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Active power control (APC) refers to a mode of operation where the wind turbine
tracks a desired power reference command. It enables wind farms to perform frequency
regulation and to provide ancillary services in the energy markets. This paper presents a
linear parameter varying (LPV) approach for APC. The multiple-input, multiple-output
controller builds upon a previous gain-scheduled design. An LPV controller is designed
to coordinate the blade pitch angle and generator torque, which are standard inputs to
a utility scale turbine. The objective is to track a given power reference command while
also minimizing the structural loads. The controller has parameter dependence on the
wind speed and the power output. The LPV approach, in contrast to the previous ad-
hoc gain scheduled design, provides (in theory) guarantees on closed-loop stability and
performance. This allows the turbine to be operated smoothly anywhere within the power
/ wind speed envelope. The performance of this LPV design is evaluated using high fidelity
simulations. The robustness of the LPV system is analyzed using the theory of integral
quadratic constraints.

Nomenclature

v Wind speed, m/s
β Blade pitch angle, deg
τ Generator torque, N ·m
λ Tip speed ratio (TSR), unitless
ω Rotor speed, rad/s
p Generator power, MW

I. Introduction

As a promising renewable energy, wind power is increasing fast in energy markets all over the world.
Though it only accounts for 3 % of the electricity produced globally in 2011, the penetration of wind energy
is very high in some European countries.1 In the United States, the amount of wind energy is expected to
increase to about 30 % by 2020 to 2030.2 The power output of wind turbines is variable due to time-varying
wind speeds and this may cause unreliable operation of the power grid. This is not a significant issue when
wind power is only a small portion of the total electricity generated on the grid. However, to integrate higher
levels of variable wind power into the grid it is important for wind turbines to provide active power control
(APC).3 APC can be used for the turbine to respond to fluctuations in grid frequency, termed primary
response, and to the power curtailment command from transmission system operator, termed secondary
response or automatic generation control (AGC).4

Traditional wind turbine control systems5 do not provide active power control. The power electronics
used in variable speed wind turbines decouple the mechanical/inertial turbine dynamics from the power grid.
Thus a wind turbine with a traditional control law does not have the inertial response to a grid frequency
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event like a conventional coal power generator.6 As a result the wind turbine does not participate in the
primary response. Moreover, the power output from the turbine fluctuates with variations in wind speed.
As a result, new control strategies are being considered to enable wind turbines to track power commands
and possibly provide ancillary services.7–12 Some of these designs provide primary response by using inertia
response emulation.7,8 Another approach is to operate the wind turbine above the optimal tip speed ratio
thus reserving kinetic energy.9,10 This approach enables the wind turbine to track the power commands and
hence this can be used to realize AGC. The use of blade pitch control with or without combined generator
torque control has also been explored.11,12

This paper proposes an LPV controller to provide APC. The 2-input, 2-output control architecture builds
upon a previous gain-scheduled design,13 where collective blade pitch and generator torque are coordinated
in order to track power and rotor speed reference commands. The controller has parameter dependence on
the wind speed and the power output. The LPV approach, in contrast to the previous ad-hoc gain scheduled
design, provides (in theory) guarantees on closed-loop stability and performance.14,15 This enables the LPV
controller to have a uniform structure and operate smoothly anywhere within the power/wind speed envelope
of the turbine. It is also noted that the robustness is an important concern in modern control design for
complex systems subject to uncertainties with the nominal model. Therefore, the robustness of this LPV
system is analyzed using the theory of integral quadratic constraints (IQCs).16–18

The remainder of the paper is organized as follows. Section II briefly reviews the architecture for APC
and the control of LPV systems. The theory of integral quadratic constraints for robust analysis of LPV
systems is in Appendix. Section III gives the detailed design process for the LPV controller. Simulation
results and robust analysis of the system are presented in Section IV. Finally, conclusions and future work
are summarized in Section V.

II. Background

A. Architecture for APC

The traditional turbine control system tries to maximize power production at low wind speeds and keep
rated power at high wind speeds to prevent damage of overload to the turbine.5,19,20 As shown in Figure
1, the turbine using this control strategy operates on the blue curve of power versus wind speed. However,
active power control requires the turbine to adjust its power output according to the command reference
from transmission system operator or wind farm. It is important to note that the wind conditions limit
the power that can be generated (in steady-state) by the turbine. Specifically, the turbine must operate
within the power vs. wind speed envelope below the blue curve. Thus active power control is constrained to
power reference commands that are within this envelope. Methods to reserve power and operate within this
envelope include de-rating, relative spinning reserves, and absolute spinning reserves.10,12,21 Each of these
methods corresponds to operation along a specific power vs. wind speed curve that lies within the available
power envelope.

Figure 1. Turbine operating regions.

An approach to realize APC has been proposed in our previous work to operate the turbine anywhere
within the power envelope.13 It enables de-rating, relative spinning reserves, and absolute spinning reserves
as special cases. The control design of this approach is achieved by gain scheduling based on trim power p
and wind speed v. However, the gain scheduling is less rigorous than the modern linear parameter varying
(LPV) techniques.22,23 It is only sufficient for slow variations in the scheduling parameters and there are no
formal guarantees on stability and performance. Therefore, a standard LPV design is applied in this paper
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to achieve APC. It should be noted that LPV techniques have been applied to the control of wind turbines
in some literatures.24–26 However, these designs still try to operate the turbine in the traditional way. A
brief introduction to the control of LPV systems will be presented in Section II.B.

The way to operate the turbine to achieve APC using LPV builds upon a previous gain-scheduled design13

and is now briefly described. To operate at one of the (v, p) trim conditions within the envelope, the turbine
must reduce the power coefficient5,27 to a new value Cp less than the optimal value Cp∗ by changing the
blade pitch angle β and/or the tip speed ratio λ := Rω

v , where ω is the rotor speed [rad/s] and R is the radius
of the rotor area [m]). As shown in Figure 2, there is a contour of possible values of (λ, β) that achieve any
value of Cp < Cp∗. For a given (v, p) trim condition, the controller can be designed to operate at any point
on the new Cp contour. To summarize, each (v, p) trim condition corresponds to a desired power coefficient.

Figure 2. Power coefficient contours for WindPACT 1.5MW Model.

The controller proposed tracks the desired power as follows. In low wind speeds, the controller shifts
from (λ∗, β∗) to the desired Cp by increasing to a larger blade pitch β > β∗ while holding tip speed ratio
fixed at λ∗. The red arrow in Figure 2 indicates the proposed shift to the desired Cp in low wind speeds.
In constant wind conditions, this approach holds desired rotor speed constant (to maintain λ∗) while blade
pitch angle is increased to shed extra power according to the desired power command.

Figure 3. Proposed control strategy for APC.

This strategy can be implemented as the control system structure shown in Figure 3. A 2-input, 2-output
control system is used to coordinate the blade pitch and generator torque. The main objective is to track
the power reference command pcmd. The rotor speed command ωcmd specifies the desired point on the power
coefficient contour. In particular the rotor speed command is defined as follows:

ωcmd = min

{
vtrimλ∗
R

,ωrated

}
(1)

3 of 14

American Institute of Aeronautics and Astronautics



where ωrated is the rated rotor speed and vtrim is an estimate of the effective wind speed. As described
above, this rotor speed command attempts to keep the λ at the optimal value λ∗ at lower wind speeds. This
will cause an increasing rotor speed demand as wind speed increases. At higher wind speeds, the rotor speed
command saturates and attempts to maintain the rated rotor speed. It is assumed that an accurate and real
time measurement of the wind speed is available. As shown in Figure 3, an estimate of the wind speed could
be obtained from a LIDAR.28 Alternatively, an estimate of the effective wind speed could be constructed.29

In either case, the actual wind speed fluctuates and hence low-pass filtering, denoted LPF1 in the figure,
is used to smooth out these fluctuations. As mentioned above, this LPV controller is designed to have
dependence on trim wind speed vtrim and power ptrim to ensure the performance in the whole envelope. The
low-pass filtered wind speed here also provides the corresponding scheduling parameter for the controller.
The other scheduling parameter of power is from low-pass filtered power output measurement which is not
shown in Figure 3.

The advantages and drawbacks of this MIMO control architecture have been discussed in.13 Compared
to the gain scheduled control, the stability can be guaranteed with a standard LPV design here, and it is
expected to achieve better performance.

B. Control of LPV Systems

LPV systems are a class of systems whose state space matrices depend on a time-varying parameter vector
ρ : R+ → Rnρ . An allowable parameter trajectory ρ is a continuously differentiable function of time that is
restricted at each point in time to lie in a known compact set P ⊂ Rnρ . In addition, the parameter rates of
variation ρ̇ : R+ → Ṗ are assumed to lie within a hyperrectangle Ṗ defined by

Ṗ := {q ∈ Rnρ | νi ≤ qi ≤ ν̄i, i = 1, . . . , nρ}. (2)

The set of admissible trajectories is defined as A := {ρ : R+ → Rnρ : ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥ 0}. The
parameter trajectory is said to be rate unbounded if Ṗ = Rnρ .

An nth
G order open loop LPV system Gρ is defined byẋe

y

 =

A(ρ(t)) B1(ρ(t)) B2(ρ(t))

C1(ρ(t)) D11(ρ(t)) D22(ρ(t))

C2(ρ(t)) D21(ρ(t)) D22(ρ(t))


xd
u

 (3)

where x ∈ RnG , d ∈ Rnd , e ∈ Rne , u ∈ Rnu and y ∈ Rny . The state-space matrices of the LPV system
are continuous functions of the parameter. Hence, LPV systems represent a special class of time-varying
systems. Throughout the remainder of the paper the explicit dependence on t is suppressed to shorten the
notation. Moreover, it is important to emphasize that the state matrices are allowed to have an arbitrary
dependence on the parameters.

The performance of an LPV system Gρ can be specified in terms of its induced L2 gain from input d to
output e. The induced L2 norm is defined by

‖Gρ‖ := sup
d6=0,d∈L2,ρ∈A,x(0)=0

‖e‖
‖d‖

. (4)

In words, this is the largest input/output gain over all possible inputs d ∈ L2 and allowable trajectories
ρ ∈ A.

This norm forms the basis for the induced L2 norm controller synthesis.30,31 Consider the open loop
LPV system Gρ as described in Equation 3, the goal is to synthesize an LPV controller Kρ of the form:[

ẋK

u

]
=

[
AK(ρ) BK(ρ)

CK(ρ) DK(ρ)

][
xK

y

]
. (5)

The controller generates the control input u. It has a linear dependence on the measurement y but an
arbitrary dependence on the (measurable) parameter ρ. The closed-loop interconnection of Gρ and Kρ

is given by a lower linear fractional transformation (LFT) and is denoted Fl(Gρ,Kρ). The objective is to
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synthesize a controller Kρ of the specified form to minimize the closed-loop induced L2 gain from disturbances
d to errors e:

min
Kρ
‖Fl(Gρ,Kρ)‖ . (6)

A simple, necessary and sufficient condition does not exist to evaluate the induced L2 norm of an LPV
system. However, there are bounded-real type linear matrix inequality (LMI) conditions that are sufficient to
upper bound the gain of an LPV system (Lemma 3.1 in31). This sufficient condition forms the basis for the
synthesis result.31 It should be noted that the synthesis leads to an infinite collection of parameter-dependent
linear matrix inequalities (LMIs). A remedy to this problem, which works in many practical examples, is to
approximate the set P by a finite set Pgrid ∈ P that represents a gridding over P.

III. LPV Control Design

This section provides details on the LPV approach introduced in Section II.A. The controller is designed
for the WindPACT 1.5 MW wind turbine whose model is contained in the FAST simulation package.32

First, an LPV model of the turbine is generated by selecting a gridding set of scheduling parameters that
covers the envelope for APC and linearization at each trim point. Next, the control design and realization
is described for this grid based LPV model.

A. Model Description

The LPV model of the WindPACT 1.5 MW turbine for APC is chosen to be dependent on trim power
and wind speed whose values cover the envelope below the traditional operation power curve, as shown
in Figure 4. This will lead to an infinite collection of parameter-dependent LMIs in control synthesis as
mentioned in Section II.B. A practical way to deal with this problem is to take a finite gridding set of
scheduling parameters and generate the LTI model at each gridding point. The gain scheduling approach
in13 took 36 points for design. However, the complexity of solving corresponding LMIs in LPV synthesis will
be relatively high with so many points. Here, for simplicity, only 9 points are chosen uniformly in increments
of 0.6MW in power and 4m/s in wind speed. These 9 trim points are denoted by x’s in Figure 4.

Figure 4. Operation envelope for LPV design.

The LTI model at each trim point is generated by FAST. The FAST simulation package developed by
NREL32 is a nonlinear simulation package that is widely used for wind turbine control and analysis. This
model includes up to 24 degrees of freedom, including different tower and blade bending modes. FAST
models can be linearized at a steady wind speed to obtain a periodic, linear time-varying model. The multi-
blade coordinate transformation can then be applied to obtain an approximate LTI model. The resulting LTI
models are suitable for advanced control design. However, to simplify the synthesis of the LPV controller this
paper uses only 1 degree of freedom which is the rotor position. The corresponding linearized model contains
2 states which are rotor position and speed. To avoid numerical issues in the synthesis step, the state of
rotor position is removed. The resulting model with only 1 state left captures the essential aerodynamics

5 of 14

American Institute of Aeronautics and Astronautics



and rotor dynamics of a wind turbine. This model does not contain structural dynamics but it simplifies
the design and it is useful for understanding the effectiveness of the proposed APC strategy. Moreover,
this model is only used for design but the controller is evaluated using higher fidelity simulations with more
degrees of freedom in FAST.

After the trim conditions of power p0 and wind speed v0 are selected, trim values can be found for the
rotor speed ω0, blade pitch angle β0 and generator torque τ0. Let ∆ be used to denote the deviation of a
variable from its trim condition, e.g. ∆ω := ω − ω0 denotes the deviation of the rotor speed from the trim
operating condition. The LPV model of the turbine is given by state space expression of the form[

ẋ

y

]
=

[
A(ρ) B(ρ)

C(ρ) D(ρ)

][
x

u

]
(7)

where x := ∆ω is the state, u :=

∆β

∆τ

∆v

 is the vector of inputs, y :=

[
∆p

∆ω

]
is the vector of outputs, and

ρ :=

[
vtrim

ptrim

]
is the scheduling parameter which is from low-pass filtered wind speed and power output

measurements as mentioned in Section II.A.

B. Control Synthesis and Realization

Similar to the tuning in H∞ control synthesis for LTI systems,33,34 different performance weights need to
be specified in the induced L2 control of LPV systems. The augmented system for LPV synthesis is shown
in Figure 5. The seven weight functions are chosen to be the same as those used for the gain scheduled
design.13

Two performance weights, W1(s) = 5
100s+ 21

200s+ 0.021
and W2(s) = 2.5

100s+ 13

200s+ 0.013
are used to specify the

objectives for power and rotor speed tracking. These weights are chosen to limit the low frequency error

with less emphasis on high frequency tracking. Next, W3(s) =
2.5

π

1000s+ 11

s+ 21
and W4(s) =

1

2000

100s+ 14

s+ 140
are two weights used to penalize the actuation of blade pitch angle and generator torque, respectively. Both
weights are chosen as high pass filters to penalize high frequency control effort. Finally, the weights W5 = 0.2,
W6 = 0.4 and W7 = 1.4 are used to scale the input power command, and rotor speed command, and wind
disturbance to values corresponding to 0.2MW , 0.4 rad/s and 1.4m/s, respectively. More details about the
weights can be found in.13

Figure 5. Augmented system for LPV synthesis.

Besides performance weights, ranges of the parameter varying rate need to be specified before synthesis.
By selecting the high-pass filtered signal of the trim wind speed vtrim, which is shown in Figure 3, the
maximum wind acceleration is found to be 0.3m/s2 in the average speed of 16m/s with 5 % turbulence.
However, to ensure stability of the system in high turbulence, the value is extended to 1m/s2. In practical
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application of APC, the reference command of power is expected to change slowly. Therefore, 0.1MW/s
is selected for the trim power varying rate. A controller can be designed for a faster rate of variation for
desired power if necessary.

The LPV controller is synthesized after solving a finite collection of LMIs. The result is expressed as a set
of LTI controllers corresponding to different trim points. Realization of the LPV controller requires linear
interpolation of these LTI controllers and the trim values of blade pitch angle βtrim and generator torque
τtrim. Specifically, the four nearest “grid” trim points {vi, pi}4i=1 of the current (vtrim, ptrim) are determined

as shown in Figure 4. The fractional distance along each coordinate axis is computed as k1 =
p2 − ptrim
p2 − p1

and k2 =
v3 − vtrim
v3 − v1

. Finally, the trim blade pitch and generator torque are given by

[
βtrim

τtrim

]
= k2

(
k1

[
β1

τ1

]
+ (1− k1)

[
β2

τ2

])
+ (1− k2)

(
k1

[
β3

τ3

]
+ (1− k1)

[
β4

τ4

])
(8)

Some trim conditions near the boundary of the operating area have less than four neighboring “grid” trim
points. For conditions with only two neighbors, the interpolation is along a single dimension. For conditions
with only three neighbors, i.e. the trim point is in a triangle with vertices of (v1, p1), (v3, p3) and (v4, p4),
βtrim and τtrim are given by[

βtrim

τtrim

]
= k2

(
k1

[
β1

τ1

]
+ (1− k1)

[
β3

τ3

])
+ (1− k2)

(
k1

[
β4

τ4

]
+ (1− k1)

[
β3

τ3

])
(9)

where k1 =
ptrim − p3

p4 − p3
+
v3 − vtrim
v3 − v1

and k2 =
v3 − vtrim
v3 − v1

. The state-space matrices for the controller,[
Ak Bk

Ck Dk

]
are interpolated in a similar fashion as those given in Equation 8 and 9.

IV. Simulations and Analysis

A. Nominal Performance in Turbulent Wind

The LPV controller designed in Section III was simulated with WindPACT 1.5 MW wind turbine model
in FAST. The control design was performed using a 1-state linearized model. However, turbine structural
modes were included in all simulation results shown in this section. Specifically, the structural modes for
simulation include the first flap-wise blade mode for each blade and the first fore-after tower bending mode.
Including the rotor position, the model has five degrees of freedom. For comparison, the gain scheduled H∞
controller designed in13 was also simulated. However, only nine H∞ controllers corresponding to trim points
in the LPV design were gain scheduled.

In the first simulation, the wind profile contains 5 % turbulence at a mean wind speed of 8m/s. The
power command (red dash-dot line in second subplot of Figure 6) steps from 0.4MW to 0.5MW at t = 150 s,
then drops to 0.3MW at t = 300 s and finally steps back to 0.4MW at t = 450 s. In this wind and power
profile, LTI controllers at trim points of (6m/s, 0.2MW ), (10m/s, 0.2MW ) and (10m/s, 0.8MW ) were
involved into the linear interpolation for both the LPV and gain scheduled cases. However, the system with
the gain scheduled controller was simulated to be unstable under these conditions. A detailed post-analysis
revealed that the closed-loop with the original gain-scheduled controller was unstable, i.e. it had a pole in the
right half of the complex plane. The LPV controller worked well in this case. This exception demonstrates
the stability guarantee for the standard LPV design.

To continue the comparison, the LTI controller at the trim point of (6m/s, 0.2MW ) was removed for the
gain scheduled case. The results are shown in Figure 6 for the gain-scheduled controller (dash green line) and
the LPV controller (solid blue line). The subplots are, from top to bottom, the rotor speed, power capture,
blade pitch, and generator torque. Since the wind speed is below rated, the rotor speed command specified
in Equation 1 is proportional to the low-pass filtered wind speed estimate. This rotor speed command is
shown as the dash-dot line in the top subplot. The rotor speed regulation for the LPV controller has smaller
error than the gain scheduled one. To evaluate these errors, define the root mean square (RMS) of the rotor
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Figure 6. Simulation in below rated turbulent wind.

speed tracking error ωRMS as:

ωRMS =

(
1

T

∫ T

0

|ω − ωcmd|2dt

) 1
2

(10)

T is the simulation time, ω and ωcmd are the rotor speed and the reference. Similarly, the RMS of power
tracking error and pitch rate can be defined to evaluate the performance and the pitch actuation. The
damage equivalent loads (DEL) are also calculated to evaluate the load reduction performance. All these
results are shown in the first part of Table 1 which is labeled by ‘below rated wind’. The LPV controller
significantly decreases the rotor speed tracking error in comparison to the original gain-scheduled controller.
At the same time, the DEL of the blade root flap-wise bending moment and the tower fore-after bending
moment decrease about 5 % (the exact ratio is shown in the parentheses after the value for each item). The
DEL of the low speed shaft torque for the LPV controller is slightly higher that the gain scheduled one.
However, the RMS power tracking error and pitch rate increase more than 20 % for the LPV control. This
could be considered as the sacrifice for better rotor speed tracking performance. This trade-off between
tracking error, actuator usage, and structural loads will be investigated further in the final version of the
paper.

The second simulation was performed at an average wind speed of 16m/s with 5 % turbulence. The
results are shown in Figure 7. The power reference command (red dash-dot line in second subplot) steps
from 1.1MW to 1.4MW at t = 150 s, then drops to 0.8MW at t = 300 s and finally steps back to 1.1MW
at t = 450 s. The rotor speed command (Equation 1) is held fixed at the rated rotor speed (shown as dashed
dot line in top subplot). Compared to the gain scheduled controller, the LPV design shows similar rotor
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Table 1. Controller Performance Comparison for Simulations in FAST

Description Gain Scheduled LPV Gain Scheduled LPV

(below rated wind) (above rated wind)

Blade Flapwise DEL 258.6 249.0 (−3.71 %) 360.8 363.6 (+0.78 %)

Tower Fore-after DEL 3835 3610 (−5.95 %) 7209 6885 (−4.49 %)

Low Speed Shaft DEL 83.43 86.19 (+3.31 %) 247.7 176.9 (−28.58 %)

RMS Speed Error (RPM) 0.5047 0.1585 (−68.6 %) 0.4761 0.4635 (−2.65 %)

RMS Power Error (MW) 0.0213 0.0261 (+22.54 %) 0.1166 0.0456 (−60.89 %)

RMS Pitch Rate (rad/s) 0.0016 0.002 (+25 %) 0.006 0.0051 (−15 %)

Max Pitch Rate (rad/s) 0.0092 0.0154 (+67.39 %) 0.0174 0.0176 (−1.15 %)

speed regulation performance. The RMS of the tracking errors can be calculated as defined in Equation
19. The second part of Table 1 which is labeled by ‘above rated wind’ verifies this observation. The power
tracking and disturbance rejection performance of the LPV design is much better than the gain scheduled
controller. The blade pitch actuation is also similar between the two controllers. This is shown in the right
column of Table 1. The generator torque of the LPV design varies more smoothly than the gain scheduled
controller. This leads to the better power tracking performance as mentioned above and also better load
reduction effect on the low speed shaft. Finally, the DEL of the blades and the tower are similar between
the LPV controller and the gain scheduled one.

B. Robust Analysis Using IQCs

Robustness is an important concern in modern control design for systems subject to uncertainties with the
nominal model. Even though FAST provides a high fidelity simulation environment, the impact of model
uncertainty, i.e. the mismatch between the real turbine dynamics and FAST, should be assessed. Due to
the nonlinear turbine dynamics, this robustness analysis requires tools that move beyond those available for
traditional LTI analysis. Recent developments in the theory of IQCs16–18 provide a general framework for
robust analysis of LPV systems. Therefore, robustness of the LPV controller designed in this paper will be
evaluated using the theoretical results introduced in Appendix.

For simplicity, a multiplicative norm bounded uncertain block ∆ is inserted to the input channel of blade
pitch, as shown in Figure 8. The norm of the uncertainty is assumed to be less than a positive scalar b,
i.e. ‖∆‖ ≤ b. The uncertainty is described by the integral quadratic constraints (Ψ,M) with Ψ = I2 and
M =

[
1 0
0 −b−2

]
. Here Gρ and Kρ represent the LPV model and controller of the turbine described by LTI

state space models at nine gridding parameters as shown in Section III. The induced L2 gain from reference

commands and wind disturbance
[ ∆pcmd

∆ωcmd
∆v

]
to the outputs

[
∆p

∆ωcmd

]
is used as performance measurement.

The worst case gains of the LPV system corresponding to different values of the uncertainty bound b are
calculated under two set of parameter varying rates. In the first set, the bound of wind acceleration, which
is denoted as ρ̇1 is 0.1m/s2; the bound of power varying rate, which is denoted as ρ̇2, is 0.001MW/s. In
the second set, the corresponding values are 0.2m/s2 and 0.002MW/s. Both cases assume the Lyapunov
matrix P (ρ) has affine dependence on parameters, i.e. P (ρ) = P0 + ρ1P11 + ρ2P12, where P0, P11 and P12

are constant matrices. The parameter rate of power is chosen much lower than the original design in both
cases here for some numerical issues. As comparison, the LTI worst case gain of the system in the presence
of uncertainty is calculated at some frozen parameters. The results are shown in Figure 9. The worst case
gain without uncertainty is 13.5 for the first set of parameter varying rates. The corresponding value is 16.7
for the second set. The LTI worst case gain is only 1.5. As the norm bound b of the uncertainty increases,
the value of γ increases in each of the three cases. The γ for slower parameter varying rates in the first case
is alway lower than the second one. The γ for the LTI case is much lower than both of the parameter varying
cases. The results show that the robustness performance of LPV system is worse than the frozen LTI case
and will deteriorate as the bound of parameter varying rates increase. This makes sense because the frozen
LTI system could be recognized as the LPV system with parameter varying rates equal to 0. It should be
noted that the γ calculated using the proposed method in Appendix only provides an upper bound of the
worst case gain of the LPV system because of the sufficient condition in Theorem 1. The conservativeness
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Figure 7. Simulation in above rated turbulent wind.

Figure 8. Block diagram of the LPV system with uncertainty.

of this upper bound needs to be evaluated by finding a lower bound of the worst case gain of the LPV
system. The LTI worst case gain here provides such a lower bound. However, this lower bound is also too
conservative since it assumes zero parameter varying rates. The results provided here are preliminary. More
interpretations will be included in the final draft with calculation of a less conservative lower bound.

V. Conclusion

This paper proposes an LPV control design for active power control of wind turbines. The control system
architecture coordinates the blade pitch and the generator torque to track a power command and a specific
tip speed ratio. The controller is synthesized with parameter dependence on the wind speed and the power
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Figure 9. Worst case gain of the system with uncertain β.

output whose range cover the turbine operation envelope for APC. Compared to the gain scheduled approach
in the previous design, a standard LPV design ensures the stability and performance of the system. This is
certified by simulations on FAST and post statistical analysis. Moreover, the robustness of the LPV system
was evaluated using IQCs. However, several aspects of the design need further consideration. These include
the actuator saturation of blade pitch in low wind speed and high power command, tunning on the LPV
design, simulations with more realistic wind and power profiles and more results and interpretations on
robust analysis of the system.

Appendix

IQCs are used to model the uncertain and/or nonlinear components and provide a general framework for
robustness analysis.16 While the frequency-domain stability condition in16 applies only for uncertain LTI
systems, a time-domain interpretation and the derived dissipation inequality condition could be used for
robust analysis of uncertain LPV systems.18

An IQC is defined by a symmetric matrix M = MT ∈ Rnz×nz and a stable linear system Ψ ∈
RHnz×(nv+nw)
∞ . Ψ is denoted as [

ẋψ(t)

z(t)

]
=

[
Aψ Bψ1 Bψ2

Cψ Dψ1 Dψ2

]xψ(t)

v(t)

w(t)

 (11)

The initial condition for Ψ is always taken as xψ(0) = 0.

Definition 1 A bounded, causal operator ∆ : Lnv2e → Lnw2e satisfies an IQC defined by (Ψ,M) if the following
inequality holds for all v ∈ Lnv2 [0,∞), w = ∆(v) and T ≥ 0:∫ T

0

z(t)TMz(t) dt ≥ 0 (12)

where z is the output of the linear system Ψ as defined in Equation 11. The notation ∆ ∈ IQC(Ψ,M) is
used if ∆ satisfies the IQC defined by (Ψ,M).

Figure 10 provides a graphical interpretation of the IQC. The input and output signals of ∆ are filtered
through Ψ. If ∆ ∈ IQC(Ψ,M) then the output signal z satisfies the (time-domain) constraint in Equation
12 for any finite-horizon T ≥ 0. A simple example is provided below to connect this terminology to standard
results used in robust control.
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∆

Ψ
z

v w

Figure 10. Graphical interpretation of the IQC

Example 1 Consider a causal (SISO) operator ∆ that satisfies the bound ‖∆‖ ≤ b. The norm bound on ∆
implies that ‖w‖ ≤ b ‖v‖ for any input/output pair v ∈ L2 and w = ∆(v). This constraint on (v, w) can be
expressed as the following infinite-horizon inequality:

∫ ∞
0

[
v(t)

w(t)

]T [
1 0

0 −b−2

][
v(t)

w(t)

]
dt ≥ 0 (13)

It can be shown that the causality of ∆ implies the inequality involving (v, w) holds over all finite horizons
T ≥ 0: ∫ T

0

[
v(t)

w(t)

]T [
1 0

0 −b−2

][
v(t)

w(t)

]
dt ≥ 0

A detailed proof is given in.18 The final conclusion is that ‖∆‖ ≤ b satisfies the IQC defined by (Ψ,M) with
Ψ := I2 and M :=

[
1 0
0 −b−2

]
. In this example Ψ contains no dynamics and hence z = [vT , wT ]T .

An uncertain LPV system is described by the interconnection of an LPV system Gρ and an uncertainty
∆, as depicted in Figure 11. This interconnection represents an upper LFT denoted Fu(Gρ,∆). The filter
Ψ has been included in Figure 11 as it is used for the analysis.

Gρ

∆

Ψ

de

wv

z

Figure 11. Analysis Interconnection

The dynamics of the analysis interconnection in Figure 11 are described by w = ∆(v) andẋz
e

 =

A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)


xw
d

 (14)

where the state vector is x = [xG;xψ] ∈ RnG+nψ with xG and xψ being the state vectors of the LPV system
Gρ and the filter Ψ respectively. The uncertainty ∆ is shown in the dashed box to signify that it is removed
for the analysis. The signal w is treated as an external signal subject to the constraint in Equation 12. This
effectively replaces the precise relation w = ∆(v) with the quadratic constraint on z.

The next theorem provides a (sufficient) dissipation-inequality condition to upper bound of the worst
case L2 gain of Fu(Gρ,∆).18 This sufficient condition uses a quadratic storage function that is defined
using a parameter-dependent matrix P : P → SnG+nψ . It is assumed that P is a continuously differentiable
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function of the parameter ρ. In order to shorten the notation, a differential operator ∂P : P × Ṗ → SnG+nψ

is introduced as in.35 ∂P is defined as:

∂P (ρ, ρ̇) :=

nρ∑
i=1

∂P (ρ)

∂ρi
ρ̇i (15)

Theorem 1 Assume Fu(Gρ,∆) is well posed for all ∆ ∈ IQC(Ψ,M). Then the worst-case gain of Fu(Gρ,∆)
is ≤ γ if there exists a continuous differentiable P ∈ P → SnG+nψ and a scalar λ ≥ 0 such that P ≥ 0 and
∀(ρ, ρ̇) ∈ P × ṖPA+ATP + ∂P PB1 PB2

BT1 P 0 0

BT2 P 0 −I

+ λ

CT1DT
11

DT
12

M [
C1 D11 D12

]
+

1

γ2

CT2DT
21

DT
22

[C2 D21 D22

]
< 0 (16)

In Equation 16 the dependence of the state matrices on ρ and ρ̇ has been omitted.

For simplicity, details of the proof are ignored here but could be found in.18
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