion, Univ. California, Berkeley, 1995.

[8] F. Wu, X. Yang, A. Packard, and G. Becker, “Induced L2-norm control
for LPV systems with bounded parameter variation rates,” Int. J.
Robust Nonlinear Control, vol. 6, pp. 2379–2383, 1996.

[9] R. A. Nichols, R. T. Reichert, and W. J. Rugh, “Gain scheduling for
H-infinity controllers: A flight control example,” IEEE Transactions
on Control Systems Technology, vol. 1, pp. 69–79, 1993.

[10] D. A. Lawrence and W. J. Rugh, “Gain scheduling dynamic linear
controllers for a nonlinear plant,” Automatica, vol. 31, no. 3, pp. 381–
390, Mar. 1995.

[11] D. J. Leith and W. E. Leithead, “Appropriate realisation of gain-
scheduled controllers with application to wind turbine regulation,”
International Journal of Control, vol. 65, no. 2, pp. 223–248, 1996.

[12] ——, “Gain-scheduled and nonlinear systems: Dynamic analysis by
velocity-based linearization families,” International Journal of Con-
trol, vol. 70, no. 2, pp. 289–317, Jan. 1998.

[13] ——, “Counter-example to a common LPV gain-scheduling design
approach,” 1999.

[14] C. Briat, LPV & Time-Delay Systems – Analysis, Observation, Filter-
ing & Control. Springer-Heidelberg, Germany, 2014, vol. 3.

[15] A. Megretski and A. Rantzer, “System analysis via integral quadratic
constraints,” IEEE Trans. on Aut. Control, vol. 42, pp. 819–830, 1997.

[16] P. Seiler, “Stability analysis with dissipation inequalities and integral
quadratic constraints,” accepted to the IEEE Trans. on Aut. Control,
2013.

[17] H. Pfifer and P. Seiler, “Robustness analysis with parameter-varying
integral quadratic constraints,” in accepted to the American Control
Conference, 2015.

[18] ——, “Robustness analysis of linear parameter varying systems using
integral quadratic constraints,” International Journal of Robust and
Nonlinear Control, 2014.

[19] S. Wang, H. Pfifer, and P. Seiler, “Robust synthesis for linear pa-
rameter varying systems using integral quadratic constraints,” in IEEE
Conference on Decision and Control, 2014, pp. 4789–4794.


