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Exponential Decay Rate Conditions for Uncertain Linear
Systems Using Integral Quadratic Constraints

Bin Hu and Peter Seiler

Abstract—This paper develops linear matrix inequality (LMI) condi-
tions to test whether an uncertain linear system is exponentially stable
with a given decay rate α. These new α-exponential stability tests are
derived for an uncertain system described by an interconnection of a
nominal linear time-invariant system and a “troublesome” perturbation.
The perturbation can contain uncertain parameters, time delays, or
nonlinearities. This paper presents two key contributions. First, α-
exponential stability of the uncertain LTI system is shown to be equivalent
to (internal) linear stability of a related scaled system. This enables
derivation of α-exponential stability tests from linear stability tests
using integral quadratic constraints (IQCs). This connection requires
IQCs to be constructed for a scaled perturbation operator. The second
contribution is a list of IQCs derived for the scaled perturbation using
the detailed structure of the original perturbation. Finally, connections
between the proposed approach and related work are discussed.

I. INTRODUCTION

This paper presents a unified framework to test whether an un-
certain linear system is exponentially stable with a specifically given
decay rate α. The uncertain system is described as an interconnection
of a nominal linear time-invariant (LTI) system and a “trouble-
some” perturbation. The perturbation considered in this paper can
be uncertain parameters, delays, or nonlinearities. The exponential
convergence rate is an important metric quantifying the performance
of a controller designed to regulate an uncertain system [4]. Hence,
the results in this paper can be used to assess controller performance.
Moreover, many optimization algorithms can be viewed as uncertain
linear systems [11]. The results in this paper can be tailored for the
convergence rate analysis of these optimization algorithms.

Integral quadratic constraints (IQCs) provide a general framework
for robust analysis of uncertain systems [13]. The IQC theory devel-
oped in [13] addresses input-output stability of uncertain LTI systems
based on frequency domain inequalities. Related stability theorems
have also been formulated using time domain dissipation inequality
techniques [18], [17]. Input-output stability implies exponential sta-
bility for LTI systems [12]. Hence the existing IQC theory can be used
to prove exponential stability of an uncertain LTI system. Similarly,
Popov IQCs have been used to show exponential stability of nonlinear
systems [7]. These type of results prove existence of exponential
convergence but do not provide an accurate estimate/bound for the
convergence rate.

There are several related exponential decay rate conditions in
the literature. Most existing α-exponential stability tests lead to
computable conditions in the form of (convex) generalized eigenvalue
problems (GEVPs) [2]. An early result of this nature is obtained for
sector-bounded nonlinearities [4]. Recently, the IQC framework has
been modified to formulate GEVP-type α-exponential stability tests
for discrete-time systems [11], [1]. In [11], an α-exponential stability
test formulated using a time domain dissipation inequality has been
used to analyze a class of first-order optimization algorithms. In [1],
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the standard frequency domain stability theorem in [13] has been
extended to a GEVP for estimating exponential rates of uncertain LTI
systems. The framework in [1] connects the standard IQC setup in
[13] to α-exponential stability tests. The resultant conditions may also
be numerically solved by frequency domain gridding. The work in
[11], [1] relies on the constructions of α-IQCs1 (defined in Section V)
for the perturbation operator. An α-IQC Zames-Falb multiplier has
been successfully constructed for nonlinear perturbations.

Two key contributions are made in this paper. First, α-exponential
stability of the uncertain LTI system is shown to be equivalent to
(internal) linear stability of a related scaled system (Section III). This
leads to the α-exponential stability tests presented in Theorem 3. The
proposed α-exponential stability tests require (standard) IQCs2 to be
constructed for a related scaled perturbation operator. The second
contribution is that a library of IQCs for this scaled perturbation
operator is derived in Section IV. Section V discusses the connections
between the proposed framework and the α-IQC approach. This
paper focuses on uncertain LTI systems. However, similar to the IQC
extension for linear parameter varying (LPV) systems [15], [16], the
derivation procedures in this paper rely on time domain arguments
and can be easily extended to other uncertain linear systems.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notation

The projection operator PT maps any function u as follows:
(PTu)(t) = u(t) for t ≤ T and (PTu)(t) = 0 otherwise. The
extended space, denoted L2e, is the set of functions v such that
PT v ∈ L2 for all T ≥ 0. An operator F : L2e → L2e is causal
if PTF = PTFPT . An operator is bounded if it has a finite L2

gain. The condition number of matrix P is denoted as cond(P ).

B. Problem Statement

This paper considers the exponential convergence rate analysis for
uncertain continuous-time LTI systems. As shown in Figure 1, the
uncertain system Fu(G,∆) is described by the interconnection of an
LTI system G and an uncertain perturbation ∆. G is described by
the following state-space model:

ẋG(t) = AG xG(t) +BGw(t)

v(t) = CG xG(t) +DGw(t)
(1)

where xG ∈ RnG , w ∈ Rnw , and v ∈ Rnv . The perturbation
∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) is a causal operator. More specifically,
the perturbation considered in this paper can be a block diagonal con-
catenation of uncertain parameters, time delays, and/or nonlinearities.
LTI norm bounded uncertainty is not considered since it may lead to
an arbitrarily slow convergence rate of Fu(G,∆).
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Fig. 1. Interconnection for an Uncertain LTI System

1Originally the terminology “ρ-IQC” is used since discrete-time systems
are considered. A continuous-time formulation is adopted in this paper, and
“α-IQC” will be used.

2The framework in this paper relies on the construction of “IQCs” for a
scaled perturbation operator, while the original work in [11], [1] makes use
of the “α-IQCs” for the original perturbation operator.
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Definition 1. The interconnection Fu(G,∆) is well-posed if for each
xG(0) ∈ RnG there exists a unique solution xG ∈ LnG2e , v ∈ Lnv2e

and w ∈ Lnw2e satisfying Equation (1) and w = ∆(v).

Definition 2. Fu(G,∆) is exponentially stable with rate α (≥ 0) if
it is well-posed and if ∃ c ≥ 0 such that ‖xG(t)‖ ≤ ce−αt‖xG(0)‖,
∀t ≥ 0.

The objective of this paper is to derive linear matrix inequality
(LMI) conditions to test whether Fu(G,∆) is exponentially stable
with a given rate α. These conditions are referred to as α-exponential
stability tests. These α-exponential stability tests are useful since a
bisection algorithm can then be used to find the best (i.e. smallest)
exponential rate bound for Fu(G,∆).

C. Integral Quadratic Constraints

This section briefly reviews the stability analysis framework pro-
vided by integral quadratic constraints (IQCs) [13], [17]. The key idea
is to replace the troublesome block ∆ with quadratic constraints on
its inputs and outputs. IQCs can be specified either in the frequency
or time domain. The definitions of IQCs are given as follows.

Definition 3. Let Π : jR → C(nv+nw)×(nv+nw) be a mea-
surable Hermitian-valued function. A bounded, causal operator
∆ : Lnv2e [0,∞) → Lnw2e [0,∞) satisfies the frequency domain IQC
defined by the multiplier Π, if the following inequality holds for all
v ∈ Lnv2 [0,∞) and w = ∆(v)∫ ∞

−∞

[
V (jω)
W (jω)

]∗
Π(jω)

[
V (jω)
W (jω)

]
dω ≥ 0 (2)

where V and W are Fourier transforms of v and w.

Definition 4. Let Ψ be an nz × (nv + nw) LTI system, and M =
MT ∈ Rnz×nz . A causal operator ∆ : Lnv2e [0,∞) → Lnw2e [0,∞)
satisfies the time domain IQC defined by (Ψ,M), if the following
inequality holds for all v ∈ Lnv2e [0,∞), w = ∆(v) and T ≥ 0∫ T

0

zT (t)Mz(t) dt ≥ 0 (3)

where z is the output of Ψ driven by inputs (v, w) with zero initial
conditions.

Definition 4 does not require ∆ to be bounded, although in many
cases the IQCs specified on ∆ will imply its boundedness. Input-
output stability theorems can be formulated using either frequency
domain IQCs [13] or time domain IQCs [18], [17]. A library of
frequency domain IQCs for different bounded perturbation operators
was summarized in [13]. Additional frequency domain IQCs have
been developed for time delay [5], [9], [15] and nonlinearities [6].

Time domain IQCs have been applied to various types of systems,
e.g. LPV systems [16], nonlinear systems [15], and stochastic sys-
tems [14]. However, constructing time domain IQCs is a nontrivial
issue. A systematic approach is the J-spectral factorization method
[17]. This approach can be used to factorize frequency domain
IQCs into time domain IQCs for bounded ∆ under mild technical
conditions. There is also some work on directly deriving time domain
IQCs without involving frequency domain IQCs, e.g. discrete-time
Zames-Falb IQCs for gradients of strongly convex functions [11].

One related result is reviewed here to demonstrate the application
of IQCs. In Section III, this result will be extended to an LMI con-
dition for α-exponential stability. The following concept is required.

Definition 5. The interconnection Fu(G,∆) is linearly stable3if it is
well-posed and if ∃ c ≥ 0 such that ‖xG(t)‖ ≤ c‖xG(0)‖, ∀t ≥ 0.

3Linear stability is a special case of the so-called global uniform stability
[10, Lemma 4.5] when the required class K function is a linear function.

In the traditional IQC setup [13], the problem formulation and the
concept of well-posedness are related to two exogenous inputs for
the purpose of input-output stability analysis. This paper relies on
internal linear stability analysis. The exogenous inputs are dropped
from the problem formulation and the definition of well-posedness.
An LMI condition for linear stability of Fu(G,∆) can be formulated
using time domain IQCs as follows. The uncertainty ∆ is assumed to
satisfy multiple time domain IQCs defined by {(Ψk,Mk)}Nk=1. All
{Ψk}Nk=1 are first aggregated into the following single filter Ψ:[

ψ̇(t)
z(t)

]
=

[
AΨ BΨ1 BΨ2

CΨ DΨ1 DΨ2

]ψ(t)
v(t)
w(t)

 (4)

where z := [zT1 . . . z
T
N ]T and zk is the output of Ψk. The linear

stability analysis is based on the extended system shown in Figure 2.
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Fig. 2. Uncertain LTI system extended to include filter Ψ

Define a map H(G,Ψ) which maps G and Ψ to the extended
system governed by the following state space model:[

ẋ(t)
z(t)

]
=

[
A B
C D

] [
x(t)
w(t)

]
(5)

The extended state vector is x :=
[ xG
ψ

]
∈ RnG+nψ . The state

matrices for the extended system H(G,Ψ) are determined by:

A :=

[
AG 0

BΨ1CG AΨ

]
, B :=

[
BG

BΨ1DG +BΨ2

]
(6)

C :=
[
DΨ1CG CΨ

]
, D := DΨ1DG +DΨ2 (7)

H(G,Ψ) is a specific state-space realization for the system Ψ [GI ].
This specific realization is used below to prove linear stability with
respect to the states of G. Define Mλ := diag(λ1M1, . . . , λNMN ),
where the “diag” notation means block diagonal concatenation.
The next theorem presents an LMI condition for linear stability of
Fu(G,∆) using time domain IQCs and a dissipation inequality. This
theorem uses an LMI defined by G and {(Ψk,Mk)}Nk=1:

LMI(G,Ψ,M)(P, λ) :=

[
ATP + PA PB
BTP 0

]
+

[
CT
DT
]
Mλ

[
C D

]
Theorem 1. Let G be a LTI system defined by (1) and ∆ :
Lnv2e [0,∞)→ Lnw2e [0,∞) be a causal operator such that Fu(G,∆)
is well-posed. Assume ∆ satisfies the time domain IQCs defined by
{(Ψi,Mi)}Ni=1. If one of the following conditions holds
(a) ∃ a matrix P = PT > 0 and scalars λi ≥ 0 such that

LMI(G,Ψ,M)(P, λ) ≤ 0.
(b) ∃ a matrix P = PT ≥ 0 and scalars λi ≥ 0 such that

LMI(G,Ψ,M)(P, λ) < 0.
Then Fu(G,∆) is linearly stable.

Proof: Assume Condition (a) holds. Define a storage function
by V (x) = xTPx. Left and right multiply LMI(G,Ψ,M)(P, λ) ≤ 0
by [xT , wT ] and [xT , wT ]T to show that V satisfies:

V̇ (x(t)) +

N∑
i=1

λizi(t)
TMizi(t) ≤ 0 (8)
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This dissipation inequality can be integrated from t = 0 to t = T
with initial condition x(0) =

[
xG(0)

0

]
to yield:

V (x(T )) +

N∑
i=1

λi

∫ T

0

zi(t)
TMizi(t) dt ≤ V (x(0)) (9)

Applying the time domain IQC conditions with the fact λi ≥
0, one can get V (x(T )) ≤ V (x(0)). Therefore, ‖xG(T )‖2 ≤
‖x(T )‖2 ≤ cond(P )‖x(0)‖2 = cond(P )‖xG(0)‖2. Thus
‖xG(T )‖ ≤

√
cond(P )‖xG(0)‖ and Fu(G,∆) is linearly stable.

Now assume Condition (b) holds. Since LMI(G,Ψ,M)(P, λ) < 0,
∃ ε > 0 such that LMI(G,Ψ,M)(P + εI, λ) ≤ 0. Linear stability
follows from Condition (a) due to the fact P + εI > 0.

The dissipation inequality approach presented above relies on the
fact that the constraint in (3) holds for any finite-horizon T ≥ 0. It
does not require either G or Ψ to be stable. It only requires that the
states of H(G,Ψ) have no finite escape time. Hence, Definition 4
does not enforce the stability of Ψ. In principle, one can use time
domain IQCs with unstable Ψ, although the J-spectral factorization
of any frequency domain IQC always leads to stable Ψ.

Many other linear stability conditions can be derived. For example,
given stable G and bounded ∆, one can drop the constraint P ≥ 0
in Condition (b) of the above theorem [17]. In addition, the conic
combination can be extended to more general IQC parameterizations
where Mλ is an affine function of λ [19]. This leads to less con-
servative factorization conditions for the combined multiplier [16].
Some alternative procedures (ν-gap metric theory in [3], dissipation
inequality in [18], etc) are also available for deriving stability tests.

III. α-EXPONENTIAL STABILITY TESTS

This section establishes the connections between linear stability
and α-exponential stability. The connections are built upon a specific
loop transformation, as shown in Figure 3. For any fixed α, define
the scaling operator Sα− : Lnv2e [0,∞) → Lnv2e [0,∞) that maps vα
to v = Sα−vα as follows: v(t) := e−αtvα(t). Similarly, define
another scaling operator Sα+ : Lnw2e [0,∞)→ Lnw2e [0,∞) that maps
w to wα = Sα+w by setting wα(t) := eαtw(t). Sα− and Sα+ have
well-defined inverse operators denoted by S−1

α− and S−1
α+, respectively.

Notice S−1
α− = Sα+ and S−1

α+ = Sα− if and only if nv = nw. The
connections between Fu(G,∆) and Fu(S−1

α−GS
−1
α+,Sα+∆Sα−) are

important for the results in this paper. A similar loop transformation
has been used in [1], which defines the scaled plant S−1

α−GS
−1
α+ in the

frequency domain and relates the α-exponential stability of Fu(G,∆)
to the input-output stability of Fu(S−1

α−GS
−1
α+,Sα+∆Sα−). The

frequency domain scaling of G only focuses on the input-output rela-
tionship. This paper relates the α-exponential stability of Fu(G,∆)
to the (internal) linear stability of Fu(S−1

α−GS
−1
α+,Sα+∆Sα−). This

requires a specific time domain state space definition for S−1
α−GS

−1
α+,

which leads to useful relationships between the states of the original
and transformed interconnections.

G S−1
α+S−1

α−

Gα

∆

∆α

Sα+Sα−

vα

v

�

--

wα

w-

� �

Fig. 3. Transformed Interconnection

Define the scaled systems Gα := S−1
α−GS

−1
α+ and ∆α :=

Sα+∆Sα−. These are input/ouput definitions for the scaled systems.

A specific, state-space realization for Gα can be obtained from the
realization for G in Equation (1). Define xG,α(t) := eαtxG(t). A
state-space realization for Gα is then given by:

ẋG,α(t) = (AG + αI) xG,α(t) +BGwα(t)

vα(t) = CG xG,α(t) +DGwα(t)
(10)

As a slight abuse of notation, the scaled system Gα will always
refer to this specific linear time-invariant realization. The main loop
transformation result is now stated.

Theorem 2. Fu(G,∆) is well-posed if and only if Fu(Gα,∆α) is
well-posed. Moreover, Fu(G,∆) is exponentially stable with rate α
if and only if Fu(Gα,∆α) is linearly stable.

Proof: It is straightforward to prove that xG ∈ LnG2e , v ∈ Lnv2e ,
and w ∈ Lnw2e is a solution for Equation (1) and w = ∆(v)
with initial condition xG(0) ∈ RnG if and only if (xG(t)eαt,
v(t)eαt, w(t)eαt) provides an L2e solution for Equation (10) and
wα = ∆α(vα) with initial condition xG,α(0) = xG(0). Therefore,
Fu(G,∆) is well-posed if and only if Fu(Gα,∆α) is well-posed.
Next suppose Fu(G,∆) and Fu(Gα,∆α) are well-posed and have
the same initial condition xG(0) = xG,α(0). The following holds

xG,α(t) = eαtxG(t)

wα(t) = eαtw(t)

vα(t) = eαtv(t)

(11)

where (xG, v, w) and (xG,α, vα, wα) are the resultant L2e solutions
for Fu(G,∆) and Fu(Gα,∆α), respectively. Moreover, ‖xG(t)‖ ≤
c‖xG(0)‖e−αt ⇔ ‖xG,α(t)‖ ≤ c‖xG,α(0)‖. Therefore, Fu(G,∆)
is exponentially stable with rate α if and only if Fu(Gα,∆α) is
linearly stable.

Remark 1. Proposition 5 in [1] states that input-output stability of
the transformed loop is a sufficient condition for α -exponential sta-
bility of the original loop. Theorem 2 here states that linear stability
of the transformed loop is a necessary and sufficient condition for
α-exponential stability of the original loop.

Theorem 2 states that a linear stability test for Fu(Gα,∆α) is
equivalent to an α-exponential stability test for Fu(G,∆). Thus LMI
conditions formulated for linear stability of the scaled interconnection
can be used to demonstrate α-exponential stability of the original
loop. This approach requires IQCs to be specified for ∆α. Most ex-
isting work on IQCs specifies multipliers for the unscaled operator ∆.
A main contribution of this paper is that a library of IQC multipliers
for ∆α is derived in Section IV for a large class of perturbations.
Note that application of Theorem 2 to the scaled system also requires
the perturbation ∆α to be causal. It is easily shown that causality of
∆α is equivalent to causality of ∆. This follows because Sα− and
Sα+ are memoryless, pointwise-in-time multiplication operators. The
frequency domain construction of IQC multipliers for ∆α requires
its boundedness, which is not as straightforward. Notice Sα+ is an
unbounded operator. It is possible for a bounded operator ∆ to yield
an unbounded scaled operator ∆α. The boundedness of ∆α needs to
be proven for each specific ∆. This issue is addressed in Section IV.
Theorem 2 does not require G to be controllable or observable. The
time domain scaling used in Theorem 2 can be extended to uncertain
LPV systems or uncertain linear Markovian jump systems.

An LMI condition for α-exponential stability of Fu(G,∆) is now
formulated using the loop transformation result in Theorem 2. The
scaled perturbation ∆α is assumed to satisfy multiple time domain
IQCs defined by {(Φi, Li)}Ni=1. The construction of these IQCs will
be discussed in Section IV. The analysis is based on the extended
system H(Gα,Φ) and the LMI(Gα,Φ,L) defined previously.
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Theorem 3. Let G be an nv×nw LTI system defined by (1) and ∆ :
Lnv2e [0,∞)→ Lnw2e [0,∞) be a causal operator such that Fu(G,∆)
is well-posed. Assume ∆α satisfies the time domain IQCs defined by
{(Φi, Li)}Ni=1. If one of the following conditions holds

1) ∃ a matrix P = PT > 0 and scalars λi ≥ 0 such that
LMI(Gα,Φ,L)(P, λ) ≤ 0

2) ∃ a matrix P = PT ≥ 0 and scalars λi ≥ 0 such that
LMI(Gα,Φ,L)(P, λ) < 0

then Fu(G,∆) is exponentially stable with rate α.

Proof: By Theorem 2, the well-posedness of Fu(G,∆) implies
that Fu(Gα,∆α) is well-posed. Moreover, causality of ∆ implies
causality of ∆α. Clearly, ∆α maps L2e signals to L2e signals. It
follows from Theorem 1 that Fu(Gα,∆α) is linearly stable. Based
on Theorem 2, Fu(G,∆) is exponentially stable with rate α.

Theorem 3 demonstrates the utility of Theorem 2 using the linear
stability test in Theorem 1. Similarly, the other linear stability tests
mentioned after Theorem 1 can also be used to formulate α -
exponential stability tests based on Theorem 2.

IV. BOUNDEDNESS AND IQCS FOR SCALED PERTURBATION

This section checks the boundedness and provides a list of IQCs
for the scaled perturbation ∆α. The results are developed for several
important types of (unscaled) components ∆. A notable absence is the
case where ∆ is an LTI norm-bounded uncertainty. This uncertainty
class is problematic for exponential convergence analysis, e.g. ∆ may
lead to an arbitrarily slow convergence rate of Fu(G,∆). Finally,
most IQCs developed in this section are specified as frequency
domain multipliers. If the boundedness of ∆α is checked then the
J-spectral factorization results in [17], [16] can be used to construct
corresponding time-domain IQCs. The J-spectral factorizations of
some multipliers require the following perturbation argument. First,
∆α will be proved to satisfy ‖∆α‖ ≤ γ for some γ > 0. Hence,
∆α satisfies the multiplier Π0 =

[
γ2 0
0 −1

]
. Any multiplier Π with

a positive semidefinite upper left block and a negative semidefinite
lower right block can be perturbed to Π + εΠ0 for sufficiently small
ε > 0. The perturbed multipliers satisfy the conditions required to
construct J-spectral factorizations.

A. Multiplication with an Uncertain Parameter

A large class of uncertainties ∆ have a multiplicative form
(∆v)(t) = δ(t)v(t), where δ(t) is the uncertain source term. Some
examples of δ include, but are not limited to:
• Constant real scalar: δ ∈ R
• Time-varying real scalar: δ(t) ∈ R
• Time-varying real matrix: δ(t) ∈ Rnw×nv
• Coefficients from a polytope: δ(t) is a measurable matrix in a

polytope of matrices with the extremal points δ1, . . . , δN
• Periodic real scalar: δ(t) is a scalar function with period T
• Multiplication by a harmonic oscillation: δ(t) = cos(ω0t)
• Rate-bounded, time-varying scalar: δ(t) satisfies |δ̇(t)| ≤ d
For all the above cases, ∆ and the scaling operator Sα± commute:

∆Sα± = Sα±∆. Therefore, the scaling relationship directly leads to
wα(t) = δ(t)vα(t), and ∆α = ∆. The boundedness of ∆ guarantees
that ∆α is a bounded operator, and any IQCs on ∆ are directly IQCs
on ∆α. The frequency domain IQCs on ∆ are well documented in
[13, Section VI]. All these frequency domain IQCs can be directly
applied to describe the input/output behavior of ∆α.

B. Uncertain Delay

An uncertain (constant) delay ∆ is defined as (∆v)(t) = 0 for
t < τ and (∆v)(t) = v(t − τ) for t ≥ τ , where τ ∈ [0, τ0]. When

t ≥ τ , one can use the scaling relationship to get:

wα(t) = w(t)eαt = v(t− τ)eαt = vα(t− τ)eατ (12)

When t < τ , one trivially gets wα(t) = 0. Therefore, (∆αvα)(t) = 0
for t < τ and (∆αvα)(t) = vα(t − τ)eατ for t ≥ τ . It is
straightforward to verify that ∆α is bounded and ‖∆α‖ ≤ eατ0 .

∆α is the product of the original delay ∆ and a constant uncertain
real scalar δ = eατ . The scaled system Fu(Gα,∆α) can be trans-
formed into a system with block diagonal uncertainty diag(∆, δ).
This discussion can be extended to the case with time-varying delays
(τ(t)). There exist standard IQCs for time delays ∆ [13], [5], [9],
[15] and uncertain real parameters [13]. This approach decouples ∆α

into two operators and constructs separate IQCs for ∆ and δ. It is also
possible to derive new IQCs directly for ∆α. When τ is an uncertain
(constant) delay then ∆α satisfies any multiplier of the form:[

e2ατ0X(jω) 0
0 −X(jω)

]
where X(jω) ≥ 0 is a bounded, measurable function of ω. A similar
multiplier holds for ∆α when τ is time-varying but with X(jω)
replaced by the constant matrix X = XT ≥ 0. Other existing
multipliers for time delays (e.g. Section VI.H in [13]) can be extended
to directly develop multipliers for the scaled delay ∆α = ∆eατ .

C. Memoryless Nonlinearity in a Sector

If (∆v)(t) = φ(v(t), t) and φ is in a sector: β1v
2 ≤ φ(v(t), t)v ≤

β2v
2, then (∆αvα)(t) = eαtφ(vα(t)e−αt, t). One can check that

β1v
2
α ≤ eαtφα

(
vα(t)e−αt, t

)
vα ≤ β2v

2
α. Therefore, ∆α is a

bounded operator and ‖∆α‖ ≤ max(|β1|, |β2|). Moreover, ∆α

satisfies the IQC defined by the multiplier
[
−2β1β2 β1+β2
β1+β2 −2

]
.

D. Static Nonlinearity

If (∆v)(t) = φ(v(t)), where φ is a continuous function, then
(∆αvα)(t) = eαtφ(e−αtvα(t)). It is assumed that φ lies within a
sector [β1, β2] for finite β1 and β2. Hence ∆α is bounded based on
Section IV-C. Clearly, the multiplier in Section IV-C can be applied
to ∆α. Under certain circumstances, two other sets of IQCs can also
be used. First, a Popov IQC will be presented. The following lemma
modifies the procedure in [8, Example 1] for the scaled operator ∆α.

Lemma 1 (Popov IQC). Assume φ : R→ R satisfies φ(0) = 0 and
φ(z)z ≥ 0 ∀z ∈ R. In addition, assume φ lies in a finite sector so
that wα = ∆α(vα) (as defined above) is bounded. If α ≥ 0, then∫ ∞

0

(αvα(t)− v̇α(t))wα(t)dt ≥ 0, ∀vα, v̇α ∈ Lnv2 [0,∞) (13)

Hence ∆α satisfies the IQC defined by
[

0 α+jω
α−jω 0

]
.

Proof: First notice:

−
∫ ∞

0

(αvα(t)− v̇α(t))wα(t)dt =

∫ ∞
0

e2αtv̇(t)φ(v(t))dt (14)

Boundedness of ∆α implies that wα ∈ Lnw2 . It follows from Cauchy-
Schwartz inequality that the integral on the left side (and hence also
the right side) is finite. Since e2αt = 1 +

∫ t
0

2αe2αt0dt0, the right
side of (14) can be manipulated as:∫ ∞

0

e2αtv̇(t)φ(v(t))dt =

∫ ∞
0

v̇(t)φ(v(t))dt

+

∫ ∞
0

(∫ t

0

2αe2αt0dt0

)
v̇(t)φ(v(t))dt

(15)

The double integral (second term on right side) is finite. This follows
because both the left side and the first term on the right are finite
integrals. Hence Fubini’s theorem can be used to swap the double
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integral so that the right side of (15) can be expressed as:∫ ∞
0

v̇(t)φ(v(t))dt+

∫ ∞
0

2αe2αt0

(∫ ∞
t0

v̇(t)φ(v(t))dt

)
dt0

Notice that vα, v̇α ∈ Lnv2 [0,∞) implies limT→∞ vα(T ) = 0 [8,
Lemma 1]. Hence, limT→∞ v(T ) = 0 and the following holds:∫ ∞
t0

v̇(t)φ(v(t))dt = lim
T→∞

∫ v(T )

v(t0)

φ(σ)dσ = −
∫ v(t0)

0

φ(σ)dσ ≤ 0

Therefore,
∫∞

0
e2αtv̇(t)φ(v(t))dt ≤ 0. Based on (14), one can see∫∞

0
(αvα(t)wα(t)− v̇α(t)wα(t)) dt ≥ 0. From Parseval’s theorem,

∆α satisfies the IQC defined by the multiplier
[

0 α+jω
α−jω 0

]
.

Remark 2. The Popov IQC requires v̇α ∈ L2. This is satisfied when
Gα is stable and DG = 0. The application of the Popov IQC requires
careful justifications on the properties of v̇α, e.g. see examples in [8].
Moreover, the multiplier given in Lemma 1 is not bounded on the
imaginary axis. This issue is usually fixed by a loop transformation.

Finally, the Zames-Falb IQCs [20], [6] will be constructed for the
operator ∆α. The scalar nonlinearity φ is bounded and monotone
nondecreasing if φ(0) = 0, [φ(y1) − φ(y2)](y1 − y2) ≥ 0, and
‖φ(y1)‖ ≤ c‖y1‖ for some c and all y1, y2.

Lemma 2 (Zames-Falb IQCs). Assume φ : R → R is bounded
and monotone nondecreasing so that ∆α is bounded. Let f ∈ L1

satisfy
∫∞

0
|f(t)|eαtdt ≤ 1 for some α ≥ 0 and f(t) ≥ 0 for all t.

Then ∆α satisfies the multiplier
[

0 1−F∗

1−F 0

]
where F denotes the

Laplace transform of f .

Proof: Let vα ∈ L2. It suffices to show that∫ ∞
0

wα(t)(f ∗ vα)(t)dt ≤
∫ ∞

0

wα(t)vα(t)dt (16)

Since wα(t) = w(t)eαt and vα(t) = v(t)eαt, one can directly check
that (16) is equivalent to∫ ∞

0

e2αtw(t)(g ∗ v)(t)dt ≤
∫ ∞

0

e2αtw(t)v(t)dt (17)

where g(τ) := e−ατf(τ) ∈ L1. Since vα ∈ L2 and ∆α is bounded,
one has wα ∈ L2. Moreover f ∈ L1 implies f ∗ vα ∈ L2. It follows
from Cauchy-Schwartz inequality that the left side of (16) (and hence
the left side of (17)) is finite. Hence, Fubini’s Theorem can be used
to rewrite the left side of (17) as∫ ∞

0

∫ ∞
0

e2αtw(t)g(τ)v(t− τ)dτdt

=

∫ ∞
0

e2ατg(τ)

(∫ ∞
0

e2α(t−τ)w(t)v(t− τ)dt

)
dτ

(18)

Since vα, wα ∈ L2, Statement (2) of Lemma 4 in the appendix can
be directly applied to show the first inequality below:∫ ∞

0

e2αtw(t)(g ∗ v)(t)dt

≤
(∫ ∞

0

e2ατg(τ)dτ

)(∫ ∞
0

e2αtw(t)v(t)dt

)
≤
∫ ∞

0

e2αtw(t)v(t)dt

(19)

The second inequality follows from the definition of g and the
assumptions on f . Thus (17) holds. This completes the proof.

Remark 3. Following the procedure in [6], the above result can
be extended to odd or slope-restricted or multi-input multi-output
nonlinearities. Another important related result is the discrete-time
α-IQC construction of Zames-Falb multipliers [1].

V. RELATED WORK

This section discusses connections to the results in [11]. The time
domain α-IQC introduced in [11] is defined as follows.

Definition 6. Let Ψ be an nz × (nv + nw) LTI system, and M =
MT ∈ Rnz×nz . A causal operator ∆ : Lnv2e [0,∞) → Lnw2e [0,∞)
satisfies the time domain α-IQC defined by (Ψ,M), if the following
inequality holds for all v ∈ Lnv2e [0,∞), w = ∆(v) and T ≥ 0∫ T

0

e2αtzT (t)Mz(t) dt ≥ 0 (20)

where z is the output of Ψ driven by inputs (v, w) with zero initial
conditions.

Suppose the uncertainty ∆ satisfies multiple time domain α-IQCs
defined by {(Ψk,Mk)}Nk=1. All {Ψk}Nk=1 are aggregated into a filter
Ψ governed by Equation (4). Let (A,B, C,D) denote the state space
realization of H(G,Ψ). A trivial extension of [11, Theorem 4] from
discrete to continuous time yields the following result:

Theorem 4. Let G be a LTI system defined by (1) and ∆ :
Lnv2e [0,∞)→ Lnw2e [0,∞) be a causal operator such that Fu(G,∆)
is well-posed. Assume ∆ satisfies the time domain α-IQCs defined
by {(Ψi,Mi)}Ni=1. If one of the following condition holds
(a) ∃ a matrix P = PT > 0 and scalars λi ≥ 0 such that[

ATP+PA+2αP PB
BTP 0

]
+
[
CT
DT

]
Mλ [ C D ] ≤ 0 (21)

(b) ∃ a matrix P = PT ≥ 0 and scalars λi ≥ 0 such that the left
side of the LMI (21) is strictly less than (<) 0.

Then Fu(G,∆) is exponentially stable with rate α.

Proof: Assume Condition (a) holds. The discrete-time version of
this case has been proved in [11]. The proof is sketched as follows.
Set V (x) = xTPx. Left and right multiply LMI (21) by [xT , wT ]
and [xT , wT ]T to show that V satisfies: d

dt

(
e2αtV (x(t))

)
+∑N

i=1 λie
2αtzi(t)

TMizi(t) ≤ 0. Integrating this inequality from t =
0 to t = T with initial condition x(0) =

[
xG(0)

0

]
and applying the

time domain α-IQC conditions yields V (x(T )) ≤ V (x(0)) e−2αT .
Therefore, ‖xG(t)‖ ≤

√
cond(P )‖xG(0)‖e−αt and Fu(G,∆) is

exponentially stable with rate α. A perturbation argument can be
used to complete the proof when Condition (b) holds.

As pointed out in [11, Section 3.1], quadratic constraints that hold
pointwise in time, e.g. constraints on sector nonlinearities, lead to
time-domain α-IQCs for any α ≥ 0. The use of time domain α-
IQCs is more general than the well-known GEVP formulations using
time-domain pointwise quadratic constraints, since one can construct
this type of α-IQCs for the gradient of strongly convex functions to
analyze the convergence rates of optimization algorithms [11].

The next lemma provides a connection between IQCs for the
scaled perturbation ∆α and α-IQCs for the original perturba-
tion ∆. The lemma statement involves the scaled filter Ψα =
S−1
α−ΨS−1

α+. As discussed in Section III, Ψα will denote the specific
LTI state-space realization (AΨ + αI, [BΨ1 BΨ2 ] , CΨ, [DΨ1 DΨ2 ]).
Similarly, Hα(G,Ψ) denotes the specific state-space realization for
S−1
α−H(G,Ψ)S−1

α+ based on shifting the state matrix of H(G,Ψ).
The use of Sα± here involves a slight abuse of notation because Ψ
and H(G,Ψ) have different input/output dimensions than G.

Lemma 3. Let G be an nv × nw LTI system described by Equation
(1). ∆ satisfies the time-domain α-IQC defined by (Ψ,M) if and only
if ∆α satisfies the time-domain IQC defined by (Ψα,M). Moreover,
Hα(G,Ψ) = H(Gα,Ψα).

Proof: The proof follows by simply tracking the various signal
definitions. The key of the proof is the following fact. Let z be the
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output of Ψ driven by (v, w) with zero initial condition. Set zα(t) :=
eαtz(t). Then zα will be the output of Ψα driven by (vα, wα) with
zero initial condition. The details of the proof are omitted.

Remark 4. The frequency domain α-IQCs introduced in [1] can be
connected to the frequency domain IQCs on ∆α in a similar manner.

Lemma 3 states that Theorem 4 and Theorem 3 are equivalent.
Both theorems use time-domain proofs and can be extended to other
linear systems which do not have frequency domain interpretations,
e.g. LPV systems. Note that both theorems require non-negativity
constraints on P . If Gα is stable and ∆α is bounded then this non-
negativity constraint can be dropped in Theorem 3 using the approach
in [16, Theorem 2]. This approach constructs a non-negative storage
function using additional energy stored in the IQC. It is possible to
similarly modify the α-IQC proof in Theorem 4 to drop the non-
negativity constraints.

In [11], there are cases where the specified {(Ψi,Mi)}Ni=1 do not
depend on α. Then LMI (21) directly leads to a GEVP. Similarly,
for the IQCs specified in Sections IV-A and IV-C, the associated
multipliers {Πi}Ni=1 do not depend on α. Then Theorem 3 leads to
a GEVP. However, Theorem 4 and Theorem 3 do not always lead to
GEVPs. When ∆ is an uncertain constant time delay, the multipliers
for ∆α depend on α via an exponential relationship. To find the
smallest exponential rate bound for Fu(G,∆) in this case, a bisection
algorithm is required. At each iteration, a J-spectral factorization has
to be performed for the α-dependent multipliers {Π}Ni . Similarly,
when Popov IQCs are used, the resultant LMIs do not lead to GEVPs.

VI. CONCLUSION

This paper develops a unified IQC-based approach to test the α-
exponential stability of uncertain LTI systems. LMI conditions are
derived based on connections between α-exponential stability of the
original loop and linear stability of an exponentially scaled loop. The
proposed approach requires the construction of IQCs for a scaled
perturbation operator. A library of IQCs for the scaled perturbation
operator is derived for several important types of perturbations.
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APPENDIX

Lemma 4. Let φ : R→ R be bounded and monotone nondecreasing.
In addition, let w(t) = φ(v(t)). Then

1) For any v ∈ L2, τ ≥ 0, and t0 ≥ 0. one has∫ ∞
t0

v(t) (w(t)− w(t+ τ)) dt ≥ 0 (22)

2) If α ≥ 0, v(t)eαt, w(t)eαt ∈ L2 and τ ≥ 0, then∫ ∞
0

e2α(t−τ)w(t)v(t− τ)dt ≤
∫ ∞

0

e2αtw(t)v(t)dt (23)

Proof: To prove Statement (1), first let t0 = 0. It follows from
a traditional Zames-Falb result [6, Lemma 1] that:∫ ∞

0

w(t)v(t)dt ≥
∫ ∞

0

w(t)v(t− τ)dt (24)

The right side can be re-written with a change of variables as:∫ ∞
0

w(t)v(t)dt ≥
∫ ∞

0

w(t+ τ)v(t)dt (25)

This proves (22) for t0 = 0. For t0 ≥ 0, set ṽ := v − Pt0v. Then∫ ∞
0

ṽ(t) (w̃(t)− w̃(t+ τ)) dt ≥ 0,∀τ ≥ 0 (26)

This proves Statement (1) for t0 ≥ 0.
To prove Statement (2), rewrite the left side of (23) with a change

of variables as
∫∞

0
e2αtw(t+ τ)v(t)dt. Thus (23) is equivalent to:∫ ∞

0

e2αtv(t) (w(t)− w(t+ τ)) dt ≥ 0 (27)

The integral is finite (Cauchy-Schwartz), since v(t)eαt, w(t)eαt ∈
L2. Since e2αt = 1 +

∫ t
0

2αe2αt0dt0, the left side of (27) equals∫ ∞
0

v(t) (w(t)− w(t+ τ)) dt

+

∫ ∞
0

(∫ t

0

2αe2αt0dt0

)
v(t) (w(t)− w(t+ τ)) dt

(28)

The first integral on the left side is finite because v, w ∈ L2 (Cauchy-
Schwartz) and hence the double integral is also finite. From Fubini’s
theorem, this double integral can be re-arranged as∫ ∞

0

2αe2αt0

(∫ ∞
t0

v(t) (w(t)− w(t+ τ)) dt

)
dt0 (29)

Statement (1) implies the inner integral in (29) is ≥ 0 ∀t0 ≥ 0. Thus
the double integral in (28) is ≥ 0. By Statement (1), the first term in
(28) is also ≥ 0. Hence (27) holds and Statement (2) is true.


