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The dynamics of a flexible air vehicle are typically described using an aeroservoelastic
model which accounts for interaction between aerodynamics, structural dynamics, rigid
body dynamics and control laws. These subsystems are individually modeled using a com-
bination of theory and experimental data from various ground tests. For instance, the
structural dynamics model can be obtained using a finite element method which is then
updated using data from ground vibration tests. Similarly, an aerodynamic model can be
obtained from linear panel methods or computational fluid dynamics and updated using
data from wind tunnel tests. In all cases, the models obtained for the subsystems have a
degree of uncertainty owing to inherent assumptions in the theory and errors in experi-
mental data. By suitably modeling these uncertainties, a robust stability analysis may be
carried out to obtain a robust flutter boundary. In this paper, we examine the affects of
bounds on various uncertainties on the resulting robust flutter boundary. This analysis
helps us deduce the subsystems most important for a good flutter prediction.

I. Introduction

Aeroservoelastic systems are increasingly gaining prominence in flight dynamics modeling and control
design due to use of highly flexible light-weight materials for construction of modern aircraft. The interaction
between structural dynamics, aerodynamics, rigid body dynamics and control laws of such aircraft can lead
to unstable phenomena like flutter.1,2 To capture these instabilities in a flight dynamics model, it is necessary
to develop dependable methods for modeling aeroservoelastic effects as accurately as possible. The resulting
models may have additional requirement constraints such as linearity and low number of states for control
design.

The Unmanned Aerial Vehicles (UAV) research group at the University of Minnesota carries out ex-
tensive research in the field of aeroservoelastic systems. Theoretical research in system modeling,3,4 model
reduction5,6 and control design7,8 is supplemented by experimental work in ground vibration tests,9,10 flight
tests11 and system identification.12,13 The group maintains a well equipped UAV laboratory for experimen-
tal research and flight tests. The group is also a part of a multi-disciplinary, multi-institutional team of
researchers from academia and industry, working on a grant from NASA titled the Performance Adaptive
Aeroelastic Wing (www.paaw.net) (see acknowledgments). The objective is to demonstrate flutter suppres-
sion and active morphing wing control in flight. The group has built a number of test bed UAVs with
varying structural characteristics for this purpose14 and has begun conducting flight tests. In keeping with
the research philosophy of the group, all data related to flight and ground tests, modeling tools and control
design tools are made open source on the group website mentioned above.

The underlying need for all these areas of research are reliable and control design oriented models. A
common approach to constructing these models is by describing the overall system as an interconnection
between various subsystems as shown in Fig. 2. Each of the subsystems is individually modeled in a common
coordinate system for ease of interconnections. A significant advantage of this approach is the flexibility
offered in choosing the modeling technique and fidelity for each subsystem. For instance, the structural
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model could be constructed using nonlinear beam theory while the aerodynamics could be modeled using
linear potential flow theory. However, it is important to note that every method involves certain assumptions
which lead to modeling errors in the subsystem. Hence, it is important to account for these inherent errors
in the overall system for a robust analysis for flutter instabilities and robust control design.

The structured singular value (µ) is a widely used measure of robust stability for systems with predefined
uncertainties. A short summary of µ analysis15,16 is provided in section III. The uncertainties considered can
range from unmodeled high frequency dynamics to parametric errors in the model. The µ based framework
has also been used in recent years to carry out robust flutter analysis for aeroservoelastic systems.17,18 Lind
and Brenner have also demonstrated the method for updating model uncertainties using flight data, both
offline and in real time during flight.19 However, the relative effects of different sources of uncertainties
on these analyses has not been explored as much using this framework. Such an analysis is considered in
this paper and requires a skewed-µ calculation.20,21 It should be noted that a more general approach for
representing modeling errors, called the Integral Quadratic Constraints (IQCs), are also used as a framework
for flutter analysis22–24 which accounts for various nonlinearities in the model in addition to the above
mentioned uncertainties.

In this paper we look at a sensitivity analysis using the µ framework where the effects of different
modeling errors on flutter prediction are quantified in an individual capacity. The nominal aeroelastic model
is developed using the subsystem approach mentioned earlier, as described in Section II. The uncertainties
are modeled in a structured manner and their bounds are based on estimates of measurement errors and
theoretical approximations (see Section III). The structured nature of the uncertainties makes it possible to
carry out flutter analysis with each uncertainty scaled independently of another (see Section IV). Finally,
the results of this analysis provides insights on the required fidelity of the corresponding subsystems which
in turn would help choose the appropriate methods for their modeling (Section IV).

II. Aeroelastic Model

In this section, the basic aeroelastic model used in this paper is described. The uncertain model described
in the later sections uses this as the nominal model. The aircraft chosen for aeroelastic modeling is the Body
Freedom Flutter (BFF) vehicle, see Fig 1. The BFF vehicle was developed by the Lockheed Martin (LM)
and the Air Force Research Lab as a testbed for their flutter suppression control laws.25 The aircraft exhibits
the so called body freedom flutter, in which the first wing bending mode couples with the rigid short period
mode to create instability which can lead to loss of aircraft. Indeed several aircraft were lost during research
testing as LM attempted to push beyond the (open-loop) flutter boundary using advanced controls. The
last version was generously donated to the University of Minnesota UAV research group. The aerodynamic
design of the test beds constructed by the UAV research group is based on the BFF vehicle.

(a) BFF Design (b) BFF and miniMUTT

Figure 1. Body Freedom Flutter Vehicle (background) with the rigid body version built by UMN

The image in Fig. 1(b) shows the BFF vehicle in the background. The foreground shows a rigid version
of the aircraft built in-house by the group, named the mini-MUTT. The airframe has been designed to have
detachable wings, which allows for wings of variable flexibility to be attached to the center body. This
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concept is based on the X-56A MUTT test bed developed by NASA26 and allows for testing a range of test
beds with varying flexibility. Since the aerodynamic design remains same across these test beds, the modular
subsystem based approach used in this paper can efficiently model them by simply modifying the structural
dynamics subsystem. The model is conceptually described in Fig. 2 and the modeling process for subsystems
is discussed further.

Structural
Dynamics

Rigid Body
Dynamics

Aerodynamics

[
ηr

ηs

][
Fr

Fs

]

Figure 2. Nominal Aeroelastic Model

A. Rigid Body Dynamics

The rigid body dynamics are developed for all six degrees of freedom about the so called mean axes.27 The
mean axes formulation allows for the inertial decoupling of rigid body dynamics from the structural dynamics
assuming small deformations. Hence, rigid body forces and the resulting displacements can be handled as
done in classical flight dynamics. The mass properties such as center of mass location and moments of inertia
are obtained experimentally. The measurement errors in these experiments have been carefully estimated to
serve as a basis for bounding the associated uncertainties. The nonlinear equations for rigid body dynamics
are [

m(V̇r(t) + Ωr(t)× Vr(t)− Tgg)

IrΩ̇r(t) + Ωr(t)× IrΩr(t)

]
= Fr(t) (1)

Here m, Ir are the mass and moments of inertia of the aircraft. Vr,Ωr represent the translational and
angular velocities in the mean axes with respect to inertial axes. Fr represents forces and moments along
the mean axes and Tg is the rotation matrix from inertial to mean axes. Referring to Fig. 2, we see that the

rigid body modes are ηr =

[
Vr

Ωr

]
. The mass properties of the aircraft are listed in Table 1.

Table 1. Mass Properties

Property Value

Total mass 5.42 kg

CG location 0.59 m (from nose)

Pitching moment of inertia 0.36 kg m2

Rolling moment of inertia 2.50 kg m2

Yawing moment of inertia 2.37 kg m2

B. Structural Dynamics

The structural model is developed using a finite element method which consists of linear Euler beam ele-
ments.9,10 The beams are interconnected as shown in Fig. 3. The model has 14 nodes interconnected with
beams which have 3 degrees of freedom - heave, twist and bending. This makes the total number of degrees
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Figure 3. Finite Element Model for the BFF Vehicle

of freedom 42. Modal decomposition is carried out to transform the system into decoupled modal coordi-
nates. It is then possible reduce the degrees of freedom via modal truncation.28 Only the first 12 modes are
retained and all the higher frequency modes are truncated from the model.9 The final mathematical form
of the model in modal coordinates is written as

Msη̈s(t) + Csη̇s(t) +Ksηs(t) = Fs(t) (2)

Here Ms, Cs and Ks are the modal mass, damping and stiffness matrices and ηs is the modal coordinates
vector. The material properties associated with stiffness, Young’s modulus and Shear modulus, are esti-
mated via static tests as well as ground vibration tests.9,10 The experimental errors in their measurements
contribute to modeling uncertainties. Equation (1), which represents nonlinear rigid body dynamics, can be
linearized about a given trim condition and combined the linear structural model in Eq. (2). The mean axes
formulation ensures that the rigid body modes are orthogonal and therefore decoupled from the structural
dynamics modes. The combined dynamics can be written as

M

[
η̈r(t)

η̈s(t)

]
+ C

[
η̇r(t)

η̇s(t)

]
+K

[
ηr(t)

ηs(t)

]
=

[
Fr(t)

Fs(t)

]

M =

[
Mr 0

0 Ms

]
, C =

[
0 0

0 Cs

]

K =

[
0 0

0 Ks

]
, Mr =

[
mI3×3 0

0 Ir

] (3)

C. Aerodynamics

In an aircraft undergoing structural vibrations in flight, unsteady aerodynamic effects can potentially play
a significant role in inducing instabilities. Unsteady effects come into play since it takes a finite amount of
time for aerodynamic forces to redistribute around the aircraft as it deforms in flight. To account for the
resulting lag effects, a potential flow based panel method known as the doublet lattice method (DLM) has
been implemented,29,30 along with a standard vortex lattice method (VLM) to take care of the steady part.3

Fig. 4 shows the aerodynamic panels for the BFF vehicle.
The DLM provides solutions for lifting surfaces undergoing simple harmonic oscillations at a given fre-

quency ω and a given airspeed V . Specifically, the solution is obtained for a given dimensionless reduced
frequency defined as k := ω cref2V where cref is the reference chord. Suitable coordinate transformations are
carried out to express the model in structural modal coordinates as[

Fr

Fs

]
= q̄A(ik)

[
ηr

ηs

]
(4)

where q̄ is the dynamic pressure. A(ik) is a complex valued matrix obtained as a solution from the DLM for
a given k. Since it is only obtained at discrete values of the reduced frequency, a least squares fit is carried
out for a set of solutions over a predefined rational function. The rational function chosen for this purpose is
the Roger’s approximation.31 The continuous model is expressed in terms of the reduced frequency Laplace
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Figure 4. Aerodynamic Model for the BFF Vehicle

variable sr as

A(sr) =

 A0 +A1ssr︸ ︷︷ ︸
steady aero

+ A1ussr +A2(sr)
2

+

aero lag terms︷ ︸︸ ︷
n∑
l=1

Al
sr

sr + bl︸ ︷︷ ︸
unsteady aero

 (5)

sr is defined as sr := s cref2V , where s is the Laplace variable. A0, A1s are the static deflections and velocity
dependence terms respectively for steady aerodynamics. A1us, A2 are the quasi-steady and acceleration terms
for unsteady aerodynamics. Al represents the aerodynamic lag term coefficients and bl are the corresponding
poles which are picked a priori to simplify the fitting process. By substituting sr = ik in Eq. (5), the DLM
solution at the reduced frequency k may be obtained. Also, using the relation between sr and s stated above,
the aerodynamic model in Eq. (5) can be expressed as a MIMO transfer function for a given airspeed V
(denoted as AV (s)). Thus, a linear aerodynamic model is obtained which is parametrically dependent on
the airspeed V .

The fitting can be visualized in Fig. 5 which shows the transfer function from vertical velocity input to
the resulting first wing bending force evaluated at the airspeed V = 20 m/s. The associated fitting errors
serve as an important source of modeling uncertainty and are described in the later sections. Equations (3)
and (4) can be combined by eliminating the forcing terms to define the nominal aeroelastic model in Laplace
domain as

[
Ms2 + Cs+K − q̄AV (s)

] [ηr
ηs

]
= 0 (6)

Here, AV (s) represents the continuous aerodynamic model in Eq. (5) evaluated at a given airspeed V .
Equation 6 describes the nominal aeroelastic model in which modeling uncertainties can be included, as
described in the next section.

III. Robust Flutter Analysis

This section covers the concept of robust flutter analysis for uncertain systems and the associated math-
ematical tools. First, flutter analysis for the nominal model developed in the previous section is presented,
followed by the conceptual description of uncertainty modeling for the aeroelastic model. This is followed
by a brief overview of the µ framework for uncertain systems. Finally, a graphical approach is presented for
calculating the robust flutter boundary for in the µ framework.
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Figure 5. Least squares fit for aerodynamics given by ( ), raw DLM data: ( ), fitting errors: ( ) and the
upper bound on the errors: ( )

A. Flutter Analysis

Flutter boundary is defined as the flight condition at which there is onset of flutter.1,18 If the aircraft
is assumed to be in straight and level flight at constant altitude, the flutter boundary is essentially the
smallest airspeed at which flutter occurs. In this paper the flutter boundary is only calculated under these
conditions. It should be noted that Eq. (6) is a general representation of aeroelastic models with a linear
structural model and linear unsteady aerodynamics.1,2 By computing eigenvalues associated with the model
at a given airspeed, stability of the system can be determined. The eigenvalues of the system will be complex
conjugates of the form

λ = −ζωn ± iωn
√

1− ζ2 (7)

where ζ is the damping ratio and ωn is the natural frequency for a given eigenmode. The non-zero damping
ratios of eigenmodes determine their decaying or rising amplitudes which correspond to their stability or
instability. If (as noted in the previous section) the aerodynamics model is available only as a complex valued
matrix at discrete frequencies for a simple harmonic oscillation, the frequency has to be chosen a priori to
solve Eq. (6) for the eigenvalues of the system. However, the appropriate frequency for the aerodynamics
model is the frequency of the eigenmode whose stability is of interest, which is not known a priori. Another
inconsistency is that the aerodynamic model is only valid for simple harmonic modes with no damping
effects. Historically, this problem has been solved by using iterative methods for choosing the appropriate
frequency and approximations regarding the true aerodynamic forces on a damped oscillating system. For
example, the ’p-k’ method assumes the aerodynamic model for simple harmonic oscillations to be a good
approximation for a system with lightly damped modes.32 The ’g’ method on the other hand makes a first
order approximation to get an aerodynamic model for damped oscillations based on the available model for
simple harmonic oscillations.33

In this paper, the aerodynamic model at a given airspeed is obtained as a continuous model in the Laplace
domain (AV (s)) via a rational function approximation. Therefore the entire system can be directly solved
for the eigenmodes like any typical linear system. However it should be kept in mind that the aerodynamic
model AV (s) is strictly valid only for s = iω (or equivalently, A(sr) is valid only for sr = ik). That is to
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say, it is only valid for sinusoidal inputs at a given frequency ω. Hence by directly solving for eigenmodes,
we make an approximation equivalent to that in the p-k method. The rational function fitting simply helps
avoid the iterative process for choosing the appropriate oscillating frequency for aerodynamics and also helps
provide a continuous model for time domain simulations if necessary.

To calculate the flutter boundary for body freedom flutter, we track the eigenmodes of the system in
Eq. (6) associated with first wing bending and short period across a grid of airspeeds. The variation of short
period and first symmetric wing bending modes with respect to airspeed is shown in Fig. 6. The first wing
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Figure 6. Short period and first symmetric wing bending modes variation with airspeed

bending mode goes unstable between 23 and 24 m/s. A closer search between that interval gives the flutter
speed to be 23.8 m/s. This flutter boundary will be referred to as the nominal flutter boundary, since it is
associated with the nominal model which has no uncertainties. Next, we will discuss the model uncertainties
which will be accounted for, and then outline the procedure for obtaining a robust flutter boundary with
respect to the uncertain model.

B. Uncertainty Description

Uncertainties and modeling errors in the aeroelastic model can arise from different sources like-

1. Parametric uncertainties in structural properties (mass and material properties) obtained from exper-
imental data and used in the structural model.

2. Parametric uncertainties in steady aerodynamics model.

3. Unmodeled dynamics in the incremental unsteady aerodynamics model obtained from the DLM.

4. Nonlinearities ignored in linearization procedures or hard nonlinearities like saturation in components
such as actuators.

This paper considers the first three types listed above, using the linear robust control framework based on
µ. The nonlinearities can be addressed using the more general Integral Quadratic Constraints framework22

in the future, although nature of the analysis will remain the same. Similar use of IQCs for robustness
analysis of aeroservoelastic systems can be seen in literature.23,24 Since all the uncertainties are specified at
a subsystem level, it is possible to build uncertain subsystems and then connect them suitably to obtain the
overall model. Also, the parametric and dynamic uncertainties specified for individual parameters such as
stiffness parameters or unsteady part of aerodynamics can be pulled out and grouped together in a linear
fractional transformation (LFT)16 interconnection. The uncertain subsystems can then be connected as
shown in Fig. 7. S22 is the combined rigid body - structural dynamics nominal model described in Eq. (3)
and AV11 is the nominal aerodynamic model A(sr) as given in Eq. (5), evaluated at a given airspeed V . All
the other blocks Sij and AVij

represent the effects of uncertainties on the corresponding subsystems. The
block ∆s is a structured uncertainty consisting of parametric uncertainties related to mass properties and
structural stiffness properties. Similarly, ∆a consists of the parametric and dynamic uncertainties associated
with steady and unsteady aerodynamics respectively. Further details on these uncertainties are discussed
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Figure 8. Simplified Aeroelastic model with Structured Uncertainty

in the next section. These uncertainty blocks can be collected into a unified structured uncertainty ∆, in a
closed loop around the overall model represented by GV (s) as shown in Fig. 8.

GV (s) contains the entire aeroelastic model along with the uncertainty interaction terms shown in Fig. 7.
These LFT block diagram manipulations can be performed conveniently using commercially available soft-
ware. In this paper, these manipulations and all computations associated with µ analysis are done using the
robust control toolbox in MATLAB.34

C. Robust Stability Analysis Using µ

For the uncertain system in Fig. 8, given both GV (s) and the uncertainty ∆ ∈ ∆ are internally stable
systems, where ∆ is the set of all block structured uncertainties considered for this analysis, the closed loop
is stable for all allowed ∆ if and only if

det(I −GV (iω)∆) 6= 0 ∀ω∀∆ ∈∆ (8)

Equation (8) follows from the Nyquist stability theorem applied to a feedback system with a stable open loop
transfer function.16 Based on this stability condition a measure of robustness called the structured singular
value µ is defined for a given frequency ω and ∆ ∈∆ as

µ∆(GV (iω)) =
1

min
{
K| det(I −GV (iω)K∆) = 0, σ̄(∆) ≤ 1

} (9)

Thus, µ is defined as the inverse of the minimum scaling factor K for which (I − GV ∆) is singular at
a given frequency ω, where ∆ is norm-bounded. The norm boundedness of ∆ can be achieved via suitable
rescaling of GV . The scaling factor K can be considered to be analogous to robustness margin of GV (iω) at
a given frequency ω. Based on Eq. (9), a robust stability condition can now be written as

µ∆(GV (iω)) < 1 ∀ω∀∆ ∈∆, σ̄(∆) ≤ 1 (10)
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It basically states that if the minimum scaling K required for the closed loop to become unstable is greater
than unity for all frequencies, then the system is robustly stable for all norm bounded structured uncertainty
∆ ∈∆. Typically, Eq. (9) is computed on a frequency grid which is specified across a given frequency range
of interest for the system at hand. The condition in Eq. (10) can then be checked at these frequency points
for robust stability. For an aeroelastic model, a robust flutter boundary can thus be computed based on this
robust stability condition.

D. Robust Flutter Boundary Computation

A Robust flutter boundary can be considered as the smallest airspeed at which an uncertain aeroelastic
system shown in Fig. 8 becomes unstable. Going by the condition in Eq. (10) for robust stability, a robust
flutter boundary can be computed as the airspeed Vrfb at which the maximum occurring µ∆GV (iω) across
a specified frequency range is equal to unity. Thus, for a given set of block structured uncertainties ∆, Vrfb

is defined as the smallest airspeed V such that

max
ω∈Ω

µ∆GV (iω) = 1 (11)

Here Ω represents the frequency grid specified across the desired frequency range for the analysis. In other
words, for all airspeeds V < Vrfb, the robust stability condition specified by Eq. (10) is satisfied, and gets
violated at Vrfb for the first time at some frequency. Vrfb can be obtained graphically as described ahead.

For a given frequency grid Ω and airspeed V , compute instability scaling factor K̄ as

K̄ =
1

max
ω∈Ω

µ∆(GV (iω))
(12)

Note that K̄ is simply the inverse of the value of maximum µ∆(GV ) occurring over Ω at a given airspeed.
K̄ can be computed for a range of airspeeds and plotted on a K̄ − V graph. The K̄ − V graph has been
developed as the primary tool for computing robust fluter boundary in this analysis. From Eq. (11) it can
be seen that the point where this plot intersects K̄ = 1 line on the graph corresponds to the robust flutter
boundary. Fig. 9 shows a typical graph which shows the robust flutter boundary. Although we can just as

18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5
0

1

2

Vrfb = 21.25m/s

Airspeed V (m/s)

K̄

Figure 9. An example of a K̄−V graph

easily plot the maximum µ∆(GV ) instead of its inverse K̄, K̄− V graph seems to be more intuitive since K̄
is analogous to robustness margin. It is easy to see how much scaling of the uncertainty would make the
aeroelastic system unstable at any given airspeed. For example, at an airspeed of V = 19 m/s, Fig. 9 shows
that the specified uncertainty bounds need to be doubled for the aeroelastic system to go unstable. On the
other hand, the bounds will need to be scaled to 50% if the aircraft needs to be stable at V = 22.5 m/s.
Also, as K̄ approaches zero on the right end of the Fig. 9, it will intersect the x axis at the nominal flutter
speed of the system. This is because at the nominal flutter speed, the system would be unstable at flutter
frequency even if ∆ is set to zero i.e. zero uncertainty. Therefore the corresponding value for µ∆(GV ) would
be infinite at the flutter frequency (which means K̄ = 0) . Therefore by graphically extrapolating the K̄−V
graph, nominal flutter speed can be estimated in an alternate manner.
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IV. Sensitivity Analysis

For sensitivity analysis, a baseline uncertain model is built where different sources of model uncertainties
are considered. The objective is to study the affect of each individual uncertainty on the robust flutter
boundary as it is scaled up relative to others. Most uncertainties are parametric in nature and hence
embedded in the model when constructed. They are pulled out into the overall structured uncertainty block
as shown in Fig. 8 using the lftdata command in the robust control toolbox.34 A sensitivity scaling parameter
is defined for each of these uncertainties, which facilitates their individual scaling. This parameter varies
from 0.6 to 2, the baseline value being 1. Thus, it scales the baseline uncertainty between 60% and 200%.
The uncertainties are listed below along with their baseline bounds.

1. Real parametric uncertainty for steady aerodynamics coefficients: CLα, CLq, CMα and CMq

have been modeled with parametric bounded uncertainty. These coefficients are isolated from the
steady part of the aerodynamics model shown in Eq. (5) and multiplicative uncertainty is incorporated
so that the uncertain coefficients are

CXunc
= CXnom

(1 + kXsensWCX
δCX

) where X ∈ {Lα,Lq,Mα,Mq} (13)

CXnom
is the nominal value of the coefficient in consideration, δCX

is a norm bounded real valued
uncertainty (|δCx | ≤ 1), WCX

is the baseline uncertainty bound required for each coefficient and kXsens

is the sensitivity scaling, which is unity for the baseline uncertain model. For the lift coefficients,
WLα and WLq are set to 0.1, which corresponds to ±10% uncertainty about the nominal value. For
pitching moment coefficients, WMα and WMq are set to 0.05 or ±5% uncertainty. These bounds are
chosen by looking at the overall variation in values of the mentioned coefficients obtained from various
sources such as potential flow based panel methods (in-house as well as popular open source codes like
TORNADO (tornado.redhammer.se) and XFOIL (xflr5.com), computational fluid dynamics35 and
wind tunnel tests.

2. Real parametric uncertainty for moments of inertia: Moments of inertia about the three axes
are obtained via inertia swing tests.14 The measurement errors in these tests have been estimated
and documented, and they form the basis for specifying real parametric uncertainty bounds. The
uncertainty is incorporated as a multiplicative uncertainty on each of the inertia values to get

Imunc = Imnom(1 + kImsensWImδIm) where Im ∈ {Ixx, Iyy, Izz} (14)

Imnom represents the nominal value of each of the inertias, δIm is a norm bounded real valued uncer-
tainty, WIm is the baseline bound and kImsens is the sensitivity scaling parameter. The baseline bounds
for all three moments of inertia are chosen to be 0.05 or ±5% based on measurement errors. The rigid
mass matrix Mr in Eq. (3) is constructed using these uncertain inertia values.

3. Real parametric uncertainty for structural stiffness properties: Young’s modulus and shear
modulus of the Euler beams in the finite element model for the wings section have been estimated via
a series of static and ground vibration tests.14 The experimental errors in these tests are accounted
for via real parametric uncertainties to get

Xunc = Xnom(1 + kSsensWSδS) (15)

Xnom represents the nominal value of each of the moduli, δS is a norm bounded real valued uncertainty,
WS is the baseline bound and kSsens is the sensitivity scaling parameter. The bounds for both moduli
are chosen as 0.1 or ±10% based on the estimated experimental errors. The stiffness matrix Ks in
Eq. (2) is constructed from these uncertain moduli using standard finite element techniques.9,28

4. Dynamic uncertainty in unsteady aerodynamics: The dynamic uncertainty in unsteady aero-
dynamics is modeled as a LTI system uncertainty which bounds the least square fitting errors of the
rational function approximation. The fitted model is considered nominal and its deviation from raw
data (from DLM) is used to compute the uncertainty upper bound. From Eq. (5) we see that nominal
unsteady aerodynamics can be described as a rational function as

UAnom = A1ussr +A2sr
2 +

n∑
l=1

Al
sr

sr + bl
(16)
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The uncertainty is described as an output multiplicative uncertainty based on the nominal model and
a scalar LTI uncertain block ∆dyn which has a gain bound of unity.

UAunc = (I + kdynWdyn∆dyn)UAnom (17)

kdyn is the sensitivity scaling parameter, Wdyn is the weighting function for the dynamic uncertainty
which provides a conservative upper bound on the fitting errors, as shown in Fig. 5. It is computed
by first fitting the discrete error magnitudes to a transfer function (MATLAB command fitmagfrd).
The resulting transfer function is then increased in magnitude by 5% to obtain Wdyn. This is done to
ensure that the weight is a slightly conservative upper bound to the fitting errors. Wdyn has the same
dimensions as the aerodynamic model and is constructed as shown for each input-output combination
of the aerodynamic model. It gives an insight on the variation of fitting errors with frequency. It can
be seen that error magnitude rises in the frequency range close to the lag states poles which are chosen
a priori. The error in choosing these poles is considered a systemic error, not accounted for in the
baseline model. They are a part of the scaled up analysis.

5. Dynamic uncertainty for location of center of gravity: Location of center of gravity (C.G.) is
obtained experimentally along with its corresponding measurement errors.14 The baseline uncertainty
in its location is assumed to be ±0.05m. This uncertainty (assuming total mass remains constant)
is primarily reflected in the structural mass matrix of the finite element model. This affects the
mode shapes of the aircraft and therefore all the modal mass, damping and stiffness matrices as well
as the aerodynamic model which is transformed into modal coordinates. Therefore, to account for
the effects due to the baseline uncertainty specified above, a dynamic uncertainty is assumed for the
overall aerodynamic and structural subsystem models. The corresponding upper bounds WAcg and
WScg for these uncertainties are estimated by finding the difference between the nominal aerodynamic
and structural models from Eqs. (??) and (3) and the models obtained by moving the C.G. by the
maximum baseline value. The uncertain subsystem models are defined as

Aunc = (I + kcgWAcg∆cg)Anom

Sunc = (I + kcgWScg∆cg)Snom

(18)

Anom and Snom are the aerodynamic and structural models with C.G. at nominal location and kcg is
the sensitivity scaling parameter. The resulting uncertain models Aunc and Sunc are integrated with
other uncertainties listed above. Although this approach may not be conservative enough compared to
a real parametric uncertainty specification for C.G. location, it is far less computationally intensive.

Equations (13) - (18) provide the uncertain parameters and uncertain dynamics, which can then scaled
individually for sensitivity analysis via the sensitivity scaling parameters. The results of the analysis are
discussed ahead.

A. Results

The range of scaling factors are kept the same for each uncertainty bound, between 60% and 200%. This
is analogous to the skewed-µ problem. A K̄ − V graph can be plotted after each uncertainty is scaled up
individually. As an example, the stiffness sensitivity scaling parameter kSsens is scaled between 0.6 and 2 (or
60% and 200%) and the K̄−V graph is plotted for each scaled value as shown in Fig. 10.

Note that K̄ refers to the scaling of the overall uncertainty ∆ required for instability, whereas kSsens

refers to the skewed scaling of uncertainty δS associated with stiffness properties only. The flutter speed as
defined earlier, is the airspeed at which the K̄ − V line intersects the K̄ = 1 line. We see in Fig. 10 that
with increase in kSsens, the robust flutter boundary Vrfb decreases, which is as expected since the overall
uncertainty is increases. This variation can be visualized via a sensitivity graph where Vrfb is plotted against
the corresponding sensitivity parameter. The same process can be used for uncertainties associated with
estimated moments of inertia, location of C.G., steady and unsteady aerodynamics. From the K̄−V graphs
associated with all uncertainties, we can pull out the variation of flutter speeds with their corresponding
sensitivity scaling factors. A sensitivity graph can then be plotted which shows this variation for each
uncertainty as shown in Fig. 11. Fig. 11 shows how the robust flutter boundary varies as each uncertainty is
scaled individually. Since all the scalings are between 60% and 200%, all the variations can be plotted and
compared on a single graph.
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Figure 11. The lines represent steady lift coeff: ( ), steady pitch coeff: ( ), unsteady aerodynamics:
( ), moment of inertia: ( ), structural stiffness: ( ), and C.G. location: ( )

B. Discussion and Future Work

Fig. 11 provides insight into the relative sensitivities of different uncertainties. The plots all intersect at
the baseline uncertainty where all sensitivity scalings are unity. This point represents the baseline robust
flutter boundary Vrfb = 21.37 m/s. This is the minimum airspeed beyond which the baseline uncertain
model becomes unstable. But as various uncertainties are scaled individually, Fig. 11 clearly shows that Vrfb

is most sensitive to the structural stiffness estimation. This is followed by the dynamic uncertainty due to
C.G. variation and unsteady aerodynamics. However, the flutter boundary seems to be highly unaffected
by uncertainties in either steady aerodynamics pitch coefficient or moments of inertia and only marginally
affected by the steady lift coefficient uncertainty. We can compute the average slopes of each line in Fig. 11
and normalize them with the lowest value which gives a quantitative idea of relative sensitivity of the various
uncertainties. The slope values are listed in Table 2.

Thus, we see that sensitivity to stiffness properties is twice the next highest value corresponding to C.G.
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Table 2. Slopes of the Sensitivity Plot for different Uncertainties

Uncertainty Source Slope Norm. Slope

δs Structural Stiffness -1.24 18.12

δIm Moments of Inertia -0.09 1.34

∆cg Center of Gravity -0.56 8.88

δCM
Pitching moment Coeff -0.068 1

δCL
Steady Lift Coeff -0.17 2.52

∆dyn Unsteady Aerodynamics -0.34 4.99

location uncertainty and 18 times more sensitive than the lowest value, that of pitching moment coefficient.
Of course, these results are highly dependent on the baseline bounds assumed for each uncertainty. For
example, the baseline bound WCL

assumed for CL coefficients is ±10%, which is then scaled by a factor of
0.6 to 2. Therefore in the absolute sense, the bound is varied from ±6% to ±20%. However, if the baseline
bound is assumed at, say, ±50%, then the same scaling range results in the bound varying from ±30% to
±100% in the absolute sense. This leads to a greater drop in robust flutter boundary for the same scaling.
So if baseline bounds for a particular uncertainty is raised relative to others, then for the same scaling range,
that uncertainty will appear to be more sensitive on this graph. Hence, for this comparison to be valid,
baseline bounds have to be selected carefully.

In the case of structural stiffness parameters (Young’s and Shear Modulus), as the bounds on the cor-
responding uncertainties is tightened via better experimental measurements, we can push the robust flutter
boundary closer to the nominal boundary far more compared to other uncertainties. Conversely, a poor
experimental accuracy can cause Vrfb to drop rapidly since the baseline bound itself increases.

Next, variation of uncertainty in the location of center of gravity affects Vrfb significantly. However, the
experimental measurement for this parameter is very accurate.14 Even the baseline uncertainty assumed has
very large bounds, thus contributing to the high sensitivity. However, in aircraft with varying C.G. location
(typically due to fuel burn), the model may not to be able to predict the location as accurately as ground
tests. This provides significant scope for uncertainty in C.G. location. In such a scenario, it becomes very
important to keep the modeling error low since the analysis reveals high sensitivity to C.G. location. Also,
we need to keep in mind that the uncertainty description in this case may not be conservative enough, so
the sensitivity could be potentially higher. It is an open problem to be addressed in future work.

Although the flutter boundary is less sensitive to unsteady aerodynamics, it is the only aspect of this model
which is obtained purely from a single theoretical approach. Although the DLM itself has been validated
against experimental data,29 there is no experimental data to either validate the unsteady aerodynamics
model for this aircraft or to provide bounds on it. As mentioned earlier, the baseline error bounds are
specified based on fitting errors only, although there could potentially be significant discrepancy at the
baseline level itself. Thus, given its relatively high sensitivity, as well as the fact that the model is not verified
or bounded via experimental data, it serves as one of the most important areas for further investigation.

The steady aerodynamics and moments of inertia seem to be of little significance to flutter prediction that
therefore can be estimated as being done currently. Also, we can assume they do not play a significant role
in any observed deviation from flight test data. This methodology for sensitivity analysis can be extended to
compare effects of uncertainty on various input-output performance metrics. In future, a similar approach
will be used to study the effects of various uncertainties on gust response, handling qualities and control
surface effectiveness. Also, in the near future, integral quadratic constraints22 will be incorporated to include
nonlinearities such as actuator saturation and neglected higher order terms.36 Finally, this framework will
also be used for model updating from flight test data. It is envisioned that these analyses will enable a
least conservative uncertain model which effectively represent any variations of flight data from the nominal
model, since it will be known a priori which sources of uncertainties and nonlinearities are most influential
for stability and performance of the aeroelastic system.
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