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Abstract— Wind turbines in a wind farm operate individually
to maximize their own power regardless of the impact of
aerodynamic interactions on neighboring turbines. There is the
potential to increase power and reduce overall structural loads
by properly coordinating turbines. To perform control design
and analysis, a model needs to be of low computational cost, but
retains the necessary dynamics seen in high-fidelity models. The
objective of this work is to obtain a reduced-order model that
represents the full-order flow computed using a high-fidelity
model. A variety of methods, including proper orthogonal
decomposition and dynamic mode decomposition, can be used
to extract the dominant flow structures and obtain a reduced-
order model. In this paper, we combine proper orthogonal
decomposition with a system identification technique to produce
an input-output reduced-order model. This technique is used
to construct a reduced-order model of the flow within a two-
turbine array computed using a large-eddy simulation.

I. INTRODUCTION

In the United States, many states have a renewable portfo-
lio standard or goal. For example, Minnesota has a renewable
portfolio standard target of 25% renewable energy by 2025
[1]. Wind energy will be a significant factor in achieving
this goal. Wind farm control can be used to increase wind
energy efficiency by maximizing power in wind farms that
are already installed. It can also be used to mitigate structural
loads to maximize the lifetime of the turbines and better
integrate wind energy into the energy market.

Currently, turbines in a wind farm are operated at their
individual optimal operating point, which leads to suboptimal
performance of the wind farm. Properly coordinating turbines
has the potential to increase the overall performance of a
wind farm [2]. Designing wind farm control strategies re-
quires a model of the wind farm that has a low computational
cost, but retains the necessary dynamics. A variety of wake
models exist in literature that are useful for studying wind
farm control. The simplest model is the Park model [3], and
those that model the wake using a RANS approach with a
mixing length model (e.g., the eddy viscosity model [4]).
The Park model provides a quick, preliminary description
of the wake interactions in a wind farm. Several high-
fidelity computational fluid dynamics (CFD) models have
been developed as well [5], [6]. These high-fidelity models
are more accurate tools and can be used for evaluating
wind farm controllers; however, they are computationally
expensive. These low- and high-fidelity models have been
used to evaluate wind farm control strategies. The analysis
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provides conflicting results based on the wake model chosen
for control design. For example, control strategies designed
using simple static models may report significant improve-
ments in wind farm performance, but an analysis of such
control strategies using high-fidelity simulations can result
in minimal to no improvements in wind farm performance.
An example of a comparison between control predictions
given by a high-fidelity and simplified model is given in [7],
where constant offsets of pitch and torque are used to change
wake deficits. It is shown that extensions to the Park model
are needed to match the results of high-fidelity models.

Improving models for wind farm control requires a better
understanding of the aerodynamic interactions in a wind
farm. Although many studies have been performed using
static models and constant offsets of the operating point
of the wind turbines, dynamic wake modeling and control
approaches have been proposed recently. Previously pro-
posed approaches use high-order first principle modeling by
implementing the spatially filtered Navier-Stokes equations,
e.g., [8], to arrive at a dynamic wake model. This paper
focuses on a technique to construct a reduced-order wake
model from data generated by simulations or experiments.

Techniques developed by the fluids and controls commu-
nities are relevant for reduced-order wake modeling. Some
studies have been done to understand the dominant turbulent
structures generated in CFD simulations and in experiments
[9]. Proper orthogonal decomposition (POD) and dynamic
mode decomposition (DMD) are two popular techniques
in the fluids literature that compute the dominant modes
of the flow. These modes have been used to construct the
reduced-order models that can be used for control, such as
balanced POD and DMD with control (DMDc) [10]–[13].
Some of these methods require computing the adjoint of the
system, which is not readily available in most CFD codes
and is not available during experiments. The controls/systems
community has an alternative set of techniques to identify
models from input-output data, e.g., system identification
techniques such as N4SID [14]. The methods generate
reduced-order black box models to represent input-output
measurements from the system. This type of reduced-order
model refers to a low-dimensional representation of a high-
dimensional system. In this framework, the states have no
physical meaning.

In this paper, we use a method that combines system
identification with POD modes that closely follows the
DMDc algorithm [13]. This type of model reduction ap-
proach has two main advantages. First, it relies on input-
output data from a forced response and does not require the
construction/simulation of the adjoint system. Second, the



reduced-order model is constructed in a way that retains the
physical meaning of the states. In other words, the reduced-
order state can be mapped back to the approximate full-order
state of the system. The method addressed in this paper
projects the state onto a reduced-order subspace using the
dominant modes of the system and then uses direct N4SID
to define the reduced-order model of the system. This paper
will begin by reviewing the standard reduced-order modeling
techniques in the fluids literature, i.e., POD and DMD, that
focus on identifying dominant spatial and temporal modes in
the flow of autonomous systems. Next, we will address the
method used in this paper to obtain reduced-order models
of dynamic systems that include inputs and outputs (Section
III). This method has been applied to a high-fidelity CFD
simulation of a two-turbine array described in Section IV.
The results of obtaining a reduced-order model are presented
in Section V. Finally, conclusions and suggestions for future
work are given in Section VI.

II. BACKGROUND: REDUCED-ORDER MODELING

Two popular methods in the fluids community are ad-
dressed in this section. These methods were used in com-
bination with system identification to construct a low-
dimensional model from a high-dimensional system.

A. Proper Orthogonal Decomposition

POD provides a low-order approximation of a fluid system
that is capable of capturing the dominant structures in the
flow. Specifically, POD can be used to extract dominant
spatial features from both simulation and experimental data
that can be used to uncover the structures in the flow field
[15], [16]. This can be done by projecting the velocity field
onto a set of orthogonal basis functions.

Consider a system modeled by the following continuous-
time nonlinear dynamics:

ẋ(t) = f(x(t), u(t)) (1)

where x ∈ Rn is the state vector and u ∈ Rp is the input
vector. The POD modes of this system can be computed
by simulating the system (1) forward in time and collecting
snapshots of the nonlinear system, x(t). A data matrix of the
snapshots is formed by:

X0 = [x(t0), x(t1), ..., x(tm)] (2)

where m is the number of snapshots. The POD modes are
then computed by taking the singular value decomposition
of the data matrix:

X0 = UΣV ∗. (3)

The POD modes are contained in the columns of U , and
the relative energy of each mode is contained in the singular
values in Σ. These modes provide the spatial component of
the flow with the first POD mode being the spatial mode
that contains the most energy. Note that a reduced-order
model can be constructed using POD modes and the Galerkin

projection (see [16] for details). In addition, there have been
a few other variations of POD that have been developed
to directly handle inputs (e.g., [10], [11]). POD modes are
good at representing specific data sets; however, they do
not necessarily provide a good description of a dynamically
evolving flow driven by a forcing input.

B. Dynamic Mode Decomposition

DMD extracts the dominant spatial and temporal infor-
mation about the flow [17]–[20]. This method attempts to
fit a discrete-time linear system to a set of snapshots from
simulations or experiments. Consider a system modeled by
the following discrete-time nonlinear dynamics:

xk+1 = f(xk) (4)

where x ∈ Rn is the state vector. A collection of snapshot
measurements {xk}mk=0 ∈ Rn is obtained for the system
either via simulations or experiments.

The objective of DMD is to approximate the system on a
low-dimensional subspace. Assume there is a matrix A that
relates the snapshots in time by:

xk+1 = Axk. (5)

The snapshots of the system are defined as:

X0 = [x0, x1, ..., xm−1] (6)
X1 = [x1, x2, ..., xm] (7)

where xk are the snapshots and m is the number of snap-
shots. The full-order A matrix can be computed such that:

A = X1X
†
0 (8)

where X†0 indicates the pseudoinverse of X0. The DMD
method attempts to fit the snapshots in time using a low
rank matrix that captures the dynamics of the data set.
This matrix can be used to construct the DMD modes that
correspond to specific temporal frequencies. A low-order
representation of xk can be written as zk = Q∗xk, where
Q is the projection subspace. The truncated, reduced-order
model takes the form:

zk+1 = (Q∗AQ)zk := Fzk. (9)

The state matrix F := Q∗AQ ∈ Rr×r describes the
dynamics of the reduced-order subspace. Solutions to this
reduced-order model can be used to construct the approxi-
mate solutions to the full-order model.

The typical choice for the projection subspace, Q, is the
POD modes of X0 (i.e., Q = Ur, where r is the order of
the reduced-order model). The optimal reduced-order state
matrix, F , for this choice is:

F := U∗rAUr = U∗rX1(U∗rX0)† (10)

where the corresponding low rank approximation for the full-
order state matrix is:



A ≈ UrFU
∗
r = UrU

∗
rX1X

†
0 . (11)

If an eigenvalue decomposition is done on F , then A is
now:

A ≈ UrTΛT−1U∗r (12)

where UrT are defined as the DMD modes, and the corre-
sponding values of Λ provide the specific temporal frequency
for each DMD mode.

One limitation of this approach is that DMD cannot
produce input-output models. Specifically, the dynamics and
modes will be disrupted by external forcing (i.e., DMD
is not robust to perturbations in the system). In addition,
this technique is not robust to noise, making it difficult
to use for predictive modeling or control. A few studies
have been conducted to address this issue [21], [22]. In the
studies outlined here, different approaches have been taken to
account for noise. In [21], a Kalman filter is used in addition
to the reduced-order model obtained using DMD, which
helps account for process noise as well as measurement
noise. The approach, described in the next section, uses
external forcing to identify a reduced-order linear model that
is more robust to noise. By introducing an external input,
there is a stronger signal-to-noise ratio that is capable of
better identifying a reduced-order model.

III. INPUT-OUTPUT REDUCED-ORDER MODELING

In this section, we combine POD with system identifica-
tion [14], often used in the controls literature, to produce an
input-output reduced-order model (IOROM). This term has
been used in the aero-servo-elastic flexible aircraft literature
[23]. The proposed method closely follows the procedure
used in the formulation of DMDc [13]. Specifically, this
approach will be summarized in this section for time-
invariant systems, but it can be extended to parameter-
varying systems [24]. The advantages of using this approach
is that it produces input-output models that do not require
adjoints and is robust to noise.

Consider a discrete-time nonlinear system with inputs:

xk+1 = f(xk, uk) (13)
yk = h(xk, uk) (14)

where x ∈ Rn, u ∈ Rp, and y ∈ Rq are the state, input, and
output vectors.

A collection of snapshot measurements are obtained via
simulations or experiments by exciting the system. Snapshots
are taken from the nonlinear system, and the states (similar
to DMD), inputs, and outputs are recorded as:

X0 = [x1, x2, ..., xm−1] (15)
X1 = [x2, x3, ..., xm] (16)
U0 = [u1, u2, ..., um−1] (17)
Y0 = [y1, y2, ..., ym−1]. (18)

This method attempts to fit the snapshot measurements at
a particular operating point in time by:

xk+1 = Axk +Buk (19)
yk = Cxk +Duk. (20)

The dimensions of the state matrices (A,B,C,D) are com-
patible to those of (x, u, y). The state is projected onto a low-
dimensional subspace to make the computations tractable.

A truncated model can be expressed in terms of this
reduced-order state (i.e., z = Q∗x ∈ Rr, where Q ∈ Rn×r

is a generic orthonormal basis that forms the projection
subspace).

zk+1 = (Q∗AQ)zk + (Q∗B)uk := Fzk +Guk (21)
yk = (CQ)zk +Duk := Hzk +Duk (22)

The reduced-order state matrices (F,G,H,D) are ob-
tained by minimizing the error of the Frobenius norm using
least-squares:

min[
F G
H D

]
∥∥∥∥[X1

Y1

]
−

[
Q 0
0 I

] [
F G
H D

] [
Q∗ 0
0 I

] [
X0

U0

]∥∥∥∥2
F

.

(23)
This is the direct N4SID subspace method for estimating

state matrices given measurements of the (reduced-order)
state, input, and output. A useful choice for the projection
space is given by the POD modes of X0; see (3). The state of
the linear system can be approximated on a subspace defined
by the first r POD modes of X0. The optimal reduced-order
state matrices for this choice are:[

F G
H D

]
opt

=

[
U∗rX1

Y0

] [
ΣrVr
U0

]†
. (24)

As with standard DMD, an eigenvalue decomposition of Fopt

can be used to construct these modes, which provide spatial
modes associated with a specific temporal frequency for the
system. It should be noted that the F matrices obtained
in DMD and this approach should be the same. The F
matrix describes the dynamics of the system. As mentioned
previously, DMD is often not robust to sensor or process
noise, and it does not handle inputs and outputs, which is
necessary for the wind farm problem. The G, H , and D
matrices obtained using this method are computed such that
the input-to-output relationship of the reduced-order model
is maintained from the full-order system. This proposed
method is a tractable implementation of the existing direct
N4SID (subspace) method [14] that can be applied for very
large systems. This is not simply a black-box (input-output)
approach because the state of the reduced-order system zk
can be used to approximately reconstruct the full-order state
by:

xk ≈ Urzk. (25)



Moreover, the approach only requires input/output/state data
from the model. Construction and simulation of an adjoint
system is not required.

IV. SIMULATION SETUP

The IOROM method described in Section III was used to
obtain a reduced-order model from the Simulator fOr Wind
Farm Applications (SOWFA) simulations. The goal of this
study is to construct a reduced-order model that can be used
to reconstruct the dominant characteristics of the flow field
seen in high-fidelity models.

A. Simulator fOr Wind Farm Applications
SOWFA is a high-fidelity large eddy simulation tool that

was developed at the National Renewable Energy Laboratory
(NREL) for wind farm studies. SOWFA is a CFD solver
based on OpenFOAM that is coupled with NREL’s FAST
modeling tool. SOWFA has been used in previous wind farm
control studies [5], [25], [26].

SOWFA uses an actuator line model coupled with FAST
to study turbines in the atmospheric boundary layer. Specif-
ically, SOWFA solves the three-dimensional incompressible
Navier-Stokes equations and transport of potential tempera-
ture equations, which take into account the thermal buoyancy
and Earth rotation (Coriolis) effects in the atmosphere. The
inflow conditions for this simulation are generated using
a periodic atmospheric boundary layer precursor with no
turbines. Additional details can be found in [26].

SOWFA calculates the unsteady flow field to compute
the time-varying power, velocity deficits, and loads at each
turbine in a wind farm. This level of computation, with
high-fidelity accuracy, takes a number of days to run on
a supercomputer using a few hundred to a few thousand
processors, depending on the size of the wind farm. The
simulations run for this study were performed on NREL’s
high-performance computer Peregrine.

B. Two-Turbine Setup
A high-fidelity simulation of a two-turbine scenario was

performed with SOWFA to provide the data for the IOROM.
The turbines were aligned with a spacing of 5 D. The
simulated turbines are NREL 5-MW baseline turbines [27],
which have a rotor diameter of D = 126 m. Details about the
positioning of the turbines in the domain are given in Fig. 1.
The spatial discretization for CFD is refined in two steps in
a rectangular region, with the smallest cells containing the
turbine rotors, the axial-induction zones of the rotor, and a
large part of the wake. Farther from the turbines, the mesh
is coarser to reduce computation time.

The conditions simulated in SOWFA are based on the
study reported in [25], [26]. They consist of a neutral
atmospheric boundary layer with a low aerodynamic surface
roughness value of 0.001 m, which is typical for offshore
conditions. The generated inflow, coming from the southwest
(300◦), has a horizontally averaged wind speed of 8 m/s and
a turbulence intensity of 10% at the turbine hub height. We
used a simulation time of 1800 s to let the wakes develop
through the domain.

Fig. 1. Setup for the two-turbine array in SOWFA.

C. IOROM from SOWFA

A forced input was applied to the upstream turbine by
changing the collective blade pitch angle from 0◦ to 4◦

using a pseudorandom binary sequence; see Fig. 2. The
corresponding power output for each turbine is shown in the
bottom plot of Fig. 2. This indicates how the forcing input
at the upstream turbine affects the power output of both the
upstream and the downstream turbine. By changing the blade
pitch from 0◦ to 4◦ at varying frequencies, various dynamics
of the system are excited. This help accurately identify a
reduced-order model of this system.

Fig. 2. Forced input used for the two-turbine array.

The data from the simulations were sampled at 1 s
intervals (i.e., snapshots of the flow are recorded every 1
s). The sampling time was determined by doing a frequency
analysis of the flow in a two-turbine array. In particular,
Fig. 3 shows the frequency content within a wake 4 D
downstream of the upstream turbine. In addition, Fig. 3



shows that a majority of the frequency content in the rotor-
swept area (63 m around the origin) of the wake does not
exceed 0.5 Hz. There is a higher frequency at the edge of
the wake because of the presence of a shear layer. For this
analysis, it should be noted that the fast Fourier transform in
Fig. 3 is based on 1 Hz data. The Nyquist frequency is thus
0.5 Hz. We see that in the wake, the variation is not higher
than 0.5 Hz. It should also be noted that the time step of
interest for this particular method is the sampling rate, 1 s,
rather than the time scale of the CFD solver. As a result, it
was determined that we do not need higher frequency data to
do this analysis. The inputs of interest for this problem are
the blade pitch angle of the upstream turbine, the generator
torque of the upstream turbine, and the generator torque of
the downstream turbine. The outputs of interest include the
power from the upstream turbine and the power from the
downstream turbine. The purpose of this model is to be able
to approximately reconstruct the flow corresponding to these
inputs and outputs.

Fig. 3. Frequency content of the flow velocity field at 4 D downstream
of the upstream turbine. Specifically, this shows the -20 dB bandwidth of
the fast Fourier transform of the velocity signal for sample points at 4 D
downstream. Note that the velocity signal was sampled at 1 Hz. The pure
yellow may indicate that the frequency at these points exceeds 0.5 Hz.

V. RESULTS

The results shown in this section were obtained using the
IOROM method described in Section III on the simulation
scenarios described in Section IV-B. Note that the resulting
flow fields have been rotated in this section so that the
flow is shown moving from left to right. The upstream
and downstream turbines are indicated by black lines in
the figures in this section. In particular, we will focus on
reconstructing the flow (i.e., the state evolution equation
xk+1 = Axk + Buk, where x is the flow velocity at the
sampled grid points, u := [β1, τg1, τg2], where β1 is the blade
pitch angle at the upstream turbine, and τg1 and τg2 are the
generator torques at the upstream and downstream turbines,
respectively). The blade pitch angle at the downstream tur-
bine is zero in this example and is excluded from the inputs.
These inputs are associated with the force that the turbines
are applying to the flow and are essential to include in the

reduced-order model. For this particular example, there are
approximately 1.2 million sampled grid points and the three
velocity components are recorded at each grid point. Hence,
the dimension of x is approximately 3.6 million. It should be
noted that this paper is primarily focused on reconstructing
the flow field x (i.e., the states). In particular, this approach
can be used to find a low-order representation of the system
where the states have physical meaning. This is useful when
applying this method to linear parameter-varying systems
[24]. When obtaining an input-output model for this system,
a typical output used with this approach would be the power
output of each turbine or the wind speed directly in front of
each turbine (approximately 1 D upstream of the turbine).
Future results will address the input-to-output relationship.

The POD modes of the simulation were computed using
the MapReduce approach [28]. Specifically, we used 800
snapshots at 1 s intervals for a total time of 800 s to
compute the POD modes of the system. This indicates that
the lowest frequency that we could capture with the reduced-
order model constructed in this paper is on the order of 10−2.
Fig. 4 shows the POD modes 1, 2, 10, 20, 50, and 100 of
the streamwise velocity component at hub height (90 m).
As described in Section III, the POD modes are used to
project the system on to a low-dimensional subspace such
that direct N4SID can be used to identify a low-order model
of the high-dimensional system. It should be noted that these
modes were computed after subtracting out the baseflow
(i.e., the mean flow). The first mode contains low-frequency
spatial information and is the most energetic mode of the
system. Mode 100 has high-frequency spatial information
and represents a small amount of energy in the system.

Fig. 4. Modes 1, 2, 10, 20, 50, and 100 of the two-turbine array. Note:
the plots are in m/s.

The full flow field is computed from the results of the
reduced-order model using (25) and is shown in Fig. 5. The
bottom plot of Fig. 5 indicates the blade pitch angle at the
upstream turbine and the dot indicates the blade pitch angle
of the instantaneous snapshot represented in the top three



plots. For this reconstruction, we selected 20 modes and
specifically looked at the streamwise velocity component
at hub height. By only selecting 20 modes, this reduced-
order model will not be able to capture the high-frequency
spatial turbulence. The order of this model was selected by
evaluating the mean error accumulated when comparing the
SOWFA flow field with the reduced-order flow field. It is
important to note that if too many modes are selected, then
the model will try to overfit to the turbulence rather than the
dominant dynamics of the system.

Fig. 5. Flow reconstructed using the reduced-order model (top) and
compared to SOWFA (middle). The bottom plot indicates the blade pitch
angle at the upstream turbine.

Lastly, this model was applied to a set of validation data to
verify that it would work under similar wind conditions but
with a different forced input. The same inflow fields were
used for the training and validation cases. Additional work
is being done to understand the effects of using different
inflow conditions. The same model that was used to construct
Fig. 5 is used to reconstruct the flow for the validation data.
Fig. 6 shows that this model is able to similarly reconstruct
the dominant characteristics of the flow provided in the
validation case. The results in Fig. 6 indicate that a reduced-
order model has been obtained using the proposed approach
and can be used as a predictive model for another similar
data set. The time-averaged error between SOWFA and the
reduced-order model in the validation case is shown in Fig.
7. The time-averaged error is an average of the instantaneous
error snapshots (i.e., the third plot in Fig. 7). Specifically, the
instantaneous error is determined by subtracting streamwise
velocity obtained from the reduced-order model from the

streamwise velocity computed in SOWFA. The maximum
error occurs on the edges of the wakes and may be a result
of excess mixing far downstream (4 D) of the upstream
turbine; however, this error is less than 10%. Fig. 6 fur-
ther demonstrates that the reduced-order model is able to
capture a majority of the flow characteristics by comparing
the streamwise velocity computed in SOWFA and in the
IOROM.

Fig. 6. Flow reconstructed for the validation case using the reduced-order
model (top) and compared to SOWFA (middle). The bottom plot indicates
the blade pitch angle at the upstream turbine.

Fig. 7. Time-averaged error of the validation data.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a method that combines POD and
system identification to construct an IOROM. The applica-
tion of this method was a high-fidelity wake model, SOWFA.
We were able to identify a 20-state model that can reconstruct



the dominant characteristics of the flow. Future work will
include constructing a reduced-order model from SOWFA
using this approach to design and analyze a closed-loop
controller that can be used for wind farm control in high-
fidelity simulations.
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